1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #ifndef lint 43 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 44 #endif /* not lint */ 45 #endif 46 #include <sys/cdefs.h> 47 __FBSDID("$FreeBSD$"); 48 49 #define IN_RTLD /* So we pickup the P_OSREL defines */ 50 #include <sys/param.h> 51 #include <sys/disklabel.h> 52 #include <sys/file.h> 53 #include <sys/ioctl.h> 54 #include <sys/mman.h> 55 #include <sys/resource.h> 56 #include <sys/stat.h> 57 #include <sys/wait.h> 58 #include <err.h> 59 #include <grp.h> 60 #include <limits.h> 61 #include <signal.h> 62 #include <stdlib.h> 63 #include <string.h> 64 #include <stdint.h> 65 #include <stdio.h> 66 #include <time.h> 67 #include <unistd.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include "newfs.h" 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 #define UMASK 0755 77 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 78 79 static struct csum *fscs; 80 #define sblock disk.d_fs 81 #define acg disk.d_cg 82 83 union dinode { 84 struct ufs1_dinode dp1; 85 struct ufs2_dinode dp2; 86 }; 87 #define DIP(dp, field) \ 88 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 89 (dp)->dp1.field : (dp)->dp2.field) 90 91 static caddr_t iobuf; 92 static long iobufsize; 93 static ufs2_daddr_t alloc(int size, int mode); 94 static int charsperline(void); 95 static void clrblock(struct fs *, unsigned char *, int); 96 static void fsinit(time_t); 97 static int ilog2(int); 98 static void initcg(int, time_t); 99 static int isblock(struct fs *, unsigned char *, int); 100 static void iput(union dinode *, ino_t); 101 static int makedir(struct direct *, int); 102 static void setblock(struct fs *, unsigned char *, int); 103 static void wtfs(ufs2_daddr_t, int, char *); 104 static u_int32_t newfs_random(void); 105 106 void 107 mkfs(struct partition *pp, char *fsys) 108 { 109 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 110 long i, j, csfrags; 111 uint cg; 112 time_t utime; 113 quad_t sizepb; 114 int width; 115 ino_t maxinum; 116 int minfragsperinode; /* minimum ratio of frags to inodes */ 117 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 118 struct fsrecovery *fsr; 119 char *fsrbuf; 120 union { 121 struct fs fdummy; 122 char cdummy[SBLOCKSIZE]; 123 } dummy; 124 #define fsdummy dummy.fdummy 125 #define chdummy dummy.cdummy 126 127 /* 128 * Our blocks == sector size, and the version of UFS we are using is 129 * specified by Oflag. 130 */ 131 disk.d_bsize = sectorsize; 132 disk.d_ufs = Oflag; 133 if (Rflag) 134 utime = 1000000000; 135 else 136 time(&utime); 137 sblock.fs_old_flags = FS_FLAGS_UPDATED; 138 sblock.fs_flags = 0; 139 if (Uflag) 140 sblock.fs_flags |= FS_DOSOFTDEP; 141 if (Lflag) 142 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 143 if (Jflag) 144 sblock.fs_flags |= FS_GJOURNAL; 145 if (lflag) 146 sblock.fs_flags |= FS_MULTILABEL; 147 if (tflag) 148 sblock.fs_flags |= FS_TRIM; 149 /* 150 * Validate the given file system size. 151 * Verify that its last block can actually be accessed. 152 * Convert to file system fragment sized units. 153 */ 154 if (fssize <= 0) { 155 printf("preposterous size %jd\n", (intmax_t)fssize); 156 exit(13); 157 } 158 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 159 (char *)&sblock); 160 /* 161 * collect and verify the file system density info 162 */ 163 sblock.fs_avgfilesize = avgfilesize; 164 sblock.fs_avgfpdir = avgfilesperdir; 165 if (sblock.fs_avgfilesize <= 0) 166 printf("illegal expected average file size %d\n", 167 sblock.fs_avgfilesize), exit(14); 168 if (sblock.fs_avgfpdir <= 0) 169 printf("illegal expected number of files per directory %d\n", 170 sblock.fs_avgfpdir), exit(15); 171 172 restart: 173 /* 174 * collect and verify the block and fragment sizes 175 */ 176 sblock.fs_bsize = bsize; 177 sblock.fs_fsize = fsize; 178 if (!POWEROF2(sblock.fs_bsize)) { 179 printf("block size must be a power of 2, not %d\n", 180 sblock.fs_bsize); 181 exit(16); 182 } 183 if (!POWEROF2(sblock.fs_fsize)) { 184 printf("fragment size must be a power of 2, not %d\n", 185 sblock.fs_fsize); 186 exit(17); 187 } 188 if (sblock.fs_fsize < sectorsize) { 189 printf("increasing fragment size from %d to sector size (%d)\n", 190 sblock.fs_fsize, sectorsize); 191 sblock.fs_fsize = sectorsize; 192 } 193 if (sblock.fs_bsize > MAXBSIZE) { 194 printf("decreasing block size from %d to maximum (%d)\n", 195 sblock.fs_bsize, MAXBSIZE); 196 sblock.fs_bsize = MAXBSIZE; 197 } 198 if (sblock.fs_bsize < MINBSIZE) { 199 