xref: /freebsd/sbin/newfs/mkfs.c (revision 7841fefb62f03afcd7f44ecac18e4cd0db991b5b)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #define	IN_RTLD			/* So we pickup the P_OSREL defines */
48 #include <sys/param.h>
49 #include <sys/disklabel.h>
50 #include <sys/file.h>
51 #include <sys/ioctl.h>
52 #include <sys/mman.h>
53 #include <sys/resource.h>
54 #include <sys/stat.h>
55 #include <sys/wait.h>
56 #include <err.h>
57 #include <grp.h>
58 #include <limits.h>
59 #include <signal.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <stdint.h>
63 #include <stdio.h>
64 #include <time.h>
65 #include <unistd.h>
66 #include <ufs/ufs/dinode.h>
67 #include <ufs/ufs/dir.h>
68 #include <ufs/ffs/fs.h>
69 #include "newfs.h"
70 
71 /*
72  * make file system for cylinder-group style file systems
73  */
74 #define UMASK		0755
75 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
76 
77 static struct	csum *fscs;
78 #define	sblock	disk.d_fs
79 #define	acg	disk.d_cg
80 
81 union dinode {
82 	struct ufs1_dinode dp1;
83 	struct ufs2_dinode dp2;
84 };
85 #define DIP(dp, field) \
86 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
87 	(dp)->dp1.field : (dp)->dp2.field)
88 
89 static caddr_t iobuf;
90 static long iobufsize;
91 static ufs2_daddr_t alloc(int size, int mode);
92 static int charsperline(void);
93 static void clrblock(struct fs *, unsigned char *, int);
94 static void fsinit(time_t);
95 static int ilog2(int);
96 static void initcg(int, time_t);
97 static int isblock(struct fs *, unsigned char *, int);
98 static void iput(union dinode *, ino_t);
99 static int makedir(struct direct *, int);
100 static void setblock(struct fs *, unsigned char *, int);
101 static void wtfs(ufs2_daddr_t, int, char *);
102 static void cgckhash(struct cg *);
103 static u_int32_t newfs_random(void);
104 
105 static int
106 do_sbwrite(struct uufsd *disk)
107 {
108 	if (!disk->d_sblock)
109 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
110 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
111 	    disk->d_sblock) * disk->d_bsize)));
112 }
113 
114 void
115 mkfs(struct partition *pp, char *fsys)
116 {
117 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
118 	long i, j, csfrags;
119 	uint cg;
120 	time_t utime;
121 	quad_t sizepb;
122 	int width;
123 	ino_t maxinum;
124 	int minfragsperinode;	/* minimum ratio of frags to inodes */
125 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
126 	struct fsrecovery *fsr;
127 	char *fsrbuf;
128 	union {
129 		struct fs fdummy;
130 		char cdummy[SBLOCKSIZE];
131 	} dummy;
132 #define fsdummy dummy.fdummy
133 #define chdummy dummy.cdummy
134 
135 	/*
136 	 * Our blocks == sector size, and the version of UFS we are using is
137 	 * specified by Oflag.
138 	 */
139 	disk.d_bsize = sectorsize;
140 	disk.d_ufs = Oflag;
141 	if (Rflag)
142 		utime = 1000000000;
143 	else
144 		time(&utime);
145 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
146 	sblock.fs_flags = 0;
147 	if (Uflag)
148 		sblock.fs_flags |= FS_DOSOFTDEP;
149 	if (Lflag)
150 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
151 	if (Jflag)
152 		sblock.fs_flags |= FS_GJOURNAL;
153 	if (lflag)
154 		sblock.fs_flags |= FS_MULTILABEL;
155 	if (tflag)
156 		sblock.fs_flags |= FS_TRIM;
157 	/*
158 	 * Validate the given file system size.
159 	 * Verify that its last block can actually be accessed.
160 	 * Convert to file system fragment sized units.
