1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #define IN_RTLD /* So we pickup the P_OSREL defines */ 48 #include <sys/param.h> 49 #include <sys/disklabel.h> 50 #include <sys/file.h> 51 #include <sys/ioctl.h> 52 #include <sys/mman.h> 53 #include <sys/resource.h> 54 #include <sys/stat.h> 55 #include <sys/wait.h> 56 #include <err.h> 57 #include <grp.h> 58 #include <limits.h> 59 #include <signal.h> 60 #include <stdlib.h> 61 #include <string.h> 62 #include <stdint.h> 63 #include <stdio.h> 64 #include <time.h> 65 #include <unistd.h> 66 #include <ufs/ufs/dinode.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ffs/fs.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 static struct csum *fscs; 78 #define sblock disk.d_fs 79 #define acg disk.d_cg 80 81 union dinode { 82 struct ufs1_dinode dp1; 83 struct ufs2_dinode dp2; 84 }; 85 #define DIP(dp, field) \ 86 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 87 (dp)->dp1.field : (dp)->dp2.field) 88 89 static caddr_t iobuf; 90 static long iobufsize; 91 static ufs2_daddr_t alloc(int size, int mode); 92 static int charsperline(void); 93 static void clrblock(struct fs *, unsigned char *, int); 94 static void fsinit(time_t); 95 static int ilog2(int); 96 static void initcg(int, time_t); 97 static int isblock(struct fs *, unsigned char *, int); 98 static void iput(union dinode *, ino_t); 99 static int makedir(struct direct *, int); 100 static void setblock(struct fs *, unsigned char *, int); 101 static void wtfs(ufs2_daddr_t, int, char *); 102 static void cgckhash(struct cg *); 103 static u_int32_t newfs_random(void); 104 105 static int 106 do_sbwrite(struct uufsd *disk) 107 { 108 if (!disk->d_sblock) 109 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 110 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 111 disk->d_sblock) * disk->d_bsize))); 112 } 113 114 void 115 mkfs(struct partition *pp, char *fsys) 116 { 117 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 118 long i, j, csfrags; 119 uint cg; 120 time_t utime; 121 quad_t sizepb; 122 int width; 123 ino_t maxinum; 124 int minfragsperinode; /* minimum ratio of frags to inodes */ 125 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 126 struct fsrecovery *fsr; 127 char *fsrbuf; 128 union { 129 struct fs fdummy; 130 char cdummy[SBLOCKSIZE]; 131 } dummy; 132 #define fsdummy dummy.fdummy 133 #define chdummy dummy.cdummy 134 135 /* 136 * Our blocks == sector size, and the version of UFS we are using is 137 * specified by Oflag. 138 */ 139 disk.d_bsize = sectorsize; 140 disk.d_ufs = Oflag; 141 if (Rflag) 142 utime = 1000000000; 143 else 144 time(&utime); 145 sblock.fs_old_flags = FS_FLAGS_UPDATED; 146 sblock.fs_flags = 0; 147 if (Uflag) 148 sblock.fs_flags |= FS_DOSOFTDEP; 149 if (Lflag) 150 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 151 if (Jflag) 152 sblock.fs_flags |= FS_GJOURNAL; 153 if (lflag) 154 sblock.fs_flags |= FS_MULTILABEL; 155 if (tflag) 156 sblock.fs_flags |= FS_TRIM; 157 /* 158 * Validate the given file system size. 159 * Verify that its last block can actually be accessed. 160 * Convert to file system fragment sized units. 161 */ 162 if (fssize <= 0) { 163 printf("preposterous size %jd\n", (intmax_t)fssize); 164 exit(13); 165 } 166 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 167 (char *)&sblock); 168 /* 169 * collect and verify the file system density info 170 */ 171 sblock.fs_avgfilesize = avgfilesize; 172 sblock.fs_avgfpdir = avgfilesperdir; 173 if (sblock.fs_avgfilesize <= 0) 174 printf("illegal expected average file size %d\n", 175 sblock.fs_avgfilesize), exit(14); 176 if (sblock.fs_avgfpdir <= 0) 177 printf("illegal expected number of files per directory %d\n", 178 sblock.fs_avgfpdir), exit(15); 179 180 restart: 181 /* 182 * collect and verify the block and fragment sizes 183 */ 184 sblock.fs_bsize = bsize; 185 sblock.fs_fsize = fsize; 186 if (!POWEROF2(sblock.fs_bsize)) { 187 printf("block size must be a power of 2, not %d\n", 188 sblock.fs_bsize); 189 exit(16); 190 } 191 if (!POWEROF2(sblock.fs_fsize)) { 192 printf("fragment size must be a power of 2, not %d\n", 193 sblock.fs_fsize); 194 exit(17); 195 } 196 if (sblock.fs_fsize < sectorsize) { 197 printf("increasing fragment size from %d to sector size (%d)\n", 198 sblock.fs_fsize, sectorsize); 199 sblock.fs_fsize = sectorsize; 200 } 201 if (sblock.fs_bsize > MAXBSIZE) { 202 printf("decreasing block size from %d to maximum (%d)\n", 203 sblock.fs_bsize, MAXBSIZE); 204 sblock.fs_bsize = MAXBSIZE; 205 } 206 if (sblock.fs_bsize < MINBSIZE) { 207 printf("increasing block size from %d to minimum (%d)\n", 208 sblock.fs_bsize, MINBSIZE); 209 sblock.fs_bsize = MINBSIZE; 210 } 211 if (sblock.fs_fsize > MAXBSIZE) { 212 printf("decreasing fragment size from %d to maximum (%d)\n", 213 sblock.fs_fsize, MAXBSIZE); 214 sblock.fs_fsize = MAXBSIZE; 215 } 216 if (sblock.fs_bsize < sblock.fs_fsize) { 217 printf("increasing block size from %d to fragment size (%d)\n", 218 sblock.fs_bsize, sblock.fs_fsize); 219 sblock.fs_bsize = sblock.fs_fsize; 220 } 221 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 222 printf( 223 "increasing fragment size from %d to block size / %d (%d)\n", 224 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 225 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 226 } 227 if (maxbsize == 0) 228 maxbsize = bsize; 229 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 230 sblock.fs_maxbsize = sblock.fs_bsize; 231 printf("Extent size set to %d\n", sblock.fs_maxbsize); 232 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 233 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 234 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 235 } else { 236 sblock.fs_maxbsize = maxbsize; 237 } 238 /* 239 * Maxcontig sets the default for the maximum number of blocks 240 * that may be allocated sequentially. With file system clustering 241 * it is possible to allocate contiguous blocks up to the maximum 242 * transfer size permitted by the controller or buffering. 243 */ 244 if (maxcontig == 0) 245 maxcontig = MAX(1, MAXPHYS / bsize); 246 sblock.fs_maxcontig = maxcontig; 247 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 248 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 249 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 250 } 251 if (sblock.fs_maxcontig > 1) 252 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 253 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 254 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 255 sblock.fs_qbmask = ~sblock.fs_bmask; 256 sblock.fs_qfmask = ~sblock.fs_fmask; 257 sblock.fs_bshift = ilog2(sblock.fs_bsize); 258 sblock.fs_fshift = ilog2(sblock.fs_fsize); 259 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 260 sblock.fs_fragshift = ilog2(sblock.fs_frag); 261 if (sblock.fs_frag > MAXFRAG) { 262 printf("fragment size %d is still too small (can't happen)\n", 263 sblock.fs_bsize / MAXFRAG); 264 exit(21); 265 } 266 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 267 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 268 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 269 270 /* 271 * Before the filesystem is finally initialized, mark it 272 * as incompletely initialized. 273 */ 274 sblock.fs_magic = FS_BAD_MAGIC; 275 276 if (Oflag == 1) { 277 sblock.fs_sblockloc = SBLOCK_UFS1; 278 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 279 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 280 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 281 sizeof(ufs1_daddr_t)); 282 sblock.fs_old_inodefmt = FS_44INODEFMT; 283 sblock.fs_old_cgoffset = 0; 284 sblock.fs_old_cgmask = 0xffffffff; 285 sblock.fs_old_size = sblock.fs_size; 286 sblock.fs_old_rotdelay = 0; 287 sblock.fs_old_rps = 60; 288 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 289 sblock.fs_old_cpg = 1; 290 sblock.fs_old_interleave = 1; 291 sblock.fs_old_trackskew = 0; 292 sblock.fs_old_cpc = 0; 293 sblock.fs_old_postblformat = 1; 294 sblock.fs_old_nrpos = 1; 295 } else { 296 sblock.fs_sblockloc = SBLOCK_UFS2; 297 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 298 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 299 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 300 sizeof(ufs2_daddr_t)); 301 } 302 sblock.fs_sblkno = 303 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 304 sblock.fs_frag); 305 sblock.fs_cblkno = sblock.fs_sblkno + 306 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 307 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 308 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 309 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 310 sizepb *= NINDIR(&sblock); 311 sblock.fs_maxfilesize += sizepb; 312 } 313 314 /* 315 * It's impossible to create a snapshot in case that fs_maxfilesize 316 * is smaller than the fssize. 317 */ 318 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 319 warnx("WARNING: You will be unable to create snapshots on this " 320 "file system. Correct by using a larger blocksize."); 321 } 322 323 /* 324 * Calculate the number of blocks to put into each cylinder group. 