1 /* 2 * Copyright (c) 1980, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #ifndef lint 35 #if 0 36 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 37 #endif 38 static const char rcsid[] = 39 "$Id: mkfs.c,v 1.26 1998/08/27 07:38:33 dfr Exp $"; 40 #endif /* not lint */ 41 42 #include <err.h> 43 #include <signal.h> 44 #include <string.h> 45 #include <stdio.h> 46 #include <unistd.h> 47 #include <sys/param.h> 48 #include <sys/time.h> 49 #include <sys/types.h> 50 #include <sys/wait.h> 51 #include <sys/resource.h> 52 #include <sys/stat.h> 53 #include <ufs/ufs/dinode.h> 54 #include <ufs/ufs/dir.h> 55 #include <ufs/ffs/fs.h> 56 #include <sys/disklabel.h> 57 #include <sys/file.h> 58 #include <sys/mman.h> 59 #include <sys/ioctl.h> 60 61 #ifndef STANDALONE 62 #include <stdlib.h> 63 #else 64 extern int atoi __P((char *)); 65 extern char * getenv __P((char *)); 66 #endif 67 68 #ifdef FSIRAND 69 extern long random __P((void)); 70 extern void srandomdev __P((void)); 71 #endif 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 77 /* 78 * We limit the size of the inode map to be no more than a 79 * third of the cylinder group space, since we must leave at 80 * least an equal amount of space for the block map. 81 * 82 * N.B.: MAXIPG must be a multiple of INOPB(fs). 83 */ 84 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 85 86 #define UMASK 0755 87 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode)) 88 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 89 90 /* 91 * variables set up by front end. 92 */ 93 extern int mfs; /* run as the memory based filesystem */ 94 extern char *mfs_mtpt; /* mount point for mfs */ 95 extern struct stat mfs_mtstat; /* stat prior to mount */ 96 extern int Nflag; /* run mkfs without writing file system */ 97 extern int Oflag; /* format as an 4.3BSD file system */ 98 extern int fssize; /* file system size */ 99 extern int ntracks; /* # tracks/cylinder */ 100 extern int nsectors; /* # sectors/track */ 101 extern int nphyssectors; /* # sectors/track including spares */ 102 extern int secpercyl; /* sectors per cylinder */ 103 extern int sectorsize; /* bytes/sector */ 104 extern int realsectorsize; /* bytes/sector in hardware*/ 105 extern int rpm; /* revolutions/minute of drive */ 106 extern int interleave; /* hardware sector interleave */ 107 extern int trackskew; /* sector 0 skew, per track */ 108 extern int fsize; /* fragment size */ 109 extern int bsize; /* block size */ 110 extern int cpg; /* cylinders/cylinder group */ 111 extern int cpgflg; /* cylinders/cylinder group flag was given */ 112 extern int minfree; /* free space threshold */ 113 extern int opt; /* optimization preference (space or time) */ 114 extern int density; /* number of bytes per inode */ 115 extern int maxcontig; /* max contiguous blocks to allocate */ 116 extern int rotdelay; /* rotational delay between blocks */ 117 extern int maxbpg; /* maximum blocks per file in a cyl group */ 118 extern int nrpos; /* # of distinguished rotational positions */ 119 extern int bbsize; /* boot block size */ 120 extern int sbsize; /* superblock size */ 121 extern u_long memleft; /* virtual memory available */ 122 extern caddr_t membase; /* start address of memory based filesystem */ 123 extern char * filename; 124 125 union { 126 struct fs fs; 127 char pad[SBSIZE]; 128 } fsun; 129 #define sblock fsun.fs 130 struct csum *fscs; 131 132 union { 133 struct cg cg; 134 char pad[MAXBSIZE]; 135 } cgun; 136 #define acg cgun.cg 137 138 struct dinode zino[MAXBSIZE / sizeof(struct dinode)]; 139 140 int fsi, fso; 141 #ifdef FSIRAND 142 int randinit; 143 #endif 144 daddr_t alloc(); 145 long calcipg(); 146 static int charsperline(); 147 void clrblock __P((struct fs *, unsigned char *, int)); 148 void fsinit __P((time_t)); 149 void initcg __P((int, time_t)); 150 int isblock __P((struct fs *, unsigned char *, int)); 151 void iput __P((struct dinode *, ino_t)); 152 int makedir __P((struct direct *, int)); 153 void rdfs __P((daddr_t, int, char *)); 154 void setblock __P((struct fs *, unsigned char *, int)); 155 void wtfs __P((daddr_t, int, char *)); 156 157 #ifndef STANDALONE 158 void get_memleft __P((void)); 159 void