1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <err.h> 48 #include <grp.h> 49 #include <limits.h> 50 #include <signal.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <stdint.h> 54 #include <stdio.h> 55 #include <unistd.h> 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/types.h> 59 #include <sys/wait.h> 60 #include <sys/resource.h> 61 #include <sys/stat.h> 62 #include <ufs/ufs/dinode.h> 63 #include <ufs/ufs/dir.h> 64 #include <ufs/ffs/fs.h> 65 #include <sys/disklabel.h> 66 #include <sys/file.h> 67 #include <sys/mman.h> 68 #include <sys/ioctl.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 static struct csum *fscs; 78 #define sblock disk.d_fs 79 #define acg disk.d_cg 80 81 union dinode { 82 struct ufs1_dinode dp1; 83 struct ufs2_dinode dp2; 84 }; 85 #define DIP(dp, field) \ 86 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 87 (dp)->dp1.field : (dp)->dp2.field) 88 89 static caddr_t iobuf; 90 static long iobufsize; 91 static ufs2_daddr_t alloc(int size, int mode); 92 static int charsperline(void); 93 static void clrblock(struct fs *, unsigned char *, int); 94 static void fsinit(time_t); 95 static int ilog2(int); 96 static void initcg(int, time_t); 97 static int isblock(struct fs *, unsigned char *, int); 98 static void iput(union dinode *, ino_t); 99 static int makedir(struct direct *, int); 100 static void setblock(struct fs *, unsigned char *, int); 101 static void wtfs(ufs2_daddr_t, int, char *); 102 static u_int32_t newfs_random(void); 103 104 static int 105 do_sbwrite(struct uufsd *disk) 106 { 107 if (!disk->d_sblock) 108 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 109 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 110 disk->d_sblock) * disk->d_bsize))); 111 } 112 113 void 114 mkfs(struct partition *pp, char *fsys) 115 { 116 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 117 long i, j, csfrags; 118 uint cg; 119 time_t utime; 120 quad_t sizepb; 121 int width; 122 ino_t maxinum; 123 int minfragsperinode; /* minimum ratio of frags to inodes */ 124 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 125 union { 126 struct fs fdummy; 127 char cdummy[SBLOCKSIZE]; 128 } dummy; 129 #define fsdummy dummy.fdummy 130 #define chdummy dummy.cdummy 131 132 /* 133 * Our blocks == sector size, and the version of UFS we are using is 134 * specified by Oflag. 135 */ 136 disk.d_bsize = sectorsize; 137 disk.d_ufs = Oflag; 138 if (Rflag) { 139 utime = 1000000000; 140 } else { 141 time(&utime); 142 arc4random_stir(); 143 } 144 sblock.fs_old_flags = FS_FLAGS_UPDATED; 145 sblock.fs_flags = 0; 146 if (Uflag) 147 sblock.fs_flags |= FS_DOSOFTDEP; 148 if (Lflag) 149 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 150 if (Jflag) 151 sblock.fs_flags |= FS_GJOURNAL; 152 if (lflag) 153 sblock.fs_flags |= FS_MULTILABEL; 154 /* 155 * Validate the given file system size. 156 * Verify that its last block can actually be accessed. 157 * Convert to file system fragment sized units. 158 */ 159 if (fssize <= 0) { 160 printf("preposterous size %jd\n", (intmax_t)fssize); 161 exit(13); 162 } 163 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 164 (char *)&sblock); 165 /* 166 * collect and verify the file system density info 167 */ 168 sblock.fs_avgfilesize = avgfilesize; 169 sblock.fs_avgfpdir = avgfilesperdir; 170 if (sblock.fs_avgfilesize <= 0) 171 printf("illegal expected average file size %d\n", 172 sblock.fs_avgfilesize), exit(14); 173 if (sblock.fs_avgfpdir <= 0) 174 printf("illegal expected number of files per directory %d\n", 175 sblock.fs_avgfpdir), exit(15); 176 177 restart: 178 /* 179 * collect and verify the block and fragment sizes 180 */ 181 sblock.fs_bsize = bsize; 182 sblock.fs_fsize = fsize; 183 if (!POWEROF2(sblock.fs_bsize)) { 184 printf("block size must be a power of 2, not %d\n", 185 sblock.fs_bsize); 186 exit(16); 187 } 188 if (!POWEROF2(sblock.fs_fsize)) { 189 printf("fragment size must be a power of 2, not %d\n", 190 sblock.fs_fsize); 191 exit(17); 192 } 193 if (sblock.fs_fsize < sectorsize) { 194 printf("increasing fragment size from %d to sector size (%d)\n", 195 sblock.fs_fsize, sectorsize); 196 sblock.fs_fsize = sectorsize; 197 } 