1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #if 0 44 #ifndef lint 45 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 46 #endif /* not lint */ 47 #endif 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include <err.h> 52 #include <grp.h> 53 #include <limits.h> 54 #include <signal.h> 55 #include <stdlib.h> 56 #include <string.h> 57 #include <stdint.h> 58 #include <stdio.h> 59 #include <unistd.h> 60 #include <sys/param.h> 61 #include <sys/time.h> 62 #include <sys/types.h> 63 #include <sys/wait.h> 64 #include <sys/resource.h> 65 #include <sys/stat.h> 66 #include <ufs/ufs/dinode.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ffs/fs.h> 69 #include <sys/disklabel.h> 70 #include <sys/file.h> 71 #include <sys/mman.h> 72 #include <sys/ioctl.h> 73 #include "newfs.h" 74 75 /* 76 * make file system for cylinder-group style file systems 77 */ 78 #define UMASK 0755 79 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 80 81 static struct csum *fscs; 82 #define sblock disk.d_fs 83 #define acg disk.d_cg 84 85 union dinode { 86 struct ufs1_dinode dp1; 87 struct ufs2_dinode dp2; 88 }; 89 #define DIP(dp, field) \ 90 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 91 (dp)->dp1.field : (dp)->dp2.field) 92 93 static caddr_t iobuf; 94 static long iobufsize; 95 static ufs2_daddr_t alloc(int size, int mode); 96 static int charsperline(void); 97 static void clrblock(struct fs *, unsigned char *, int); 98 static void fsinit(time_t); 99 static int ilog2(int); 100 static void initcg(int, time_t); 101 static int isblock(struct fs *, unsigned char *, int); 102 static void iput(union dinode *, ino_t); 103 static int makedir(struct direct *, int); 104 static void setblock(struct fs *, unsigned char *, int); 105 static void wtfs(ufs2_daddr_t, int, char *); 106 static u_int32_t newfs_random(void); 107 108 void 109 mkfs(struct partition *pp, char *fsys) 110 { 111 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 112 long i, j, cylno, csfrags; 113 time_t utime; 114 quad_t sizepb; 115 int width; 116 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 117 union { 118 struct fs fdummy; 119 char cdummy[SBLOCKSIZE]; 120 } dummy; 121 #define fsdummy dummy.fdummy 122 #define chdummy dummy.cdummy 123 124 /* 125 * Our blocks == sector size, and the version of UFS we are using is 126 * specified by Oflag. 127 */ 128 disk.d_bsize = sectorsize; 129 disk.d_ufs = Oflag; 130 if (Rflag) { 131 utime = 1000000000; 132 } else { 133 time(&utime); 134 arc4random_stir(); 135 } 136 sblock.fs_old_flags = FS_FLAGS_UPDATED; 137 sblock.fs_flags = 0; 138 if (Uflag) 139 sblock.fs_flags |= FS_DOSOFTDEP; 140 if (Lflag) 141 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 142 /* 143 * Validate the given file system size. 144 * Verify that its last block can actually be accessed. 145 * Convert to file system fragment sized units. 146 */ 147 if (fssize <= 0) { 148 printf("preposterous size %jd\n", (intmax_t)fssize); 149 exit(13); 150 } 151 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 152 (char *)&sblock); 153 /* 154 * collect and verify the file system density info 155 */ 156 sblock.fs_avgfilesize = avgfilesize; 157 sblock.fs_avgfpdir = avgfilesperdir; 158 if (sblock.fs_avgfilesize <= 0) 159 printf("illegal expected average file size %d\n", 160 sblock.fs_avgfilesize), exit(14); 161 if (sblock.fs_avgfpdir <= 0) 162 printf("illegal expected number of files per directory %d\n", 163 sblock.fs_avgfpdir), exit(15); 164 /* 165 * collect and verify the block and fragment sizes 166 */ 167 sblock.fs_bsize = bsize; 168 sblock.fs_fsize = fsize; 169 if (!POWEROF2(sblock.fs_bsize)) { 170 printf("block size must be a power of 2, not %d\n", 171 sblock.fs_bsize); 172 exit(16); 173 } 174 if (!POWEROF2(sblock.fs_fsize)) { 175 printf("fragment size must be a power of 2, not %d\n", 176 sblock.fs_fsize); 