325 * 326 * This algorithm selects the number of blocks per cylinder 327 * group. The first goal is to have at least enough data blocks 328 * in each cylinder group to meet the density requirement. Once 329 * this goal is achieved we try to expand to have at least 330 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 331 * pack as many blocks into each cylinder group map as will fit. 332 * 333 * We start by calculating the smallest number of blocks that we 334 * can put into each cylinder group. If this is too big, we reduce 335 * the density until it fits. 336 */ 337 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 338 minfragsperinode = 1 + fssize / maxinum; 339 if (density == 0) { 340 density = MAX(NFPI, minfragsperinode) * fsize; 341 } else if (density < minfragsperinode * fsize) { 342 origdensity = density; 343 density = minfragsperinode * fsize; 344 fprintf(stderr, "density increased from %d to %d\n", 345 origdensity, density); 346 } 347 origdensity = density; 348 for (;;) { 349 fragsperinode = MAX(numfrags(&sblock, density), 1); 350 if (fragsperinode < minfragsperinode) { 351 bsize <<= 1; 352 fsize <<= 1; 353 printf("Block size too small for a file system %s %d\n", 354 "of this size. Increasing blocksize to", bsize); 355 goto restart; 356 } 357 minfpg = fragsperinode * INOPB(&sblock); 358 if (minfpg > sblock.fs_size) 359 minfpg = sblock.fs_size; 360 sblock.fs_ipg = INOPB(&sblock); 361 sblock.fs_fpg = roundup(sblock.fs_iblkno + 362 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 363 if (sblock.fs_fpg < minfpg) 364 sblock.fs_fpg = minfpg; 365 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 366 INOPB(&sblock)); 367 sblock.fs_fpg = roundup(sblock.fs_iblkno + 368 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 369 if (sblock.fs_fpg < minfpg) 370 sblock.fs_fpg = minfpg; 371 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 372 INOPB(&sblock)); 373 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 374 break; 375 density -= sblock.fs_fsize; 376 } 377 if (density != origdensity) 378 printf("density reduced from %d to %d\n", origdensity, density); 379 /* 380 * Start packing more blocks into the cylinder group until 381 * it cannot grow any larger, the number of cylinder groups 382 * drops below MINCYLGRPS, or we reach the size requested. 383 * For UFS1 inodes per cylinder group are stored in an int16_t 384 * so fs_ipg is limited to 2^15 - 1. 385 */ 386 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 387 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 388 INOPB(&sblock)); 389 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 390 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 391 break; 392 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 393 continue; 394 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 395 break; 396 } 397 sblock.fs_fpg -= sblock.fs_frag; 398 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 399 INOPB(&sblock)); 400 break; 401 } 402 /* 403 * Check to be sure that the last cylinder group has enough blocks 404 * to be viable. If it is too small, reduce the number of blocks 405 * per cylinder group which will have the effect of moving more 406 * blocks into the last cylinder group. 407 */ 408 optimalfpg = sblock.fs_fpg; 409 for (;;) { 410 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 411 lastminfpg = roundup(sblock.fs_iblkno + 412 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 413 if (sblock.fs_size < lastminfpg) { 414 printf("Filesystem size %jd < minimum size of %d\n", 415 (intmax_t)sblock.fs_size, lastminfpg); 416 exit(28); 417 } 418 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 419 sblock.fs_size % sblock.fs_fpg == 0) 420 break; 421 sblock.fs_fpg -= sblock.fs_frag; 422 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 423 INOPB(&sblock)); 424 } 425 if (optimalfpg != sblock.fs_fpg) 426 printf("Reduced frags per cylinder group from %d to %d %s\n", 427 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 428 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 429 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 430 if (Oflag == 1) { 431 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 432 sblock.fs_old_nsect = sblock.fs_old_spc; 433 sblock.fs_old_npsect = sblock.fs_old_spc; 434 sblock.fs_old_ncyl = sblock.fs_ncg; 435 } 436 /* 437 * fill in remaining fields of the super block 438 */ 439 sblock.fs_csaddr = cgdmin(&sblock, 0); 440 