1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #if 0 44 #ifndef lint 45 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 46 #endif /* not lint */ 47 #endif 48 #include <sys/cdefs.h> 49 __FBSDID("$FreeBSD$"); 50 51 #include <err.h> 52 #include <limits.h> 53 #include <signal.h> 54 #include <stdlib.h> 55 #include <string.h> 56 #include <stdint.h> 57 #include <stdio.h> 58 #include <unistd.h> 59 #include <sys/param.h> 60 #include <sys/time.h> 61 #include <sys/types.h> 62 #include <sys/wait.h> 63 #include <sys/resource.h> 64 #include <sys/stat.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include <sys/disklabel.h> 69 #include <sys/file.h> 70 #include <sys/mman.h> 71 #include <sys/ioctl.h> 72 #include "newfs.h" 73 74 /* 75 * make file system for cylinder-group style file systems 76 */ 77 #define UMASK 0755 78 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 79 80 static struct csum *fscs; 81 #define sblock disk.d_fs 82 #define acg disk.d_cg 83 84 union dinode { 85 struct ufs1_dinode dp1; 86 struct ufs2_dinode dp2; 87 }; 88 #define DIP(dp, field) \ 89 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 90 (dp)->dp1.field : (dp)->dp2.field) 91 92 static caddr_t iobuf; 93 static long iobufsize; 94 static ufs2_daddr_t alloc(int size, int mode); 95 static int charsperline(void); 96 static void clrblock(struct fs *, unsigned char *, int); 97 static void fsinit(time_t); 98 static int ilog2(int); 99 static void initcg(int, time_t); 100 static int isblock(struct fs *, unsigned char *, int); 101 static void iput(union dinode *, ino_t); 102 static int makedir(struct direct *, int); 103 static void setblock(struct fs *, unsigned char *, int); 104 static void wtfs(ufs2_daddr_t, int, char *); 105 static u_int32_t newfs_random(void); 106 107 void 108 mkfs(struct partition *pp, char *fsys) 109 { 110 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 111 long i, j, cylno, csfrags; 112 time_t utime; 113 quad_t sizepb; 114 int width; 115 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 116 union { 117 struct fs fdummy; 118 char cdummy[SBLOCKSIZE]; 119 } dummy; 120 #define fsdummy dummy.fdummy 121 #define chdummy dummy.cdummy 122 123 /* 124 * Our blocks == sector size, and the version of UFS we are using is 125 * specified by Oflag. 126 */ 127 disk.d_bsize = sectorsize; 128 disk.d_ufs = Oflag; 129 if (Rflag) { 130 utime = 1000000000; 131 } else { 132 time(&utime); 133 arc4random_stir(); 134 } 135 sblock.fs_old_flags = FS_FLAGS_UPDATED; 136 sblock.fs_flags = 0; 137 if (Uflag) 138 sblock.fs_flags |= FS_DOSOFTDEP; 139 if (Lflag) 140 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 141 /* 142 * Validate the given file system size. 143 * Verify that its last block can actually be accessed. 144 * Convert to file system fragment sized units. 145 */ 146 if (fssize <= 0) { 147 printf("preposterous size %jd\n", (intmax_t)fssize); 148 exit(13); 149 } 150 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 151 (char *)&sblock); 152 /* 153 * collect and verify the file system density info 154 */ 155 sblock.fs_avgfilesize = avgfilesize; 156 sblock.fs_avgfpdir = avgfilesperdir; 157 if (sblock.fs_avgfilesize <= 0) 158 printf("illegal expected average file size %d\n", 159 sblock.fs_avgfilesize), exit(14); 160 if (sblock.fs_avgfpdir <= 0) 161 printf("illegal expected number of files per directory %d\n", 162 sblock.fs_avgfpdir), exit(15); 163 /* 164 * collect and verify the block and fragment sizes 165 */ 166 sblock.fs_bsize = bsize; 167 sblock.fs_fsize = fsize; 168 if (!POWEROF2(sblock.fs_bsize)) { 169 printf("block size must be a power of 2, not %d\n", 170 sblock.fs_bsize); 171 exit(16); 172 } 173 if (!POWEROF2(sblock.fs_fsize)) { 174 printf("fragment size must be a power of 2, not %d\n", 175 sblock.fs_fsize); 176 exit(17); 177 } 178 if (sblock.fs_fsize < sectorsize) { 179 printf("increasing fragment size from %d to sector size (%d)\n", 180 sblock.fs_fsize, sectorsize); 181 sblock.fs_fsize = sectorsize; 182 } 183 if (sblock.fs_bsize > MAXBSIZE) { 184 printf("decreasing block size from %d to maximum (%d)\n", 185 sblock.fs_bsize, MAXBSIZE); 186 sblock.fs_bsize = MAXBSIZE; 187 } 188 if (sblock.fs_bsize < MINBSIZE) { 