177 exit(17); 178 } 179 if (sblock.fs_fsize < sectorsize) { 180 printf("increasing fragment size from %d to sector size (%d)\n", 181 sblock.fs_fsize, sectorsize); 182 sblock.fs_fsize = sectorsize; 183 } 184 if (sblock.fs_bsize > MAXBSIZE) { 185 printf("decreasing block size from %d to maximum (%d)\n", 186 sblock.fs_bsize, MAXBSIZE); 187 sblock.fs_bsize = MAXBSIZE; 188 } 189 if (sblock.fs_bsize < MINBSIZE) { 190 printf("increasing block size from %d to minimum (%d)\n", 191 sblock.fs_bsize, MINBSIZE); 192 sblock.fs_bsize = MINBSIZE; 193 } 194 if (sblock.fs_fsize > MAXBSIZE) { 195 printf("decreasing fragment size from %d to maximum (%d)\n", 196 sblock.fs_fsize, MAXBSIZE); 197 sblock.fs_fsize = MAXBSIZE; 198 } 199 if (sblock.fs_bsize < sblock.fs_fsize) { 200 printf("increasing block size from %d to fragment size (%d)\n", 201 sblock.fs_bsize, sblock.fs_fsize); 202 sblock.fs_bsize = sblock.fs_fsize; 203 } 204 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 205 printf( 206 "increasing fragment size from %d to block size / %d (%d)\n", 207 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 208 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 209 } 210 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 211 sblock.fs_maxbsize = sblock.fs_bsize; 212 printf("Extent size set to %d\n", sblock.fs_maxbsize); 213 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 214 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 215 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 216 } else { 217 sblock.fs_maxbsize = maxbsize; 218 } 219 sblock.fs_maxcontig = maxcontig; 220 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 221 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 222 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 223 } 224 if (sblock.fs_maxcontig > 1) 225 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 226 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 227 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 228 sblock.fs_qbmask = ~sblock.fs_bmask; 229 sblock.fs_qfmask = ~sblock.fs_fmask; 230 sblock.fs_bshift = ilog2(sblock.fs_bsize); 231 sblock.fs_fshift = ilog2(sblock.fs_fsize); 232 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 233 sblock.fs_fragshift = ilog2(sblock.fs_frag); 234 if (sblock.fs_frag > MAXFRAG) { 235 printf("fragment size %d is still too small (can't happen)\n", 236 sblock.fs_bsize / MAXFRAG); 237 exit(21); 238 } 239 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 240 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 241 if (Oflag == 1) { 242 sblock.fs_magic = FS_UFS1_MAGIC; 243 sblock.fs_sblockloc = SBLOCK_UFS1; 244 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 245 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 246 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 247 sizeof(ufs1_daddr_t)); 248 sblock.fs_old_inodefmt = FS_44INODEFMT; 249 sblock.fs_old_cgoffset = 0; 250 sblock.fs_old_cgmask = 0xffffffff; 251 sblock.fs_old_size = sblock.fs_size; 252 sblock.fs_old_rotdelay = 0; 253 sblock.fs_old_rps = 60; 254 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 255 sblock.fs_old_cpg = 1; 256 sblock.fs_old_interleave = 1; 257 sblock.fs_old_trackskew = 0; 258 sblock.fs_old_cpc = 0; 259 sblock.fs_old_postblformat = 1; 260 sblock.fs_old_nrpos = 1; 261 } else { 262 sblock.fs_magic = FS_UFS2_MAGIC; 263 sblock.fs_sblockloc = SBLOCK_UFS2; 264 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 265 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 266 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 267 sizeof(ufs2_daddr_t)); 268 } 269 sblock.fs_sblkno = 270 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 271 sblock.fs_frag); 272 sblock.fs_cblkno = sblock.fs_sblkno + 273 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 274 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 275 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 276 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 277 sizepb *= NINDIR(&sblock); 278 sblock.fs_maxfilesize += sizepb; 279 } 280 /* 281 * Calculate the number of blocks to put into each cylinder group. 