198 if (sblock.fs_bsize > MAXBSIZE) { 199 printf("decreasing block size from %d to maximum (%d)\n", 200 sblock.fs_bsize, MAXBSIZE); 201 sblock.fs_bsize = MAXBSIZE; 202 } 203 if (sblock.fs_bsize < MINBSIZE) { 204 printf("increasing block size from %d to minimum (%d)\n", 205 sblock.fs_bsize, MINBSIZE); 206 sblock.fs_bsize = MINBSIZE; 207 } 208 if (sblock.fs_fsize > MAXBSIZE) { 209 printf("decreasing fragment size from %d to maximum (%d)\n", 210 sblock.fs_fsize, MAXBSIZE); 211 sblock.fs_fsize = MAXBSIZE; 212 } 213 if (sblock.fs_bsize < sblock.fs_fsize) { 214 printf("increasing block size from %d to fragment size (%d)\n", 215 sblock.fs_bsize, sblock.fs_fsize); 216 sblock.fs_bsize = sblock.fs_fsize; 217 } 218 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 219 printf( 220 "increasing fragment size from %d to block size / %d (%d)\n", 221 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 222 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 223 } 224 if (maxbsize == 0) 225 maxbsize = bsize; 226 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 227 sblock.fs_maxbsize = sblock.fs_bsize; 228 printf("Extent size set to %d\n", sblock.fs_maxbsize); 229 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 230 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 231 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 232 } else { 233 sblock.fs_maxbsize = maxbsize; 234 } 235 /* 236 * Maxcontig sets the default for the maximum number of blocks 237 * that may be allocated sequentially. With file system clustering 238 * it is possible to allocate contiguous blocks up to the maximum 239 * transfer size permitted by the controller or buffering. 240 */ 241 if (maxcontig == 0) 242 maxcontig = MAX(1, MAXPHYS / bsize); 243 sblock.fs_maxcontig = maxcontig; 244 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 245 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 246 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 247 } 248 if (sblock.fs_maxcontig > 1) 249 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 250 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 251 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 252 sblock.fs_qbmask = ~sblock.fs_bmask; 253 sblock.fs_qfmask = ~sblock.fs_fmask; 254 sblock.fs_bshift = ilog2(sblock.fs_bsize); 255 sblock.fs_fshift = ilog2(sblock.fs_fsize); 256 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 257 sblock.fs_fragshift = ilog2(sblock.fs_frag); 258 if (sblock.fs_frag > MAXFRAG) { 259 printf("fragment size %d is still too small (can't happen)\n", 260 sblock.fs_bsize / MAXFRAG); 261 exit(21); 262 } 263 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 264 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 265 266 /* 267 * Before the filesystem is finally initialized, mark it 268 * as incompletely initialized. 269 */ 270 sblock.fs_magic = FS_BAD_MAGIC; 271 272 if (Oflag == 1) { 273 sblock.fs_sblockloc = SBLOCK_UFS1; 274 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 275 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 276 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 277 sizeof(ufs1_daddr_t)); 278 sblock.fs_old_inodefmt = FS_44INODEFMT; 279 sblock.fs_old_cgoffset = 0; 280 sblock.fs_old_cgmask = 0xffffffff; 281 sblock.fs_old_size = sblock.fs_size; 282 sblock.fs_old_rotdelay = 0; 283 sblock.fs_old_rps = 60; 284 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 285 sblock.fs_old_cpg = 1; 286 sblock.fs_old_interleave = 1; 287 sblock.fs_old_trackskew = 0; 288 sblock.fs_old_cpc = 0; 289 sblock.fs_old_postblformat = 1; 290 sblock.fs_old_nrpos = 1; 291 } else { 292 sblock.fs_sblockloc = SBLOCK_UFS2; 293 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 294 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 295 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 296 sizeof(ufs2_daddr_t)); 297 } 298 sblock.fs_sblkno = 299 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 300 sblock.fs_frag); 301 sblock.fs_cblkno = sblock.fs_sblkno + 302 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 303 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 304 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 305 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 306 sizepb *= NINDIR(&sblock); 307 sblock.fs_maxfilesize += sizepb; 308 } 309 310 /* 311 * It's impossible to create a snapshot in case that fs_maxfilesize 312 * is smaller than the fssize. 