189 printf("increasing block size from %d to minimum (%d)\n", 190 sblock.fs_bsize, MINBSIZE); 191 sblock.fs_bsize = MINBSIZE; 192 } 193 if (sblock.fs_fsize > MAXBSIZE) { 194 printf("decreasing fragment size from %d to maximum (%d)\n", 195 sblock.fs_fsize, MAXBSIZE); 196 sblock.fs_fsize = MAXBSIZE; 197 } 198 if (sblock.fs_bsize < sblock.fs_fsize) { 199 printf("increasing block size from %d to fragment size (%d)\n", 200 sblock.fs_bsize, sblock.fs_fsize); 201 sblock.fs_bsize = sblock.fs_fsize; 202 } 203 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 204 printf( 205 "increasing fragment size from %d to block size / %d (%d)\n", 206 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 207 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 208 } 209 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 210 sblock.fs_maxbsize = sblock.fs_bsize; 211 printf("Extent size set to %d\n", sblock.fs_maxbsize); 212 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 213 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 214 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 215 } else { 216 sblock.fs_maxbsize = maxbsize; 217 } 218 sblock.fs_maxcontig = maxcontig; 219 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 220 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 221 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 222 } 223 if (sblock.fs_maxcontig > 1) 224 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 225 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 226 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 227 sblock.fs_qbmask = ~sblock.fs_bmask; 228 sblock.fs_qfmask = ~sblock.fs_fmask; 229 sblock.fs_bshift = ilog2(sblock.fs_bsize); 230 sblock.fs_fshift = ilog2(sblock.fs_fsize); 231 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 232 sblock.fs_fragshift = ilog2(sblock.fs_frag); 233 if (sblock.fs_frag > MAXFRAG) { 234 printf("fragment size %d is still too small (can't happen)\n", 235 sblock.fs_bsize / MAXFRAG); 236 exit(21); 237 } 238 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 239 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 240 if (Oflag == 1) { 241 sblock.fs_magic = FS_UFS1_MAGIC; 242 sblock.fs_sblockloc = SBLOCK_UFS1; 243 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 244 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 245 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 246 sizeof(ufs1_daddr_t)); 247 sblock.fs_old_inodefmt = FS_44INODEFMT; 248 sblock.fs_old_cgoffset = 0; 249 sblock.fs_old_cgmask = 0xffffffff; 250 sblock.fs_old_size = sblock.fs_size; 251 sblock.fs_old_rotdelay = 0; 252 sblock.fs_old_rps = 60; 253 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 254 sblock.fs_old_cpg = 1; 255 sblock.fs_old_interleave = 1; 256 sblock.fs_old_trackskew = 0; 257 sblock.fs_old_cpc = 0; 258 sblock.fs_old_postblformat = 1; 259 sblock.fs_old_nrpos = 1; 260 } else { 261 sblock.fs_magic = FS_UFS2_MAGIC; 262 sblock.fs_sblockloc = SBLOCK_UFS2; 263 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 264 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 265 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 266 sizeof(ufs2_daddr_t)); 267 } 268 sblock.fs_sblkno = 269 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 270 sblock.fs_frag); 271 sblock.fs_cblkno = sblock.fs_sblkno + 272 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 273 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 274 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 275 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 276 sizepb *= NINDIR(&sblock); 277 sblock.fs_maxfilesize += sizepb; 278 } 279 /* 280 * Calculate the number of blocks to put into each cylinder group. 