282 * 283 * This algorithm selects the number of blocks per cylinder 284 * group. The first goal is to have at least enough data blocks 285 * in each cylinder group to meet the density requirement. Once 286 * this goal is achieved we try to expand to have at least 287 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 288 * pack as many blocks into each cylinder group map as will fit. 289 * 290 * We start by calculating the smallest number of blocks that we 291 * can put into each cylinder group. If this is too big, we reduce 292 * the density until it fits. 293 */ 294 origdensity = density; 295 for (;;) { 296 fragsperinode = MAX(numfrags(&sblock, density), 1); 297 minfpg = fragsperinode * INOPB(&sblock); 298 if (minfpg > sblock.fs_size) 299 minfpg = sblock.fs_size; 300 sblock.fs_ipg = INOPB(&sblock); 301 sblock.fs_fpg = roundup(sblock.fs_iblkno + 302 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 303 if (sblock.fs_fpg < minfpg) 304 sblock.fs_fpg = minfpg; 305 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 306 INOPB(&sblock)); 307 sblock.fs_fpg = roundup(sblock.fs_iblkno + 308 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 309 if (sblock.fs_fpg < minfpg) 310 sblock.fs_fpg = minfpg; 311 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 312 INOPB(&sblock)); 313 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 314 break; 315 density -= sblock.fs_fsize; 316 } 317 if (density != origdensity) 318 printf("density reduced from %d to %d\n", origdensity, density); 319 /* 320 * Start packing more blocks into the cylinder group until 321 * it cannot grow any larger, the number of cylinder groups 322 * drops below MINCYLGRPS, or we reach the size requested. 323 */ 324 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 325 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 326 INOPB(&sblock)); 327 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 328 break; 329 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 330 continue; 331 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 332 break; 333 sblock.fs_fpg -= sblock.fs_frag; 334 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 335 INOPB(&sblock)); 336 break; 337 } 338 /* 339 * Check to be sure that the last cylinder group has enough blocks 340 * to be viable. If it is too small, reduce the number of blocks 341 * per cylinder group which will have the effect of moving more 342 * blocks into the last cylinder group. 343 */ 344 optimalfpg = sblock.fs_fpg; 345 for (;;) { 346 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 347 lastminfpg = roundup(sblock.fs_iblkno + 348 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 349 if (sblock.fs_size < lastminfpg) { 350 printf("Filesystem size %jd < minimum size of %d\n", 351 (intmax_t)sblock.fs_size, lastminfpg); 352 exit(28); 353 } 354 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 355 sblock.fs_size % sblock.fs_fpg == 0) 356 break; 357 sblock.fs_fpg -= sblock.fs_frag; 358 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 359 INOPB(&sblock)); 360 } 361 if (optimalfpg != sblock.fs_fpg) 362 printf("Reduced frags per cylinder group from %d to %d %s\n", 363 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 364 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 365 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 366 if (Oflag == 1) { 367 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 368 sblock.fs_old_nsect = sblock.fs_old_spc; 369 sblock.fs_old_npsect = sblock.fs_old_spc; 370 sblock.fs_old_ncyl = sblock.fs_ncg; 371 } 372 /* 373 * fill in remaining fields of the super block 374 */ 375 sblock.fs_csaddr = cgdmin(&sblock, 0); 376 sblock.fs_cssize = 377 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 378 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 379 if (fscs == NULL) 380 errx(31, "calloc failed"); 381 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 382 if (sblock.fs_sbsize > SBLOCKSIZE) 383 sblock.fs_sbsize = SBLOCKSIZE; 384 sblock.fs_minfree = minfree; 385 sblock.fs_maxbpg = maxbpg; 386 sblock.fs_optim = opt; 387 sblock.fs_cgrotor = 0; 388 sblock.fs_pendingblocks = 0; 389 sblock.fs_pendinginodes = 0; 390 sblock.fs_fmod = 0; 391 sblock.fs_ronly = 0; 392 sblock.fs_state = 0; 393 sblock.fs_clean = 1; 394 sblock.fs_id[0] = (long)utime; 395 sblock.fs_id[1] = newfs_random(); 396 sblock.fs_fsmnt[0] = '\0'; 397 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 398 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 399 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 400 sblock.fs_cstotal.cs_nbfree = 401 fragstoblks(&sblock, sblock.fs_dsize) - 402 howmany(csfrags, sblock.fs_frag); 403 sblock.fs_cstotal.cs_nffree = 404 fragnum(&sblock, sblock.fs_size) + 405 (fragnum(&sblock, csfrags) > 0 ? 406 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 407 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 408 sblock.fs_cstotal.cs_ndir = 0; 409 sblock.fs_dsize -= csfrags; 410 sblock.fs_time = utime; 411 if (Oflag == 1) { 412 sblock.fs_old_time = utime; 413 sblock.fs_old_dsize = sblock.fs_dsize; 414 sblock.fs_old_csaddr = sblock.fs_csaddr; 415 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 416 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 417 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 418 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 419 } 420 421 /* 422 * Dump out summary information about file system. 423 */ 424 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 425 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 426 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 427 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 428 sblock.fs_fsize); 429 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 430 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 431 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 432 if (sblock.fs_flags & FS_DOSOFTDEP) 433 printf("\twith soft updates\n"); 434 # undef B2MBFACTOR 435 436 /* 437 * Wipe out old UFS1 superblock(s) if necessary. 438 */ 439 if (!Nflag && Oflag != 1) { 440 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 441 if (i == -1) 442 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 443 444 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 445 fsdummy.fs_magic = 0; 446 bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 447 for (i = 0; i < fsdummy.fs_ncg; i++) 448 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)), 449 chdummy, SBLOCKSIZE); 450 } 451 } 452 453 /* 454 * Now build the cylinders group blocks and 455 * then print out indices of cylinder groups. 456 */ 457 printf("super-block backups (for fsck -b #) at:\n"); 458 i = 0; 459 width = charsperline(); 460 /* 461 * allocate space for superblock, cylinder group map, and 462 * two sets of inode blocks. 463 */ 464 if (sblock.fs_bsize < SBLOCKSIZE) 465 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 466 else 467 iobufsize = 4 * sblock.fs_bsize; 468 if ((iobuf = malloc(iobufsize)) == 0) { 469 printf("Cannot allocate I/O buffer\n"); 470 exit(38); 471 } 472 bzero(iobuf, iobufsize); 473 /* 474 * Make a copy of the superblock into the buffer that we will be 475 * writing out in each cylinder group. 