161 	 */
162 	if (fssize <= 0) {
163 		printf("preposterous size %jd\n", (intmax_t)fssize);
164 		exit(13);
165 	}
166 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
167 	    (char *)&sblock);
168 	/*
169 	 * collect and verify the file system density info
170 	 */
171 	sblock.fs_avgfilesize = avgfilesize;
172 	sblock.fs_avgfpdir = avgfilesperdir;
173 	if (sblock.fs_avgfilesize <= 0)
174 		printf("illegal expected average file size %d\n",
175 		    sblock.fs_avgfilesize), exit(14);
176 	if (sblock.fs_avgfpdir <= 0)
177 		printf("illegal expected number of files per directory %d\n",
178 		    sblock.fs_avgfpdir), exit(15);
179 
180 restart:
181 	/*
182 	 * collect and verify the block and fragment sizes
183 	 */
184 	sblock.fs_bsize = bsize;
185 	sblock.fs_fsize = fsize;
186 	if (!POWEROF2(sblock.fs_bsize)) {
187 		printf("block size must be a power of 2, not %d\n",
188 		    sblock.fs_bsize);
189 		exit(16);
190 	}
191 	if (!POWEROF2(sblock.fs_fsize)) {
192 		printf("fragment size must be a power of 2, not %d\n",
193 		    sblock.fs_fsize);
194 		exit(17);
195 	}
196 	if (sblock.fs_fsize < sectorsize) {
197 		printf("increasing fragment size from %d to sector size (%d)\n",
198 		    sblock.fs_fsize, sectorsize);
199 		sblock.fs_fsize = sectorsize;
200 	}
201 	if (sblock.fs_bsize > MAXBSIZE) {
202 		printf("decreasing block size from %d to maximum (%d)\n",
203 		    sblock.fs_bsize, MAXBSIZE);
204 		sblock.fs_bsize = MAXBSIZE;
205 	}
206 	if (sblock.fs_bsize < MINBSIZE) {
207 		printf("increasing block size from %d to minimum (%d)\n",
208 		    sblock.fs_bsize, MINBSIZE);
209 		sblock.fs_bsize = MINBSIZE;
210 	}
211 	if (sblock.fs_fsize > MAXBSIZE) {
212 		printf("decreasing fragment size from %d to maximum (%d)\n",
213 		    sblock.fs_fsize, MAXBSIZE);
214 		sblock.fs_fsize = MAXBSIZE;
215 	}
216 	if (sblock.fs_bsize < sblock.fs_fsize) {
217 		printf("increasing block size from %d to fragment size (%d)\n",
218 		    sblock.fs_bsize, sblock.fs_fsize);
219 		sblock.fs_bsize = sblock.fs_fsize;
220 	}
221 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
222 		printf(
223 		"increasing fragment size from %d to block size / %d (%d)\n",
224 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
225 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
226 	}
227 	if (maxbsize == 0)
228 		maxbsize = bsize;
229 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
230 		sblock.fs_maxbsize = sblock.fs_bsize;
231 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
232 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
233 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
234 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
235 	} else {
236 		sblock.fs_maxbsize = maxbsize;
237 	}
238 	/*
239 	 * Maxcontig sets the default for the maximum number of blocks
240 	 * that may be allocated sequentially. With file system clustering
241 	 * it is possible to allocate contiguous blocks up to the maximum
242 	 * transfer size permitted by the controller or buffering.
243 	 */
244 	if (maxcontig == 0)
245 		maxcontig = MAX(1, MAXPHYS / bsize);
246 	sblock.fs_maxcontig = maxcontig;
247 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
248 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
249 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
250 	}
251 	if (sblock.fs_maxcontig > 1)
252 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
253 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
254 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
255 	sblock.fs_qbmask = ~sblock.fs_bmask;
256 	sblock.fs_qfmask = ~sblock.fs_fmask;
257 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
258 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
259 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
260 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
261 	if (sblock.fs_frag > MAXFRAG) {
262 		printf("fragment size %d is still too small (can't happen)\n",
263 		    sblock.fs_bsize / MAXFRAG);
264 		exit(21);
265 	}
266 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
267 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
268 	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
269 
270 	/*
271 	 * Before the filesystem is finally initialized, mark it
272 	 * as incompletely initialized.
273 	 */
274 	sblock.fs_magic = FS_BAD_MAGIC;
275 
276 	if (Oflag == 1) {
277 		sblock.fs_sblockloc = SBLOCK_UFS1;
278 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
279 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
280 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
281 		    sizeof(ufs1_daddr_t));
282 		sblock.fs_old_inodefmt = FS_44INODEFMT;
283 		sblock.fs_old_cgoffset = 0;
284 		sblock.fs_old_cgmask = 0xffffffff;
285 		sblock.fs_old_size = sblock.fs_size;
286 		sblock.fs_old_rotdelay = 0;
287 		sblock.fs_old_rps = 60;
288 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
289 		sblock.fs_old_cpg = 1;
290 		sblock.fs_old_interleave = 1;
291 		sblock.fs_old_trackskew = 0;
292 		sblock.fs_old_cpc = 0;
293 		sblock.fs_old_postblformat = 1;
294 		sblock.fs_old_nrpos = 1;
295 	} else {
296 		sblock.fs_sblockloc = SBLOCK_UFS2;
297 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
298 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
299 		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
300 		    sizeof(ufs2_daddr_t));
301 	}
302 	sblock.fs_sblkno =
303 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
304 		sblock.fs_frag);
305 	sblock.fs_cblkno = sblock.fs_sblkno +
306 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
307 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
308 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
309 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
310 		sizepb *= NINDIR(&sblock);
311 		sblock.fs_maxfilesize += sizepb;
312 	}
313 
314 	/*
315 	 * It's impossible to create a snapshot in case that fs_maxfilesize
316 	 * is smaller than the fssize.