raise_data_limit __P((void)); 160 #else 161 void free __P((char *)); 162 char * calloc __P((u_long, u_long)); 163 caddr_t malloc __P((u_long)); 164 caddr_t realloc __P((char *, u_long)); 165 #endif 166 167 int mfs_ppid = 0; 168 169 void 170 mkfs(pp, fsys, fi, fo) 171 struct partition *pp; 172 char *fsys; 173 int fi, fo; 174 { 175 register long i, mincpc, mincpg, inospercg; 176 long cylno, rpos, blk, j, warn = 0; 177 long used, mincpgcnt, bpcg; 178 off_t usedb; 179 long mapcramped, inodecramped; 180 long postblsize, rotblsize, totalsbsize; 181 int status, fd; 182 time_t utime; 183 quad_t sizepb; 184 void started(); 185 int width; 186 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 187 188 #ifndef STANDALONE 189 time(&utime); 190 #endif 191 #ifdef FSIRAND 192 if (!randinit) { 193 randinit = 1; 194 srandomdev(); 195 } 196 #endif 197 if (mfs) { 198 mfs_ppid = getpid(); 199 (void) signal(SIGUSR1, started); 200 if ((i = fork())) { 201 if (i == -1) 202 err(10, "mfs"); 203 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status)) 204 exit(WEXITSTATUS(status)); 205 exit(11); 206 /* NOTREACHED */ 207 } 208 #ifdef STANDALONE 209 (void)malloc(0); 210 #else 211 raise_data_limit(); 212 #endif 213 if(filename) { 214 unsigned char buf[BUFSIZ]; 215 unsigned long l,l1; 216 fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644); 217 if(fd < 0) 218 err(12, "%s", filename); 219 for(l=0;l< fssize * sectorsize;l += l1) { 220 l1 = fssize * sectorsize; 221 if (BUFSIZ < l1) 222 l1 = BUFSIZ; 223 if (l1 != write(fd,buf,l1)) 224 err(12, "%s", filename); 225 } 226 membase = mmap( 227 0, 228 fssize * sectorsize, 229 PROT_READ|PROT_WRITE, 230 MAP_SHARED, 231 fd, 232 0); 233 if(membase == MAP_FAILED) 234 err(12, "mmap"); 235 close(fd); 236 } else { 237 #ifndef STANDALONE 238 get_memleft(); 239 #endif 240 if (fssize * sectorsize > (memleft - 131072)) 241 fssize = (memleft - 131072) / sectorsize; 242 if ((membase = malloc(fssize * sectorsize)) == NULL) 243 errx(13, "malloc failed"); 244 } 245 } 246 fsi = fi; 247 fso = fo; 248 if (Oflag) { 249 sblock.fs_inodefmt = FS_42INODEFMT; 250 sblock.fs_maxsymlinklen = 0; 251 } else { 252 sblock.fs_inodefmt = FS_44INODEFMT; 253 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 254 } 255 /* 256 * Validate the given file system size. 257 * Verify that its last block can actually be accessed. 258 */ 259 if (fssize <= 0) 260 printf("preposterous size %d\n", fssize), exit(13); 261 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 262 (char *)&sblock); 263 /* 264 * collect and verify the sector and track info 265 */ 266 sblock.fs_nsect = nsectors; 267 sblock.fs_ntrak = ntracks; 268 if (sblock.fs_ntrak <= 0) 269 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 270 if (sblock.fs_nsect <= 0) 271 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 272 /* 273 * collect and verify the block and fragment sizes 274 */ 275 sblock.fs_bsize = bsize; 276 sblock.fs_fsize = fsize; 277 if (!POWEROF2(sblock.fs_bsize)) { 278 printf("block size must be a power of 2, not %d\n", 279 sblock.fs_bsize); 280 exit(16); 281 } 282 if (!POWEROF2(sblock.fs_fsize)) { 283 printf("fragment size must be a power of 2, not %d\n", 284 sblock.fs_fsize); 285 exit(17); 286 } 287 if (sblock.fs_fsize < sectorsize) { 288 printf("fragment size %d is too small, minimum is %d\n", 289 sblock.fs_fsize, sectorsize); 290 exit(18); 291 } 292 if (sblock.fs_bsize < MINBSIZE) { 293 printf("block size %d is too small, minimum is %d\n", 294 sblock.fs_bsize, MINBSIZE); 295 exit(19); 296 } 297 if (sblock.fs_bsize < sblock.fs_fsize) { 298 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 299 sblock.fs_bsize, sblock.fs_fsize); 300 exit(20); 301 } 302 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 303 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 304 sblock.fs_qbmask = ~sblock.fs_bmask; 305 sblock.fs_qfmask = ~sblock.fs_fmask; 306 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 307 sblock.fs_bshift++; 308 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 309 sblock.fs_fshift++; 310 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 311 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 312 sblock.fs_fragshift++; 