476 */ 477 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 478 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 479 initcg(cylno, utime); 480 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 481 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 482 cylno < (sblock.fs_ncg-1) ? "," : ""); 483 if (j < 0) 484 tmpbuf[j = 0] = '\0'; 485 if (i + j >= width) { 486 printf("\n"); 487 i = 0; 488 } 489 i += j; 490 printf("%s", tmpbuf); 491 fflush(stdout); 492 } 493 printf("\n"); 494 if (Nflag) 495 exit(0); 496 /* 497 * Now construct the initial file system, 498 * then write out the super-block. 499 */ 500 fsinit(utime); 501 if (Oflag == 1) { 502 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 503 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 504 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 505 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 506 } 507 if (!Nflag) 508 sbwrite(&disk, 0); 509 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 510 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 511 sblock.fs_cssize - i < sblock.fs_bsize ? 512 sblock.fs_cssize - i : sblock.fs_bsize, 513 ((char *)fscs) + i); 514 /* 515 * Update information about this partion in pack 516 * label, to that it may be updated on disk. 517 */ 518 if (pp != NULL) { 519 pp->p_fstype = FS_BSDFFS; 520 pp->p_fsize = sblock.fs_fsize; 521 pp->p_frag = sblock.fs_frag; 522 pp->p_cpg = sblock.fs_fpg; 523 } 524 } 525 526 /* 527 * Initialize a cylinder group. 528 */ 529 void 530 initcg(int cylno, time_t utime) 531 { 532 long i, j, d, dlower, dupper, blkno, start; 533 ufs2_daddr_t cbase, dmax; 534 struct ufs1_dinode *dp1; 535 struct ufs2_dinode *dp2; 536 struct csum *cs; 537 538 /* 539 * Determine block bounds for cylinder group. 540 * Allow space for super block summary information in first 541 * cylinder group. 542 */ 543 cbase = cgbase(&sblock, cylno); 544 dmax = cbase + sblock.fs_fpg; 545 if (dmax > sblock.fs_size) 546 dmax = sblock.fs_size; 547 dlower = cgsblock(&sblock, cylno) - cbase; 548 dupper = cgdmin(&sblock, cylno) - cbase; 549 if (cylno == 0) 550 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 551 cs = &fscs[cylno]; 552 memset(&acg, 0, sblock.fs_cgsize); 553 acg.cg_time = utime; 554 acg.cg_magic = CG_MAGIC; 555 acg.cg_cgx = cylno; 556 acg.cg_niblk = sblock.fs_ipg; 557 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 558 sblock.fs_ipg : 2 * INOPB(&sblock); 559 acg.cg_ndblk = dmax - cbase; 560 if (sblock.fs_contigsumsize > 0) 561 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 562 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 563 if (Oflag == 2) { 564 acg.cg_iusedoff = start; 565 } else { 566 acg.cg_old_ncyl = sblock.fs_old_cpg; 567 acg.cg_old_time = acg.cg_time; 568 acg.cg_time = 0; 569 acg.cg_old_niblk = acg.cg_niblk; 570 acg.cg_niblk = 0; 571 acg.cg_initediblk = 0; 572 acg.cg_old_btotoff = start; 573 acg.cg_old_boff = acg.cg_old_btotoff + 574 sblock.fs_old_cpg * sizeof(int32_t); 575 acg.cg_iusedoff = acg.cg_old_boff + 576 sblock.fs_old_cpg * sizeof(u_int16_t); 577 } 578 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 579 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 580 if (sblock.fs_contigsumsize > 0) { 581 acg.cg_clustersumoff = 582 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 583 acg.cg_clustersumoff -= sizeof(u_int32_t); 584 acg.cg_clusteroff = acg.cg_clustersumoff + 585 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 586 acg.cg_nextfreeoff = acg.cg_clusteroff + 587 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 588 } 589 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 590 printf("Panic: cylinder group too big\n"); 591 exit(37); 592 } 593 acg.cg_cs.cs_nifree += sblock.fs_ipg; 594 if (cylno == 0) 595 for (i = 0; i < (long)ROOTINO; i++) { 596 setbit(cg_inosused(&acg), i); 597 acg.cg_cs.cs_nifree--; 598 } 599 if (cylno > 0) { 600 /* 601 * In cylno 0, beginning space is reserved 602 * for boot and super blocks. 