317 	 */
318 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
319 		warnx("WARNING: You will be unable to create snapshots on this "
320 		      "file system.  Correct by using a larger blocksize.");
321 	}
322 
323 	/*
324 	 * Calculate the number of blocks to put into each cylinder group.
325 	 *
326 	 * This algorithm selects the number of blocks per cylinder
327 	 * group. The first goal is to have at least enough data blocks
328 	 * in each cylinder group to meet the density requirement. Once
329 	 * this goal is achieved we try to expand to have at least
330 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
331 	 * pack as many blocks into each cylinder group map as will fit.
332 	 *
333 	 * We start by calculating the smallest number of blocks that we
334 	 * can put into each cylinder group. If this is too big, we reduce
335 	 * the density until it fits.
336 	 */
337 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
338 	minfragsperinode = 1 + fssize / maxinum;
339 	if (density == 0) {
340 		density = MAX(NFPI, minfragsperinode) * fsize;
341 	} else if (density < minfragsperinode * fsize) {
342 		origdensity = density;
343 		density = minfragsperinode * fsize;
344 		fprintf(stderr, "density increased from %d to %d\n",
345 		    origdensity, density);
346 	}
347 	origdensity = density;
348 	for (;;) {
349 		fragsperinode = MAX(numfrags(&sblock, density), 1);
350 		if (fragsperinode < minfragsperinode) {
351 			bsize <<= 1;
352 			fsize <<= 1;
353 			printf("Block size too small for a file system %s %d\n",
354 			     "of this size. Increasing blocksize to", bsize);
355 			goto restart;
356 		}
357 		minfpg = fragsperinode * INOPB(&sblock);
358 		if (minfpg > sblock.fs_size)
359 			minfpg = sblock.fs_size;
360 		sblock.fs_ipg = INOPB(&sblock);
361 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
362 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
363 		if (sblock.fs_fpg < minfpg)
364 			sblock.fs_fpg = minfpg;
365 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
366 		    INOPB(&sblock));
367 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
368 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
369 		if (sblock.fs_fpg < minfpg)
370 			sblock.fs_fpg = minfpg;
371 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
372 		    INOPB(&sblock));
373 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
374 			break;
375 		density -= sblock.fs_fsize;
376 	}
377 	if (density != origdensity)
378 		printf("density reduced from %d to %d\n", origdensity, density);
379 	/*
380 	 * Start packing more blocks into the cylinder group until
381 	 * it cannot grow any larger, the number of cylinder groups
382 	 * drops below MINCYLGRPS, or we reach the size requested.
383 	 * For UFS1 inodes per cylinder group are stored in an int16_t
384 	 * so fs_ipg is limited to 2^15 - 1.
385 	 */
386 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
387 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
388 		    INOPB(&sblock));
389 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
390 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
391 				break;
392 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
393 				continue;
394 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
395 				break;
396 		}
397 		sblock.fs_fpg -= sblock.fs_frag;
398 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
399 		    INOPB(&sblock));
400 		break;
401 	}
402 	/*
403 	 * Check to be sure that the last cylinder group has enough blocks
404 	 * to be viable. If it is too small, reduce the number of blocks
405 	 * per cylinder group which will have the effect of moving more
406 	 * blocks into the last cylinder group.
407 	 */
408 	optimalfpg = sblock.fs_fpg;
409 	for (;;) {
410 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
411 		lastminfpg = roundup(sblock.fs_iblkno +
412 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
413 		if (sblock.fs_size < lastminfpg) {
414 			printf("Filesystem size %jd < minimum size of %d\n",
415 			    (intmax_t)sblock.fs_size, lastminfpg);
416 			exit(28);
417 		}
418 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
419 		    sblock.fs_size % sblock.fs_fpg == 0)
420 			break;
421 		sblock.fs_fpg -= sblock.fs_frag;
422 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
423 		    INOPB(&sblock));
424 	}
425 	if (optimalfpg != sblock.fs_fpg)
426 		printf("Reduced frags per cylinder group from %d to %d %s\n",
427 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
428 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
429 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
430 	if (Oflag == 1) {
431 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
432 		sblock.fs_old_nsect = sblock.fs_old_spc;
433 		sblock.fs_old_npsect = sblock.fs_old_spc;
434 		sblock.fs_old_ncyl = sblock.fs_ncg;
435 	}
436 	/*
437 	 * fill in remaining fields of the super block
438 	 */
439 	sblock.fs_csaddr = cgdmin(&sblock, 0);
440 	sblock.fs_cssize =
441 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
442 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
443 	if (fscs == NULL)
444 		errx(31, "calloc failed");
445 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
446 	if (sblock.fs_sbsize > SBLOCKSIZE)
447 		sblock.fs_sbsize = SBLOCKSIZE;
448 	if (sblock.fs_sbsize < realsectorsize)
449 		sblock.fs_sbsize = realsectorsize;
450 	sblock.fs_minfree = minfree;
451 	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
452 		sblock.fs_metaspace = blknum(&sblock, metaspace);
453 	else if (metaspace != -1)
454 		/* reserve half of minfree for metadata blocks */
455 		sblock.fs_metaspace = blknum(&sblock,
456 		    (sblock.fs_fpg * minfree) / 200);
457 	if (maxbpg == 0)
458 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
459 	else
460 		sblock.fs_maxbpg = maxbpg;
461 	sblock.fs_optim = opt;
462 	sblock.fs_cgrotor = 0;
463 	sblock.fs_pendingblocks = 0;
464 	sblock.fs_pendinginodes = 0;
465 	sblock.fs_fmod = 0;
466 	sblock.fs_ronly = 0;
467 	sblock.fs_state = 0;
468 	sblock.fs_clean = 1;
469 	sblock.fs_id[0] = (long)utime;
470 	sblock.fs_id[1] = newfs_random();
471 	sblock.fs_fsmnt[0] = '\0';
472 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
473 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
474 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
475 	sblock.fs_cstotal.cs_nbfree =
476 	    fragstoblks(&sblock, sblock.fs_dsize) -
477 	    howmany(csfrags, sblock.fs_frag);
478 	sblock.fs_cstotal.cs_nffree =
479 	    fragnum(&sblock, sblock.fs_size) +
480 	    (fragnum(&sblock, csfrags) > 0 ?