printf("increasing block size from %d to minimum (%d)\n", 200 sblock.fs_bsize, MINBSIZE); 201 sblock.fs_bsize = MINBSIZE; 202 } 203 if (sblock.fs_fsize > MAXBSIZE) { 204 printf("decreasing fragment size from %d to maximum (%d)\n", 205 sblock.fs_fsize, MAXBSIZE); 206 sblock.fs_fsize = MAXBSIZE; 207 } 208 if (sblock.fs_bsize < sblock.fs_fsize) { 209 printf("increasing block size from %d to fragment size (%d)\n", 210 sblock.fs_bsize, sblock.fs_fsize); 211 sblock.fs_bsize = sblock.fs_fsize; 212 } 213 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 214 printf( 215 "increasing fragment size from %d to block size / %d (%d)\n", 216 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 217 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 218 } 219 if (maxbsize == 0) 220 maxbsize = bsize; 221 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 222 sblock.fs_maxbsize = sblock.fs_bsize; 223 printf("Extent size set to %d\n", sblock.fs_maxbsize); 224 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 225 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 226 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 227 } else { 228 sblock.fs_maxbsize = maxbsize; 229 } 230 /* 231 * Maxcontig sets the default for the maximum number of blocks 232 * that may be allocated sequentially. With file system clustering 233 * it is possible to allocate contiguous blocks up to the maximum 234 * transfer size permitted by the controller or buffering. 235 */ 236 if (maxcontig == 0) 237 maxcontig = MAX(1, MAXPHYS / bsize); 238 sblock.fs_maxcontig = maxcontig; 239 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 240 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 241 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 242 } 243 if (sblock.fs_maxcontig > 1) 244 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 245 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 246 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 247 sblock.fs_qbmask = ~sblock.fs_bmask; 248 sblock.fs_qfmask = ~sblock.fs_fmask; 249 sblock.fs_bshift = ilog2(sblock.fs_bsize); 250 sblock.fs_fshift = ilog2(sblock.fs_fsize); 251 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 252 sblock.fs_fragshift = ilog2(sblock.fs_frag); 253 if (sblock.fs_frag > MAXFRAG) { 254 printf("fragment size %d is still too small (can't happen)\n", 255 sblock.fs_bsize / MAXFRAG); 256 exit(21); 257 } 258 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 259 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 260 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 261 262 /* 263 * Before the filesystem is finally initialized, mark it 264 * as incompletely initialized. 265 */ 266 sblock.fs_magic = FS_BAD_MAGIC; 267 268 if (Oflag == 1) { 269 sblock.fs_sblockloc = SBLOCK_UFS1; 270 sblock.fs_sblockactualloc = SBLOCK_UFS1; 271 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 272 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 273 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 274 sizeof(ufs1_daddr_t)); 275 sblock.fs_old_inodefmt = FS_44INODEFMT; 276 sblock.fs_old_cgoffset = 0; 277 sblock.fs_old_cgmask = 0xffffffff; 278 sblock.fs_old_size = sblock.fs_size; 279 sblock.fs_old_rotdelay = 0; 280 sblock.fs_old_rps = 60; 281 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 282 sblock.fs_old_cpg = 1; 283 sblock.fs_old_interleave = 1; 284 sblock.fs_old_trackskew = 0; 285 sblock.fs_old_cpc = 0; 286 sblock.fs_old_postblformat = 1; 287 sblock.fs_old_nrpos = 1; 288 } else { 289 sblock.fs_sblockloc = SBLOCK_UFS2; 290 sblock.fs_sblockactualloc = SBLOCK_UFS2; 291 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 292 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 293 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 294 sizeof(ufs2_daddr_t)); 295 } 296 sblock.fs_sblkno = 297 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 298 sblock.fs_frag); 299 sblock.fs_cblkno = sblock.fs_sblkno + 300 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 301 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 302 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 303 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 304 sizepb *= NINDIR(&sblock); 305 sblock.fs_maxfilesize += sizepb; 306 } 307 308 /* 309 * It's impossible to create a snapshot in case that fs_maxfilesize 310 * is smaller than the fssize. 