xref: /freebsd/sbin/newfs/mkfs.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  */
42 
43 #if 0
44 #ifndef lint
45 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
46 #endif /* not lint */
47 #endif
48 #include <sys/cdefs.h>
49 __FBSDID("$FreeBSD$");
50 
51 #include <err.h>
52 #include <limits.h>
53 #include <signal.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <stdint.h>
57 #include <stdio.h>
58 #include <unistd.h>
59 #include <sys/param.h>
60 #include <sys/time.h>
61 #include <sys/types.h>
62 #include <sys/wait.h>
63 #include <sys/resource.h>
64 #include <sys/stat.h>
65 #include <ufs/ufs/dinode.h>
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ffs/fs.h>
68 #include <sys/disklabel.h>
69 #include <sys/file.h>
70 #include <sys/mman.h>
71 #include <sys/ioctl.h>
72 #include "newfs.h"
73 
74 /*
75  * make file system for cylinder-group style file systems
76  */
77 #define UMASK		0755
78 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
79 
80 static struct	csum *fscs;
81 #define	sblock	disk.d_fs
82 #define	acg	disk.d_cg
83 
84 union dinode {
85 	struct ufs1_dinode dp1;
86 	struct ufs2_dinode dp2;
87 };
88 #define DIP(dp, field) \
89 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
90 	(dp)->dp1.field : (dp)->dp2.field)
91 
92 static caddr_t iobuf;
93 static long iobufsize;
94 static ufs2_daddr_t alloc(int size, int mode);
95 static int charsperline(void);
96 static void clrblock(struct fs *, unsigned char *, int);
97 static void fsinit(time_t);
98 static int ilog2(int);
99 static void initcg(int, time_t);
100 static int isblock(struct fs *, unsigned char *, int);
101 static void iput(union dinode *, ino_t);
102 static int makedir(struct direct *, int);
103 static void setblock(struct fs *, unsigned char *, int);
104 static void wtfs(ufs2_daddr_t, int, char *);
105 static u_int32_t newfs_random(void);
106 
107 void
108 mkfs(struct partition *pp, char *fsys)
109 {
110 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
111 	long i, j, cylno, csfrags;
112 	time_t utime;
113 	quad_t sizepb;
114 	int width;
115 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
116 	union {
117 		struct fs fdummy;
118 		char cdummy[SBLOCKSIZE];
119 	} dummy;
120 #define fsdummy dummy.fdummy
121 #define chdummy dummy.cdummy
122 
123 	/*
124 	 * Our blocks == sector size, and the version of UFS we are using is
125 	 * specified by Oflag.
126 	 */
127 	disk.d_bsize = sectorsize;
128 	disk.d_ufs = Oflag;
129 	if (Rflag) {
130 		utime = 1000000000;
131 	} else {
132 		time(&utime);
133 		arc4random_stir();
134 	}
135 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
136 	sblock.fs_flags = 0;
137 	if (Uflag)
138 		sblock.fs_flags |= FS_DOSOFTDEP;
139 	if (Lflag)
140 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
141 	/*
142 	 * Validate the given file system size.
143 	 * Verify that its last block can actually be accessed.
144 	 * Convert to file system fragment sized units.