sblock.fs_cssize = 441 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 442 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 443 if (fscs == NULL) 444 errx(31, "calloc failed"); 445 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 446 if (sblock.fs_sbsize > SBLOCKSIZE) 447 sblock.fs_sbsize = SBLOCKSIZE; 448 if (sblock.fs_sbsize < realsectorsize) 449 sblock.fs_sbsize = realsectorsize; 450 sblock.fs_minfree = minfree; 451 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 452 sblock.fs_metaspace = blknum(&sblock, metaspace); 453 else if (metaspace != -1) 454 /* reserve half of minfree for metadata blocks */ 455 sblock.fs_metaspace = blknum(&sblock, 456 (sblock.fs_fpg * minfree) / 200); 457 if (maxbpg == 0) 458 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 459 else 460 sblock.fs_maxbpg = maxbpg; 461 sblock.fs_optim = opt; 462 sblock.fs_cgrotor = 0; 463 sblock.fs_pendingblocks = 0; 464 sblock.fs_pendinginodes = 0; 465 sblock.fs_fmod = 0; 466 sblock.fs_ronly = 0; 467 sblock.fs_state = 0; 468 sblock.fs_clean = 1; 469 sblock.fs_id[0] = (long)utime; 470 sblock.fs_id[1] = newfs_random(); 471 sblock.fs_fsmnt[0] = '\0'; 472 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 473 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 474 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 475 sblock.fs_cstotal.cs_nbfree = 476 fragstoblks(&sblock, sblock.fs_dsize) - 477 howmany(csfrags, sblock.fs_frag); 478 sblock.fs_cstotal.cs_nffree = 479 fragnum(&sblock, sblock.fs_size) + 480 (fragnum(&sblock, csfrags) > 0 ? 481 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 482 sblock.fs_cstotal.cs_nifree = 483 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 484 sblock.fs_cstotal.cs_ndir = 0; 485 sblock.fs_dsize -= csfrags; 486 sblock.fs_time = utime; 487 if (Oflag == 1) { 488 sblock.fs_old_time = utime; 489 sblock.fs_old_dsize = sblock.fs_dsize; 490 sblock.fs_old_csaddr = sblock.fs_csaddr; 491 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 492 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 493 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 494 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 495 } 496 /* 497 * Set flags for metadata that is being check-hashed. 498 */ 499 if (Oflag > 1 && getosreldate() >= P_OSREL_CK_CYLGRP) 500 sblock.fs_metackhash = CK_CYLGRP; 501 502 /* 503 * Dump out summary information about file system. 504 */ 505 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 506 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 507 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 508 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 509 sblock.fs_fsize); 510 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 511 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 512 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 513 if (sblock.fs_flags & FS_DOSOFTDEP) 514 printf("\twith soft updates\n"); 515 # undef B2MBFACTOR 516 517 if (Eflag && !Nflag) { 518 printf("Erasing sectors [%jd...%jd]\n", 519 sblock.fs_sblockloc / disk.d_bsize, 520 fsbtodb(&sblock, sblock.fs_size) - 1); 521 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 522 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 523 } 524 /* 525 * Wipe out old UFS1 superblock(s) if necessary. 526 */ 527 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 528 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 529 if (i == -1) 530 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 531 532 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 533 fsdummy.fs_magic = 0; 534 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 535 chdummy, SBLOCKSIZE); 536 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 537 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 538 break; 539 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 540 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 541 } 542 } 543 } 544 if (!Nflag) 545 do_sbwrite(&disk); 546 if (Xflag == 1) { 547 printf("** Exiting on Xflag 1\n"); 548 exit(0); 549 } 550 if (Xflag == 2) 551 printf("** Leaving BAD MAGIC on Xflag 2\n"); 552 else 553 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 554 555 /* 556 * Now build the cylinders group blocks and 557 * then print out indices of cylinder groups. 558 */ 559 printf("super-block backups (for fsck_ffs -b #) at:\n"); 560 i = 0; 561 width = charsperline(); 562 /* 563 * allocate space for superblock, cylinder group map, and 564 * two sets of inode blocks. 