313 if (sblock.fs_frag > MAXFRAG) { 314 printf("fragment size %d is too small, minimum with block size %d is %d\n", 315 sblock.fs_fsize, sblock.fs_bsize, 316 sblock.fs_bsize / MAXFRAG); 317 exit(21); 318 } 319 sblock.fs_nrpos = nrpos; 320 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 321 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode); 322 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 323 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 324 sblock.fs_fsbtodb++; 325 sblock.fs_sblkno = 326 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 327 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 328 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 329 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 330 sblock.fs_cgoffset = roundup( 331 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 332 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 333 sblock.fs_cgmask <<= 1; 334 if (!POWEROF2(sblock.fs_ntrak)) 335 sblock.fs_cgmask <<= 1; 336 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 337 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 338 sizepb *= NINDIR(&sblock); 339 sblock.fs_maxfilesize += sizepb; 340 } 341 /* 342 * Validate specified/determined secpercyl 343 * and calculate minimum cylinders per group. 344 */ 345 sblock.fs_spc = secpercyl; 346 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 347 sblock.fs_cpc > 1 && (i & 1) == 0; 348 sblock.fs_cpc >>= 1, i >>= 1) 349 /* void */; 350 mincpc = sblock.fs_cpc; 351 bpcg = sblock.fs_spc * sectorsize; 352 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock)); 353 if (inospercg > MAXIPG(&sblock)) 354 inospercg = MAXIPG(&sblock); 355 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 356 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 357 sblock.fs_spc); 358 mincpg = roundup(mincpgcnt, mincpc); 359 /* 360 * Ensure that cylinder group with mincpg has enough space 361 * for block maps. 362 */ 363 sblock.fs_cpg = mincpg; 364 sblock.fs_ipg = inospercg; 365 if (maxcontig > 1) 366 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 367 mapcramped = 0; 368 while (CGSIZE(&sblock) > sblock.fs_bsize) { 369 mapcramped = 1; 370 if (sblock.fs_bsize < MAXBSIZE) { 371 sblock.fs_bsize <<= 1; 372 if ((i & 1) == 0) { 373 i >>= 1; 374 } else { 375 sblock.fs_cpc <<= 1; 376 mincpc <<= 1; 377 mincpg = roundup(mincpgcnt, mincpc); 378 sblock.fs_cpg = mincpg; 379 } 380 sblock.fs_frag <<= 1; 381 sblock.fs_fragshift += 1; 382 if (sblock.fs_frag <= MAXFRAG) 383 continue; 384 } 385 if (sblock.fs_fsize == sblock.fs_bsize) { 386 printf("There is no block size that"); 387 printf(" can support this disk\n"); 388 exit(22); 389 } 390 sblock.fs_frag >>= 1; 391 sblock.fs_fragshift -= 1; 392 sblock.fs_fsize <<= 1; 393 sblock.fs_nspf <<= 1; 394 } 395 /* 396 * Ensure that cylinder group with mincpg has enough space for inodes. 397 */ 398 inodecramped = 0; 399 inospercg = calcipg(mincpg, bpcg, &usedb); 400 sblock.fs_ipg = inospercg; 401 while (inospercg > MAXIPG(&sblock)) { 402 inodecramped = 1; 403 if (mincpc == 1 || sblock.fs_frag == 1 || 404 sblock.fs_bsize == MINBSIZE) 405 break; 406 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 407 "minimum bytes per inode is", 408 (int)((mincpg * (off_t)bpcg - usedb) 409 / MAXIPG(&sblock) + 1)); 410 sblock.fs_bsize >>= 1; 411 sblock.fs_frag >>= 1; 412 sblock.fs_fragshift -= 1; 413 mincpc >>= 1; 414 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 415 if (CGSIZE(&sblock) > sblock.fs_bsize) { 416 sblock.fs_bsize <<= 1; 417 break; 418 } 419 mincpg = sblock.fs_cpg; 420 inospercg = calcipg(mincpg, bpcg, &usedb); 421 sblock.fs_ipg = inospercg; 422 } 423 if (inodecramped) { 424 if (inospercg > MAXIPG(&sblock)) { 425 printf("Minimum bytes per inode is %d\n", 426 (int)((mincpg * (off_t)bpcg - usedb) 427 / MAXIPG(&sblock) + 1)); 428 } else if (!mapcramped) { 429 printf("With %d bytes per inode, ", density); 430 printf("minimum cylinders per group is %ld\n", mincpg); 431 } 432 } 433 if (mapcramped) { 434 printf("With %d sectors per cylinder, ", sblock.fs_spc); 435 printf("minimum cylinders per group is %ld\n", mincpg); 436 } 437 if (inodecramped || mapcramped) { 