313 */ 314 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 315 warnx("WARNING: You will be unable to create snapshots on this " 316 "file system. Correct by using a larger blocksize."); 317 } 318 319 /* 320 * Calculate the number of blocks to put into each cylinder group. 321 * 322 * This algorithm selects the number of blocks per cylinder 323 * group. The first goal is to have at least enough data blocks 324 * in each cylinder group to meet the density requirement. Once 325 * this goal is achieved we try to expand to have at least 326 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 327 * pack as many blocks into each cylinder group map as will fit. 328 * 329 * We start by calculating the smallest number of blocks that we 330 * can put into each cylinder group. If this is too big, we reduce 331 * the density until it fits. 332 */ 333 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 334 minfragsperinode = 1 + fssize / maxinum; 335 if (density == 0) { 336 density = MAX(NFPI, minfragsperinode) * fsize; 337 } else if (density < minfragsperinode * fsize) { 338 origdensity = density; 339 density = minfragsperinode * fsize; 340 fprintf(stderr, "density increased from %d to %d\n", 341 origdensity, density); 342 } 343 origdensity = density; 344 for (;;) { 345 fragsperinode = MAX(numfrags(&sblock, density), 1); 346 if (fragsperinode < minfragsperinode) { 347 bsize <<= 1; 348 fsize <<= 1; 349 printf("Block size too small for a file system %s %d\n", 350 "of this size. Increasing blocksize to", bsize); 351 goto restart; 352 } 353 minfpg = fragsperinode * INOPB(&sblock); 354 if (minfpg > sblock.fs_size) 355 minfpg = sblock.fs_size; 356 sblock.fs_ipg = INOPB(&sblock); 357 sblock.fs_fpg = roundup(sblock.fs_iblkno + 358 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 359 if (sblock.fs_fpg < minfpg) 360 sblock.fs_fpg = minfpg; 361 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 362 INOPB(&sblock)); 363 sblock.fs_fpg = roundup(sblock.fs_iblkno + 364 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 365 if (sblock.fs_fpg < minfpg) 366 sblock.fs_fpg = minfpg; 367 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 368 INOPB(&sblock)); 369 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 370 break; 371 density -= sblock.fs_fsize; 372 } 373 if (density != origdensity) 374 printf("density reduced from %d to %d\n", origdensity, density); 375 /* 376 * Start packing more blocks into the cylinder group until 377 * it cannot grow any larger, the number of cylinder groups 378 * drops below MINCYLGRPS, or we reach the size requested. 379 */ 380 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 381 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 382 INOPB(&sblock)); 383 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 384 break; 385 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 386 continue; 387 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 388 break; 389 sblock.fs_fpg -= sblock.fs_frag; 390 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 391 INOPB(&sblock)); 392 break; 393 } 394 /* 395 * Check to be sure that the last cylinder group has enough blocks 396 * to be viable. If it is too small, reduce the number of blocks 397 * per cylinder group which will have the effect of moving more 398 * blocks into the last cylinder group. 