145 	 */
146 	if (fssize <= 0) {
147 		printf("preposterous size %jd\n", (intmax_t)fssize);
148 		exit(13);
149 	}
150 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
151 	    (char *)&sblock);
152 	/*
153 	 * collect and verify the file system density info
154 	 */
155 	sblock.fs_avgfilesize = avgfilesize;
156 	sblock.fs_avgfpdir = avgfilesperdir;
157 	if (sblock.fs_avgfilesize <= 0)
158 		printf("illegal expected average file size %d\n",
159 		    sblock.fs_avgfilesize), exit(14);
160 	if (sblock.fs_avgfpdir <= 0)
161 		printf("illegal expected number of files per directory %d\n",
162 		    sblock.fs_avgfpdir), exit(15);
163 	/*
164 	 * collect and verify the block and fragment sizes
165 	 */
166 	sblock.fs_bsize = bsize;
167 	sblock.fs_fsize = fsize;
168 	if (!POWEROF2(sblock.fs_bsize)) {
169 		printf("block size must be a power of 2, not %d\n",
170 		    sblock.fs_bsize);
171 		exit(16);
172 	}
173 	if (!POWEROF2(sblock.fs_fsize)) {
174 		printf("fragment size must be a power of 2, not %d\n",
175 		    sblock.fs_fsize);
176 		exit(17);
177 	}
178 	if (sblock.fs_fsize < sectorsize) {
179 		printf("increasing fragment size from %d to sector size (%d)\n",
180 		    sblock.fs_fsize, sectorsize);
181 		sblock.fs_fsize = sectorsize;
182 	}
183 	if (sblock.fs_bsize > MAXBSIZE) {
184 		printf("decreasing block size from %d to maximum (%d)\n",
185 		    sblock.fs_bsize, MAXBSIZE);
186 		sblock.fs_bsize = MAXBSIZE;
187 	}
188 	if (sblock.fs_bsize < MINBSIZE) {
189 		printf("increasing block size from %d to minimum (%d)\n",
190 		    sblock.fs_bsize, MINBSIZE);
191 		sblock.fs_bsize = MINBSIZE;
192 	}
193 	if (sblock.fs_fsize > MAXBSIZE) {
194 		printf("decreasing fragment size from %d to maximum (%d)\n",
195 		    sblock.fs_fsize, MAXBSIZE);
196 		sblock.fs_fsize = MAXBSIZE;
197 	}
198 	if (sblock.fs_bsize < sblock.fs_fsize) {
199 		printf("increasing block size from %d to fragment size (%d)\n",
200 		    sblock.fs_bsize, sblock.fs_fsize);
201 		sblock.fs_bsize = sblock.fs_fsize;
202 	}
203 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
204 		printf(
205 		"increasing fragment size from %d to block size / %d (%d)\n",
206 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
207 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
208 	}
209 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
210 		sblock.fs_maxbsize = sblock.fs_bsize;
211 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
212 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
213 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
214 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
215 	} else {
216 		sblock.fs_maxbsize = maxbsize;
217 	}
218 	sblock.fs_maxcontig = maxcontig;
219 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
220 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
221 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
222 	}
223 	if (sblock.fs_maxcontig > 1)
224 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
225 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
226 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
227 	sblock.fs_qbmask = ~sblock.fs_bmask;
228 	sblock.fs_qfmask = ~sblock.fs_fmask;
229 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
230 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
231 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
232 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
233 	if (sblock.fs_frag > MAXFRAG) {
234 		printf("fragment size %d is still too small (can't happen)\n",
235 		    sblock.fs_bsize / MAXFRAG);
236 		exit(21);
237 	}
238 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
239 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
240 	if (Oflag == 1) {
241 		sblock.fs_magic = FS_UFS1_MAGIC;
242 		sblock.fs_sblockloc = SBLOCK_UFS1;
243 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
244 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
245 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
246 		    sizeof(ufs1_daddr_t));
247 		sblock.fs_old_inodefmt = FS_44INODEFMT;
248 		sblock.fs_old_cgoffset = 0;
249 		sblock.fs_old_cgmask = 0xffffffff;
250 		sblock.fs_old_size = sblock.fs_size;
251 		sblock.fs_old_rotdelay = 0;
252 		sblock.fs_old_rps = 60;
253 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
254 		sblock.fs_old_cpg = 1;
255 		sblock.fs_old_interleave = 1;
256 		sblock.fs_old_trackskew = 0;
257 		sblock.fs_old_cpc = 0;
258 		sblock.fs_old_postblformat = 1;
259 		sblock.fs_old_nrpos = 1;
260 	} else {
261 		sblock.fs_magic = FS_UFS2_MAGIC;
262 		sblock.fs_sblockloc = SBLOCK_UFS2;
263 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
264 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
265 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
266 		    sizeof(ufs2_daddr_t));
267 	}
268 	sblock.fs_sblkno =
269 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
270 		sblock.fs_frag);
271 	sblock.fs_cblkno = sblock.fs_sblkno +
272 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
273 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
274 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
275 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
276 		sizepb *= NINDIR(&sblock);
277 		sblock.fs_maxfilesize += sizepb;
278 	}
279 	/*
280 	 * Calculate the number of blocks to put into each cylinder group.
