1 /* 2 * Copyright (c) 1980, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #ifndef lint 35 #if 0 36 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 37 #endif 38 static const char rcsid[] = 39 "$FreeBSD$"; 40 #endif /* not lint */ 41 42 #include <err.h> 43 #include <signal.h> 44 #include <string.h> 45 #include <stdio.h> 46 #include <unistd.h> 47 #include <sys/param.h> 48 #include <sys/time.h> 49 #include <sys/types.h> 50 #include <sys/wait.h> 51 #include <sys/resource.h> 52 #include <sys/stat.h> 53 #include <ufs/ufs/dinode.h> 54 #include <ufs/ufs/dir.h> 55 #include <ufs/ffs/fs.h> 56 #include <sys/disklabel.h> 57 #include <sys/file.h> 58 #include <sys/mman.h> 59 #include <sys/ioctl.h> 60 61 #ifndef STANDALONE 62 #include <stdlib.h> 63 #else 64 extern int atoi __P((char *)); 65 extern char * getenv __P((char *)); 66 #endif 67 68 #ifdef FSIRAND 69 extern long random __P((void)); 70 extern void srandomdev __P((void)); 71 #endif 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 77 /* 78 * We limit the size of the inode map to be no more than a 79 * third of the cylinder group space, since we must leave at 80 * least an equal amount of space for the block map. 81 * 82 * N.B.: MAXIPG must be a multiple of INOPB(fs). 83 */ 84 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 85 86 #define UMASK 0755 87 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) 88 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 89 90 /* 91 * variables set up by front end. 92 */ 93 extern int mfs; /* run as the memory based filesystem */ 94 extern char *mfs_mtpt; /* mount point for mfs */ 95 extern struct stat mfs_mtstat; /* stat prior to mount */ 96 extern int Nflag; /* run mkfs without writing file system */ 97 extern int Oflag; /* format as an 4.3BSD file system */ 98 extern int fssize; /* file system size */ 99 extern int ntracks; /* # tracks/cylinder */ 100 extern int nsectors; /* # sectors/track */ 101 extern int nphyssectors; /* # sectors/track including spares */ 102 extern int secpercyl; /* sectors per cylinder */ 103 extern int sectorsize; /* bytes/sector */ 104 extern int realsectorsize; /* bytes/sector in hardware*/ 105 extern int rpm; /* revolutions/minute of drive */ 106 extern int interleave; /* hardware sector interleave */ 107 extern int trackskew; /* sector 0 skew, per track */ 108 extern int fsize; /* fragment size */ 109 extern int bsize; /* block size */ 110 extern int cpg; /* cylinders/cylinder group */ 111 extern int cpgflg; /* cylinders/cylinder group flag was given */ 112 extern int minfree; /* free space threshold */ 113 extern int opt; /* optimization preference (space or time) */ 114 extern int density; /* number of bytes per inode */ 115 extern int maxcontig; /* max contiguous blocks to allocate */ 116 extern int rotdelay; /* rotational delay between blocks */ 117 extern int maxbpg; /* maximum blocks per file in a cyl group */ 118 extern int nrpos; /* # of distinguished rotational positions */ 119 extern int bbsize; /* boot block size */ 120 extern int sbsize; /* superblock size */ 121 extern u_long memleft; /* virtual memory available */ 122 extern caddr_t membase; /* start address of memory based filesystem */ 123 extern char * filename; 124 125 union { 126 struct fs fs; 127 char pad[SBSIZE]; 128 } fsun; 129 #define sblock fsun.fs 130 struct csum *fscs; 131 132 union { 133 struct cg cg; 134 char pad[MAXBSIZE]; 135 } cgun; 136 #define acg cgun.cg 137 138 struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; 139 140 int fsi, fso; 141 #ifdef FSIRAND 142 int randinit; 143 #endif 144 daddr_t alloc(); 145 long calcipg(); 146 static int charsperline(); 147 void clrblock __P((struct fs *, unsigned char *, int)); 148 void fsinit __P((time_t)); 149 void initcg __P((int, time_t)); 150 int isblock __P((struct fs *, unsigned char *, int)); 151 void iput __P((struct dinode *, ino_t)); 152 int makedir __P((struct direct *, int)); 153 void rdfs __P((daddr_t, int, char *)); 154 void setblock __P((struct fs *, unsigned char *, int)); 155 void wtfs __P((daddr_t, int, char *)); 156 void wtfsflush __P((void)); 157 158 #ifndef STANDALONE 159 void get_memleft __P((void)); 160 void raise_data_limit __P((void)); 161 #else 162 void free __P((char *)); 163 char * calloc __P((u_long, u_long)); 164 caddr_t malloc __P((u_long)); 165 caddr_t realloc __P((char *, u_long)); 166 #endif 167 168 int mfs_ppid = 0; 169 170 void 171 mkfs(pp, fsys, fi, fo) 172 struct partition *pp; 173 char *fsys; 174 int fi, fo; 175 { 176 register long i, mincpc, mincpg, inospercg; 177 long cylno, rpos, blk, j, warn = 0; 178 long used, mincpgcnt, bpcg; 179 off_t usedb; 180 long mapcramped, inodecramped; 181 long postblsize, rotblsize, totalsbsize; 182 int status, fd; 183 time_t utime; 184 quad_t sizepb; 185 void started(); 186 int width; 187 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 188 189 #ifndef STANDALONE 190 time(&utime); 191 #endif 192 #ifdef FSIRAND 193 if (!randinit) { 194 randinit = 1; 195 srandomdev(); 196 } 197 #endif 198 if (mfs) { 199 mfs_ppid = getpid(); 200 (void) signal(SIGUSR1, started); 201 if ((i = fork())) { 202 if (i == -1) 203 err(10, "mfs"); 204 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status)) 205 exit(WEXITSTATUS(status)); 206 exit(11); 207 /* NOTREACHED */ 208 } 209 #ifdef STANDALONE 210 (void)malloc(0); 211 #else 212 raise_data_limit(); 213 #endif 214 if(filename) { 215 unsigned char buf[BUFSIZ]; 216 unsigned long l,l1; 217 fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644); 218 if(fd < 0) 219 err(12, "%s", filename); 220 for(l=0;l< fssize * sectorsize;l += l1) { 221 l1 = fssize * sectorsize; 222 if (BUFSIZ < l1) 223 l1 = BUFSIZ; 224 if (l1 != write(fd,buf,l1)) 225 err(12, "%s", filename); 226 } 227 membase = mmap( 228 0, 229 fssize * sectorsize, 230 PROT_READ|PROT_WRITE, 231 MAP_SHARED, 232 fd, 233 0); 234 if(membase == MAP_FAILED) 235 err(12, "mmap"); 236 close(fd); 237 } else { 238 #ifndef STANDALONE 239 get_memleft(); 240 #endif 241 if (fssize * sectorsize > (memleft - 131072)) 242 fssize = (memleft - 131072) / sectorsize; 243 if ((membase = malloc(fssize * sectorsize)) == NULL) 244 errx(13, "malloc failed"); 245 } 246 } 247 fsi = fi; 248 fso = fo; 249 if (Oflag) { 250 sblock.fs_inodefmt = FS_42INODEFMT; 251 sblock.fs_maxsymlinklen = 0; 252 } else { 253 sblock.fs_inodefmt = FS_44INODEFMT; 254 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 255 } 256 /* 257 * Validate the given file system size. 258 * Verify that its last block can actually be accessed. 259 */ 260 if (fssize <= 0) 261 printf("preposterous size %d\n", fssize), exit(13); 262 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 263 (char *)&sblock); 264 /* 265 * collect and verify the sector and track info 266 */ 267 sblock.fs_nsect = nsectors; 268 sblock.fs_ntrak = ntracks; 269 if (sblock.fs_ntrak <= 0) 270 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 271 if (sblock.fs_nsect <= 0) 272 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 273 /* 274 * collect and verify the block and fragment sizes 275 */ 276 sblock.fs_bsize = bsize; 277 sblock.fs_fsize = fsize; 278 if (!POWEROF2(sblock.fs_bsize)) { 279 printf("block size must be a power of 2, not %d\n", 280 sblock.fs_bsize); 281 exit(16); 282 } 283 if (!POWEROF2(sblock.fs_fsize)) { 284 printf("fragment size must be a power of 2, not %d\n", 285 sblock.fs_fsize); 286 exit(17); 287 } 288 if (sblock.fs_fsize < sectorsize) { 289 printf("fragment size %d is too small, minimum is %d\n", 290 sblock.fs_fsize, sectorsize); 291 exit(18); 292 } 293 if (sblock.fs_bsize < MINBSIZE) { 294 printf("block size %d is too small, minimum is %d\n", 295 sblock.fs_bsize, MINBSIZE); 296 exit(19); 297 } 298 if (sblock.fs_bsize < sblock.fs_fsize) { 299 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 300 sblock.fs_bsize, sblock.fs_fsize); 301 exit(20); 302 } 303 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 304 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 305 sblock.fs_qbmask = ~sblock.fs_bmask; 306 sblock.fs_qfmask = ~sblock.fs_fmask; 307 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 308 sblock.fs_bshift++; 309 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 310 sblock.fs_fshift++; 311 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 312 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 313 sblock.fs_fragshift++; 314 if (sblock.fs_frag > MAXFRAG) { 315 printf("fragment size %d is too small, minimum with block size %d is %d\n", 316 sblock.fs_fsize, sblock.fs_bsize, 317 sblock.fs_bsize / MAXFRAG); 318 exit(21); 319 } 320 sblock.fs_nrpos = nrpos; 321 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 322 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); 323 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 324 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 325 sblock.fs_fsbtodb++; 326 sblock.fs_sblkno = 327 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 328 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 329 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 330 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 331 sblock.fs_cgoffset = roundup( 332 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 333 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 334 sblock.fs_cgmask <<= 1; 335 if (!POWEROF2(sblock.fs_ntrak)) 336 sblock.fs_cgmask <<= 1; 337 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 338 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 339 sizepb *= NINDIR(&sblock); 340 sblock.fs_maxfilesize += sizepb; 341 } 342 /* 343 * Validate specified/determined secpercyl 344 * and calculate minimum cylinders per group. 345 */ 346 sblock.fs_spc = secpercyl; 347 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 348 sblock.fs_cpc > 1 && (i & 1) == 0; 349 sblock.fs_cpc >>= 1, i >>= 1) 350 /* void */; 351 mincpc = sblock.fs_cpc; 352 bpcg = sblock.fs_spc * sectorsize; 353 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); 354 if (inospercg > MAXIPG(&sblock)) 355 inospercg = MAXIPG(&sblock); 356 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 357 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 358 sblock.fs_spc); 359 mincpg = roundup(mincpgcnt, mincpc); 360 /* 361 * Ensure that cylinder group with mincpg has enough space 362 * for block maps. 363 */ 364 sblock.fs_cpg = mincpg; 365 sblock.fs_ipg = inospercg; 366 if (maxcontig > 1) 367 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 368 mapcramped = 0; 369 while (CGSIZE(&sblock) > sblock.fs_bsize) { 370 mapcramped = 1; 371 if (sblock.fs_bsize < MAXBSIZE) { 372 sblock.fs_bsize <<= 1; 373 if ((i & 1) == 0) { 374 i >>= 1; 375 } else { 376 sblock.fs_cpc <<= 1; 377 mincpc <<= 1; 378 mincpg = roundup(mincpgcnt, mincpc); 379 sblock.fs_cpg = mincpg; 380 } 381 sblock.fs_frag <<= 1; 382 sblock.fs_fragshift += 1; 383 if (sblock.fs_frag <= MAXFRAG) 384 continue; 385 } 386 if (sblock.fs_fsize == sblock.fs_bsize) { 387 printf("There is no block size that"); 388 printf(" can support this disk\n"); 389 exit(22); 390 } 391 sblock.fs_frag >>= 1; 392 sblock.fs_fragshift -= 1; 393 sblock.fs_fsize <<= 1; 394 sblock.fs_nspf <<= 1; 395 } 396 /* 397 * Ensure that cylinder group with mincpg has enough space for inodes. 