481 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
482 	sblock.fs_cstotal.cs_nifree =
483 	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
484 	sblock.fs_cstotal.cs_ndir = 0;
485 	sblock.fs_dsize -= csfrags;
486 	sblock.fs_time = utime;
487 	if (Oflag == 1) {
488 		sblock.fs_old_time = utime;
489 		sblock.fs_old_dsize = sblock.fs_dsize;
490 		sblock.fs_old_csaddr = sblock.fs_csaddr;
491 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
492 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
493 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
494 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
495 	}
496 	/*
497 	 * Set flags for metadata that is being check-hashed.
498 	 */
499 	if (Oflag > 1 && getosreldate() >= P_OSREL_CK_CYLGRP)
500 		sblock.fs_metackhash = CK_CYLGRP;
501 
502 	/*
503 	 * Dump out summary information about file system.
504 	 */
505 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
506 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
507 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
508 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
509 	    sblock.fs_fsize);
510 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
511 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
512 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
513 	if (sblock.fs_flags & FS_DOSOFTDEP)
514 		printf("\twith soft updates\n");
515 #	undef B2MBFACTOR
516 
517 	if (Eflag && !Nflag) {
518 		printf("Erasing sectors [%jd...%jd]\n",
519 		    sblock.fs_sblockloc / disk.d_bsize,
520 		    fsbtodb(&sblock, sblock.fs_size) - 1);
521 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
522 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
523 	}
524 	/*
525 	 * Wipe out old UFS1 superblock(s) if necessary.
526 	 */
527 	if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) {
528 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
529 		if (i == -1)
530 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
531 
532 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
533 			fsdummy.fs_magic = 0;
534 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
535 			    chdummy, SBLOCKSIZE);
536 			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
537 				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
538 					break;
539 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
540 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
541 			}
542 		}
543 	}
544 	if (!Nflag)
545 		do_sbwrite(&disk);
546 	if (Xflag == 1) {
547 		printf("** Exiting on Xflag 1\n");
548 		exit(0);
549 	}
550 	if (Xflag == 2)
551 		printf("** Leaving BAD MAGIC on Xflag 2\n");
552 	else
553 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
554 
555 	/*
556 	 * Now build the cylinders group blocks and
557 	 * then print out indices of cylinder groups.
558 	 */
559 	printf("super-block backups (for fsck_ffs -b #) at:\n");
560 	i = 0;
561 	width = charsperline();
562 	/*
563 	 * allocate space for superblock, cylinder group map, and
564 	 * two sets of inode blocks.
565 	 */
566 	if (sblock.fs_bsize < SBLOCKSIZE)
567 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
568 	else
569 		iobufsize = 4 * sblock.fs_bsize;
570 	if ((iobuf = calloc(1, iobufsize)) == 0) {
571 		printf("Cannot allocate I/O buffer\n");
572 		exit(38);
573 	}
574 	/*
575 	 * Make a copy of the superblock into the buffer that we will be
576 	 * writing out in each cylinder group.
577 	 */
578 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
579 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
580 		initcg(cg, utime);
581 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
582 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
583 		    cg < (sblock.fs_ncg-1) ? "," : "");
584 		if (j < 0)
585 			tmpbuf[j = 0] = '\0';
586 		if (i + j >= width) {
587 			printf("\n");
588 			i = 0;
589 		}
590 		i += j;
591 		printf("%s", tmpbuf);
592 		fflush(stdout);
593 	}
594 	printf("\n");
595 	if (Nflag)
596 		exit(0);
597 	/*
598 	 * Now construct the initial file system,
599 	 * then write out the super-block.