399 */ 400 optimalfpg = sblock.fs_fpg; 401 for (;;) { 402 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 403 lastminfpg = roundup(sblock.fs_iblkno + 404 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 405 if (sblock.fs_size < lastminfpg) { 406 printf("Filesystem size %jd < minimum size of %d\n", 407 (intmax_t)sblock.fs_size, lastminfpg); 408 exit(28); 409 } 410 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 411 sblock.fs_size % sblock.fs_fpg == 0) 412 break; 413 sblock.fs_fpg -= sblock.fs_frag; 414 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 415 INOPB(&sblock)); 416 } 417 if (optimalfpg != sblock.fs_fpg) 418 printf("Reduced frags per cylinder group from %d to %d %s\n", 419 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 420 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 421 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 422 if (Oflag == 1) { 423 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 424 sblock.fs_old_nsect = sblock.fs_old_spc; 425 sblock.fs_old_npsect = sblock.fs_old_spc; 426 sblock.fs_old_ncyl = sblock.fs_ncg; 427 } 428 /* 429 * fill in remaining fields of the super block 430 */ 431 sblock.fs_csaddr = cgdmin(&sblock, 0); 432 sblock.fs_cssize = 433 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 434 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 435 if (fscs == NULL) 436 errx(31, "calloc failed"); 437 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 438 if (sblock.fs_sbsize > SBLOCKSIZE) 439 sblock.fs_sbsize = SBLOCKSIZE; 440 sblock.fs_minfree = minfree; 441 if (maxbpg == 0) 442 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 443 else 444 sblock.fs_maxbpg = maxbpg; 445 sblock.fs_optim = opt; 446 sblock.fs_cgrotor = 0; 447 sblock.fs_pendingblocks = 0; 448 sblock.fs_pendinginodes = 0; 449 sblock.fs_fmod = 0; 450 sblock.fs_ronly = 0; 451 sblock.fs_state = 0; 452 sblock.fs_clean = 1; 453 sblock.fs_id[0] = (long)utime; 454 sblock.fs_id[1] = newfs_random(); 455 sblock.fs_fsmnt[0] = '\0'; 456 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 457 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 458 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 459 sblock.fs_cstotal.cs_nbfree = 460 fragstoblks(&sblock, sblock.fs_dsize) - 461 howmany(csfrags, sblock.fs_frag); 462 sblock.fs_cstotal.cs_nffree = 463 fragnum(&sblock, sblock.fs_size) + 464 (fragnum(&sblock, csfrags) > 0 ? 465 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 466 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 467 sblock.fs_cstotal.cs_ndir = 0; 468 sblock.fs_dsize -= csfrags; 469 sblock.fs_time = utime; 470 if (Oflag == 1) { 471 sblock.fs_old_time = utime; 472 sblock.fs_old_dsize = sblock.fs_dsize; 473 sblock.fs_old_csaddr = sblock.fs_csaddr; 474 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 475 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 476 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 477 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 478 } 479 480 /* 481 * Dump out summary information about file system. 482 */ 483 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 484 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 485 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 486 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 487 sblock.fs_fsize); 488 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 489 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 490 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 491 if (sblock.fs_flags & FS_DOSOFTDEP) 492 printf("\twith soft updates\n"); 493 # undef B2MBFACTOR 494 495 if (Eflag && !Nflag) { 496 printf("Erasing sectors [%jd...%jd]\n", 497 sblock.fs_sblockloc / disk.d_bsize, 498 fsbtodb(&sblock, sblock.fs_size) - 1); 499 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 500 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 501 } 502 /* 503 * Wipe out old UFS1 superblock(s) if necessary. 504 */ 505 if (!Nflag && Oflag != 1) { 506 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 507 if (i == -1) 508 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 509 510 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 511 fsdummy.fs_magic = 0; 512 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 513 chdummy, SBLOCKSIZE); 514 for (cg = 0; cg < fsdummy.fs_ncg; cg++) 515 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 516 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 517 } 518 } 519 if (!Nflag) 520 do_sbwrite(&disk); 521 if (Xflag == 1) { 522 printf("** Exiting on Xflag 1\n"); 523 exit(0); 524 } 525 if (Xflag == 2) 526 printf("** Leaving BAD MAGIC on Xflag 2\n"); 527 else 528 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 529 530 /* 531 * Now build the cylinders group blocks and 532 * then print out indices of cylinder groups. 