281 	 *
282 	 * This algorithm selects the number of blocks per cylinder
283 	 * group. The first goal is to have at least enough data blocks
284 	 * in each cylinder group to meet the density requirement. Once
285 	 * this goal is achieved we try to expand to have at least
286 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
287 	 * pack as many blocks into each cylinder group map as will fit.
288 	 *
289 	 * We start by calculating the smallest number of blocks that we
290 	 * can put into each cylinder group. If this is too big, we reduce
291 	 * the density until it fits.
292 	 */
293 	origdensity = density;
294 	for (;;) {
295 		fragsperinode = MAX(numfrags(&sblock, density), 1);
296 		minfpg = fragsperinode * INOPB(&sblock);
297 		if (minfpg > sblock.fs_size)
298 			minfpg = sblock.fs_size;
299 		sblock.fs_ipg = INOPB(&sblock);
300 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
301 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
302 		if (sblock.fs_fpg < minfpg)
303 			sblock.fs_fpg = minfpg;
304 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
305 		    INOPB(&sblock));
306 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
307 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
308 		if (sblock.fs_fpg < minfpg)
309 			sblock.fs_fpg = minfpg;
310 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
311 		    INOPB(&sblock));
312 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
313 			break;
314 		density -= sblock.fs_fsize;
315 	}
316 	if (density != origdensity)
317 		printf("density reduced from %d to %d\n", origdensity, density);
318 	/*
319 	 * Start packing more blocks into the cylinder group until
320 	 * it cannot grow any larger, the number of cylinder groups
321 	 * drops below MINCYLGRPS, or we reach the size requested.
322 	 */
323 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
324 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
325 		    INOPB(&sblock));
326 		if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
327 			break;
328 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
329 			continue;
330 		if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
331 			break;
332 		sblock.fs_fpg -= sblock.fs_frag;
333 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
334 		    INOPB(&sblock));
335 		break;
336 	}
337 	/*
338 	 * Check to be sure that the last cylinder group has enough blocks
339 	 * to be viable. If it is too small, reduce the number of blocks
340 	 * per cylinder group which will have the effect of moving more
341 	 * blocks into the last cylinder group.
342 	 */
343 	optimalfpg = sblock.fs_fpg;
344 	for (;;) {
345 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
346 		lastminfpg = roundup(sblock.fs_iblkno +
347 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
348 		if (sblock.fs_size < lastminfpg) {
349 			printf("Filesystem size %jd < minimum size of %d\n",
350 			    (intmax_t)sblock.fs_size, lastminfpg);
351 			exit(28);
352 		}
353 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
354 		    sblock.fs_size % sblock.fs_fpg == 0)
355 			break;
356 		sblock.fs_fpg -= sblock.fs_frag;
357 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
358 		    INOPB(&sblock));
359 	}
360 	if (optimalfpg != sblock.fs_fpg)
361 		printf("Reduced frags per cylinder group from %d to %d %s\n",
362 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
363 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
364 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
365 	if (Oflag == 1) {
366 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
367 		sblock.fs_old_nsect = sblock.fs_old_spc;
368 		sblock.fs_old_npsect = sblock.fs_old_spc;
369 		sblock.fs_old_ncyl = sblock.fs_ncg;
370 	}
371 	/*
372 	 * fill in remaining fields of the super block
373 	 */
374 	sblock.fs_csaddr = cgdmin(&sblock, 0);
375 	sblock.fs_cssize =
376 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
377 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
378 	if (fscs == NULL)
379 		errx(31, "calloc failed");
380 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