600 	 */
601 	fsinit(utime);
602 	if (Oflag == 1) {
603 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
604 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
605 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
606 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
607 	}
608 	if (Xflag == 3) {
609 		printf("** Exiting on Xflag 3\n");
610 		exit(0);
611 	}
612 	if (!Nflag) {
613 		do_sbwrite(&disk);
614 		/*
615 		 * For UFS1 filesystems with a blocksize of 64K, the first
616 		 * alternate superblock resides at the location used for
617 		 * the default UFS2 superblock. As there is a valid
618 		 * superblock at this location, the boot code will use
619 		 * it as its first choice. Thus we have to ensure that
620 		 * all of its statistcs on usage are correct.
621 		 */
622 		if (Oflag == 1 && sblock.fs_bsize == 65536)
623 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
624 			    sblock.fs_bsize, (char *)&sblock);
625 	}
626 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
627 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
628 			MIN(sblock.fs_cssize - i, sblock.fs_bsize),
629 			((char *)fscs) + i);
630 	/*
631 	 * Read the last sector of the boot block, replace the last
632 	 * 20 bytes with the recovery information, then write it back.
633 	 * The recovery information only works for UFS2 filesystems.
634 	 */
635 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
636 		if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk,
637 		    part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
638 		    fsrbuf, realsectorsize) == -1)
639 			err(1, "can't read recovery area: %s", disk.d_error);
640 		fsr =
641 		    (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr];
642 		fsr->fsr_magic = sblock.fs_magic;
643 		fsr->fsr_fpg = sblock.fs_fpg;
644 		fsr->fsr_fsbtodb = sblock.fs_fsbtodb;
645 		fsr->fsr_sblkno = sblock.fs_sblkno;
646 		fsr->fsr_ncg = sblock.fs_ncg;
647 		wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize,
648 		    realsectorsize, fsrbuf);
649 		free(fsrbuf);
650 	}
651 	/*
652 	 * Update information about this partition in pack
653 	 * label, to that it may be updated on disk.
654 	 */
655 	if (pp != NULL) {
656 		pp->p_fstype = FS_BSDFFS;
657 		pp->p_fsize = sblock.fs_fsize;
658 		pp->p_frag = sblock.fs_frag;
659 		pp->p_cpg = sblock.fs_fpg;
660 	}
661 }
662 
663 /*
664  * Initialize a cylinder group.
665  */
666 void
667 initcg(int cylno, time_t utime)
668 {
669 	long blkno, start;
670 	uint i, j, d, dlower, dupper;
671 	ufs2_daddr_t cbase, dmax;
672 	struct ufs1_dinode *dp1;
673 	struct ufs2_dinode *dp2;
674 	struct csum *cs;
675 
676 	/*
677 	 * Determine block bounds for cylinder group.
678 	 * Allow space for super block summary information in first
679 	 * cylinder group.
680 	 */
681 	cbase = cgbase(&sblock, cylno);
682 	dmax = cbase + sblock.fs_fpg;
683 	if (dmax > sblock.fs_size)
684 		dmax = sblock.fs_size;
685 	dlower = cgsblock(&sblock, cylno) - cbase;
686 	dupper = cgdmin(&sblock, cylno) - cbase;
687 	if (cylno == 0)
688 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
689 	cs = &fscs[cylno];
690 	memset(&acg, 0, sblock.fs_cgsize);
691 	acg.cg_time = utime;
692 	acg.cg_magic = CG_MAGIC;
693 	acg.cg_cgx = cylno;
694 	acg.cg_niblk = sblock.fs_ipg;
695 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
696 	acg.cg_ndblk = dmax - cbase;
697 	if (sblock.fs_contigsumsize > 0)
698 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
699 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
700 	if (Oflag == 2) {
701 		acg.cg_iusedoff = start;
702 	} else {
703 		acg.cg_old_ncyl = sblock.fs_old_cpg;
704 		acg.cg_old_time = acg.cg_time;
705 		acg.cg_time = 0;
706 		acg.cg_old_niblk = acg.cg_niblk;
707 		acg.cg_niblk = 0;
708 		acg.cg_initediblk = 0;
709 		acg.cg_old_btotoff = start;
710 		acg.cg_old_boff = acg.cg_old_btotoff +
711 		    sblock.fs_old_cpg * sizeof(int32_t);
712 		acg.cg_iusedoff = acg.cg_old_boff +
713 		    sblock.fs_old_cpg * sizeof(u_int16_t);
714 	}
715 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
716 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
717 	if (sblock.fs_contigsumsize > 0) {
718 		acg.cg_clustersumoff =
719 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
720 		acg.cg_clustersumoff -= sizeof(u_int32_t);
721 		acg.cg_clusteroff = acg.cg_clustersumoff +
722 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
723 		acg.cg_nextfreeoff = acg.cg_clusteroff +
724 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
725 	}
726 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
727 		printf("Panic: cylinder group too big\n");
728 		exit(37);
729 	}
730 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
731 	if (cylno == 0)
732 		for (i = 0; i < (long)UFS_ROOTINO; i++) {
733 			setbit(cg_inosused(&acg), i);
734 			acg.cg_cs.cs_nifree--;
735 		}
736 	if (cylno > 0) {
737 		/*
738 		 * In cylno 0, beginning space is reserved
739 		 * for boot and super blocks.