398 */ 399 inodecramped = 0; 400 inospercg = calcipg(mincpg, bpcg, &usedb); 401 sblock.fs_ipg = inospercg; 402 while (inospercg > MAXIPG(&sblock)) { 403 inodecramped = 1; 404 if (mincpc == 1 || sblock.fs_frag == 1 || 405 sblock.fs_bsize == MINBSIZE) 406 break; 407 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 408 "minimum bytes per inode is", 409 (int)((mincpg * (off_t)bpcg - usedb) 410 / MAXIPG(&sblock) + 1)); 411 sblock.fs_bsize >>= 1; 412 sblock.fs_frag >>= 1; 413 sblock.fs_fragshift -= 1; 414 mincpc >>= 1; 415 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 416 if (CGSIZE(&sblock) > sblock.fs_bsize) { 417 sblock.fs_bsize <<= 1; 418 break; 419 } 420 mincpg = sblock.fs_cpg; 421 inospercg = calcipg(mincpg, bpcg, &usedb); 422 sblock.fs_ipg = inospercg; 423 } 424 if (inodecramped) { 425 if (inospercg > MAXIPG(&sblock)) { 426 printf("Minimum bytes per inode is %d\n", 427 (int)((mincpg * (off_t)bpcg - usedb) 428 / MAXIPG(&sblock) + 1)); 429 } else if (!mapcramped) { 430 printf("With %d bytes per inode, ", density); 431 printf("minimum cylinders per group is %ld\n", mincpg); 432 } 433 } 434 if (mapcramped) { 435 printf("With %d sectors per cylinder, ", sblock.fs_spc); 436 printf("minimum cylinders per group is %ld\n", mincpg); 437 } 438 if (inodecramped || mapcramped) { 439 if (sblock.fs_bsize != bsize) 440 printf("%s to be changed from %d to %d\n", 441 "This requires the block size", 442 bsize, sblock.fs_bsize); 443 if (sblock.fs_fsize != fsize) 444 printf("\t%s to be changed from %d to %d\n", 445 "and the fragment size", 446 fsize, sblock.fs_fsize); 447 exit(23); 448 } 449 /* 450 * Calculate the number of cylinders per group 451 */ 452 sblock.fs_cpg = cpg; 453 if (sblock.fs_cpg % mincpc != 0) { 454 printf("%s groups must have a multiple of %ld cylinders\n", 455 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 456 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 457 if (!cpgflg) 458 cpg = sblock.fs_cpg; 459 } 460 /* 461 * Must ensure there is enough space for inodes. 462 */ 463 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 464 while (sblock.fs_ipg > MAXIPG(&sblock)) { 465 inodecramped = 1; 466 sblock.fs_cpg -= mincpc; 467 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 468 } 469 /* 470 * Must ensure there is enough space to hold block map. 471 */ 472 while (CGSIZE(&sblock) > sblock.fs_bsize) { 473 mapcramped = 1; 474 sblock.fs_cpg -= mincpc; 475 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 476 } 477 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 478 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 479 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 480 exit(24); 481 } 482 if (sblock.fs_cpg < mincpg) { 483 printf("cylinder groups must have at least %ld cylinders\n", 484 mincpg); 485 exit(25); 486 } else if (sblock.fs_cpg != cpg) { 487 if (!cpgflg) 488 printf("Warning: "); 489 else if (!mapcramped && !inodecramped) 490 exit(26); 491 if (mapcramped && inodecramped) 492 printf("Block size and bytes per inode restrict"); 493 else if (mapcramped) 494 printf("Block size restricts"); 495 else 496 printf("Bytes per inode restrict"); 497 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 498 if (cpgflg) 499 exit(27); 500 } 501 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 502 /* 503 * Now have size for file system and nsect and ntrak. 504 * Determine number of cylinders and blocks in the file system. 505 */ 506 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 507 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 508 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 509 sblock.fs_ncyl++; 510 warn = 1; 511 } 512 if (sblock.fs_ncyl < 1) { 513 printf("file systems must have at least one cylinder\n"); 514 exit(28); 515 } 516 /* 517 * Determine feasability/values of rotational layout tables. 518 * 519 * The size of the rotational layout tables is limited by the 520 * size of the superblock, SBSIZE. The amount of space available 521 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 522 * The size of these tables is inversely proportional to the block 523 * size of the file system. The size increases if sectors per track 524 * are not powers of two, because more cylinders must be described 525 * by the tables before the rotational pattern repeats (fs_cpc). 