381 	if (sblock.fs_sbsize > SBLOCKSIZE)
382 		sblock.fs_sbsize = SBLOCKSIZE;
383 	sblock.fs_minfree = minfree;
384 	sblock.fs_maxbpg = maxbpg;
385 	sblock.fs_optim = opt;
386 	sblock.fs_cgrotor = 0;
387 	sblock.fs_pendingblocks = 0;
388 	sblock.fs_pendinginodes = 0;
389 	sblock.fs_fmod = 0;
390 	sblock.fs_ronly = 0;
391 	sblock.fs_state = 0;
392 	sblock.fs_clean = 1;
393 	sblock.fs_id[0] = (long)utime;
394 	sblock.fs_id[1] = newfs_random();
395 	sblock.fs_fsmnt[0] = '\0';
396 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
397 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
398 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
399 	sblock.fs_cstotal.cs_nbfree =
400 	    fragstoblks(&sblock, sblock.fs_dsize) -
401 	    howmany(csfrags, sblock.fs_frag);
402 	sblock.fs_cstotal.cs_nffree =
403 	    fragnum(&sblock, sblock.fs_size) +
404 	    (fragnum(&sblock, csfrags) > 0 ?
405 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
406 	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
407 	sblock.fs_cstotal.cs_ndir = 0;
408 	sblock.fs_dsize -= csfrags;
409 	sblock.fs_time = utime;
410 	if (Oflag == 1) {
411 		sblock.fs_old_time = utime;
412 		sblock.fs_old_dsize = sblock.fs_dsize;
413 		sblock.fs_old_csaddr = sblock.fs_csaddr;
414 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
415 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
416 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
417 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
418 	}
419 
420 	/*
421 	 * Dump out summary information about file system.
422 	 */
423 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
424 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
425 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
426 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
427 	    sblock.fs_fsize);
428 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
429 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
430 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
431 	if (sblock.fs_flags & FS_DOSOFTDEP)
432 		printf("\twith soft updates\n");
433 #	undef B2MBFACTOR
434 
435 	/*
436 	 * Wipe out old UFS1 superblock(s) if necessary.
437 	 */
438 	if (!Nflag && Oflag != 1) {
439 		i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
440 		if (i == -1)
441 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
442 
443 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
444 			fsdummy.fs_magic = 0;
445 			bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
446 			for (i = 0; i < fsdummy.fs_ncg; i++)
447 				bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)),
448 	                    chdummy, SBLOCKSIZE);
449 		}
450 	}
451 
452 	/*
453 	 * Now build the cylinders group blocks and
454 	 * then print out indices of cylinder groups.
455 	 */
456 	printf("super-block backups (for fsck -b #) at:\n");
457 	i = 0;
458 	width = charsperline();
459 	/*
460 	 * allocate space for superblock, cylinder group map, and
461 	 * two sets of inode blocks.
462 	 */
463 	if (sblock.fs_bsize < SBLOCKSIZE)
464 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
465 	else
466 		iobufsize = 4 * sblock.fs_bsize;
467 	if ((iobuf = malloc(iobufsize)) == 0) {
468 		printf("Cannot allocate I/O buffer\n");
469 		exit(38);
470 	}
471 	bzero(iobuf, iobufsize);
472 	/*
473 	 * Make a copy of the superblock into the buffer that we will be
474 	 * writing out in each cylinder group.
475 	 */
476 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
477 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
478 		initcg(cylno, utime);
479 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
480 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
481 		    cylno < (sblock.fs_ncg-1) ? "," : "");
482 		if (j < 0)
483 			tmpbuf[j = 0] = '\0';
484 		if (i + j >= width) {
485 			printf("\n");
486 			i = 0;
487 		}
488 		i += j;
489 		printf("%s", tmpbuf);
490 		fflush(stdout);
491 	}
492 	printf("\n");
493 	if (Nflag)
494 		exit(0);
495 	/*
496 	 * Now construct the initial file system,
497 	 * then write out the super-block.