740 		 */
741 		for (d = 0; d < dlower; d += sblock.fs_frag) {
742 			blkno = d / sblock.fs_frag;
743 			setblock(&sblock, cg_blksfree(&acg), blkno);
744 			if (sblock.fs_contigsumsize > 0)
745 				setbit(cg_clustersfree(&acg), blkno);
746 			acg.cg_cs.cs_nbfree++;
747 		}
748 	}
749 	if ((i = dupper % sblock.fs_frag)) {
750 		acg.cg_frsum[sblock.fs_frag - i]++;
751 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
752 			setbit(cg_blksfree(&acg), dupper);
753 			acg.cg_cs.cs_nffree++;
754 		}
755 	}
756 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
757 	     d += sblock.fs_frag) {
758 		blkno = d / sblock.fs_frag;
759 		setblock(&sblock, cg_blksfree(&acg), blkno);
760 		if (sblock.fs_contigsumsize > 0)
761 			setbit(cg_clustersfree(&acg), blkno);
762 		acg.cg_cs.cs_nbfree++;
763 	}
764 	if (d < acg.cg_ndblk) {
765 		acg.cg_frsum[acg.cg_ndblk - d]++;
766 		for (; d < acg.cg_ndblk; d++) {
767 			setbit(cg_blksfree(&acg), d);
768 			acg.cg_cs.cs_nffree++;
769 		}
770 	}
771 	if (sblock.fs_contigsumsize > 0) {
772 		int32_t *sump = cg_clustersum(&acg);
773 		u_char *mapp = cg_clustersfree(&acg);
774 		int map = *mapp++;
775 		int bit = 1;
776 		int run = 0;
777 
778 		for (i = 0; i < acg.cg_nclusterblks; i++) {
779 			if ((map & bit) != 0)
780 				run++;
781 			else if (run != 0) {
782 				if (run > sblock.fs_contigsumsize)
783 					run = sblock.fs_contigsumsize;
784 				sump[run]++;
785 				run = 0;
786 			}
787 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
788 				bit <<= 1;
789 			else {
790 				map = *mapp++;
791 				bit = 1;
792 			}
793 		}
794 		if (run != 0) {
795 			if (run > sblock.fs_contigsumsize)
796 				run = sblock.fs_contigsumsize;
797 			sump[run]++;
798 		}
799 	}
800 	*cs = acg.cg_cs;
801 	cgckhash(&acg);
802 	/*
803 	 * Write out the duplicate super block, the cylinder group map
804 	 * and two blocks worth of inodes in a single write.
805 	 */
806 	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
807 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
808 	start += sblock.fs_bsize;
809 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
810 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
811 	for (i = 0; i < acg.cg_initediblk; i++) {
812 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
813 			dp1->di_gen = newfs_random();
814 			dp1++;
815 		} else {
816 			dp2->di_gen = newfs_random();
817 			dp2++;
818 		}
819 	}
820 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
821 	/*
822 	 * For the old file system, we have to initialize all the inodes.