565 */ 566 if (sblock.fs_bsize < SBLOCKSIZE) 567 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 568 else 569 iobufsize = 4 * sblock.fs_bsize; 570 if ((iobuf = calloc(1, iobufsize)) == 0) { 571 printf("Cannot allocate I/O buffer\n"); 572 exit(38); 573 } 574 /* 575 * Make a copy of the superblock into the buffer that we will be 576 * writing out in each cylinder group. 577 */ 578 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 579 for (cg = 0; cg < sblock.fs_ncg; cg++) { 580 initcg(cg, utime); 581 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 582 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 583 cg < (sblock.fs_ncg-1) ? "," : ""); 584 if (j < 0) 585 tmpbuf[j = 0] = '\0'; 586 if (i + j >= width) { 587 printf("\n"); 588 i = 0; 589 } 590 i += j; 591 printf("%s", tmpbuf); 592 fflush(stdout); 593 } 594 printf("\n"); 595 if (Nflag) 596 exit(0); 597 /* 598 * Now construct the initial file system, 599 * then write out the super-block. 600 */ 601 fsinit(utime); 602 if (Oflag == 1) { 603 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 604 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 605 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 606 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 607 } 608 if (Xflag == 3) { 609 printf("** Exiting on Xflag 3\n"); 610 exit(0); 611 } 612 if (!Nflag) { 613 do_sbwrite(&disk); 614 /* 615 * For UFS1 filesystems with a blocksize of 64K, the first 616 * alternate superblock resides at the location used for 617 * the default UFS2 superblock. As there is a valid 618 * superblock at this location, the boot code will use 619 * it as its first choice. Thus we have to ensure that 620 * all of its statistcs on usage are correct. 621 */ 622 if (Oflag == 1 && sblock.fs_bsize == 65536) 623 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 624 sblock.fs_bsize, (char *)&sblock); 625 } 626 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 627 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 628 MIN(sblock.fs_cssize - i, sblock.fs_bsize), 629 ((char *)fscs) + i); 630 /* 631 * Read the last sector of the boot block, replace the last 632 * 20 bytes with the recovery information, then write it back. 633 * The recovery information only works for UFS2 filesystems. 634 */ 635 if (sblock.fs_magic == FS_UFS2_MAGIC) { 636 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 637 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 638 fsrbuf, realsectorsize) == -1) 639 err(1, "can't read recovery area: %s", disk.d_error); 640 fsr = 641 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 642 fsr->fsr_magic = sblock.fs_magic; 643 fsr->fsr_fpg = sblock.fs_fpg; 644 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 645 fsr->fsr_sblkno = sblock.fs_sblkno; 646 fsr->fsr_ncg = sblock.fs_ncg; 647 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 648 realsectorsize, fsrbuf); 649 free(fsrbuf); 650 } 651 /* 652 * Update information about this partition in pack 653 * label, to that it may be updated on disk. 654 */ 655 if (pp != NULL) { 656 pp->p_fstype = FS_BSDFFS; 657 pp->p_fsize = sblock.fs_fsize; 658 pp->p_frag = sblock.fs_frag; 659 pp->p_cpg = sblock.fs_fpg; 660 } 661 } 662 663 /* 664 * Initialize a cylinder group. 665 */ 666 void 667 initcg(int cylno, time_t utime) 668 { 669 long blkno, start; 670 uint i, j, d, dlower, dupper; 671 ufs2_daddr_t cbase, dmax; 672 struct ufs1_dinode *dp1; 673 struct ufs2_dinode *dp2; 674 struct csum *cs; 675 676 /* 677 * Determine block bounds for cylinder group. 678 * Allow space for super block summary information in first 679 * cylinder group. 680 */ 681 cbase = cgbase(&sblock, cylno); 682 dmax = cbase + sblock.fs_fpg; 683 if (dmax > sblock.fs_size) 684 dmax = sblock.fs_size; 685 dlower = cgsblock(&sblock, cylno) - cbase; 686 dupper = cgdmin(&sblock, cylno) - cbase; 687 if (cylno == 0) 688 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 689 cs = &fscs[cylno]; 690 memset(&acg, 0, sblock.fs_cgsize); 691 acg.cg_time = utime; 692 acg.cg_magic = CG_MAGIC; 693 acg.cg_cgx = cylno; 694 acg.cg_niblk = sblock.fs_ipg; 695 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 696 acg.cg_ndblk = dmax - cbase; 697 if (sblock.fs_contigsumsize > 0) 698 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 699 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 700 if (Oflag == 2) { 701 acg.cg_iusedoff = start; 702 } else { 703 acg.cg_old_ncyl = sblock.fs_old_cpg; 704 acg.cg_old_time = acg.cg_time; 705 acg.cg_time = 0; 706 acg.cg_old_niblk = acg.cg_niblk; 