498 	 */
499 	fsinit(utime);
500 	if (Oflag == 1) {
501 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
502 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
503 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
504 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
505 	}
506 	if (!Nflag)
507 		sbwrite(&disk, 0);
508 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
509 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
510 			sblock.fs_cssize - i < sblock.fs_bsize ?
511 			sblock.fs_cssize - i : sblock.fs_bsize,
512 			((char *)fscs) + i);
513 	/*
514 	 * Update information about this partion in pack
515 	 * label, to that it may be updated on disk.
516 	 */
517 	if (pp != NULL) {
518 		pp->p_fstype = FS_BSDFFS;
519 		pp->p_fsize = sblock.fs_fsize;
520 		pp->p_frag = sblock.fs_frag;
521 		pp->p_cpg = sblock.fs_fpg;
522 	}
523 }
524 
525 /*
526  * Initialize a cylinder group.
527  */
528 void
529 initcg(int cylno, time_t utime)
530 {
531 	long i, j, d, dlower, dupper, blkno, start;
532 	ufs2_daddr_t cbase, dmax;
533 	struct ufs1_dinode *dp1;
534 	struct ufs2_dinode *dp2;
535 	struct csum *cs;
536 
537 	/*
538 	 * Determine block bounds for cylinder group.
539 	 * Allow space for super block summary information in first
540 	 * cylinder group.
541 	 */
542 	cbase = cgbase(&sblock, cylno);
543 	dmax = cbase + sblock.fs_fpg;
544 	if (dmax > sblock.fs_size)
545 		dmax = sblock.fs_size;
546 	dlower = cgsblock(&sblock, cylno) - cbase;
547 	dupper = cgdmin(&sblock, cylno) - cbase;
548 	if (cylno == 0)
549 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
550 	cs = &fscs[cylno];
551 	memset(&acg, 0, sblock.fs_cgsize);
552 	acg.cg_time = utime;
553 	acg.cg_magic = CG_MAGIC;
554 	acg.cg_cgx = cylno;
555 	acg.cg_niblk = sblock.fs_ipg;
556 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
557 	    sblock.fs_ipg : 2 * INOPB(&sblock);
558 	acg.cg_ndblk = dmax - cbase;
559 	if (sblock.fs_contigsumsize > 0)
560 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
561 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
562 	if (Oflag == 2) {
563 		acg.cg_iusedoff = start;
564 	} else {
565 		acg.cg_old_ncyl = sblock.fs_old_cpg;
566 		acg.cg_old_time = acg.cg_time;
567 		acg.cg_time = 0;
568 		acg.cg_old_niblk = acg.cg_niblk;
569 		acg.cg_niblk = 0;
570 		acg.cg_initediblk = 0;
571 		acg.cg_old_btotoff = start;
572 		acg.cg_old_boff = acg.cg_old_btotoff +
573 		    sblock.fs_old_cpg * sizeof(int32_t);
574 		acg.cg_iusedoff = acg.cg_old_boff +
575 		    sblock.fs_old_cpg * sizeof(u_int16_t);
576 	}
577 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
578 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
579 	if (sblock.fs_contigsumsize > 0) {
580 		acg.cg_clustersumoff =
581 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
582 		acg.cg_clustersumoff -= sizeof(u_int32_t);
583 		acg.cg_clusteroff = acg.cg_clustersumoff +
584 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
585 		acg.cg_nextfreeoff = acg.cg_clusteroff +
586 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
587 	}
588 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
589 		printf("Panic: cylinder group too big\n");
590 		exit(37);
591 	}
592 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
593 	if (cylno == 0)
594 		for (i = 0; i < (long)ROOTINO; i++) {
595 			setbit(cg_inosused(&acg), i);
596 			acg.cg_cs.cs_nifree--;
597 		}
598 	if (cylno > 0) {
599 		/*
600 		 * In cylno 0, beginning space is reserved
601 		 * for boot and super blocks.