823 	 */
824 	if (Oflag == 1) {
825 		for (i = 2 * sblock.fs_frag;
826 		     i < sblock.fs_ipg / INOPF(&sblock);
827 		     i += sblock.fs_frag) {
828 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
829 			for (j = 0; j < INOPB(&sblock); j++) {
830 				dp1->di_gen = newfs_random();
831 				dp1++;
832 			}
833 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
834 			    sblock.fs_bsize, &iobuf[start]);
835 		}
836 	}
837 }
838 
839 /*
840  * initialize the file system
841  */
842 #define ROOTLINKCNT 3
843 
844 static struct direct root_dir[] = {
845 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
846 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
847 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
848 };
849 
850 #define SNAPLINKCNT 2
851 
852 static struct direct snap_dir[] = {
853 	{ UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
854 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
855 };
856 
857 void
858 fsinit(time_t utime)
859 {
860 	union dinode node;
861 	struct group *grp;
862 	gid_t gid;
863 	int entries;
864 
865 	memset(&node, 0, sizeof node);
866 	if ((grp = getgrnam("operator")) != NULL) {
867 		gid = grp->gr_gid;
868 	} else {
869 		warnx("Cannot retrieve operator gid, using gid 0.");
870 		gid = 0;
871 	}
872 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
873 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
874 		/*
875 		 * initialize the node
876 		 */
877 		node.dp1.di_atime = utime;
878 		node.dp1.di_mtime = utime;
879 		node.dp1.di_ctime = utime;
880 		/*
881 		 * create the root directory
882 		 */
883 		node.dp1.di_mode = IFDIR | UMASK;
884 		node.dp1.di_nlink = entries;
885 		node.dp1.di_size = makedir(root_dir, entries);
886 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
887 		node.dp1.di_blocks =
888 		    btodb(fragroundup(&sblock, node.dp1.di_size));
889 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
890 		    iobuf);
891 		iput(&node, UFS_ROOTINO);
892 		if (!nflag) {
893 			/*
894 			 * create the .snap directory
895 			 */
896 			node.dp1.di_mode |= 020;
897 			node.dp1.di_gid = gid;
898 			node.dp1.di_nlink = SNAPLINKCNT;
899 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
900 				node.dp1.di_db[0] =
901 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
902 			node.dp1.di_blocks =
903 			    btodb(fragroundup(&sblock, node.dp1.di_size));
904 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
905 				    sblock.fs_fsize, iobuf);
906 			iput(&node, UFS_ROOTINO + 1);
907 		}
908 	} else {
909 		/*
910 		 * initialize the node
911 		 */
912 		node.dp2.di_atime = utime;
913 		node.dp2.di_mtime = utime;
914 		node.dp2.di_ctime = utime;
915 		node.dp2.di_birthtime = utime;
916 		/*
917 		 * create the root directory
918 		 */
919 		node.dp2.di_mode = IFDIR | UMASK;
920 		node.dp2.di_nlink = entries;
921 		node.dp2.di_size = makedir(root_dir, entries);
922 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
923 		node.dp2.di_blocks =
924 		    btodb(fragroundup(&sblock, node.dp2.di_size));
925 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
926 		    iobuf);
927 		iput(&node, UFS_ROOTINO);
928 		if (!nflag) {
929 			/*
930 			 * create the .snap directory
931 			 */
932 			node.dp2.di_mode |= 020;
933 			node.dp2.di_gid = gid;
934 			node.dp2.di_nlink = SNAPLINKCNT;
935 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
936 				node.dp2.di_db[0] =
937 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
938 			node.dp2.di_blocks =
939 			    btodb(fragroundup(&sblock, node.dp2.di_size));
940 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
941 				    sblock.fs_fsize, iobuf);
942 			iput(&node, UFS_ROOTINO + 1);
943 		}
944 	}
945 }
946 
947 /*
948  * construct a set of directory entries in "iobuf".
949  * return size of directory.
950  */
951 int
952 makedir(struct direct *protodir, int entries)
953 {
954 	char *cp;
955 	int i, spcleft;
956 
957 	spcleft = DIRBLKSIZ;
958 	memset(iobuf, 0, DIRBLKSIZ);
959 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
960 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
961 		memmove(cp, &protodir[i], protodir[i].d_reclen);
962 		cp += protodir[i].d_reclen;
963 		spcleft -= protodir[i].d_reclen;
964 	}
965 	protodir[i].d_reclen = spcleft;
966 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
967 	return (DIRBLKSIZ);
968 }
969 
970 /*
971  * allocate a block or frag
972  */
973 ufs2_daddr_t
974 alloc(int size, int mode)
975 {
976 	int i, blkno, frag;
977 	uint d;
978 
979 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
980 	    sblock.fs_cgsize);
981 	if (acg.cg_magic != CG_MAGIC) {
982 		printf("cg 0: bad magic number\n");
983 		exit(38);
984 	}
985 	if (acg.cg_cs.cs_nbfree == 0) {
986 		printf("first cylinder group ran out of space\n");
987 		exit(39);
988 	}
989 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
990 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
991 			goto goth;
992 	printf("internal error: can't find block in cyl 0\n");
993 	exit(40);
994 goth:
995 	blkno = fragstoblks(&sblock, d);
996 	clrblock(&sblock, cg_blksfree(&acg), blkno);
997 	if (sblock.fs_contigsumsize > 0)
998 		clrbit(cg_clustersfree(&acg), blkno);
999 	acg.cg_cs.cs_nbfree--;
1000 	sblock.fs_cstotal.cs_nbfree--;
1001 	fscs[0].cs_nbfree--;
1002 	if (mode & IFDIR) {
1003 		acg.cg_cs.cs_ndir++;
1004 		sblock.fs_cstotal.cs_ndir++;
1005 		fscs[0].cs_ndir++;
1006 	}
1007 	if (size != sblock.fs_bsize) {
1008 		frag = howmany(size, sblock.fs_fsize);
1009 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1010 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1011 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1012 		acg.cg_frsum[sblock.fs_frag - frag]++;
1013 		for (i = frag; i < sblock.fs_frag; i++)
1014 			setbit(cg_blksfree(&acg), d + i);
1015 	}
1016 	/* XXX cgwrite(&disk, 0)??? */
1017 	cgckhash(&acg);
1018 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1019 	    (char *)&acg);
1020 	return ((ufs2_daddr_t)d);
1021 }
1022 
1023 /*
1024  * Allocate an inode on the disk
1025  */
1026 void
1027 iput(union dinode *ip, ino_t ino)
1028 {
1029 	ufs2_daddr_t d;
1030 
1031 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1032 	    sblock.fs_cgsize);
1033 	if (acg.cg_magic != CG_MAGIC) {
1034 		printf("cg 0: bad magic number\n");
1035 		exit(31);
1036 	}
1037 	acg.cg_cs.cs_nifree--;
1038 	setbit(cg_inosused(&acg), ino);
1039 	cgckhash(&acg);
1040 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1041 	    (char *)&acg);
1042 	sblock.fs_cstotal.cs_nifree--;
1043 	fscs[0].cs_nifree--;
1044 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1045 		printf("fsinit: inode value out of range (%ju).\n",
1046 		    (uintmax_t)ino);
1047 		exit(32);
1048 	}
1049 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1050 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1051 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1052 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1053 		    ip->dp1;
1054 	else
1055 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1056 		    ip->dp2;
1057 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1058 }
1059 
1060 /*
1061  * possibly write to disk
1062  */
1063 static void
1064 wtfs(ufs2_daddr_t bno, int size, char *bf)
1065 {
1066 	if (Nflag)
1067 		return;
1068 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1069 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1070 }
1071 
1072 /*
1073  * Calculate the check-hash of the cylinder group.