526 */ 527 sblock.fs_interleave = interleave; 528 sblock.fs_trackskew = trackskew; 529 sblock.fs_npsect = nphyssectors; 530 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 531 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 532 if (sblock.fs_sbsize > SBSIZE) 533 sblock.fs_sbsize = SBSIZE; 534 if (sblock.fs_ntrak == 1) { 535 sblock.fs_cpc = 0; 536 goto next; 537 } 538 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 539 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 540 totalsbsize = sizeof(struct fs) + rotblsize; 541 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 542 /* use old static table space */ 543 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 544 (char *)(&sblock.fs_firstfield); 545 sblock.fs_rotbloff = &sblock.fs_space[0] - 546 (u_char *)(&sblock.fs_firstfield); 547 } else { 548 /* use dynamic table space */ 549 sblock.fs_postbloff = &sblock.fs_space[0] - 550 (u_char *)(&sblock.fs_firstfield); 551 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 552 totalsbsize += postblsize; 553 } 554 if (totalsbsize > SBSIZE || 555 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 556 printf("%s %s %d %s %d.%s", 557 "Warning: insufficient space in super block for\n", 558 "rotational layout tables with nsect", sblock.fs_nsect, 559 "and ntrak", sblock.fs_ntrak, 560 "\nFile system performance may be impaired.\n"); 561 sblock.fs_cpc = 0; 562 goto next; 563 } 564 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 565 if (sblock.fs_sbsize > SBSIZE) 566 sblock.fs_sbsize = SBSIZE; 567 /* 568 * calculate the available blocks for each rotational position 569 */ 570 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 571 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 572 fs_postbl(&sblock, cylno)[rpos] = -1; 573 for (i = (rotblsize - 1) * sblock.fs_frag; 574 i >= 0; i -= sblock.fs_frag) { 575 cylno = cbtocylno(&sblock, i); 576 rpos = cbtorpos(&sblock, i); 577 blk = fragstoblks(&sblock, i); 578 if (fs_postbl(&sblock, cylno)[rpos] == -1) 579 fs_rotbl(&sblock)[blk] = 0; 580 else 581 fs_rotbl(&sblock)[blk] = 582 fs_postbl(&sblock, cylno)[rpos] - blk; 583 fs_postbl(&sblock, cylno)[rpos] = blk; 584 } 585 next: 586 /* 587 * Compute/validate number of cylinder groups. 588 */ 589 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 590 if (sblock.fs_ncyl % sblock.fs_cpg) 591 sblock.fs_ncg++; 592 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 593 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 594 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 595 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n", 596 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 597 (long)(sblock.fs_fpg / sblock.fs_frag)); 598 printf("number of cylinders per cylinder group (%d) %s.\n", 599 sblock.fs_cpg, "must be increased"); 600 exit(29); 601 } 602 j = sblock.fs_ncg - 1; 603 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 604 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 605 if (j == 0) { 606 printf("Filesystem must have at least %d sectors\n", 607 NSPF(&sblock) * 608 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 609 exit(30); 610 } 611 printf( 612 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n", 613 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 614 i / sblock.fs_frag); 615 printf( 616 " cylinder group. This implies %ld sector(s) cannot be allocated.\n", 617 i * NSPF(&sblock)); 618 sblock.fs_ncg--; 619 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 620 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 621 NSPF(&sblock); 622 warn = 0; 623 } 624 if (warn && !mfs) { 625 printf("Warning: %d sector(s) in last cylinder unallocated\n", 626 sblock.fs_spc - 627 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 628 * sblock.fs_spc)); 629 } 630 /* 631 * fill in remaining fields of the super block 632 */ 633 sblock.fs_csaddr = cgdmin(&sblock, 0); 634 sblock.fs_cssize = 635 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 636 i = sblock.fs_bsize / sizeof(struct csum); 637 sblock.fs_csmask = ~(i - 1); 638 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 639 sblock.fs_csshift++; 640 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 641 if (fscs == NULL) 642 errx(31, "calloc failed"); 643 sblock.fs_magic = FS_MAGIC; 644 sblock.fs_rotdelay = rotdelay; 645 sblock.fs_minfree = minfree; 646 sblock.fs_maxcontig = maxcontig; 647 sblock.fs_maxbpg = maxbpg; 648 sblock.fs_rps = rpm / 60; 649 sblock.fs_optim = opt; 650 sblock.fs_cgrotor = 0; 651 sblock.fs_cstotal.cs_ndir = 0; 652 sblock.fs_cstotal.cs_nbfree = 0; 653 sblock.fs_cstotal.cs_nifree = 0; 654 sblock.fs_cstotal.cs_nffree = 0; 655 sblock.fs_fmod = 0; 656 sblock.fs_ronly = 0; 657 sblock.fs_clean = 1; 658 #ifdef FSIRAND 659 sblock.fs_id[0] = (long)utime; 660 sblock.fs_id[1] = random(); 661 #endif 662 663 /* 664 * Dump out summary information about file system. 665 */ 666 if (!mfs) { 667 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 668 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 669 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 670 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 671 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 672 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 673 sblock.fs_ncg, sblock.fs_cpg, 674 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 675 sblock.fs_ipg); 676 #undef B2MBFACTOR 677 } 678 /* 679 * Now build the cylinders group blocks and 680 * then print out indices of cylinder groups. 