602 		 */
603 		for (d = 0; d < dlower; d += sblock.fs_frag) {
604 			blkno = d / sblock.fs_frag;
605 			setblock(&sblock, cg_blksfree(&acg), blkno);
606 			if (sblock.fs_contigsumsize > 0)
607 				setbit(cg_clustersfree(&acg), blkno);
608 			acg.cg_cs.cs_nbfree++;
609 		}
610 	}
611 	if ((i = dupper % sblock.fs_frag)) {
612 		acg.cg_frsum[sblock.fs_frag - i]++;
613 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
614 			setbit(cg_blksfree(&acg), dupper);
615 			acg.cg_cs.cs_nffree++;
616 		}
617 	}
618 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
619 	     d += sblock.fs_frag) {
620 		blkno = d / sblock.fs_frag;
621 		setblock(&sblock, cg_blksfree(&acg), blkno);
622 		if (sblock.fs_contigsumsize > 0)
623 			setbit(cg_clustersfree(&acg), blkno);
624 		acg.cg_cs.cs_nbfree++;
625 	}
626 	if (d < acg.cg_ndblk) {
627 		acg.cg_frsum[acg.cg_ndblk - d]++;
628 		for (; d < acg.cg_ndblk; d++) {
629 			setbit(cg_blksfree(&acg), d);
630 			acg.cg_cs.cs_nffree++;
631 		}
632 	}
633 	if (sblock.fs_contigsumsize > 0) {
634 		int32_t *sump = cg_clustersum(&acg);
635 		u_char *mapp = cg_clustersfree(&acg);
636 		int map = *mapp++;
637 		int bit = 1;
638 		int run = 0;
639 
640 		for (i = 0; i < acg.cg_nclusterblks; i++) {
641 			if ((map & bit) != 0)
642 				run++;
643 			else if (run != 0) {
644 				if (run > sblock.fs_contigsumsize)
645 					run = sblock.fs_contigsumsize;
646 				sump[run]++;
647 				run = 0;
648 			}
649 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
650 				bit <<= 1;
651 			else {
652 				map = *mapp++;
653 				bit = 1;
654 			}
655 		}
656 		if (run != 0) {
657 			if (run > sblock.fs_contigsumsize)
658 				run = sblock.fs_contigsumsize;
659 			sump[run]++;
660 		}
661 	}
662 	*cs = acg.cg_cs;
663 	/*
664 	 * Write out the duplicate super block, the cylinder group map
665 	 * and two blocks worth of inodes in a single write.
666 	 */
667 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
668 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
669 	start += sblock.fs_bsize;
670 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
671 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
672 	for (i = 0; i < acg.cg_initediblk; i++) {
673 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
674 			dp1->di_gen = newfs_random();
675 			dp1++;
676 		} else {
677 			dp2->di_gen = newfs_random();
678 			dp2++;
679 		}
680 	}
681 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
682 	/*
683 	 * For the old file system, we have to initialize all the inodes.