1074  */
1075 static void
1076 cgckhash(cgp)
1077 	struct cg *cgp;
1078 {
1079 
1080 	if ((sblock.fs_metackhash & CK_CYLGRP) == 0)
1081 		return;
1082 	cgp->cg_ckhash = 0;
1083 	cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize);
1084 }
1085 
1086 /*
1087  * check if a block is available
1088  */
1089 static int
1090 isblock(struct fs *fs, unsigned char *cp, int h)
1091 {
1092 	unsigned char mask;
1093 
1094 	switch (fs->fs_frag) {
1095 	case 8:
1096 		return (cp[h] == 0xff);
1097 	case 4:
1098 		mask = 0x0f << ((h & 0x1) << 2);
1099 		return ((cp[h >> 1] & mask) == mask);
1100 	case 2:
1101 		mask = 0x03 << ((h & 0x3) << 1);
1102 		return ((cp[h >> 2] & mask) == mask);
1103 	case 1:
1104 		mask = 0x01 << (h & 0x7);
1105 		return ((cp[h >> 3] & mask) == mask);
1106 	default:
1107 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1108 		return (0);
1109 	}
1110 }
1111 
1112 /*
1113  * take a block out of the map
1114  */
1115 static void
1116 clrblock(struct fs *fs, unsigned char *cp, int h)
1117 {
1118 	switch ((fs)->fs_frag) {
1119 	case 8:
1120 		cp[h] = 0;
1121 		return;
1122 	case 4:
1123 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1124 		return;
1125 	case 2:
1126 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1127 		return;
1128 	case 1:
1129 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1130 		return;
1131 	default:
1132 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1133 		return;
1134 	}
1135 }
1136 
1137 /*
1138  * put a block into the map
1139  */
1140 static void
1141 setblock(struct fs *fs, unsigned char *cp, int h)
1142 {
1143 	switch (fs->fs_frag) {
1144 	case 8:
1145 		cp[h] = 0xff;
1146 		return;
1147 	case 4:
1148 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1149 		return;
1150 	case 2:
1151 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1152 		return;
1153 	case 1:
1154 		cp[h >> 3] |= (0x01 << (h & 0x7));
1155 		return;
1156 	default:
1157 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1158 		return;
1159 	}
1160 }
1161 
1162 /*
1163  * Determine the number of characters in a
1164  * single line.
1165  */
1166 
1167 static int
1168 charsperline(void)
1169 {
1170 	int columns;
1171 	char *cp;
1172 	struct winsize ws;
1173 
1174 	columns = 0;
1175 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1176 		columns = ws.ws_col;
1177 	if (columns == 0 && (cp = getenv("COLUMNS")))
1178 		columns = atoi(cp);
1179 	if (columns == 0)
1180 		columns = 80;	/* last resort */
1181 	return (columns);
1182 }
1183 
1184 static int
1185 ilog2(int val)
1186 {
1187 	u_int n;
1188 
1189 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1190 		if (1 << n == val)
1191 			return (n);
1192 	errx(1, "ilog2: %d is not a power of 2\n", val);
1193 }
1194 
1195 /*
1196  * For the regression test, return predictable random values.
1197  * Otherwise use a true random number generator.
1198  */
1199 static u_int32_t
1200 newfs_random(void)
1201 {
1202 	static int nextnum = 1;
1203 
1204 	if (Rflag)
1205 		return (nextnum++);
1206 	return (arc4random());
1207 }
1208