281 * 282 * This algorithm selects the number of blocks per cylinder 283 * group. The first goal is to have at least enough data blocks 284 * in each cylinder group to meet the density requirement. Once 285 * this goal is achieved we try to expand to have at least 286 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 287 * pack as many blocks into each cylinder group map as will fit. 288 * 289 * We start by calculating the smallest number of blocks that we 290 * can put into each cylinder group. If this is too big, we reduce 291 * the density until it fits. 292 */ 293 origdensity = density; 294 for (;;) { 295 fragsperinode = MAX(numfrags(&sblock, density), 1); 296 minfpg = fragsperinode * INOPB(&sblock); 297 if (minfpg > sblock.fs_size) 298 minfpg = sblock.fs_size; 299 sblock.fs_ipg = INOPB(&sblock); 300 sblock.fs_fpg = roundup(sblock.fs_iblkno + 301 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 302 if (sblock.fs_fpg < minfpg) 303 sblock.fs_fpg = minfpg; 304 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 305 INOPB(&sblock)); 306 sblock.fs_fpg = roundup(sblock.fs_iblkno + 307 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 308 if (sblock.fs_fpg < minfpg) 309 sblock.fs_fpg = minfpg; 310 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 311 INOPB(&sblock)); 312 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 313 break; 314 density -= sblock.fs_fsize; 315 } 316 if (density != origdensity) 317 printf("density reduced from %d to %d\n", origdensity, density); 318 /* 319 * Start packing more blocks into the cylinder group until 320 * it cannot grow any larger, the number of cylinder groups 321 * drops below MINCYLGRPS, or we reach the size requested. 322 */ 323 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 324 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 325 INOPB(&sblock)); 326 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 327 break; 328 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 329 continue; 330 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 331 break; 332 sblock.fs_fpg -= sblock.fs_frag; 333 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 334 INOPB(&sblock)); 335 break; 336 } 337 /* 338 * Check to be sure that the last cylinder group has enough blocks 339 * to be viable. If it is too small, reduce the number of blocks 340 * per cylinder group which will have the effect of moving more 341 * blocks into the last cylinder group. 342 */ 343 optimalfpg = sblock.fs_fpg; 344 for (;;) { 345 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 346 lastminfpg = roundup(sblock.fs_iblkno + 347 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 348 if (sblock.fs_size < lastminfpg) { 349 printf("Filesystem size %jd < minimum size of %d\n", 350 (intmax_t)sblock.fs_size, lastminfpg); 351 exit(28); 352 } 353 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 354 sblock.fs_size % sblock.fs_fpg == 0) 355 break; 356 sblock.fs_fpg -= sblock.fs_frag; 357 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 358 INOPB(&sblock)); 359 } 360 if (optimalfpg != sblock.fs_fpg) 361 printf("Reduced frags per cylinder group from %d to %d %s\n", 362 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 363 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 364 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 365 if (Oflag == 1) { 366 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 367 sblock.fs_old_nsect = sblock.fs_old_spc; 368 sblock.fs_old_npsect = sblock.fs_old_spc; 369 sblock.fs_old_ncyl = sblock.fs_ncg; 370 } 371 /* 372 * fill in remaining fields of the super block 373 */ 374 sblock.fs_csaddr = cgdmin(&sblock, 0); 375 sblock.fs_cssize = 376 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 377 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 378 if (fscs == NULL) 379 errx(31, "calloc failed"); 380 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 381 if (sblock.fs_sbsize > SBLOCKSIZE) 382 sblock.fs_sbsize = SBLOCKSIZE; 383 sblock.fs_minfree = minfree; 384 sblock.fs_maxbpg = maxbpg; 385 sblock.fs_optim = opt; 386 sblock.fs_cgrotor = 0; 387 sblock.fs_pendingblocks = 0; 388 sblock.fs_pendinginodes = 0; 389 sblock.fs_fmod = 0; 390 sblock.fs_ronly = 0; 391 sblock.fs_state = 0; 392 sblock.fs_clean = 1; 393 sblock.fs_id[0] = (long)utime; 394 sblock.fs_id[1] = newfs_random(); 395 sblock.fs_fsmnt[0] = '\0'; 396 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 397 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 398 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 399 sblock.fs_cstotal.cs_nbfree = 400 fragstoblks(&sblock, sblock.fs_dsize) - 401 howmany(csfrags, sblock.fs_frag); 402 sblock.fs_cstotal.cs_nffree = 403 fragnum(&sblock, sblock.fs_size) + 404 (fragnum(&sblock, csfrags) > 0 ? 