533 */ 534 printf("super-block backups (for fsck -b #) at:\n"); 535 i = 0; 536 width = charsperline(); 537 /* 538 * allocate space for superblock, cylinder group map, and 539 * two sets of inode blocks. 540 */ 541 if (sblock.fs_bsize < SBLOCKSIZE) 542 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 543 else 544 iobufsize = 4 * sblock.fs_bsize; 545 if ((iobuf = calloc(1, iobufsize)) == 0) { 546 printf("Cannot allocate I/O buffer\n"); 547 exit(38); 548 } 549 /* 550 * Make a copy of the superblock into the buffer that we will be 551 * writing out in each cylinder group. 552 */ 553 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 554 for (cg = 0; cg < sblock.fs_ncg; cg++) { 555 initcg(cg, utime); 556 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 557 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 558 cg < (sblock.fs_ncg-1) ? "," : ""); 559 if (j < 0) 560 tmpbuf[j = 0] = '\0'; 561 if (i + j >= width) { 562 printf("\n"); 563 i = 0; 564 } 565 i += j; 566 printf("%s", tmpbuf); 567 fflush(stdout); 568 } 569 printf("\n"); 570 if (Nflag) 571 exit(0); 572 /* 573 * Now construct the initial file system, 574 * then write out the super-block. 575 */ 576 fsinit(utime); 577 if (Oflag == 1) { 578 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 579 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 580 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 581 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 582 } 583 if (Xflag == 3) { 584 printf("** Exiting on Xflag 3\n"); 585 exit(0); 586 } 587 if (!Nflag) 588 do_sbwrite(&disk); 589 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 590 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 591 sblock.fs_cssize - i < sblock.fs_bsize ? 592 sblock.fs_cssize - i : sblock.fs_bsize, 593 ((char *)fscs) + i); 594 /* 595 * Update information about this partition in pack 596 * label, to that it may be updated on disk. 597 */ 598 if (pp != NULL) { 599 pp->p_fstype = FS_BSDFFS; 600 pp->p_fsize = sblock.fs_fsize; 601 pp->p_frag = sblock.fs_frag; 602 pp->p_cpg = sblock.fs_fpg; 603 } 604 } 605 606 /* 607 * Initialize a cylinder group. 608 */ 609 void 610 initcg(int cylno, time_t utime) 611 { 612 long blkno, start; 613 uint i, j, d, dlower, dupper; 614 ufs2_daddr_t cbase, dmax; 615 struct ufs1_dinode *dp1; 616 struct ufs2_dinode *dp2; 617 struct csum *cs; 618 619 /* 620 * Determine block bounds for cylinder group. 621 * Allow space for super block summary information in first 622 * cylinder group. 623 */ 624 cbase = cgbase(&sblock, cylno); 625 dmax = cbase + sblock.fs_fpg; 626 if (dmax > sblock.fs_size) 627 dmax = sblock.fs_size; 628 dlower = cgsblock(&sblock, cylno) - cbase; 629 dupper = cgdmin(&sblock, cylno) - cbase; 630 if (cylno == 0) 631 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 632 cs = &fscs[cylno]; 633 memset(&acg, 0, sblock.fs_cgsize); 634 acg.cg_time = utime; 635 acg.cg_magic = CG_MAGIC; 636 acg.cg_cgx = cylno; 637 acg.cg_niblk = sblock.fs_ipg; 638 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 639 sblock.fs_ipg : 2 * INOPB(&sblock); 640 acg.cg_ndblk = dmax - cbase; 641 if (sblock.fs_contigsumsize > 0) 642 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 643 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 644 if (Oflag == 2) { 645 acg.cg_iusedoff = start; 646 } else { 647 acg.cg_old_ncyl = sblock.fs_old_cpg; 648 acg.cg_old_time = acg.cg_time; 649 acg.cg_time = 0; 650 acg.cg_old_niblk = acg.cg_niblk; 651 acg.cg_niblk = 0; 652 acg.cg_initediblk = 0; 653 acg.cg_old_btotoff = start; 654 acg.cg_old_boff = acg.cg_old_btotoff + 655 sblock.fs_old_cpg * sizeof(int32_t); 656 acg.cg_iusedoff = acg.cg_old_boff + 657 sblock.fs_old_cpg * sizeof(u_int16_t); 658 } 659 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 660 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 661 if (sblock.fs_contigsumsize > 0) { 662 acg.cg_clustersumoff = 663 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 664 acg.cg_clustersumoff -= sizeof(u_int32_t); 665 acg.cg_clusteroff = acg.cg_clustersumoff + 666 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 667 acg.cg_nextfreeoff = acg.cg_clusteroff + 668 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 669 } 670 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 671 printf("Panic: cylinder group too big\n"); 672 exit(37); 673 } 674 acg.cg_cs.cs_nifree += sblock.fs_ipg; 675 if (cylno == 0) 676 for (i = 0; i < (long)ROOTINO; i++) { 677 setbit(cg_inosused(&acg), i); 678 acg.cg_cs.cs_nifree--; 679 } 680 if (cylno > 0) { 681 /* 682 * In cylno 0, beginning space is reserved 683 * for boot and super blocks. 