311 */ 312 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 313 warnx("WARNING: You will be unable to create snapshots on this " 314 "file system. Correct by using a larger blocksize."); 315 } 316 317 /* 318 * Calculate the number of blocks to put into each cylinder group. 319 * 320 * This algorithm selects the number of blocks per cylinder 321 * group. The first goal is to have at least enough data blocks 322 * in each cylinder group to meet the density requirement. Once 323 * this goal is achieved we try to expand to have at least 324 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 325 * pack as many blocks into each cylinder group map as will fit. 326 * 327 * We start by calculating the smallest number of blocks that we 328 * can put into each cylinder group. If this is too big, we reduce 329 * the density until it fits. 330 */ 331 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 332 minfragsperinode = 1 + fssize / maxinum; 333 if (density == 0) { 334 density = MAX(NFPI, minfragsperinode) * fsize; 335 } else if (density < minfragsperinode * fsize) { 336 origdensity = density; 337 density = minfragsperinode * fsize; 338 fprintf(stderr, "density increased from %d to %d\n", 339 origdensity, density); 340 } 341 origdensity = density; 342 for (;;) { 343 fragsperinode = MAX(numfrags(&sblock, density), 1); 344 if (fragsperinode < minfragsperinode) { 345 bsize <<= 1; 346 fsize <<= 1; 347 printf("Block size too small for a file system %s %d\n", 348 "of this size. Increasing blocksize to", bsize); 349 goto restart; 350 } 351 minfpg = fragsperinode * INOPB(&sblock); 352 if (minfpg > sblock.fs_size) 353 minfpg = sblock.fs_size; 354 sblock.fs_ipg = INOPB(&sblock); 355 sblock.fs_fpg = roundup(sblock.fs_iblkno + 356 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 357 if (sblock.fs_fpg < minfpg) 358 sblock.fs_fpg = minfpg; 359 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 360 INOPB(&sblock)); 361 sblock.fs_fpg = roundup(sblock.fs_iblkno + 362 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 363 if (sblock.fs_fpg < minfpg) 364 sblock.fs_fpg = minfpg; 365 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 366 INOPB(&sblock)); 367 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 368 break; 369 density -= sblock.fs_fsize; 370 } 371 if (density != origdensity) 372 printf("density reduced from %d to %d\n", origdensity, density); 373 /* 374 * Start packing more blocks into the cylinder group until 375 * it cannot grow any larger, the number of cylinder groups 376 * drops below MINCYLGRPS, or we reach the size requested. 377 * For UFS1 inodes per cylinder group are stored in an int16_t 378 * so fs_ipg is limited to 2^15 - 1. 379 */ 380 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 381 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 382 INOPB(&sblock)); 383 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 384 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 385 break; 386 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 387 continue; 388 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 389 break; 390 } 391 sblock.fs_fpg -= sblock.fs_frag; 392 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 393 INOPB(&sblock)); 394 break; 395 } 396 /* 397 * Check to be sure that the last cylinder group has enough blocks 398 * to be viable. If it is too small, reduce the number of blocks 399 * per cylinder group which will have the effect of moving more 400 * blocks into the last cylinder group. 401 */ 402 optimalfpg = sblock.fs_fpg; 403 for (;;) { 404 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 405 lastminfpg = roundup(sblock.fs_iblkno + 406 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 407 if (sblock.fs_size < lastminfpg) { 408 printf("Filesystem size %jd < minimum size of %d\n", 409 (intmax_t)sblock.fs_size, lastminfpg); 410 exit(28); 411 } 412 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 413 sblock.fs_size % sblock.fs_fpg == 0) 414 break; 415 sblock.fs_fpg -= sblock.fs_frag; 416 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 417 INOPB(&sblock)); 418 } 419 if (optimalfpg != sblock.fs_fpg) 420 printf("Reduced frags per cylinder group from %d to %d %s\n", 421 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 422 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 423 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 424 if (Oflag == 1) { 425 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 426 sblock.fs_old_nsect = sblock.fs_old_spc; 427 sblock.fs_old_npsect = sblock.fs_old_spc; 428 sblock.fs_old_ncyl = sblock.fs_ncg; 429 } 