681 */ 682 if (!mfs) 683 printf("super-block backups (for fsck -b #) at:\n"); 684 i = 0; 685 width = charsperline(); 686 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 687 initcg(cylno, utime); 688 if (mfs) 689 continue; 690 j = sprintf(tmpbuf, " %ld%s", 691 fsbtodb(&sblock, cgsblock(&sblock, cylno)), 692 cylno < (sblock.fs_ncg-1) ? "," : "" ); 693 if (i + j >= width) { 694 printf("\n"); 695 i = 0; 696 } 697 i += j; 698 printf("%s", tmpbuf); 699 fflush(stdout); 700 } 701 if (!mfs) 702 printf("\n"); 703 if (Nflag && !mfs) 704 exit(0); 705 /* 706 * Now construct the initial file system, 707 * then write out the super-block. 708 */ 709 fsinit(utime); 710 sblock.fs_time = utime; 711 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); 712 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 713 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 714 sblock.fs_cssize - i < sblock.fs_bsize ? 715 sblock.fs_cssize - i : sblock.fs_bsize, 716 ((char *)fscs) + i); 717 /* 718 * Write out the duplicate super blocks 719 */ 720 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 721 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 722 sbsize, (char *)&sblock); 723 wtfsflush(); 724 /* 725 * Update information about this partion in pack 726 * label, to that it may be updated on disk. 727 */ 728 pp->p_fstype = FS_BSDFFS; 729 pp->p_fsize = sblock.fs_fsize; 730 pp->p_frag = sblock.fs_frag; 731 pp->p_cpg = sblock.fs_cpg; 732 /* 733 * Notify parent process of success. 734 * Dissociate from session and tty. 735 */ 736 if (mfs) { 737 kill(mfs_ppid, SIGUSR1); 738 (void) setsid(); 739 (void) close(0); 740 (void) close(1); 741 (void) close(2); 742 (void) chdir("/"); 743 } 744 } 745 746 /* 747 * Initialize a cylinder group. 748 */ 749 void 750 initcg(cylno, utime) 751 int cylno; 752 time_t utime; 753 { 754 daddr_t cbase, d, dlower, dupper, dmax, blkno; 755 long i; 756 register struct csum *cs; 757 #ifdef FSIRAND 758 long j; 759 #endif 760 761 /* 762 * Determine block bounds for cylinder group. 763 * Allow space for super block summary information in first 764 * cylinder group. 765 */ 766 cbase = cgbase(&sblock, cylno); 767 dmax = cbase + sblock.fs_fpg; 768 if (dmax > sblock.fs_size) 769 dmax = sblock.fs_size; 770 dlower = cgsblock(&sblock, cylno) - cbase; 771 dupper = cgdmin(&sblock, cylno) - cbase; 772 if (cylno == 0) 773 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 774 cs = fscs + cylno; 775 memset(&acg, 0, sblock.fs_cgsize); 776 acg.cg_time = utime; 777 acg.cg_magic = CG_MAGIC; 778 acg.cg_cgx = cylno; 779 if (cylno == sblock.fs_ncg - 1) 780 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 781 else 782 acg.cg_ncyl = sblock.fs_cpg; 783 acg.cg_niblk = sblock.fs_ipg; 784 acg.cg_ndblk = dmax - cbase; 785 if (sblock.fs_contigsumsize > 0) 786 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 787 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 788 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 789 acg.cg_iusedoff = acg.cg_boff + 790 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t); 791 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 792 if (sblock.fs_contigsumsize <= 0) { 793 acg.cg_nextfreeoff = acg.cg_freeoff + 794 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 795 } else { 796 acg.cg_clustersumoff = acg.cg_freeoff + howmany 797 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 798 sizeof(u_int32_t); 799 acg.cg_clustersumoff = 800 roundup(acg.cg_clustersumoff, sizeof(u_int32_t)); 801 acg.cg_clusteroff = acg.cg_clustersumoff + 802 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 803 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 804 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 805 } 806 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) { 807 printf("Panic: cylinder group too big\n"); 808 exit(37); 809 } 810 acg.cg_cs.cs_nifree += sblock.fs_ipg; 811 if (cylno == 0) 812 for (i = 0; i < ROOTINO; i++) { 813 setbit(cg_inosused(&acg), i); 814 acg.cg_cs.cs_nifree--; 815 } 816 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { 817 #ifdef FSIRAND 818 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) 819 zino[j].di_gen = random(); 820 #endif 821 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 822 sblock.fs_bsize, (char *)zino); 823 } 824 if (cylno > 0) { 825 /* 826 * In cylno 0, beginning space is reserved 827 * for boot and super blocks. 828 */ 829 for (d = 0; d < dlower; d += sblock.fs_frag) { 830 blkno = d / sblock.fs_frag; 831 setblock(&sblock, cg_blksfree(&acg), blkno); 832 if (sblock.fs_contigsumsize > 0) 833 setbit(cg_clustersfree(&acg), blkno); 834 acg.cg_cs.cs_nbfree++; 835 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 836 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 837 [cbtorpos(&sblock, d)]++; 838 } 839 sblock.fs_dsize += dlower; 840 } 841 sblock.fs_dsize += acg.cg_ndblk - dupper; 842 if ((i = dupper % sblock.fs_frag)) { 843 acg.cg_frsum[sblock.fs_frag - i]++; 844 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 845 setbit(cg_blksfree(&acg), dupper); 846 acg.cg_cs.cs_nffree++; 847 } 848 } 849 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 850 blkno = d / sblock.fs_frag; 851 setblock(&sblock, cg_blksfree(&acg), blkno); 852 if (sblock.fs_contigsumsize > 0) 853 setbit(cg_clustersfree(&acg), blkno); 854 acg.cg_cs.cs_nbfree++; 855 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 856 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 857 [cbtorpos(&sblock, d)]++; 858 d += sblock.fs_frag; 859 } 860 if (d < dmax - cbase) { 861 