438 if (sblock.fs_bsize != bsize) 439 printf("%s to be changed from %d to %d\n", 440 "This requires the block size", 441 bsize, sblock.fs_bsize); 442 if (sblock.fs_fsize != fsize) 443 printf("\t%s to be changed from %d to %d\n", 444 "and the fragment size", 445 fsize, sblock.fs_fsize); 446 exit(23); 447 } 448 /* 449 * Calculate the number of cylinders per group 450 */ 451 sblock.fs_cpg = cpg; 452 if (sblock.fs_cpg % mincpc != 0) { 453 printf("%s groups must have a multiple of %ld cylinders\n", 454 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 455 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 456 if (!cpgflg) 457 cpg = sblock.fs_cpg; 458 } 459 /* 460 * Must ensure there is enough space for inodes. 461 */ 462 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 463 while (sblock.fs_ipg > MAXIPG(&sblock)) { 464 inodecramped = 1; 465 sblock.fs_cpg -= mincpc; 466 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 467 } 468 /* 469 * Must ensure there is enough space to hold block map. 470 */ 471 while (CGSIZE(&sblock) > sblock.fs_bsize) { 472 mapcramped = 1; 473 sblock.fs_cpg -= mincpc; 474 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 475 } 476 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 477 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 478 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 479 exit(24); 480 } 481 if (sblock.fs_cpg < mincpg) { 482 printf("cylinder groups must have at least %ld cylinders\n", 483 mincpg); 484 exit(25); 485 } else if (sblock.fs_cpg != cpg) { 486 if (!cpgflg) 487 printf("Warning: "); 488 else if (!mapcramped && !inodecramped) 489 exit(26); 490 if (mapcramped && inodecramped) 491 printf("Block size and bytes per inode restrict"); 492 else if (mapcramped) 493 printf("Block size restricts"); 494 else 495 printf("Bytes per inode restrict"); 496 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 497 if (cpgflg) 498 exit(27); 499 } 500 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 501 /* 502 * Now have size for file system and nsect and ntrak. 503 * Determine number of cylinders and blocks in the file system. 504 */ 505 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 506 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 507 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 508 sblock.fs_ncyl++; 509 warn = 1; 510 } 511 if (sblock.fs_ncyl < 1) { 512 printf("file systems must have at least one cylinder\n"); 513 exit(28); 514 } 515 /* 516 * Determine feasability/values of rotational layout tables. 517 * 518 * The size of the rotational layout tables is limited by the 519 * size of the superblock, SBSIZE. The amount of space available 520 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 521 * The size of these tables is inversely proportional to the block 522 * size of the file system. The size increases if sectors per track 523 * are not powers of two, because more cylinders must be described 524 * by the tables before the rotational pattern repeats (fs_cpc). 525 */ 526 sblock.fs_interleave = interleave; 527 sblock.fs_trackskew = trackskew; 528 sblock.fs_npsect = nphyssectors; 529 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 530 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 531 if (sblock.fs_sbsize > SBSIZE) 532 sblock.fs_sbsize = SBSIZE; 533 if (sblock.fs_ntrak == 1) { 534 sblock.fs_cpc = 0; 535 goto next; 536 } 537 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 538 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 539 totalsbsize = sizeof(struct fs) + rotblsize; 540 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 541 /* use old static table space */ 542 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 543 (char *)(&sblock.fs_firstfield); 544 sblock.fs_rotbloff = &sblock.fs_space[0] - 545 (u_char *)(&sblock.fs_firstfield); 546 } else { 547 /* use dynamic table space */ 548 sblock.fs_postbloff = &sblock.fs_space[0] - 549 (u_char *)(&sblock.fs_firstfield); 550 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 551 totalsbsize += postblsize; 552 } 553 if (totalsbsize > SBSIZE || 554 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 555 printf("%s %s %d %s %d.