430 /* 431 * fill in remaining fields of the super block 432 */ 433 sblock.fs_csaddr = cgdmin(&sblock, 0); 434 sblock.fs_cssize = 435 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 436 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 437 if (fscs == NULL) 438 errx(31, "calloc failed"); 439 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 440 if (sblock.fs_sbsize > SBLOCKSIZE) 441 sblock.fs_sbsize = SBLOCKSIZE; 442 if (sblock.fs_sbsize < realsectorsize) 443 sblock.fs_sbsize = realsectorsize; 444 sblock.fs_minfree = minfree; 445 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 446 sblock.fs_metaspace = blknum(&sblock, metaspace); 447 else if (metaspace != -1) 448 /* reserve half of minfree for metadata blocks */ 449 sblock.fs_metaspace = blknum(&sblock, 450 (sblock.fs_fpg * minfree) / 200); 451 if (maxbpg == 0) 452 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 453 else 454 sblock.fs_maxbpg = maxbpg; 455 sblock.fs_optim = opt; 456 sblock.fs_cgrotor = 0; 457 sblock.fs_pendingblocks = 0; 458 sblock.fs_pendinginodes = 0; 459 sblock.fs_fmod = 0; 460 sblock.fs_ronly = 0; 461 sblock.fs_state = 0; 462 sblock.fs_clean = 1; 463 sblock.fs_id[0] = (long)utime; 464 sblock.fs_id[1] = newfs_random(); 465 sblock.fs_fsmnt[0] = '\0'; 466 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 467 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 468 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 469 sblock.fs_cstotal.cs_nbfree = 470 fragstoblks(&sblock, sblock.fs_dsize) - 471 howmany(csfrags, sblock.fs_frag); 472 sblock.fs_cstotal.cs_nffree = 473 fragnum(&sblock, sblock.fs_size) + 474 (fragnum(&sblock, csfrags) > 0 ? 475 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 476 sblock.fs_cstotal.cs_nifree = 477 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 478 sblock.fs_cstotal.cs_ndir = 0; 479 sblock.fs_dsize -= csfrags; 480 sblock.fs_time = utime; 481 if (Oflag == 1) { 482 sblock.fs_old_time = utime; 483 sblock.fs_old_dsize = sblock.fs_dsize; 484 sblock.fs_old_csaddr = sblock.fs_csaddr; 485 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 486 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 487 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 488 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 489 } 490 /* 491 * Set flags for metadata that is being check-hashed. 492 * 493 * Metadata check hashes are not supported in the UFS version 1 494 * filesystem to keep it as small and simple as possible. 495 */ 496 if (Oflag > 1) { 497 sblock.fs_flags |= FS_METACKHASH; 498 if (getosreldate() >= P_OSREL_CK_CYLGRP) 499 sblock.fs_metackhash |= CK_CYLGRP; 500 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 501 sblock.fs_metackhash |= CK_SUPERBLOCK; 502 if (getosreldate() >= P_OSREL_CK_INODE) 503 sblock.fs_metackhash |= CK_INODE; 504 } 505 506 /* 507 * Dump out summary information about file system. 508 */ 509 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 510 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 511 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 512 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 513 sblock.fs_fsize); 514 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 515 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 516 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 517 if (sblock.fs_flags & FS_DOSOFTDEP) 518 printf("\twith soft updates\n"); 519 # undef B2MBFACTOR 520 521 if (Eflag && !Nflag) { 522 printf("Erasing sectors [%jd...%jd]\n", 523 sblock.fs_sblockloc / disk.d_bsize, 524 fsbtodb(&sblock, sblock.fs_size) - 1); 525 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 526 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 527 } 528 /* 529 * Wipe out old UFS1 superblock(s) if necessary. 530 */ 531 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 532 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 533 SBLOCKSIZE); 534 if (i == -1) 535 err(1, "can't read old UFS1 superblock: %s", 536 disk.d_error); 537 538 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 539 fsdummy.fs_magic = 0; 540 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 541 chdummy, SBLOCKSIZE); 542 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 543 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 544 fssize) 545 break; 546 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 547 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 548 } 549 } 550 } 551 if (!Nflag && sbput(disk.d_fd, &disk.d_fs, 0) != 0) 552 err(1, "sbput: %s", disk.d_error); 553 if (Xflag == 1) { 554 printf("** Exiting on Xflag 1\n"); 555 exit(0); 556 } 557 if (Xflag == 2) 558 printf("** Leaving BAD MAGIC on Xflag 2\n"); 559 else 560 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 561 562 /* 563 * Now build the cylinders group blocks and 564 * then print out indices of cylinder groups. 