707 acg.cg_niblk = 0; 708 acg.cg_initediblk = 0; 709 acg.cg_old_btotoff = start; 710 acg.cg_old_boff = acg.cg_old_btotoff + 711 sblock.fs_old_cpg * sizeof(int32_t); 712 acg.cg_iusedoff = acg.cg_old_boff + 713 sblock.fs_old_cpg * sizeof(u_int16_t); 714 } 715 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 716 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 717 if (sblock.fs_contigsumsize > 0) { 718 acg.cg_clustersumoff = 719 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 720 acg.cg_clustersumoff -= sizeof(u_int32_t); 721 acg.cg_clusteroff = acg.cg_clustersumoff + 722 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 723 acg.cg_nextfreeoff = acg.cg_clusteroff + 724 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 725 } 726 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 727 printf("Panic: cylinder group too big\n"); 728 exit(37); 729 } 730 acg.cg_cs.cs_nifree += sblock.fs_ipg; 731 if (cylno == 0) 732 for (i = 0; i < (long)UFS_ROOTINO; i++) { 733 setbit(cg_inosused(&acg), i); 734 acg.cg_cs.cs_nifree--; 735 } 736 if (cylno > 0) { 737 /* 738 * In cylno 0, beginning space is reserved 739 * for boot and super blocks. 740 */ 741 for (d = 0; d < dlower; d += sblock.fs_frag) { 742 blkno = d / sblock.fs_frag; 743 setblock(&sblock, cg_blksfree(&acg), blkno); 744 if (sblock.fs_contigsumsize > 0) 745 setbit(cg_clustersfree(&acg), blkno); 746 acg.cg_cs.cs_nbfree++; 747 } 748 } 749 if ((i = dupper % sblock.fs_frag)) { 750 acg.cg_frsum[sblock.fs_frag - i]++; 751 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 752 setbit(cg_blksfree(&acg), dupper); 753 acg.cg_cs.cs_nffree++; 754 } 755 } 756 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 757 d += sblock.fs_frag) { 758 blkno = d / sblock.fs_frag; 759 setblock(&sblock, cg_blksfree(&acg), blkno); 760 if (sblock.fs_contigsumsize > 0) 761 setbit(cg_clustersfree(&acg), blkno); 762 acg.cg_cs.cs_nbfree++; 763 } 764 if (d < acg.cg_ndblk) { 765 acg.cg_frsum[acg.cg_ndblk - d]++; 766 for (; d < acg.cg_ndblk; d++) { 767 setbit(cg_blksfree(&acg), d); 768 acg.cg_cs.cs_nffree++; 769 } 770 } 771 if (sblock.fs_contigsumsize > 0) { 772 int32_t *sump = cg_clustersum(&acg); 773 u_char *mapp = cg_clustersfree(&acg); 774 int map = *mapp++; 775 int bit = 1; 776 int run = 0; 777 778 for (i = 0; i < acg.cg_nclusterblks; i++) { 779 if ((map & bit) != 0) 780 run++; 781 else if (run != 0) { 782 if (run > sblock.fs_contigsumsize) 783 run = sblock.fs_contigsumsize; 784 sump[run]++; 785 run = 0; 786 } 787 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 788 bit <<= 1; 789 else { 790 map = *mapp++; 791 bit = 1; 792 } 793 } 794 if (run != 0) { 795 if (run > sblock.fs_contigsumsize) 796 run = sblock.fs_contigsumsize; 797 sump[run]++; 798 } 799 } 800 *cs = acg.cg_cs; 801 cgckhash(&acg); 802 /* 803 * Write out the duplicate super block, the cylinder group map 804 * and two blocks worth of inodes in a single write. 805 */ 806 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 807 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 808 start += sblock.fs_bsize; 809 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 810 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 811 for (i = 0; i < acg.cg_initediblk; i++) { 812 if (sblock.fs_magic == FS_UFS1_MAGIC) { 813 dp1->di_gen = newfs_random(); 814 dp1++; 815 } else { 816 dp2->di_gen = newfs_random(); 817 dp2++; 818 } 819 } 820 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 821 /* 822 * For the old file system, we have to initialize all the inodes. 823 */ 824 if (Oflag == 1) { 825 for (i = 2 * sblock.fs_frag; 826 i < sblock.fs_ipg / INOPF(&sblock); 827 i += sblock.fs_frag) { 828 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 829 for (j = 0; j < INOPB(&sblock); j++) { 830 dp1->di_gen = newfs_random(); 831 dp1++; 832 } 833 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 834 sblock.fs_bsize, &iobuf[start]); 835 } 836 } 837 } 838 839 /* 840 * initialize the file system 841 */ 842 #define ROOTLINKCNT 3 843 844 static struct direct root_dir[] = { 845 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 846 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 847 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 848 }; 849 850 #define SNAPLINKCNT 2 851 852 static struct direct snap_dir[] = { 853 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 854 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 855 }; 856 857 void 858 fsinit(time_t utime) 859 { 860 union dinode node; 861 struct group *grp; 