405 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 406 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 407 sblock.fs_cstotal.cs_ndir = 0; 408 sblock.fs_dsize -= csfrags; 409 sblock.fs_time = utime; 410 if (Oflag == 1) { 411 sblock.fs_old_time = utime; 412 sblock.fs_old_dsize = sblock.fs_dsize; 413 sblock.fs_old_csaddr = sblock.fs_csaddr; 414 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 415 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 416 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 417 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 418 } 419 420 /* 421 * Dump out summary information about file system. 422 */ 423 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 424 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 425 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 426 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 427 sblock.fs_fsize); 428 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 429 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 430 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 431 if (sblock.fs_flags & FS_DOSOFTDEP) 432 printf("\twith soft updates\n"); 433 # undef B2MBFACTOR 434 435 /* 436 * Wipe out old UFS1 superblock(s) if necessary. 437 */ 438 if (!Nflag && Oflag != 1) { 439 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 440 if (i == -1) 441 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 442 443 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 444 fsdummy.fs_magic = 0; 445 bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 446 for (i = 0; i < fsdummy.fs_ncg; i++) 447 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)), 448 chdummy, SBLOCKSIZE); 449 } 450 } 451 452 /* 453 * Now build the cylinders group blocks and 454 * then print out indices of cylinder groups. 455 */ 456 printf("super-block backups (for fsck -b #) at:\n"); 457 i = 0; 458 width = charsperline(); 459 /* 460 * allocate space for superblock, cylinder group map, and 461 * two sets of inode blocks. 462 */ 463 if (sblock.fs_bsize < SBLOCKSIZE) 464 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 465 else 466 iobufsize = 4 * sblock.fs_bsize; 467 if ((iobuf = malloc(iobufsize)) == 0) { 468 printf("Cannot allocate I/O buffer\n"); 469 exit(38); 470 } 471 bzero(iobuf, iobufsize); 472 /* 473 * Make a copy of the superblock into the buffer that we will be 474 * writing out in each cylinder group. 475 */ 476 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 477 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 478 initcg(cylno, utime); 479 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 480 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 481 cylno < (sblock.fs_ncg-1) ? "," : ""); 482 if (j < 0) 483 tmpbuf[j = 0] = '\0'; 484 if (i + j >= width) { 485 printf("\n"); 486 i = 0; 487 } 488 i += j; 489 printf("%s", tmpbuf); 490 fflush(stdout); 491 } 492 printf("\n"); 493 if (Nflag) 494 exit(0); 495 /* 496 * Now construct the initial file system, 497 * then write out the super-block. 498 */ 499 fsinit(utime); 500 if (Oflag == 1) { 501 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 502 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 503 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 504 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 505 } 506 if (!Nflag) 507 sbwrite(&disk, 0); 508 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 509 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 510 sblock.fs_cssize - i < sblock.fs_bsize ? 511 sblock.fs_cssize - i : sblock.fs_bsize, 512 ((char *)fscs) + i); 513 /* 514 * Update information about this partion in pack 515 * label, to that it may be updated on disk. 516 */ 517 if (pp != NULL) { 518 pp->p_fstype = FS_BSDFFS; 519 pp->p_fsize = sblock.fs_fsize; 520 pp->p_frag = sblock.fs_frag; 521 pp->p_cpg = sblock.fs_fpg; 522 } 523 } 524 525 /* 526 * Initialize a cylinder group. 527 */ 528 void 529 initcg(int cylno, time_t utime) 530 { 531 long i, j, d, dlower, dupper, blkno, start; 532 ufs2_daddr_t cbase, dmax; 533 struct ufs1_dinode *dp1; 534 struct ufs2_dinode *dp2; 535 struct csum *cs; 536 537 /* 538 * Determine block bounds for cylinder group. 