565 */ 566 printf("super-block backups (for fsck_ffs -b #) at:\n"); 567 i = 0; 568 width = charsperline(); 569 /* 570 * Allocate space for two sets of inode blocks. 571 */ 572 iobufsize = 2 * sblock.fs_bsize; 573 if ((iobuf = calloc(1, iobufsize)) == 0) { 574 printf("Cannot allocate I/O buffer\n"); 575 exit(38); 576 } 577 /* 578 * Write out all the cylinder groups and backup superblocks. 579 */ 580 for (cg = 0; cg < sblock.fs_ncg; cg++) { 581 if (!Nflag) 582 initcg(cg, utime); 583 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 584 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 585 cg < (sblock.fs_ncg-1) ? "," : ""); 586 if (j < 0) 587 tmpbuf[j = 0] = '\0'; 588 if (i + j >= width) { 589 printf("\n"); 590 i = 0; 591 } 592 i += j; 593 printf("%s", tmpbuf); 594 fflush(stdout); 595 } 596 printf("\n"); 597 if (Nflag) 598 exit(0); 599 /* 600 * Now construct the initial file system, 601 * then write out the super-block. 602 */ 603 fsinit(utime); 604 if (Oflag == 1) { 605 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 606 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 607 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 608 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 609 } 610 if (Xflag == 3) { 611 printf("** Exiting on Xflag 3\n"); 612 exit(0); 613 } 614 /* 615 * Reference the summary information so it will also be written. 616 */ 617 sblock.fs_csp = fscs; 618 if (sbput(disk.d_fd, &disk.d_fs, 0) != 0) 619 err(1, "sbput: %s", disk.d_error); 620 /* 621 * For UFS1 filesystems with a blocksize of 64K, the first 622 * alternate superblock resides at the location used for 623 * the default UFS2 superblock. As there is a valid 624 * superblock at this location, the boot code will use 625 * it as its first choice. Thus we have to ensure that 626 * all of its statistcs on usage are correct. 627 */ 628 if (Oflag == 1 && sblock.fs_bsize == 65536) 629 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 630 sblock.fs_bsize, (char *)&sblock); 631 /* 632 * Read the last sector of the boot block, replace the last 633 * 20 bytes with the recovery information, then write it back. 634 * The recovery information only works for UFS2 filesystems. 635 */ 636 if (sblock.fs_magic == FS_UFS2_MAGIC) { 637 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 638 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 639 fsrbuf, realsectorsize) == -1) 640 err(1, "can't read recovery area: %s", disk.d_error); 641 fsr = 642 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 643 fsr->fsr_magic = sblock.fs_magic; 644 fsr->fsr_fpg = sblock.fs_fpg; 645 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 646 fsr->fsr_sblkno = sblock.fs_sblkno; 647 fsr->fsr_ncg = sblock.fs_ncg; 648 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 649 realsectorsize, fsrbuf); 650 free(fsrbuf); 651 } 652 /* 653 * Update information about this partition in pack 654 * label, to that it may be updated on disk. 655 */ 656 if (pp != NULL) { 657 pp->p_fstype = FS_BSDFFS; 658 pp->p_fsize = sblock.fs_fsize; 659 pp->p_frag = sblock.fs_frag; 660 pp->p_cpg = sblock.fs_fpg; 661 } 662 } 663 664 /* 665 * Initialize a cylinder group. 666 */ 667 void 668 initcg(int cylno, time_t utime) 669 { 670 long blkno, start; 671 off_t savedactualloc; 672 uint i, j, d, dlower, dupper; 673 ufs2_daddr_t cbase, dmax; 674 struct ufs1_dinode *dp1; 675 struct ufs2_dinode *dp2; 676 struct csum *cs; 677 678 /* 679 * Determine block bounds for cylinder group. 680 * Allow space for super block summary information in first 681 * cylinder group. 