acg.cg_frsum[dmax - cbase - d]++; 862 for (; d < dmax - cbase; d++) { 863 setbit(cg_blksfree(&acg), d); 864 acg.cg_cs.cs_nffree++; 865 } 866 } 867 if (sblock.fs_contigsumsize > 0) { 868 int32_t *sump = cg_clustersum(&acg); 869 u_char *mapp = cg_clustersfree(&acg); 870 int map = *mapp++; 871 int bit = 1; 872 int run = 0; 873 874 for (i = 0; i < acg.cg_nclusterblks; i++) { 875 if ((map & bit) != 0) { 876 run++; 877 } else if (run != 0) { 878 if (run > sblock.fs_contigsumsize) 879 run = sblock.fs_contigsumsize; 880 sump[run]++; 881 run = 0; 882 } 883 if ((i & (NBBY - 1)) != (NBBY - 1)) { 884 bit <<= 1; 885 } else { 886 map = *mapp++; 887 bit = 1; 888 } 889 } 890 if (run != 0) { 891 if (run > sblock.fs_contigsumsize) 892 run = sblock.fs_contigsumsize; 893 sump[run]++; 894 } 895 } 896 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 897 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 898 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 899 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 900 *cs = acg.cg_cs; 901 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 902 sblock.fs_bsize, (char *)&acg); 903 } 904 905 /* 906 * initialize the file system 907 */ 908 struct dinode node; 909 910 #ifdef LOSTDIR 911 #define PREDEFDIR 3 912 #else 913 #define PREDEFDIR 2 914 #endif 915 916 struct direct root_dir[] = { 917 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 918 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 919 #ifdef LOSTDIR 920 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 921 #endif 922 }; 923 struct odirect { 924 u_long d_ino; 925 u_short d_reclen; 926 u_short d_namlen; 927 u_char d_name[MAXNAMLEN + 1]; 928 } oroot_dir[] = { 929 { ROOTINO, sizeof(struct direct), 1, "." }, 930 { ROOTINO, sizeof(struct direct), 2, ".." }, 931 #ifdef LOSTDIR 932 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 933 #endif 934 }; 935 #ifdef LOSTDIR 936 struct direct lost_found_dir[] = { 937 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 938 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 939 { 0, DIRBLKSIZ, 0, 0, 0 }, 940 }; 941 struct odirect olost_found_dir[] = { 942 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 943 { ROOTINO, sizeof(struct direct), 2, ".." }, 944 { 0, DIRBLKSIZ, 0, 0 }, 945 }; 946 #endif 947 char buf[MAXBSIZE]; 948 949 void 950 fsinit(utime) 951 time_t utime; 952 { 953 #ifdef LOSTDIR 954 int i; 955 #endif 956 957 /* 958 * initialize the node 959 */ 960 node.di_atime = utime; 961 node.di_mtime = utime; 962 node.di_ctime = utime; 963 #ifdef LOSTDIR 964 /* 965 * create the lost+found directory 966 */ 967 if (Oflag) { 968 (void)makedir((struct direct *)olost_found_dir, 2); 969 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 970 memmove(&buf[i], &olost_found_dir[2], 971 DIRSIZ(0, &olost_found_dir[2])); 972 } else { 973 (void)makedir(lost_found_dir, 2); 974 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 975 memmove(&buf[i], &lost_found_dir[2], 976 DIRSIZ(0, &lost_found_dir[2])); 977 } 978 node.di_mode = IFDIR | UMASK; 979 node.di_nlink = 2; 980 node.di_size = sblock.fs_bsize; 981 node.di_db[0] = alloc(node.di_size, node.di_mode); 982 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 983 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 984 iput(&node, LOSTFOUNDINO); 985 #endif 986 /* 987 * create the root directory 988 */ 989 if (mfs) 990 node.di_mode = IFDIR | 01777; 991 else 992 node.di_mode = IFDIR | UMASK; 993 node.di_nlink = PREDEFDIR; 994 if (Oflag) 995 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); 996 else 997 node.di_size = makedir(root_dir, PREDEFDIR); 998 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 999 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 1000 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 1001 iput(&node, ROOTINO); 1002 } 1003 1004 /* 1005 * construct a set of directory entries in "buf". 1006 * return size of directory. 1007 */ 1008 int 1009 makedir(protodir, entries) 1010 register struct direct *protodir; 1011 int entries; 1012 { 1013 char *cp; 1014 int i, spcleft; 1015 1016 spcleft = DIRBLKSIZ; 1017 for (cp = buf, i = 0; i < entries - 1; i++) { 1018 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1019 memmove(cp, &protodir[i], protodir[i].d_reclen); 1020 cp += protodir[i].d_reclen; 1021 spcleft -= protodir[i].d_reclen; 1022 } 1023 protodir[i].d_reclen = spcleft; 1024 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1025 return (DIRBLKSIZ); 1026 } 1027 1028 /* 1029 * allocate a block or frag 1030 */ 1031 daddr_t 1032 alloc(size, mode) 1033 int size; 1034 int mode; 1035 { 1036 int i, frag; 1037 daddr_t d, blkno; 1038 1039 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1040 (char *)&acg); 1041 if (acg.cg_magic != CG_MAGIC) { 1042 printf("cg 0: bad magic number\n"); 1043 return (0); 1044 } 1045 if (acg.cg_cs.cs_nbfree == 0) { 1046 printf("first cylinder group ran out of space\n"); 1047 return (0); 1048 } 1049 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1050 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1051 goto goth; 1052 printf("internal error: can't find block in cyl 0\n"); 1053 return (0); 1054 goth: 1055 blkno = fragstoblks(&sblock, d); 1056 clrblock(&sblock, cg_blksfree(&acg), blkno); 1057 if (sblock.fs_contigsumsize > 0) 1058 clrbit(cg_clustersfree(&acg), blkno); 