603 */ 604 for (d = 0; d < dlower; d += sblock.fs_frag) { 605 blkno = d / sblock.fs_frag; 606 setblock(&sblock, cg_blksfree(&acg), blkno); 607 if (sblock.fs_contigsumsize > 0) 608 setbit(cg_clustersfree(&acg), blkno); 609 acg.cg_cs.cs_nbfree++; 610 } 611 } 612 if ((i = dupper % sblock.fs_frag)) { 613 acg.cg_frsum[sblock.fs_frag - i]++; 614 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 615 setbit(cg_blksfree(&acg), dupper); 616 acg.cg_cs.cs_nffree++; 617 } 618 } 619 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 620 d += sblock.fs_frag) { 621 blkno = d / sblock.fs_frag; 622 setblock(&sblock, cg_blksfree(&acg), blkno); 623 if (sblock.fs_contigsumsize > 0) 624 setbit(cg_clustersfree(&acg), blkno); 625 acg.cg_cs.cs_nbfree++; 626 } 627 if (d < acg.cg_ndblk) { 628 acg.cg_frsum[acg.cg_ndblk - d]++; 629 for (; d < acg.cg_ndblk; d++) { 630 setbit(cg_blksfree(&acg), d); 631 acg.cg_cs.cs_nffree++; 632 } 633 } 634 if (sblock.fs_contigsumsize > 0) { 635 int32_t *sump = cg_clustersum(&acg); 636 u_char *mapp = cg_clustersfree(&acg); 637 int map = *mapp++; 638 int bit = 1; 639 int run = 0; 640 641 for (i = 0; i < acg.cg_nclusterblks; i++) { 642 if ((map & bit) != 0) 643 run++; 644 else if (run != 0) { 645 if (run > sblock.fs_contigsumsize) 646 run = sblock.fs_contigsumsize; 647 sump[run]++; 648 run = 0; 649 } 650 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 651 bit <<= 1; 652 else { 653 map = *mapp++; 654 bit = 1; 655 } 656 } 657 if (run != 0) { 658 if (run > sblock.fs_contigsumsize) 659 run = sblock.fs_contigsumsize; 660 sump[run]++; 661 } 662 } 663 *cs = acg.cg_cs; 664 /* 665 * Write out the duplicate super block, the cylinder group map 666 * and two blocks worth of inodes in a single write. 667 */ 668 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 669 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 670 start += sblock.fs_bsize; 671 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 672 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 673 for (i = 0; i < acg.cg_initediblk; i++) { 674 if (sblock.fs_magic == FS_UFS1_MAGIC) { 675 dp1->di_gen = newfs_random(); 676 dp1++; 677 } else { 678 dp2->di_gen = newfs_random(); 679 dp2++; 680 } 681 } 682 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 683 /* 684 * For the old file system, we have to initialize all the inodes. 685 */ 686 if (Oflag == 1) { 687 for (i = 2 * sblock.fs_frag; 688 i < sblock.fs_ipg / INOPF(&sblock); 689 i += sblock.fs_frag) { 690 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 691 for (j = 0; j < INOPB(&sblock); j++) { 692 dp1->di_gen = newfs_random(); 693 dp1++; 694 } 695 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 696 sblock.fs_bsize, &iobuf[start]); 697 } 698 } 699 } 700 701 /* 702 * initialize the file system 703 */ 704 #define ROOTLINKCNT 3 705 706 struct direct root_dir[] = { 707 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 708 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 709 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 710 }; 711 712 #define SNAPLINKCNT 2 713 714 struct direct snap_dir[] = { 715 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 716 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 717 }; 718 719 void 720 fsinit(time_t utime) 721 { 722 union dinode node; 723 struct group *grp; 724 725 memset(&node, 0, sizeof node); 726 if ((grp = getgrnam("operator")) == NULL) 727 errx(35, "Cannot retrieve operator gid"); 728 if (sblock.fs_magic == FS_UFS1_MAGIC) { 729 /* 730 * initialize the node 731 */ 732 node.dp1.di_atime = utime; 733 node.dp1.di_mtime = utime; 734 node.dp1.di_ctime = utime; 735 /* 736 * create the root directory 737 */ 738 node.dp1.di_mode = IFDIR | UMASK; 739 node.dp1.di_nlink = ROOTLINKCNT; 740 node.dp1.di_size = makedir(root_dir, ROOTLINKCNT); 741 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 742 node.dp1.di_blocks = 743 btodb(fragroundup(&sblock, node.dp1.di_size)); 