682 */ 683 cbase = cgbase(&sblock, cylno); 684 dmax = cbase + sblock.fs_fpg; 685 if (dmax > sblock.fs_size) 686 dmax = sblock.fs_size; 687 dlower = cgsblock(&sblock, cylno) - cbase; 688 dupper = cgdmin(&sblock, cylno) - cbase; 689 if (cylno == 0) 690 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 691 cs = &fscs[cylno]; 692 memset(&acg, 0, sblock.fs_cgsize); 693 acg.cg_time = utime; 694 acg.cg_magic = CG_MAGIC; 695 acg.cg_cgx = cylno; 696 acg.cg_niblk = sblock.fs_ipg; 697 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 698 acg.cg_ndblk = dmax - cbase; 699 if (sblock.fs_contigsumsize > 0) 700 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 701 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 702 if (Oflag == 2) { 703 acg.cg_iusedoff = start; 704 } else { 705 acg.cg_old_ncyl = sblock.fs_old_cpg; 706 acg.cg_old_time = acg.cg_time; 707 acg.cg_time = 0; 708 acg.cg_old_niblk = acg.cg_niblk; 709 acg.cg_niblk = 0; 710 acg.cg_initediblk = 0; 711 acg.cg_old_btotoff = start; 712 acg.cg_old_boff = acg.cg_old_btotoff + 713 sblock.fs_old_cpg * sizeof(int32_t); 714 acg.cg_iusedoff = acg.cg_old_boff + 715 sblock.fs_old_cpg * sizeof(u_int16_t); 716 } 717 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 718 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 719 if (sblock.fs_contigsumsize > 0) { 720 acg.cg_clustersumoff = 721 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 722 acg.cg_clustersumoff -= sizeof(u_int32_t); 723 acg.cg_clusteroff = acg.cg_clustersumoff + 724 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 725 acg.cg_nextfreeoff = acg.cg_clusteroff + 726 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 727 } 728 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 729 printf("Panic: cylinder group too big\n"); 730 exit(37); 731 } 732 acg.cg_cs.cs_nifree += sblock.fs_ipg; 733 if (cylno == 0) 734 for (i = 0; i < (long)UFS_ROOTINO; i++) { 735 setbit(cg_inosused(&acg), i); 736 acg.cg_cs.cs_nifree--; 737 } 738 if (cylno > 0) { 739 /* 740 * In cylno 0, beginning space is reserved 741 * for boot and super blocks. 742 */ 743 for (d = 0; d < dlower; d += sblock.fs_frag) { 744 blkno = d / sblock.fs_frag; 745 setblock(&sblock, cg_blksfree(&acg), blkno); 746 if (sblock.fs_contigsumsize > 0) 747 setbit(cg_clustersfree(&acg), blkno); 748 acg.cg_cs.cs_nbfree++; 749 } 750 } 751 if ((i = dupper % sblock.fs_frag)) { 752 acg.cg_frsum[sblock.fs_frag - i]++; 753 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 754 setbit(cg_blksfree(&acg), dupper); 755 acg.cg_cs.cs_nffree++; 756 } 757 } 758 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 759 d += sblock.fs_frag) { 760 blkno = d / sblock.fs_frag; 761 setblock(&sblock, cg_blksfree(&acg), blkno); 762 if (sblock.fs_contigsumsize > 0) 763 setbit(cg_clustersfree(&acg), blkno); 764 acg.cg_cs.cs_nbfree++; 765 } 766 if (d < acg.cg_ndblk) { 767 acg.cg_frsum[acg.cg_ndblk - d]++; 768 for (; d < acg.cg_ndblk; d++) { 769 setbit(cg_blksfree(&acg), d); 770 acg.cg_cs.cs_nffree++; 771 } 772 } 773 if (sblock.fs_contigsumsize > 0) { 774 int32_t *sump = cg_clustersum(&acg); 775 u_char *mapp = cg_clustersfree(&acg); 776 int map = *mapp++; 777 int bit = 1; 778 int run = 0; 779 780 for (i = 0; i < acg.cg_nclusterblks; i++) { 781 if ((map & bit) != 0) 782 run++; 783 else if (run != 0) { 784 if (run > sblock.fs_contigsumsize) 785 run = sblock.fs_contigsumsize; 786 sump[run]++; 787 run = 0; 788 } 789 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 790 bit <<= 1; 791 else { 792 map = *mapp++; 793 bit = 1; 794 } 795 } 796 if (run != 0) { 797 if (run > sblock.fs_contigsumsize) 798 run = sblock.fs_contigsumsize; 799 sump[run]++; 800 } 801 } 802 *cs = acg.cg_cs; 803 /* 804 * Write out the duplicate super block. Then write the cylinder 805 * group map and two blocks worth of inodes in a single write. 806 */ 807 savedactualloc = sblock.fs_sblockactualloc; 808 sblock.fs_sblockactualloc = 809 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 810 if (sbput(disk.d_fd, &disk.d_fs, 0) != 0) 811 err(1, "sbput: %s", disk.d_error); 812 sblock.fs_sblockactualloc = savedactualloc; 813 if (cgput(&disk, &acg) != 0) 814 err(1, "initcg: cgput: %s", disk.d_error); 815 start = 0; 816 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 817 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 818 for (i = 0; i < acg.cg_initediblk; i++) { 819 if (sblock.fs_magic == FS_UFS1_MAGIC) { 820 dp1->di_gen = newfs_random(); 821 dp1++; 822 } else { 823 dp2->di_gen = newfs_random(); 824 dp2++; 825 } 826 } 827 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 828 /* 829 * For the old file system, we have to initialize all the inodes. 