1059 acg.cg_cs.cs_nbfree--; 1060 sblock.fs_cstotal.cs_nbfree--; 1061 fscs[0].cs_nbfree--; 1062 if (mode & IFDIR) { 1063 acg.cg_cs.cs_ndir++; 1064 sblock.fs_cstotal.cs_ndir++; 1065 fscs[0].cs_ndir++; 1066 } 1067 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 1068 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 1069 if (size != sblock.fs_bsize) { 1070 frag = howmany(size, sblock.fs_fsize); 1071 fscs[0].cs_nffree += sblock.fs_frag - frag; 1072 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1073 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1074 acg.cg_frsum[sblock.fs_frag - frag]++; 1075 for (i = frag; i < sblock.fs_frag; i++) 1076 setbit(cg_blksfree(&acg), d + i); 1077 } 1078 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1079 (char *)&acg); 1080 return (d); 1081 } 1082 1083 /* 1084 * Calculate number of inodes per group. 1085 */ 1086 long 1087 calcipg(cpg, bpcg, usedbp) 1088 long cpg; 1089 long bpcg; 1090 off_t *usedbp; 1091 { 1092 int i; 1093 long ipg, new_ipg, ncg, ncyl; 1094 off_t usedb; 1095 1096 /* 1097 * Prepare to scale by fssize / (number of sectors in cylinder groups). 1098 * Note that fssize is still in sectors, not filesystem blocks. 1099 */ 1100 ncyl = howmany(fssize, (u_int)secpercyl); 1101 ncg = howmany(ncyl, cpg); 1102 /* 1103 * Iterate a few times to allow for ipg depending on itself. 1104 */ 1105 ipg = 0; 1106 for (i = 0; i < 10; i++) { 1107 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 1108 * NSPF(&sblock) * (off_t)sectorsize; 1109 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize 1110 / ncg / secpercyl / cpg; 1111 new_ipg = roundup(new_ipg, INOPB(&sblock)); 1112 if (new_ipg == ipg) 1113 break; 1114 ipg = new_ipg; 1115 } 1116 *usedbp = usedb; 1117 return (ipg); 1118 } 1119 1120 /* 1121 * Allocate an inode on the disk 1122 */ 1123 void 1124 iput(ip, ino) 1125 register struct dinode *ip; 1126 register ino_t ino; 1127 { 1128 struct dinode buf[MAXINOPB]; 1129 daddr_t d; 1130 int c; 1131 1132 #ifdef FSIRAND 1133 ip->di_gen = random(); 1134 #endif 1135 c = ino_to_cg(&sblock, ino); 1136 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1137 (char *)&acg); 1138 if (acg.cg_magic != CG_MAGIC) { 1139 printf("cg 0: bad magic number\n"); 1140 exit(31); 1141 } 1142 acg.cg_cs.cs_nifree--; 1143 setbit(cg_inosused(&acg), ino); 1144 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1145 (char *)&acg); 1146 sblock.fs_cstotal.cs_nifree--; 1147 fscs[0].cs_nifree--; 1148 if (ino >= sblock.fs_ipg * sblock.fs_ncg) { 1149 printf("fsinit: inode value out of range (%d).\n", ino); 1150 exit(32); 1151 } 1152 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1153 rdfs(d, sblock.fs_bsize, (char *)buf); 1154 buf[ino_to_fsbo(&sblock, ino)] = *ip; 1155 wtfs(d, sblock.fs_bsize, (char *)buf); 1156 } 1157 1158 /* 1159 * Notify parent process that the filesystem has created itself successfully. 1160 * 1161 * We have to wait until the mount has actually completed! 1162 */ 1163 void 1164 started() 1165 { 1166 int retry = 100; /* 10 seconds, 100ms */ 1167 1168 while (mfs_ppid && retry) { 1169 struct stat st; 1170 1171 if ( 1172 stat(mfs_mtpt, &st) < 0 || 1173 st.st_dev != mfs_mtstat.st_dev 1174 ) { 1175 break; 1176 } 1177 usleep(100*1000); 1178 --retry; 1179 } 1180 if (retry == 0) { 1181 fatal("mfs mount failed waiting for mount to go active"); 1182 } 1183 exit(0); 1184 } 1185 1186 #ifdef STANDALONE 1187 /* 1188 * Replace libc function with one suited to our needs. 1189 */ 1190 caddr_t 1191 malloc(size) 1192 register u_long size; 1193 { 1194 char *base, *i; 1195 static u_long pgsz; 1196 struct rlimit rlp; 1197 1198 if (pgsz == 0) { 1199 base = sbrk(0); 1200 pgsz = getpagesize() - 1; 1201 i = (char *)((u_long)(base + pgsz) &~ pgsz); 1202 base = sbrk(i - base); 1203 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1204 warn("getrlimit"); 1205 rlp.rlim_cur = rlp.rlim_max; 1206 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1207 warn("setrlimit"); 1208 memleft = rlp.rlim_max - (u_long)base; 1209 } 1210 size = (size + pgsz) &~ pgsz; 1211 if (size > memleft) 1212 size = memleft; 1213 memleft -= size; 1214 if (size == 0) 1215 return (0); 1216 return ((caddr_t)sbrk(size)); 1217 } 1218 1219 /* 1220 * Replace libc function with one suited to our needs. 1221 */ 1222 caddr_t 1223 realloc(ptr, size) 1224 char *ptr; 1225 u_long size; 1226 { 1227 void *p; 1228 1229 if ((p = malloc(size)) == NULL) 1230 return (NULL); 1231 memmove(p, ptr, size); 1232 free(ptr); 1233 return (p); 1234 } 1235 1236 /* 1237 * Replace libc function with one suited to our needs. 1238 */ 1239 char * 1240 calloc(size, numelm) 1241 u_long size, numelm; 1242 { 1243 caddr_t base; 1244 1245 size *= numelm; 1246 if ((base = malloc(size)) == NULL) 1247 return (NULL); 1248 memset(base, 0, size); 1249 return (base); 1250 } 1251 1252 /* 1253 * Replace libc function with one suited to our needs. 