684 */ 685 for (d = 0; d < dlower; d += sblock.fs_frag) { 686 blkno = d / sblock.fs_frag; 687 setblock(&sblock, cg_blksfree(&acg), blkno); 688 if (sblock.fs_contigsumsize > 0) 689 setbit(cg_clustersfree(&acg), blkno); 690 acg.cg_cs.cs_nbfree++; 691 } 692 } 693 if ((i = dupper % sblock.fs_frag)) { 694 acg.cg_frsum[sblock.fs_frag - i]++; 695 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 696 setbit(cg_blksfree(&acg), dupper); 697 acg.cg_cs.cs_nffree++; 698 } 699 } 700 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 701 d += sblock.fs_frag) { 702 blkno = d / sblock.fs_frag; 703 setblock(&sblock, cg_blksfree(&acg), blkno); 704 if (sblock.fs_contigsumsize > 0) 705 setbit(cg_clustersfree(&acg), blkno); 706 acg.cg_cs.cs_nbfree++; 707 } 708 if (d < acg.cg_ndblk) { 709 acg.cg_frsum[acg.cg_ndblk - d]++; 710 for (; d < acg.cg_ndblk; d++) { 711 setbit(cg_blksfree(&acg), d); 712 acg.cg_cs.cs_nffree++; 713 } 714 } 715 if (sblock.fs_contigsumsize > 0) { 716 int32_t *sump = cg_clustersum(&acg); 717 u_char *mapp = cg_clustersfree(&acg); 718 int map = *mapp++; 719 int bit = 1; 720 int run = 0; 721 722 for (i = 0; i < acg.cg_nclusterblks; i++) { 723 if ((map & bit) != 0) 724 run++; 725 else if (run != 0) { 726 if (run > sblock.fs_contigsumsize) 727 run = sblock.fs_contigsumsize; 728 sump[run]++; 729 run = 0; 730 } 731 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 732 bit <<= 1; 733 else { 734 map = *mapp++; 735 bit = 1; 736 } 737 } 738 if (run != 0) { 739 if (run > sblock.fs_contigsumsize) 740 run = sblock.fs_contigsumsize; 741 sump[run]++; 742 } 743 } 744 *cs = acg.cg_cs; 745 /* 746 * Write out the duplicate super block, the cylinder group map 747 * and two blocks worth of inodes in a single write. 748 */ 749 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 750 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 751 start += sblock.fs_bsize; 752 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 753 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 754 for (i = 0; i < acg.cg_initediblk; i++) { 755 if (sblock.fs_magic == FS_UFS1_MAGIC) { 756 dp1->di_gen = newfs_random(); 757 dp1++; 758 } else { 759 dp2->di_gen = newfs_random(); 760 dp2++; 761 } 762 } 763 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 764 /* 765 * For the old file system, we have to initialize all the inodes. 766 */ 767 if (Oflag == 1) { 768 for (i = 2 * sblock.fs_frag; 769 i < sblock.fs_ipg / INOPF(&sblock); 770 i += sblock.fs_frag) { 771 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 772 for (j = 0; j < INOPB(&sblock); j++) { 773 dp1->di_gen = newfs_random(); 774 dp1++; 775 } 776 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 777 sblock.fs_bsize, &iobuf[start]); 778 } 779 } 780 } 781 782 /* 783 * initialize the file system 784 */ 785 #define ROOTLINKCNT 3 786 787 struct direct root_dir[] = { 788 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 789 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 790 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 791 }; 792 793 #define SNAPLINKCNT 2 794 795 struct direct snap_dir[] = { 796 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 797 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 798 }; 799 800 void 801 fsinit(time_t utime) 802 { 803 union dinode node; 804 struct group *grp; 805 gid_t gid; 806 int entries; 807 808 memset(&node, 0, sizeof node); 809 if ((grp = getgrnam("operator")) != NULL) { 810 gid = grp->gr_gid; 811 } else { 812 warnx("Cannot retrieve operator gid, using gid 0."); 813 gid = 0; 814 } 815 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 816 if (sblock.fs_magic == FS_UFS1_MAGIC) { 817 /* 818 * initialize the node 819 */ 820 node.dp1.di_atime = utime; 821 node.dp1.di_mtime = utime; 822 node.dp1.di_ctime = utime; 823 /* 824 * create the root directory 825 */ 826 node.dp1.di_mode = IFDIR | UMASK; 827 node.dp1.di_nlink = entries; 828 node.dp1.di_size = makedir(root_dir, entries); 829 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 830 node.dp1.di_blocks = 831 btodb(fragroundup(&sblock, node.dp1.di_size)); 832 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 833 iobuf); 834 iput(&node, ROOTINO); 835 if (!nflag) { 836 /* 837 * create the .snap directory 838 */ 839 node.dp1.di_mode |= 020; 840 node.dp1.di_gid = gid; 841 node.dp1.di_nlink = SNAPLINKCNT; 842 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 843 node.dp1.di_db[0] = 844 alloc(sblock.fs_fsize, node.dp1.di_mode); 845 node.dp1.di_blocks = 846 btodb(fragroundup(&sblock, node.dp1.di_size)); 847 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 848 sblock.fs_fsize, iobuf); 849 iput(&node, ROOTINO + 1); 850 } 851 } else { 852 /* 853 * initialize the node 854 */ 855 node.dp2.di_atime = utime; 856 node.dp2.di_mtime = utime; 857 node.dp2.di_ctime = utime; 858 node.dp2.di_birthtime = utime; 859 /* 860 * create the root directory 861 */ 862 node.dp2.di_mode = IFDIR | UMASK; 863 node.dp2.di_nlink = entries; 864 node.dp2.di_size = makedir(root_dir, entries); 865 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 866 node.dp2.di_blocks = 867 btodb(fragroundup(&sblock, node.dp2.di_size)); 868 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 869 iobuf); 870 iput(&node, ROOTINO); 871 if (!nflag) { 872 /* 873 * create the .snap directory 874 */ 875 node.dp2.di_mode |= 020; 876 node.dp2.di_gid = gid; 877 node.dp2.di_nlink = SNAPLINKCNT; 878 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 879 node.dp2.di_db[0] = 880 alloc(sblock.fs_fsize, node.dp2.di_mode); 881 node.dp2.di_blocks = 882 btodb(fragroundup(&sblock, node.dp2.di_size)); 883 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 884 sblock.fs_fsize, iobuf); 885 iput(&node, ROOTINO + 1); 886 } 887 } 888 } 889 890 /* 891 * construct a set of directory entries in "iobuf". 892 * return size of directory. 893 */ 894 int 895 makedir(struct direct *protodir, int entries) 896 { 897 char *cp; 898 int i, spcleft; 899 900 spcleft = DIRBLKSIZ; 901 memset(iobuf, 0, DIRBLKSIZ); 902 for (cp = iobuf, i = 0; i < entries - 1; i++) { 903 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 904 memmove(cp, &protodir[i], protodir[i].d_reclen); 905 cp += protodir[i].d_reclen; 906 spcleft -= protodir[i].d_reclen; 907 } 908 protodir[i].d_reclen = spcleft; 909 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 910 return (DIRBLKSIZ); 911 } 912 913 /* 914 * allocate a block or frag 915 */ 916 ufs2_daddr_t 917 alloc(int size, int mode) 918 { 919 int i, blkno, frag; 920 uint d; 921 922 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 923 sblock.fs_cgsize); 924 if (acg.cg_magic != CG_MAGIC) { 925 printf("cg 0: bad magic number\n"); 926 exit(38); 927 } 928 if (acg.cg_cs.cs_nbfree == 0) { 929 printf("first cylinder group ran out of space\n"); 930 exit(39); 931 } 932 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 933 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 934 goto goth; 935 printf("internal error: can't find block in cyl 0\n"); 936 exit(40); 937 goth: 938 blkno = fragstoblks(&sblock, d); 939 clrblock(&sblock, cg_blksfree(&acg), blkno); 940 if (sblock.fs_contigsumsize > 0) 941 clrbit(cg_clustersfree(&acg), blkno); 942 acg.cg_cs.cs_nbfree--; 943 sblock.fs_cstotal.cs_nbfree--; 944 fscs[0].cs_nbfree--; 945 if (mode & IFDIR) { 946 acg.cg_cs.cs_ndir++; 947 sblock.fs_cstotal.cs_ndir++; 948 fscs[0].cs_ndir++; 949 } 950 if (size != sblock.fs_bsize) { 951 frag = howmany(size, sblock.fs_fsize); 952 fscs[0].cs_nffree += sblock.fs_frag - frag; 953 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 954 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 955 acg.cg_frsum[sblock.fs_frag - frag]++; 956 for (i = frag; i < sblock.fs_frag; i++) 957 setbit(cg_blksfree(&acg), d + i); 958 } 959 /* XXX cgwrite(&disk, 0)??? */ 960 