539 * Allow space for super block summary information in first 540 * cylinder group. 541 */ 542 cbase = cgbase(&sblock, cylno); 543 dmax = cbase + sblock.fs_fpg; 544 if (dmax > sblock.fs_size) 545 dmax = sblock.fs_size; 546 dlower = cgsblock(&sblock, cylno) - cbase; 547 dupper = cgdmin(&sblock, cylno) - cbase; 548 if (cylno == 0) 549 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 550 cs = &fscs[cylno]; 551 memset(&acg, 0, sblock.fs_cgsize); 552 acg.cg_time = utime; 553 acg.cg_magic = CG_MAGIC; 554 acg.cg_cgx = cylno; 555 acg.cg_niblk = sblock.fs_ipg; 556 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 557 sblock.fs_ipg : 2 * INOPB(&sblock); 558 acg.cg_ndblk = dmax - cbase; 559 if (sblock.fs_contigsumsize > 0) 560 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 561 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 562 if (Oflag == 2) { 563 acg.cg_iusedoff = start; 564 } else { 565 acg.cg_old_ncyl = sblock.fs_old_cpg; 566 acg.cg_old_time = acg.cg_time; 567 acg.cg_time = 0; 568 acg.cg_old_niblk = acg.cg_niblk; 569 acg.cg_niblk = 0; 570 acg.cg_initediblk = 0; 571 acg.cg_old_btotoff = start; 572 acg.cg_old_boff = acg.cg_old_btotoff + 573 sblock.fs_old_cpg * sizeof(int32_t); 574 acg.cg_iusedoff = acg.cg_old_boff + 575 sblock.fs_old_cpg * sizeof(u_int16_t); 576 } 577 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 578 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 579 if (sblock.fs_contigsumsize > 0) { 580 acg.cg_clustersumoff = 581 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 582 acg.cg_clustersumoff -= sizeof(u_int32_t); 583 acg.cg_clusteroff = acg.cg_clustersumoff + 584 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 585 acg.cg_nextfreeoff = acg.cg_clusteroff + 586 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 587 } 588 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 589 printf("Panic: cylinder group too big\n"); 590 exit(37); 591 } 592 acg.cg_cs.cs_nifree += sblock.fs_ipg; 593 if (cylno == 0) 594 for (i = 0; i < (long)ROOTINO; i++) { 595 setbit(cg_inosused(&acg), i); 596 acg.cg_cs.cs_nifree--; 597 } 598 if (cylno > 0) { 599 /* 600 * In cylno 0, beginning space is reserved 601 * for boot and super blocks. 602 */ 603 for (d = 0; d < dlower; d += sblock.fs_frag) { 604 blkno = d / sblock.fs_frag; 605 setblock(&sblock, cg_blksfree(&acg), blkno); 606 if (sblock.fs_contigsumsize > 0) 607 setbit(cg_clustersfree(&acg), blkno); 608 acg.cg_cs.cs_nbfree++; 609 } 610 } 611 if ((i = dupper % sblock.fs_frag)) { 612 acg.cg_frsum[sblock.fs_frag - i]++; 613 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 614 setbit(cg_blksfree(&acg), dupper); 615 acg.cg_cs.cs_nffree++; 616 } 617 } 618 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 619 d += sblock.fs_frag) { 620 blkno = d / sblock.fs_frag; 621 setblock(&sblock, cg_blksfree(&acg), blkno); 622 if (sblock.fs_contigsumsize > 0) 623 setbit(cg_clustersfree(&acg), blkno); 624 acg.cg_cs.cs_nbfree++; 625 } 626 if (d < acg.cg_ndblk) { 627 acg.cg_frsum[acg.cg_ndblk - d]++; 628 for (; d < acg.cg_ndblk; d++) { 629 setbit(cg_blksfree(&acg), d); 630 acg.cg_cs.cs_nffree++; 631 } 632 } 633 if (sblock.fs_contigsumsize > 0) { 634 int32_t *sump = cg_clustersum(&acg); 635 u_char *mapp = cg_clustersfree(&acg); 636 int map = *mapp++; 637 int bit = 1; 638 int run = 0; 639 640 for (i = 0; i < acg.cg_nclusterblks; i++) { 641 if ((map & bit) != 0) 642 run++; 643 else if (run != 0) { 644 if (run > sblock.fs_contigsumsize) 645 run = sblock.fs_contigsumsize; 646 sump[run]++; 647 run = 0; 648 } 649 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 650 bit <<= 1; 651 else { 652 map = *mapp++; 653 bit = 1; 654 } 655 } 656 if (run != 0) { 657 if (run > sblock.fs_contigsumsize) 658 run = sblock.fs_contigsumsize; 659 sump[run]++; 660 } 661 } 662 *cs = acg.cg_cs; 663 /* 664 * Write out the duplicate super block, the cylinder group map 665 * and two blocks worth of inodes in a single write. 