%s", 556 "Warning: insufficient space in super block for\n", 557 "rotational layout tables with nsect", sblock.fs_nsect, 558 "and ntrak", sblock.fs_ntrak, 559 "\nFile system performance may be impaired.\n"); 560 sblock.fs_cpc = 0; 561 goto next; 562 } 563 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 564 if (sblock.fs_sbsize > SBSIZE) 565 sblock.fs_sbsize = SBSIZE; 566 /* 567 * calculate the available blocks for each rotational position 568 */ 569 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 570 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 571 fs_postbl(&sblock, cylno)[rpos] = -1; 572 for (i = (rotblsize - 1) * sblock.fs_frag; 573 i >= 0; i -= sblock.fs_frag) { 574 cylno = cbtocylno(&sblock, i); 575 rpos = cbtorpos(&sblock, i); 576 blk = fragstoblks(&sblock, i); 577 if (fs_postbl(&sblock, cylno)[rpos] == -1) 578 fs_rotbl(&sblock)[blk] = 0; 579 else 580 fs_rotbl(&sblock)[blk] = 581 fs_postbl(&sblock, cylno)[rpos] - blk; 582 fs_postbl(&sblock, cylno)[rpos] = blk; 583 } 584 next: 585 /* 586 * Compute/validate number of cylinder groups. 587 */ 588 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 589 if (sblock.fs_ncyl % sblock.fs_cpg) 590 sblock.fs_ncg++; 591 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 592 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 593 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 594 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n", 595 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 596 (long)(sblock.fs_fpg / sblock.fs_frag)); 597 printf("number of cylinders per cylinder group (%d) %s.\n", 598 sblock.fs_cpg, "must be increased"); 599 exit(29); 600 } 601 j = sblock.fs_ncg - 1; 602 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 603 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 604 if (j == 0) { 605 printf("Filesystem must have at least %d sectors\n", 606 NSPF(&sblock) * 607 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 608 exit(30); 609 } 610 printf( 611 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n", 612 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 613 i / sblock.fs_frag); 614 printf( 615 " cylinder group. This implies %ld sector(s) cannot be allocated.\n", 616 i * NSPF(&sblock)); 617 sblock.fs_ncg--; 618 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 619 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 620 NSPF(&sblock); 621 warn = 0; 622 } 623 if (warn && !mfs) { 624 printf("Warning: %d sector(s) in last cylinder unallocated\n", 625 sblock.fs_spc - 626 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 627 * sblock.fs_spc)); 628 } 629 /* 630 * fill in remaining fields of the super block 631 */ 632 sblock.fs_csaddr = cgdmin(&sblock, 0); 633 sblock.fs_cssize = 634 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 635 i = sblock.fs_bsize / sizeof(struct csum); 636 sblock.fs_csmask = ~(i - 1); 637 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 638 sblock.fs_csshift++; 639 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 640 if (fscs == NULL) 641 errx(31, "calloc failed"); 642 sblock.fs_magic = FS_MAGIC; 643 sblock.fs_rotdelay = rotdelay; 644 sblock.fs_minfree = minfree; 645 sblock.fs_maxcontig = maxcontig; 646 sblock.fs_maxbpg = maxbpg; 647 sblock.fs_rps = rpm / 60; 648 sblock.fs_optim = opt; 649 sblock.fs_cgrotor = 0; 650 sblock.fs_cstotal.cs_ndir = 0; 651 sblock.fs_cstotal.cs_nbfree = 0; 652 sblock.fs_cstotal.cs_nifree = 0; 653 sblock.fs_cstotal.cs_nffree = 0; 654 sblock.fs_fmod = 0; 655 sblock.fs_ronly = 0; 656 sblock.fs_clean = 1; 657 #ifdef FSIRAND 658 sblock.fs_id[0] = (long)utime; 659 sblock.fs_id[1] = random(); 660 #endif 661 662 /* 663 * Dump out summary information about file system. 664 */ 665 if (!mfs) { 666 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 667 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 668 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 669 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 670 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 671 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 672 sblock.fs_ncg, sblock.fs_cpg, 673 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 674 sblock.fs_ipg); 675 #undef B2MBFACTOR 676 } 677 /* 678 * Now build the cylinders group blocks and 679 * then print out indices of cylinder groups. 