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 961 (char *)&acg); 962 return ((ufs2_daddr_t)d); 963 } 964 965 /* 966 * Allocate an inode on the disk 967 */ 968 void 969 iput(union dinode *ip, ino_t ino) 970 { 971 ufs2_daddr_t d; 972 int c; 973 974 c = ino_to_cg(&sblock, ino); 975 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 976 sblock.fs_cgsize); 977 if (acg.cg_magic != CG_MAGIC) { 978 printf("cg 0: bad magic number\n"); 979 exit(31); 980 } 981 acg.cg_cs.cs_nifree--; 982 setbit(cg_inosused(&acg), ino); 983 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 984 (char *)&acg); 985 sblock.fs_cstotal.cs_nifree--; 986 fscs[0].cs_nifree--; 987 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 988 printf("fsinit: inode value out of range (%d).\n", ino); 989 exit(32); 990 } 991 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 992 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 993 if (sblock.fs_magic == FS_UFS1_MAGIC) 994 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 995 ip->dp1; 996 else 997 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 998 ip->dp2; 999 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1000 } 1001 1002 /* 1003 * possibly write to disk 1004 */ 1005 static void 1006 wtfs(ufs2_daddr_t bno, int size, char *bf) 1007 { 1008 if (Nflag) 1009 return; 1010 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1011 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1012 } 1013 1014 /* 1015 * check if a block is available 1016 */ 1017 static int 1018 isblock(struct fs *fs, unsigned char *cp, int h) 1019 { 1020 unsigned char mask; 1021 1022 switch (fs->fs_frag) { 1023 case 8: 1024 return (cp[h] == 0xff); 1025 case 4: 1026 mask = 0x0f << ((h & 0x1) << 2); 1027 return ((cp[h >> 1] & mask) == mask); 1028 case 2: 1029 mask = 0x03 << ((h & 0x3) << 1); 1030 return ((cp[h >> 2] & mask) == mask); 1031 case 1: 1032 mask = 0x01 << (h & 0x7); 1033 return ((cp[h >> 3] & mask) == mask); 1034 default: 1035 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1036 return (0); 1037 } 1038 } 1039 1040 /* 1041 * take a block out of the map 1042 */ 1043 static void 1044 clrblock(struct fs *fs, unsigned char *cp, int h) 1045 { 1046 switch ((fs)->fs_frag) { 1047 case 8: 1048 cp[h] = 0; 1049 return; 1050 case 4: 1051 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1052 return; 1053 case 2: 1054 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1055 return; 1056 case 1: 1057 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1058 return; 1059 default: 1060 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1061 return; 1062 } 1063 } 1064 1065 /* 1066 * put a block into the map 1067 */ 1068 static void 1069 setblock(struct fs *fs, unsigned char *cp, int h) 1070 { 1071 switch (fs->fs_frag) { 1072 case 8: 1073 cp[h] = 0xff; 1074 return; 1075 case 4: 1076 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1077 return; 1078 case 2: 1079 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1080 return; 1081 case 1: 1082 cp[h >> 3] |= (0x01 << (h & 0x7)); 1083 return; 1084 default: 1085 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1086 return; 1087 } 1088 } 1089 1090 /* 1091 * Determine the number of characters in a 1092 * single line. 1093 */ 1094 1095 static int 1096 charsperline(void) 1097 { 1098 int columns; 1099 char *cp; 1100 struct winsize ws; 1101 1102 columns = 0; 1103 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1104 columns = ws.ws_col; 1105 if (columns == 0 && (cp = getenv("COLUMNS"))) 1106 columns = atoi(cp); 1107 if (columns == 0) 1108 columns = 80; /* last resort */ 1109 return (columns); 1110 } 1111 1112 static int 1113 ilog2(int val) 1114 { 1115 u_int n; 1116 1117 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1118 if (1 << n == val) 1119 return (n); 1120 errx(1, "ilog2: %d is not a power of 2\n", val); 1121 } 1122 1123 /* 1124 * For the regression test, return predictable random values. 1125 * Otherwise use a true random number generator. 1126 */ 1127 static u_int32_t 1128 newfs_random(void) 1129 { 1130 static int nextnum = 1; 1131 1132 if (Rflag) 1133 return (nextnum++); 1134 return (arc4random()); 1135 } 1136