666 */ 667 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 668 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 669 start += sblock.fs_bsize; 670 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 671 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 672 for (i = 0; i < acg.cg_initediblk; i++) { 673 if (sblock.fs_magic == FS_UFS1_MAGIC) { 674 dp1->di_gen = newfs_random(); 675 dp1++; 676 } else { 677 dp2->di_gen = newfs_random(); 678 dp2++; 679 } 680 } 681 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 682 /* 683 * For the old file system, we have to initialize all the inodes. 684 */ 685 if (Oflag == 1) { 686 for (i = 2 * sblock.fs_frag; 687 i < sblock.fs_ipg / INOPF(&sblock); 688 i += sblock.fs_frag) { 689 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 690 for (j = 0; j < INOPB(&sblock); j++) { 691 dp1->di_gen = newfs_random(); 692 dp1++; 693 } 694 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 695 sblock.fs_bsize, &iobuf[start]); 696 } 697 } 698 } 699 700 /* 701 * initialize the file system 702 */ 703 #define PREDEFDIR 2 704 705 struct direct root_dir[] = { 706 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 707 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 708 }; 709 710 void 711 fsinit(time_t utime) 712 { 713 union dinode node; 714 715 memset(&node, 0, sizeof node); 716 if (sblock.fs_magic == FS_UFS1_MAGIC) { 717 /* 718 * initialize the node 719 */ 720 node.dp1.di_atime = utime; 721 node.dp1.di_mtime = utime; 722 node.dp1.di_ctime = utime; 723 /* 724 * create the root directory 725 */ 726 node.dp1.di_mode = IFDIR | UMASK; 727 node.dp1.di_nlink = PREDEFDIR; 728 node.dp1.di_size = makedir(root_dir, PREDEFDIR); 729 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 730 node.dp1.di_blocks = 731 btodb(fragroundup(&sblock, node.dp1.di_size)); 732 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 733 iobuf); 734 } else { 735 /* 736 * initialize the node 737 */ 738 node.dp2.di_atime = utime; 739 node.dp2.di_mtime = utime; 740 node.dp2.di_ctime = utime; 741 node.dp2.di_birthtime = utime; 742 /* 743 * create the root directory 744 */ 745 node.dp2.di_mode = IFDIR | UMASK; 746 node.dp2.di_nlink = PREDEFDIR; 747 node.dp2.di_size = makedir(root_dir, PREDEFDIR); 748 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 749 node.dp2.di_blocks = 750 btodb(fragroundup(&sblock, node.dp2.di_size)); 751 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 752 iobuf); 753 } 754 iput(&node, ROOTINO); 755 } 756 757 /* 758 * construct a set of directory entries in "iobuf". 759 * return size of directory. 760 */ 761 int 762 makedir(struct direct *protodir, int entries) 763 { 764 char *cp; 765 int i, spcleft; 766 767 spcleft = DIRBLKSIZ; 768 memset(iobuf, 0, DIRBLKSIZ); 769 for (cp = iobuf, i = 0; i < entries - 1; i++) { 770 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 771 memmove(cp, &protodir[i], protodir[i].d_reclen); 772 cp += protodir[i].d_reclen; 773 spcleft -= protodir[i].d_reclen; 774 } 775 protodir[i].d_reclen = spcleft; 776 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 777 return (DIRBLKSIZ); 778 } 779 780 /* 781 * allocate a block or frag 782 */ 783 ufs2_daddr_t 784 alloc(int size, int mode) 785 { 786 int i, d, blkno, frag; 787 788 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 789 sblock.fs_cgsize); 790 if (acg.cg_magic != CG_MAGIC) { 791 printf("cg 0: bad magic number\n"); 792 exit(38); 793 } 794 if (acg.cg_cs.cs_nbfree == 0) { 795 printf("first cylinder group ran out of space\n"); 796 exit(39); 797 } 798 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 799 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 800 goto goth; 801 printf("internal error: can't find block in cyl 0\n"); 802 exit(40); 803 goth: 804 blkno = fragstoblks(&sblock, d); 805 clrblock(&sblock, cg_blksfree(&acg), blkno); 806 if (sblock.fs_contigsumsize > 0) 807 clrbit(cg_clustersfree(&acg), blkno); 808 acg.cg_cs.cs_nbfree--; 809 sblock.fs_cstotal.cs_nbfree--; 810 fscs[0].cs_nbfree--; 811 if (mode & IFDIR) { 812 acg.cg_cs.cs_ndir++; 813 sblock.fs_cstotal.cs_ndir++; 814 fscs[0].cs_ndir++; 815 } 816 if (size != sblock.fs_bsize) { 817 frag = howmany(size, sblock.fs_fsize); 818 fscs[0].cs_nffree += sblock.fs_frag - frag; 819 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 820 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 