744 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 745 iobuf); 746 iput(&node, ROOTINO); 747 /* 748 * create the .snap directory 749 */ 750 node.dp1.di_mode |= 020; 751 node.dp1.di_gid = grp->gr_gid; 752 node.dp1.di_nlink = SNAPLINKCNT; 753 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 754 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 755 node.dp1.di_blocks = 756 btodb(fragroundup(&sblock, node.dp1.di_size)); 757 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 758 iobuf); 759 iput(&node, ROOTINO + 1); 760 } else { 761 /* 762 * initialize the node 763 */ 764 node.dp2.di_atime = utime; 765 node.dp2.di_mtime = utime; 766 node.dp2.di_ctime = utime; 767 node.dp2.di_birthtime = utime; 768 /* 769 * create the root directory 770 */ 771 node.dp2.di_mode = IFDIR | UMASK; 772 node.dp2.di_nlink = ROOTLINKCNT; 773 node.dp2.di_size = makedir(root_dir, ROOTLINKCNT); 774 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 775 node.dp2.di_blocks = 776 btodb(fragroundup(&sblock, node.dp2.di_size)); 777 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 778 iobuf); 779 iput(&node, ROOTINO); 780 /* 781 * create the .snap directory 782 */ 783 node.dp2.di_mode |= 020; 784 node.dp2.di_gid = grp->gr_gid; 785 node.dp2.di_nlink = SNAPLINKCNT; 786 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 787 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 788 node.dp2.di_blocks = 789 btodb(fragroundup(&sblock, node.dp2.di_size)); 790 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 791 iobuf); 792 iput(&node, ROOTINO + 1); 793 } 794 } 795 796 /* 797 * construct a set of directory entries in "iobuf". 798 * return size of directory. 799 */ 800 int 801 makedir(struct direct *protodir, int entries) 802 { 803 char *cp; 804 int i, spcleft; 805 806 spcleft = DIRBLKSIZ; 807 memset(iobuf, 0, DIRBLKSIZ); 808 for (cp = iobuf, i = 0; i < entries - 1; i++) { 809 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 810 memmove(cp, &protodir[i], protodir[i].d_reclen); 811 cp += protodir[i].d_reclen; 812 spcleft -= protodir[i].d_reclen; 813 } 814 protodir[i].d_reclen = spcleft; 815 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 816 return (DIRBLKSIZ); 817 } 818 819 /* 820 * allocate a block or frag 821 */ 822 ufs2_daddr_t 823 alloc(int size, int mode) 824 { 825 int i, d, blkno, frag; 826 827 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 828 sblock.fs_cgsize); 829 if (acg.cg_magic != CG_MAGIC) { 830 printf("cg 0: bad magic number\n"); 831 exit(38); 832 } 833 if (acg.cg_cs.cs_nbfree == 0) { 834 printf("first cylinder group ran out of space\n"); 835 exit(39); 836 } 837 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 838 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 839 goto goth; 840 printf("internal error: can't find block in cyl 0\n"); 841 exit(40); 842 goth: 843 blkno = fragstoblks(&sblock, d); 844 clrblock(&sblock, cg_blksfree(&acg), blkno); 845 if (sblock.fs_contigsumsize > 0) 846 clrbit(cg_clustersfree(&acg), blkno); 847 acg.cg_cs.cs_nbfree--; 848 sblock.fs_cstotal.cs_nbfree--; 849 fscs[0].cs_nbfree--; 850 if (mode & IFDIR) { 851 acg.cg_cs.cs_ndir++; 852 sblock.fs_cstotal.cs_ndir++; 853 fscs[0].cs_ndir++; 854 } 855 if (size != sblock.fs_bsize) { 856 frag = howmany(size, sblock.fs_fsize); 857 fscs[0].cs_nffree += sblock.fs_frag - frag; 858 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 859 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 860 acg.cg_frsum[sblock.fs_frag - frag]++; 861 for (i = frag; i < sblock.fs_frag; i++) 862 setbit(cg_blksfree(&acg), d + i); 863 } 864 /* XXX cgwrite(&disk, 0)??? */ 865 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 866 (char *)&acg); 867 return ((ufs2_daddr_t)d); 868 } 869 870 /* 871 * Allocate an inode on the disk 872 */ 873 void 874 iput(union dinode *ip, ino_t ino) 875 { 876 ufs2_daddr_t d; 877 int c; 878 879 c = ino_to_cg(&sblock, ino); 880 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 881 sblock.fs_cgsize); 882 if (acg.cg_magic != CG_MAGIC) { 883 printf("cg 0: bad magic number\n"); 884 exit(31); 885 } 886 acg.cg_cs.cs_nifree--; 887 setbit(cg_inosused(&acg), ino); 888 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 889 (char *)&acg); 890 sblock.fs_cstotal.cs_nifree--; 891 fscs[0].cs_nifree--; 892 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 893 printf("fsinit: inode value out of range (%d).