684 	 */
685 	if (Oflag == 1) {
686 		for (i = 2 * sblock.fs_frag;
687 		     i < sblock.fs_ipg / INOPF(&sblock);
688 		     i += sblock.fs_frag) {
689 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
690 			for (j = 0; j < INOPB(&sblock); j++) {
691 				dp1->di_gen = newfs_random();
692 				dp1++;
693 			}
694 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
695 			    sblock.fs_bsize, &iobuf[start]);
696 		}
697 	}
698 }
699 
700 /*
701  * initialize the file system
702  */
703 #define PREDEFDIR 2
704 
705 struct direct root_dir[] = {
706 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
707 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
708 };
709 
710 void
711 fsinit(time_t utime)
712 {
713 	union dinode node;
714 
715 	memset(&node, 0, sizeof node);
716 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
717 		/*
718 		 * initialize the node
719 		 */
720 		node.dp1.di_atime = utime;
721 		node.dp1.di_mtime = utime;
722 		node.dp1.di_ctime = utime;
723 		/*
724 		 * create the root directory
725 		 */
726 		node.dp1.di_mode = IFDIR | UMASK;
727 		node.dp1.di_nlink = PREDEFDIR;
728 		node.dp1.di_size = makedir(root_dir, PREDEFDIR);
729 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
730 		node.dp1.di_blocks =
731 		    btodb(fragroundup(&sblock, node.dp1.di_size));
732 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
733 		    iobuf);
734 	} else {
735 		/*
736 		 * initialize the node
737 		 */
738 		node.dp2.di_atime = utime;
739 		node.dp2.di_mtime = utime;
740 		node.dp2.di_ctime = utime;
741 		node.dp2.di_birthtime = utime;
742 		/*
743 		 * create the root directory
744 		 */
745 		node.dp2.di_mode = IFDIR | UMASK;
746 		node.dp2.di_nlink = PREDEFDIR;
747 		node.dp2.di_size = makedir(root_dir, PREDEFDIR);
748 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
749 		node.dp2.di_blocks =
750 		    btodb(fragroundup(&sblock, node.dp2.di_size));
751 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
752 		    iobuf);
753 	}
754 	iput(&node, ROOTINO);
755 }
756 
757 /*
758  * construct a set of directory entries in "iobuf".
759  * return size of directory.
760  */
761 int
762 makedir(struct direct *protodir, int entries)
763 {
764 	char *cp;
765 	int i, spcleft;
766 
767 	spcleft = DIRBLKSIZ;
768 	memset(iobuf, 0, DIRBLKSIZ);
769 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
770 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
771 		memmove(cp, &protodir[i], protodir[i].d_reclen);
772 		cp += protodir[i].d_reclen;
773 		spcleft -= protodir[i].d_reclen;
774 	}
775 	protodir[i].d_reclen = spcleft;
776 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
777 	return (DIRBLKSIZ);
778 }
779 
780 /*
781  * allocate a block or frag
782  */
783 ufs2_daddr_t
784 alloc(int size, int mode)
785 {
786 	int i, d, blkno, frag;
787 
788 	bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
789 	    sblock.fs_cgsize);
790 	if (acg.cg_magic != CG_MAGIC) {
791 		printf("cg 0: bad magic number\n");
792 		exit(38);
793 	}
794 	if (acg.cg_cs.cs_nbfree == 0) {
795 		printf("first cylinder group ran out of space\n");
796 		exit(39);
797 	}
798 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
799 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
800 			goto goth;
801 	printf("internal error: can't find block in cyl 0\n");
802 	exit(40);
803 goth:
804 	blkno = fragstoblks(&sblock, d);
805 	clrblock(&sblock, cg_blksfree(&acg), blkno);
806 	if (sblock.fs_contigsumsize > 0)
807 		clrbit(cg_clustersfree(&acg), blkno);
808 	acg.cg_cs.cs_nbfree--;
809 	sblock.fs_cstotal.cs_nbfree--;
810 	fscs[0].cs_nbfree--;
811 	if (mode & IFDIR) {
812 		acg.cg_cs.cs_ndir++;
813 		sblock.fs_cstotal.cs_ndir++;
814 		fscs[0].cs_ndir++;
815 	}
816 	if (size != sblock.fs_bsize) {
817 		frag = howmany(size, sblock.fs_fsize);
818 		fscs[0].cs_nffree += sblock.fs_frag - frag;
819 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
820 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
821 		acg.cg_frsum[sblock.fs_frag - frag]++;
822 		for (i = frag; i < sblock.fs_frag; i++)
823 			setbit(cg_blksfree(&acg), d + i);
824 	}
825 	/* XXX cgwrite(&disk, 0)??? */