821 acg.cg_frsum[sblock.fs_frag - frag]++; 822 for (i = frag; i < sblock.fs_frag; i++) 823 setbit(cg_blksfree(&acg), d + i); 824 } 825 /* XXX cgwrite(&disk, 0)??? */ 826 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 827 (char *)&acg); 828 return ((ufs2_daddr_t)d); 829 } 830 831 /* 832 * Allocate an inode on the disk 833 */ 834 void 835 iput(union dinode *ip, ino_t ino) 836 { 837 ufs2_daddr_t d; 838 int c; 839 840 c = ino_to_cg(&sblock, ino); 841 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 842 sblock.fs_cgsize); 843 if (acg.cg_magic != CG_MAGIC) { 844 printf("cg 0: bad magic number\n"); 845 exit(31); 846 } 847 acg.cg_cs.cs_nifree--; 848 setbit(cg_inosused(&acg), ino); 849 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 850 (char *)&acg); 851 sblock.fs_cstotal.cs_nifree--; 852 fscs[0].cs_nifree--; 853 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 854 printf("fsinit: inode value out of range (%d).\n", ino); 855 exit(32); 856 } 857 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 858 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 859 if (sblock.fs_magic == FS_UFS1_MAGIC) 860 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 861 ip->dp1; 862 else 863 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 864 ip->dp2; 865 wtfs(d, sblock.fs_bsize, (char *)iobuf); 866 } 867 868 /* 869 * possibly write to disk 870 */ 871 static void 872 wtfs(ufs2_daddr_t bno, int size, char *bf) 873 { 874 if (Nflag) 875 return; 876 if (bwrite(&disk, bno, bf, size) < 0) 877 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 878 } 879 880 /* 881 * check if a block is available 882 */ 883 static int 884 isblock(struct fs *fs, unsigned char *cp, int h) 885 { 886 unsigned char mask; 887 888 switch (fs->fs_frag) { 889 case 8: 890 return (cp[h] == 0xff); 891 case 4: 892 mask = 0x0f << ((h & 0x1) << 2); 893 return ((cp[h >> 1] & mask) == mask); 894 case 2: 895 mask = 0x03 << ((h & 0x3) << 1); 896 return ((cp[h >> 2] & mask) == mask); 897 case 1: 898 mask = 0x01 << (h & 0x7); 899 return ((cp[h >> 3] & mask) == mask); 900 default: 901 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 902 return (0); 903 } 904 } 905 906 /* 907 * take a block out of the map 908 */ 909 static void 910 clrblock(struct fs *fs, unsigned char *cp, int h) 911 { 912 switch ((fs)->fs_frag) { 913 case 8: 914 cp[h] = 0; 915 return; 916 case 4: 917 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 918 return; 919 case 2: 920 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 921 return; 922 case 1: 923 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 924 return; 925 default: 926 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 927 return; 928 } 929 } 930 931 /* 932 * put a block into the map 933 */ 934 static void 935 setblock(struct fs *fs, unsigned char *cp, int h) 936 { 937 switch (fs->fs_frag) { 938 case 8: 939 cp[h] = 0xff; 940 return; 941 case 4: 942 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 943 return; 944 case 2: 945 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 946 return; 947 case 1: 948 cp[h >> 3] |= (0x01 << (h & 0x7)); 949 return; 950 default: 951 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 952 return; 953 } 954 } 955 956 /* 957 * Determine the number of characters in a 958 * single line. 959 */ 960 961 static int 962 charsperline(void) 963 { 964 int columns; 965 char *cp; 966 struct winsize ws; 967 968 columns = 0; 969 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 970 columns = ws.ws_col; 971 if (columns == 0 && (cp = getenv("COLUMNS"))) 972 columns = atoi(cp); 973 if (columns == 0) 974 columns = 80; /* last resort */ 975 return (columns); 976 } 977 978 static int 979 ilog2(int val) 980 { 981 u_int n; 982 983 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 984 if (1 << n == val) 985 return (n); 986 errx(1, "ilog2: %d is not a power of 2\n", val); 987 } 988 989 /* 990 * For the regression test, return predictable random values. 991 * Otherwise use a true random number generator. 992 */ 993 static u_int32_t 994 newfs_random(void) 995 { 996 static int nextnum = 1; 997 998 if (Rflag) 999 return (nextnum++); 1000 return (arc4random()); 1001 } 1002