862 gid_t gid; 863 int entries; 864 865 memset(&node, 0, sizeof node); 866 if ((grp = getgrnam("operator")) != NULL) { 867 gid = grp->gr_gid; 868 } else { 869 warnx("Cannot retrieve operator gid, using gid 0."); 870 gid = 0; 871 } 872 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 873 if (sblock.fs_magic == FS_UFS1_MAGIC) { 874 /* 875 * initialize the node 876 */ 877 node.dp1.di_atime = utime; 878 node.dp1.di_mtime = utime; 879 node.dp1.di_ctime = utime; 880 /* 881 * create the root directory 882 */ 883 node.dp1.di_mode = IFDIR | UMASK; 884 node.dp1.di_nlink = entries; 885 node.dp1.di_size = makedir(root_dir, entries); 886 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 887 node.dp1.di_blocks = 888 btodb(fragroundup(&sblock, node.dp1.di_size)); 889 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 890 iobuf); 891 iput(&node, UFS_ROOTINO); 892 if (!nflag) { 893 /* 894 * create the .snap directory 895 */ 896 node.dp1.di_mode |= 020; 897 node.dp1.di_gid = gid; 898 node.dp1.di_nlink = SNAPLINKCNT; 899 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 900 node.dp1.di_db[0] = 901 alloc(sblock.fs_fsize, node.dp1.di_mode); 902 node.dp1.di_blocks = 903 btodb(fragroundup(&sblock, node.dp1.di_size)); 904 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 905 sblock.fs_fsize, iobuf); 906 iput(&node, UFS_ROOTINO + 1); 907 } 908 } else { 909 /* 910 * initialize the node 911 */ 912 node.dp2.di_atime = utime; 913 node.dp2.di_mtime = utime; 914 node.dp2.di_ctime = utime; 915 node.dp2.di_birthtime = utime; 916 /* 917 * create the root directory 918 */ 919 node.dp2.di_mode = IFDIR | UMASK; 920 node.dp2.di_nlink = entries; 921 node.dp2.di_size = makedir(root_dir, entries); 922 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 923 node.dp2.di_blocks = 924 btodb(fragroundup(&sblock, node.dp2.di_size)); 925 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 926 iobuf); 927 iput(&node, UFS_ROOTINO); 928 if (!nflag) { 929 /* 930 * create the .snap directory 931 */ 932 node.dp2.di_mode |= 020; 933 node.dp2.di_gid = gid; 934 node.dp2.di_nlink = SNAPLINKCNT; 935 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 936 node.dp2.di_db[0] = 937 alloc(sblock.fs_fsize, node.dp2.di_mode); 938 node.dp2.di_blocks = 939 btodb(fragroundup(&sblock, node.dp2.di_size)); 940 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 941 sblock.fs_fsize, iobuf); 942 iput(&node, UFS_ROOTINO + 1); 943 } 944 } 945 } 946 947 /* 948 * construct a set of directory entries in "iobuf". 949 * return size of directory. 950 */ 951 int 952 makedir(struct direct *protodir, int entries) 953 { 954 char *cp; 955 int i, spcleft; 956 957 spcleft = DIRBLKSIZ; 958 memset(iobuf, 0, DIRBLKSIZ); 959 for (cp = iobuf, i = 0; i < entries - 1; i++) { 960 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 961 memmove(cp, &protodir[i], protodir[i].d_reclen); 962 cp += protodir[i].d_reclen; 963 spcleft -= protodir[i].d_reclen; 964 } 965 protodir[i].d_reclen = spcleft; 966 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 967 return (DIRBLKSIZ); 968 } 969 970 /* 971 * allocate a block or frag 972 */ 973 ufs2_daddr_t 974 alloc(int size, int mode) 975 { 976 int i, blkno, frag; 977 uint d; 978 979 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 980 sblock.fs_cgsize); 981 if (acg.cg_magic != CG_MAGIC) { 982 printf("cg 0: bad magic number\n"); 983 exit(38); 984 } 985 if (acg.cg_cs.cs_nbfree == 0) { 986 printf("first cylinder group ran out of space\n"); 987 exit(39); 988 } 989 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 990 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 991 goto goth; 992 printf("internal error: can't find block in cyl 0\n"); 993 exit(40); 994 goth: 995 blkno = fragstoblks(&sblock, d); 996 clrblock(&sblock, cg_blksfree(&acg), blkno); 997 if (sblock.fs_contigsumsize > 0) 998 clrbit(cg_clustersfree(&acg), blkno); 999 acg.cg_cs.cs_nbfree--; 1000 sblock.fs_cstotal.cs_nbfree--; 1001 fscs[0].cs_nbfree--; 1002 if (mode & IFDIR) { 1003 acg.cg_cs.cs_ndir++; 1004 sblock.fs_cstotal.cs_ndir++; 1005 fscs[0].cs_ndir++; 1006 } 1007 if (size != sblock.fs_bsize) { 1008 frag = howmany(size, sblock.fs_fsize); 1009 fscs[0].cs_nffree += sblock.fs_frag - frag; 1010 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1011 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1012 acg.cg_frsum[sblock.fs_frag - frag]++; 1013 for (i = frag; i < sblock.fs_frag; i++) 1014 setbit(cg_blksfree(&acg), d + i); 1015 } 1016 /* XXX cgwrite(&disk, 0)??? */ 1017 