1254 */ 1255 void 1256 free(ptr) 1257 char *ptr; 1258 { 1259 1260 /* do not worry about it for now */ 1261 } 1262 1263 #else /* !STANDALONE */ 1264 1265 void 1266 raise_data_limit() 1267 { 1268 struct rlimit rlp; 1269 1270 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1271 warn("getrlimit"); 1272 rlp.rlim_cur = rlp.rlim_max; 1273 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1274 warn("setrlimit"); 1275 } 1276 1277 #ifdef __ELF__ 1278 extern char *_etext; 1279 #define etext _etext 1280 #else 1281 extern char *etext; 1282 #endif 1283 1284 void 1285 get_memleft() 1286 { 1287 static u_long pgsz; 1288 struct rlimit rlp; 1289 u_long freestart; 1290 u_long dstart; 1291 u_long memused; 1292 1293 pgsz = getpagesize() - 1; 1294 dstart = ((u_long)&etext) &~ pgsz; 1295 freestart = ((u_long)(sbrk(0) + pgsz) &~ pgsz); 1296 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1297 warn("getrlimit"); 1298 memused = freestart - dstart; 1299 memleft = rlp.rlim_cur - memused; 1300 } 1301 #endif /* STANDALONE */ 1302 1303 /* 1304 * read a block from the file system 1305 */ 1306 void 1307 rdfs(bno, size, bf) 1308 daddr_t bno; 1309 int size; 1310 char *bf; 1311 { 1312 int n; 1313 1314 wtfsflush(); 1315 if (mfs) { 1316 memmove(bf, membase + bno * sectorsize, size); 1317 return; 1318 } 1319 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) { 1320 printf("seek error: %ld\n", (long)bno); 1321 err(33, "rdfs"); 1322 } 1323 n = read(fsi, bf, size); 1324 if (n != size) { 1325 printf("read error: %ld\n", (long)bno); 1326 err(34, "rdfs"); 1327 } 1328 } 1329 1330 #define WCSIZE (128 * 1024) 1331 daddr_t wc_sect; /* units of sectorsize */ 1332 int wc_end; /* bytes */ 1333 static char wc[WCSIZE]; /* bytes */ 1334 1335 /* 1336 * Flush dirty write behind buffer. 1337 */ 1338 void 1339 wtfsflush() 1340 { 1341 int n; 1342 if (wc_end) { 1343 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) { 1344 printf("seek error: %ld\n", (long)wc_sect); 1345 err(35, "wtfs - writecombine"); 1346 } 1347 n = write(fso, wc, wc_end); 1348 if (n != wc_end) { 1349 printf("write error: %ld\n", (long)wc_sect); 1350 err(36, "wtfs - writecombine"); 1351 } 1352 wc_end = 0; 1353 } 1354 } 1355 1356 /* 1357 * write a block to the file system 1358 */ 1359 void 1360 wtfs(bno, size, bf) 1361 daddr_t bno; 1362 int size; 1363 char *bf; 1364 { 1365 int n; 1366 int done; 1367 1368 if (mfs) { 1369 memmove(membase + bno * sectorsize, bf, size); 1370 return; 1371 } 1372 if (Nflag) 1373 return; 1374 done = 0; 1375 if (wc_end == 0 && size <= WCSIZE) { 1376 wc_sect = bno; 1377 bcopy(bf, wc, size); 1378 wc_end = size; 1379 if (wc_end < WCSIZE) 1380 return; 1381 done = 1; 1382 } 1383 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize && 1384 wc_end + size <= WCSIZE) { 1385 bcopy(bf, wc + wc_end, size); 1386 wc_end += size; 1387 if (wc_end < WCSIZE) 1388 return; 1389 done = 1; 1390 } 1391 wtfsflush(); 1392 if (done) 1393 return; 1394 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 1395 printf("seek error: %ld\n", (long)bno); 1396 err(35, "wtfs"); 1397 } 1398 n = write(fso, bf, size); 1399 if (n != size) { 1400 printf("write error: %ld\n", (long)bno); 1401 err(36, "wtfs"); 1402 } 1403 } 1404 1405 /* 1406 * check if a block is available 1407 */ 1408 int 1409 isblock(fs, cp, h) 1410 struct fs *fs; 1411 unsigned char *cp; 1412 int h; 1413 { 1414 unsigned char mask; 1415 1416 switch (fs->fs_frag) { 1417 case 8: 1418 return (cp[h] == 0xff); 1419 case 4: 1420 mask = 0x0f << ((h & 0x1) << 2); 1421 return ((cp[h >> 1] & mask) == mask); 1422 case 2: 1423 mask = 0x03 << ((h & 0x3) << 1); 1424 return ((cp[h >> 2] & mask) == mask); 1425 case 1: 1426 mask = 0x01 << (h & 0x7); 1427 return ((cp[h >> 3] & mask) == mask); 1428 default: 1429 #ifdef STANDALONE 1430 printf("isblock bad fs_frag %d\n", fs->fs_frag); 1431 #else 1432 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1433 #endif 1434 return (0); 1435 } 1436 } 1437 1438 /* 1439 * take a block out of the map 1440 */ 1441 void 1442 clrblock(fs, cp, h) 1443 struct fs *fs; 1444 unsigned char *cp; 1445 int h; 1446 { 1447 switch ((fs)->fs_frag) { 1448 case 8: 1449 cp[h] = 0; 1450 return; 1451 case 4: 1452 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1453 return; 1454 case 2: 1455 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1456 return; 1457 case 1: 1458 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1459 return; 1460 default: 1461 #ifdef STANDALONE 1462 printf("clrblock bad fs_frag %d\n", fs->fs_frag); 1463 #else 1464 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1465 #endif 1466 return; 1467 } 1468 } 1469 1470 /* 1471 * put a block into the map 1472 */ 1473 void 1474 setblock(fs, cp, h) 1475 struct fs *fs; 1476 unsigned char *cp; 1477 int h; 1478 { 1479 switch (fs->fs_frag) { 1480 case 8: 1481 cp[h] = 0xff; 1482 return; 1483 case 4: 1484 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1485 return; 1486 case 2: 1487 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1488 return; 1489 case 1: 1490 cp[h >> 3] |= (0x01 << (h & 0x7)); 1491 return; 1492 default: 1493 #ifdef STANDALONE 1494 printf("setblock bad fs_frag %d\n", fs->fs_frag); 1495 #else 1496 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1497 #endif 1498 return; 1499 } 1500 } 1501 1502 /* 1503 * Determine the number of characters in a 1504 * single line. 1505 */ 1506 1507 static int 1508 charsperline() 1509 { 1510 int columns; 1511 char *cp; 1512 struct winsize ws; 1513 1514 columns = 0; 1515 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1516 columns = ws.ws_col; 1517 if (columns == 0 && (cp = getenv("COLUMNS"))) 1518 columns = atoi(cp); 1519 if (columns == 0) 1520 columns = 80; /* last resort */ 1521 return columns; 1522 } 1523