\n", ino); 894 exit(32); 895 } 896 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 897 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 898 if (sblock.fs_magic == FS_UFS1_MAGIC) 899 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 900 ip->dp1; 901 else 902 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 903 ip->dp2; 904 wtfs(d, sblock.fs_bsize, (char *)iobuf); 905 } 906 907 /* 908 * possibly write to disk 909 */ 910 static void 911 wtfs(ufs2_daddr_t bno, int size, char *bf) 912 { 913 if (Nflag) 914 return; 915 if (bwrite(&disk, bno, bf, size) < 0) 916 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 917 } 918 919 /* 920 * check if a block is available 921 */ 922 static int 923 isblock(struct fs *fs, unsigned char *cp, int h) 924 { 925 unsigned char mask; 926 927 switch (fs->fs_frag) { 928 case 8: 929 return (cp[h] == 0xff); 930 case 4: 931 mask = 0x0f << ((h & 0x1) << 2); 932 return ((cp[h >> 1] & mask) == mask); 933 case 2: 934 mask = 0x03 << ((h & 0x3) << 1); 935 return ((cp[h >> 2] & mask) == mask); 936 case 1: 937 mask = 0x01 << (h & 0x7); 938 return ((cp[h >> 3] & mask) == mask); 939 default: 940 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 941 return (0); 942 } 943 } 944 945 /* 946 * take a block out of the map 947 */ 948 static void 949 clrblock(struct fs *fs, unsigned char *cp, int h) 950 { 951 switch ((fs)->fs_frag) { 952 case 8: 953 cp[h] = 0; 954 return; 955 case 4: 956 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 957 return; 958 case 2: 959 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 960 return; 961 case 1: 962 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 963 return; 964 default: 965 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 966 return; 967 } 968 } 969 970 /* 971 * put a block into the map 972 */ 973 static void 974 setblock(struct fs *fs, unsigned char *cp, int h) 975 { 976 switch (fs->fs_frag) { 977 case 8: 978 cp[h] = 0xff; 979 return; 980 case 4: 981 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 982 return; 983 case 2: 984 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 985 return; 986 case 1: 987 cp[h >> 3] |= (0x01 << (h & 0x7)); 988 return; 989 default: 990 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 991 return; 992 } 993 } 994 995 /* 996 * Determine the number of characters in a 997 * single line. 998 */ 999 1000 static int 1001 charsperline(void) 1002 { 1003 int columns; 1004 char *cp; 1005 struct winsize ws; 1006 1007 columns = 0; 1008 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1009 columns = ws.ws_col; 1010 if (columns == 0 && (cp = getenv("COLUMNS"))) 1011 columns = atoi(cp); 1012 if (columns == 0) 1013 columns = 80; /* last resort */ 1014 return (columns); 1015 } 1016 1017 static int 1018 ilog2(int val) 1019 { 1020 u_int n; 1021 1022 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1023 if (1 << n == val) 1024 return (n); 1025 errx(1, "ilog2: %d is not a power of 2\n", val); 1026 } 1027 1028 /* 1029 * For the regression test, return predictable random values. 1030 * Otherwise use a true random number generator. 1031 */ 1032 static u_int32_t 1033 newfs_random(void) 1034 { 1035 static int nextnum = 1; 1036 1037 if (Rflag) 1038 return (nextnum++); 1039 return (arc4random()); 1040 } 1041