cgckhash(&acg); 1018 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1019 (char *)&acg); 1020 return ((ufs2_daddr_t)d); 1021 } 1022 1023 /* 1024 * Allocate an inode on the disk 1025 */ 1026 void 1027 iput(union dinode *ip, ino_t ino) 1028 { 1029 ufs2_daddr_t d; 1030 1031 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1032 sblock.fs_cgsize); 1033 if (acg.cg_magic != CG_MAGIC) { 1034 printf("cg 0: bad magic number\n"); 1035 exit(31); 1036 } 1037 acg.cg_cs.cs_nifree--; 1038 setbit(cg_inosused(&acg), ino); 1039 cgckhash(&acg); 1040 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1041 (char *)&acg); 1042 sblock.fs_cstotal.cs_nifree--; 1043 fscs[0].cs_nifree--; 1044 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1045 printf("fsinit: inode value out of range (%ju).\n", 1046 (uintmax_t)ino); 1047 exit(32); 1048 } 1049 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1050 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1051 if (sblock.fs_magic == FS_UFS1_MAGIC) 1052 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1053 ip->dp1; 1054 else 1055 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1056 ip->dp2; 1057 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1058 } 1059 1060 /* 1061 * possibly write to disk 1062 */ 1063 static void 1064 wtfs(ufs2_daddr_t bno, int size, char *bf) 1065 { 1066 if (Nflag) 1067 return; 1068 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1069 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1070 } 1071 1072 /* 1073 * Calculate the check-hash of the cylinder group. 1074 */ 1075 static void 1076 cgckhash(cgp) 1077 struct cg *cgp; 1078 { 1079 1080 if ((sblock.fs_metackhash & CK_CYLGRP) == 0) 1081 return; 1082 cgp->cg_ckhash = 0; 1083 cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize); 1084 } 1085 1086 /* 1087 * check if a block is available 1088 */ 1089 static int 1090 isblock(struct fs *fs, unsigned char *cp, int h) 1091 { 1092 unsigned char mask; 1093 1094 switch (fs->fs_frag) { 1095 case 8: 1096 return (cp[h] == 0xff); 1097 case 4: 1098 mask = 0x0f << ((h & 0x1) << 2); 1099 return ((cp[h >> 1] & mask) == mask); 1100 case 2: 1101 mask = 0x03 << ((h & 0x3) << 1); 1102 return ((cp[h >> 2] & mask) == mask); 1103 case 1: 1104 mask = 0x01 << (h & 0x7); 1105 return ((cp[h >> 3] & mask) == mask); 1106 default: 1107 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1108 return (0); 1109 } 1110 } 1111 1112 /* 1113 * take a block out of the map 1114 */ 1115 static void 1116 clrblock(struct fs *fs, unsigned char *cp, int h) 1117 { 1118 switch ((fs)->fs_frag) { 1119 case 8: 1120 cp[h] = 0; 1121 return; 1122 case 4: 1123 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1124 return; 1125 case 2: 1126 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1127 return; 1128 case 1: 1129 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1130 return; 1131 default: 1132 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1133 return; 1134 } 1135 } 1136 1137 /* 1138 * put a block into the map 1139 */ 1140 static void 1141 setblock(struct fs *fs, unsigned char *cp, int h) 1142 { 1143 switch (fs->fs_frag) { 1144 case 8: 1145 cp[h] = 0xff; 1146 return; 1147 case 4: 1148 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1149 return; 1150 case 2: 1151 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1152 return; 1153 case 1: 1154 cp[h >> 3] |= (0x01 << (h & 0x7)); 1155 return; 1156 default: 1157 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1158 return; 1159 } 1160 } 1161 1162 /* 1163 * Determine the number of characters in a 1164 * single line. 1165 */ 1166 1167 static int 1168 charsperline(void) 1169 { 1170 int columns; 1171 char *cp; 1172 struct winsize ws; 1173 1174 columns = 0; 1175 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1176 columns = ws.ws_col; 1177 if (columns == 0 && (cp = getenv("COLUMNS"))) 1178 columns = atoi(cp); 1179 if (columns == 0) 1180 columns = 80; /* last resort */ 1181 return (columns); 1182 } 1183 1184 static int 1185 ilog2(int val) 1186 { 1187 u_int n; 1188 1189 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1190 if (1 << n == val) 1191 return (n); 1192 errx(1, "ilog2: %d is not a power of 2\n", val); 1193 } 1194 1195 /* 1196 * For the regression test, return predictable random values. 1197 * Otherwise use a true random number generator. 1198 */ 1199 static u_int32_t 1200 newfs_random(void) 1201 { 1202 static int nextnum = 1; 1203 1204 if (Rflag) 1205 return (nextnum++); 1206 return (arc4random()); 1207 } 1208