830 */ 831 if (Oflag == 1) { 832 for (i = 2 * sblock.fs_frag; 833 i < sblock.fs_ipg / INOPF(&sblock); 834 i += sblock.fs_frag) { 835 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 836 for (j = 0; j < INOPB(&sblock); j++) { 837 dp1->di_gen = newfs_random(); 838 dp1++; 839 } 840 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 841 sblock.fs_bsize, &iobuf[start]); 842 } 843 } 844 } 845 846 /* 847 * initialize the file system 848 */ 849 #define ROOTLINKCNT 3 850 851 static struct direct root_dir[] = { 852 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 853 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 854 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 855 }; 856 857 #define SNAPLINKCNT 2 858 859 static struct direct snap_dir[] = { 860 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 861 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 862 }; 863 864 void 865 fsinit(time_t utime) 866 { 867 union dinode node; 868 struct group *grp; 869 gid_t gid; 870 int entries; 871 872 memset(&node, 0, sizeof node); 873 if ((grp = getgrnam("operator")) != NULL) { 874 gid = grp->gr_gid; 875 } else { 876 warnx("Cannot retrieve operator gid, using gid 0."); 877 gid = 0; 878 } 879 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 880 if (sblock.fs_magic == FS_UFS1_MAGIC) { 881 /* 882 * initialize the node 883 */ 884 node.dp1.di_atime = utime; 885 node.dp1.di_mtime = utime; 886 node.dp1.di_ctime = utime; 887 /* 888 * create the root directory 889 */ 890 node.dp1.di_mode = IFDIR | UMASK; 891 node.dp1.di_nlink = entries; 892 node.dp1.di_size = makedir(root_dir, entries); 893 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 894 node.dp1.di_blocks = 895 btodb(fragroundup(&sblock, node.dp1.di_size)); 896 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 897 iobuf); 898 iput(&node, UFS_ROOTINO); 899 if (!nflag) { 900 /* 901 * create the .snap directory 902 */ 903 node.dp1.di_mode |= 020; 904 node.dp1.di_gid = gid; 905 node.dp1.di_nlink = SNAPLINKCNT; 906 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 907 node.dp1.di_db[0] = 908 alloc(sblock.fs_fsize, node.dp1.di_mode); 909 node.dp1.di_blocks = 910 btodb(fragroundup(&sblock, node.dp1.di_size)); 911 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 912 sblock.fs_fsize, iobuf); 913 iput(&node, UFS_ROOTINO + 1); 914 } 915 } else { 916 /* 917 * initialize the node 918 */ 919 node.dp2.di_atime = utime; 920 node.dp2.di_mtime = utime; 921 node.dp2.di_ctime = utime; 922 node.dp2.di_birthtime = utime; 923 /* 924 * create the root directory 925 */ 926 node.dp2.di_mode = IFDIR | UMASK; 927 node.dp2.di_nlink = entries; 928 node.dp2.di_size = makedir(root_dir, entries); 929 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 930 node.dp2.di_blocks = 931 btodb(fragroundup(&sblock, node.dp2.di_size)); 932 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 933 iobuf); 934 iput(&node, UFS_ROOTINO); 935 if (!nflag) { 936 /* 937 * create the .snap directory 938 */ 939 node.dp2.di_mode |= 020; 940 node.dp2.di_gid = gid; 941 node.dp2.di_nlink = SNAPLINKCNT; 942 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 943 node.dp2.di_db[0] = 944 alloc(sblock.fs_fsize, node.dp2.di_mode); 945 node.dp2.di_blocks = 946 btodb(fragroundup(&sblock, node.dp2.di_size)); 947 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 948 sblock.fs_fsize, iobuf); 949 iput(&node, UFS_ROOTINO + 1); 950 } 951 } 952 } 953 954 /* 955 * construct a set of directory entries in "iobuf". 956 * return size of directory. 957 */ 958 int 959 makedir(struct direct *protodir, int entries) 960 { 961 char *cp; 962 int i, spcleft; 963 964 spcleft = DIRBLKSIZ; 965 memset(iobuf, 0, DIRBLKSIZ); 966 for (cp = iobuf, i = 0; i < entries - 1; i++) { 967 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 968 memmove(cp, &protodir[i], protodir[i].d_reclen); 969 cp += protodir[i].d_reclen; 970 spcleft -= protodir[i].d_reclen; 971 } 972 protodir[i].d_reclen = spcleft; 973 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 974 return (DIRBLKSIZ); 975 } 976 977 /* 978 * allocate a block or frag 979 */ 980 ufs2_daddr_t 981 alloc(int size, int mode) 982 { 983 int i, blkno, frag; 984 uint d; 985 986 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 987 sblock.fs_cgsize); 988 if (acg.cg_magic != CG_MAGIC) { 989 printf("cg 0: bad magic number\n"); 990 exit(38); 991 } 992 if (acg.cg_cs.cs_nbfree == 0) { 993 printf("first cylinder group ran out of space\n"); 994 exit(39); 995 } 996 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 997 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 998 goto goth; 999 printf("internal error: can't find block in cyl 0\n"); 1000 exit(40); 1001 goth: 1002 blkno = fragstoblks(&sblock, d); 1003 clrblock(&sblock, cg_blksfree(&acg), blkno); 1004 if (sblock.fs_contigsumsize > 0) 1005 clrbit(cg_clustersfree(&acg), blkno); 