826 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
827 	    (char *)&acg);
828 	return ((ufs2_daddr_t)d);
829 }
830 
831 /*
832  * Allocate an inode on the disk
833  */
834 void
835 iput(union dinode *ip, ino_t ino)
836 {
837 	ufs2_daddr_t d;
838 	int c;
839 
840 	c = ino_to_cg(&sblock, ino);
841 	bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
842 	    sblock.fs_cgsize);
843 	if (acg.cg_magic != CG_MAGIC) {
844 		printf("cg 0: bad magic number\n");
845 		exit(31);
846 	}
847 	acg.cg_cs.cs_nifree--;
848 	setbit(cg_inosused(&acg), ino);
849 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
850 	    (char *)&acg);
851 	sblock.fs_cstotal.cs_nifree--;
852 	fscs[0].cs_nifree--;
853 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
854 		printf("fsinit: inode value out of range (%d).\n", ino);
855 		exit(32);
856 	}
857 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
858 	bread(&disk, d, (char *)iobuf, sblock.fs_bsize);
859 	if (sblock.fs_magic == FS_UFS1_MAGIC)
860 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
861 		    ip->dp1;
862 	else
863 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
864 		    ip->dp2;
865 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
866 }
867 
868 /*
869  * possibly write to disk
870  */
871 static void
872 wtfs(ufs2_daddr_t bno, int size, char *bf)
873 {
874 	if (Nflag)
875 		return;
876 	if (bwrite(&disk, bno, bf, size) < 0)
877 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
878 }
879 
880 /*
881  * check if a block is available
882  */
883 static int
884 isblock(struct fs *fs, unsigned char *cp, int h)
885 {
886 	unsigned char mask;
887 
888 	switch (fs->fs_frag) {
889 	case 8:
890 		return (cp[h] == 0xff);
891 	case 4:
892 		mask = 0x0f << ((h & 0x1) << 2);
893 		return ((cp[h >> 1] & mask) == mask);
894 	case 2:
895 		mask = 0x03 << ((h & 0x3) << 1);
896 		return ((cp[h >> 2] & mask) == mask);
897 	case 1:
898 		mask = 0x01 << (h & 0x7);
899 		return ((cp[h >> 3] & mask) == mask);
900 	default:
901 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
902 		return (0);
903 	}
904 }
905 
906 /*
907  * take a block out of the map
908  */
909 static void
910 clrblock(struct fs *fs, unsigned char *cp, int h)
911 {
912 	switch ((fs)->fs_frag) {
913 	case 8:
914 		cp[h] = 0;
915 		return;
916 	case 4:
917 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
918 		return;
919 	case 2:
920 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
921 		return;
922 	case 1:
923 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
924 		return;
925 	default:
926 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
927 		return;
928 	}
929 }
930 
931 /*
932  * put a block into the map
933  */
934 static void
935 setblock(struct fs *fs, unsigned char *cp, int h)
936 {
937 	switch (fs->fs_frag) {
938 	case 8:
939 		cp[h] = 0xff;
940 		return;
941 	case 4:
942 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
943 		return;
944 	case 2:
945 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
946 		return;
947 	case 1:
948 		cp[h >> 3] |= (0x01 << (h & 0x7));
949 		return;
950 	default:
951 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
952 		return;
953 	}
954 }
955 
956 /*
957  * Determine the number of characters in a
958  * single line.
959  */
960 
961 static int
962 charsperline(void)
963 {
964 	int columns;
965 	char *cp;
966 	struct winsize ws;
967 
968 	columns = 0;
969 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
970 		columns = ws.ws_col;
971 	if (columns == 0 && (cp = getenv("COLUMNS")))
972 		columns = atoi(cp);
973 	if (columns == 0)
974 		columns = 80;	/* last resort */
975 	return (columns);
976 }
977 
978 static int
979 ilog2(int val)
980 {
981 	u_int n;
982 
983 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
984 		if (1 << n == val)
985 			return (n);
986 	errx(1, "ilog2: %d is not a power of 2\n", val);
987 }
988 
989 /*
990  * For the regression test, return predictable random values.
991  * Otherwise use a true random number generator.
992  */
993 static u_int32_t
994 newfs_random(void)
995 {
996 	static int nextnum = 1;
997 
998 	if (Rflag)
999 		return (nextnum++);
1000 	return (arc4random());
1001 }
1002