1006 acg.cg_cs.cs_nbfree--; 1007 sblock.fs_cstotal.cs_nbfree--; 1008 fscs[0].cs_nbfree--; 1009 if (mode & IFDIR) { 1010 acg.cg_cs.cs_ndir++; 1011 sblock.fs_cstotal.cs_ndir++; 1012 fscs[0].cs_ndir++; 1013 } 1014 if (size != sblock.fs_bsize) { 1015 frag = howmany(size, sblock.fs_fsize); 1016 fscs[0].cs_nffree += sblock.fs_frag - frag; 1017 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1018 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1019 acg.cg_frsum[sblock.fs_frag - frag]++; 1020 for (i = frag; i < sblock.fs_frag; i++) 1021 setbit(cg_blksfree(&acg), d + i); 1022 } 1023 if (cgput(&disk, &acg) != 0) 1024 err(1, "alloc: cgput: %s", disk.d_error); 1025 return ((ufs2_daddr_t)d); 1026 } 1027 1028 /* 1029 * Allocate an inode on the disk 1030 */ 1031 void 1032 iput(union dinode *ip, ino_t ino) 1033 { 1034 union dinodep dp; 1035 1036 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1037 sblock.fs_cgsize); 1038 if (acg.cg_magic != CG_MAGIC) { 1039 printf("cg 0: bad magic number\n"); 1040 exit(31); 1041 } 1042 acg.cg_cs.cs_nifree--; 1043 setbit(cg_inosused(&acg), ino); 1044 if (cgput(&disk, &acg) != 0) 1045 err(1, "iput: cgput: %s", disk.d_error); 1046 sblock.fs_cstotal.cs_nifree--; 1047 fscs[0].cs_nifree--; 1048 if (getinode(&disk, &dp, ino) == -1) { 1049 printf("iput: %s\n", disk.d_error); 1050 exit(32); 1051 } 1052 if (sblock.fs_magic == FS_UFS1_MAGIC) 1053 *dp.dp1 = ip->dp1; 1054 else 1055 *dp.dp2 = ip->dp2; 1056 putinode(&disk); 1057 } 1058 1059 /* 1060 * possibly write to disk 1061 */ 1062 static void 1063 wtfs(ufs2_daddr_t bno, int size, char *bf) 1064 { 1065 if (Nflag) 1066 return; 1067 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1068 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1069 } 1070 1071 /* 1072 * check if a block is available 1073 */ 1074 static int 1075 isblock(struct fs *fs, unsigned char *cp, int h) 1076 { 1077 unsigned char mask; 1078 1079 switch (fs->fs_frag) { 1080 case 8: 1081 return (cp[h] == 0xff); 1082 case 4: 1083 mask = 0x0f << ((h & 0x1) << 2); 1084 return ((cp[h >> 1] & mask) == mask); 1085 case 2: 1086 mask = 0x03 << ((h & 0x3) << 1); 1087 return ((cp[h >> 2] & mask) == mask); 1088 case 1: 1089 mask = 0x01 << (h & 0x7); 1090 return ((cp[h >> 3] & mask) == mask); 1091 default: 1092 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1093 return (0); 1094 } 1095 } 1096 1097 /* 1098 * take a block out of the map 1099 */ 1100 static void 1101 clrblock(struct fs *fs, unsigned char *cp, int h) 1102 { 1103 switch ((fs)->fs_frag) { 1104 case 8: 1105 cp[h] = 0; 1106 return; 1107 case 4: 1108 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1109 return; 1110 case 2: 1111 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1112 return; 1113 case 1: 1114 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1115 return; 1116 default: 1117 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1118 return; 1119 } 1120 } 1121 1122 /* 1123 * put a block into the map 1124 */ 1125 static void 1126 setblock(struct fs *fs, unsigned char *cp, int h) 1127 { 1128 switch (fs->fs_frag) { 1129 case 8: 1130 cp[h] = 0xff; 1131 return; 1132 case 4: 1133 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1134 return; 1135 case 2: 1136 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1137 return; 1138 case 1: 1139 cp[h >> 3] |= (0x01 << (h & 0x7)); 1140 return; 1141 default: 1142 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1143 return; 1144 } 1145 } 1146 1147 /* 1148 * Determine the number of characters in a 1149 * single line. 1150 */ 1151 1152 static int 1153 charsperline(void) 1154 { 1155 int columns; 1156 char *cp; 1157 struct winsize ws; 1158 1159 columns = 0; 1160 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1161 columns = ws.ws_col; 1162 if (columns == 0 && (cp = getenv("COLUMNS"))) 1163 columns = atoi(cp); 1164 if (columns == 0) 1165 columns = 80; /* last resort */ 1166 return (columns); 1167 } 1168 1169 static int 1170 ilog2(int val) 1171 { 1172 u_int n; 1173 1174 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1175 if (1 << n == val) 1176 return (n); 1177 errx(1, "ilog2: %d is not a power of 2\n", val); 1178 } 1179 1180 /* 1181 * For the regression test, return predictable random values. 1182 * Otherwise use a true random number generator. 1183 */ 1184 static u_int32_t 1185 newfs_random(void) 1186 { 1187 static int nextnum = 1; 1188 1189 if (Rflag) 1190 return (nextnum++); 1191 return (arc4random()); 1192 } 1193