680 */ 681 if (!mfs) 682 printf("super-block backups (for fsck -b #) at:\n"); 683 i = 0; 684 width = charsperline(); 685 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 686 initcg(cylno, utime); 687 if (mfs) 688 continue; 689 j = sprintf(tmpbuf, " %ld,", 690 fsbtodb(&sblock, cgsblock(&sblock, cylno))); 691 if (i + j >= width) { 692 printf("\n"); 693 i = 0; 694 } 695 i += j; 696 printf("%s", tmpbuf); 697 fflush(stdout); 698 } 699 if (!mfs) 700 printf("\n"); 701 if (Nflag && !mfs) 702 exit(0); 703 /* 704 * Now construct the initial file system, 705 * then write out the super-block. 706 */ 707 fsinit(utime); 708 sblock.fs_time = utime; 709 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); 710 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 711 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 712 sblock.fs_cssize - i < sblock.fs_bsize ? 713 sblock.fs_cssize - i : sblock.fs_bsize, 714 ((char *)fscs) + i); 715 /* 716 * Write out the duplicate super blocks 717 */ 718 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 719 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 720 sbsize, (char *)&sblock); 721 /* 722 * Update information about this partion in pack 723 * label, to that it may be updated on disk. 724 */ 725 pp->p_fstype = FS_BSDFFS; 726 pp->p_fsize = sblock.fs_fsize; 727 pp->p_frag = sblock.fs_frag; 728 pp->p_cpg = sblock.fs_cpg; 729 /* 730 * Notify parent process of success. 731 * Dissociate from session and tty. 732 */ 733 if (mfs) { 734 kill(mfs_ppid, SIGUSR1); 735 (void) setsid(); 736 (void) close(0); 737 (void) close(1); 738 (void) close(2); 739 (void) chdir("/"); 740 } 741 } 742 743 /* 744 * Initialize a cylinder group. 745 */ 746 void 747 initcg(cylno, utime) 748 int cylno; 749 time_t utime; 750 { 751 daddr_t cbase, d, dlower, dupper, dmax, blkno; 752 long i; 753 register struct csum *cs; 754 #ifdef FSIRAND 755 long j; 756 #endif 757 758 /* 759 * Determine block bounds for cylinder group. 760 * Allow space for super block summary information in first 761 * cylinder group. 762 */ 763 cbase = cgbase(&sblock, cylno); 764 dmax = cbase + sblock.fs_fpg; 765 if (dmax > sblock.fs_size) 766 dmax = sblock.fs_size; 767 dlower = cgsblock(&sblock, cylno) - cbase; 768 dupper = cgdmin(&sblock, cylno) - cbase; 769 if (cylno == 0) 770 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 771 cs = fscs + cylno; 772 memset(&acg, 0, sblock.fs_cgsize); 773 acg.cg_time = utime; 774 acg.cg_magic = CG_MAGIC; 775 acg.cg_cgx = cylno; 776 if (cylno == sblock.fs_ncg - 1) 777 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 778 else 779 acg.cg_ncyl = sblock.fs_cpg; 780 acg.cg_niblk = sblock.fs_ipg; 781 acg.cg_ndblk = dmax - cbase; 782 if (sblock.fs_contigsumsize > 0) 783 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 784 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 785 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 786 acg.cg_iusedoff = acg.cg_boff + 787 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t); 788 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 789 if (sblock.fs_contigsumsize <= 0) { 790 acg.cg_nextfreeoff = acg.cg_freeoff + 791 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 792 } else { 793 acg.cg_clustersumoff = acg.cg_freeoff + howmany 794 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 795 sizeof(u_int32_t); 796 acg.cg_clustersumoff = 797 roundup(acg.cg_clustersumoff, sizeof(u_int32_t)); 798 acg.cg_clusteroff = acg.cg_clustersumoff + 799 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 800 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 801 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 802 } 803 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) { 804 printf("Panic: cylinder group too big\n"); 805 exit(37); 806 } 807 acg.cg_cs.cs_nifree += sblock.fs_ipg; 808 if (cylno == 0) 809 for (i = 0; i < ROOTINO; i++) { 810 setbit(cg_inosused(&acg), i); 811 acg.cg_cs.cs_nifree--; 812 } 813 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { 814 #ifdef FSIRAND 815 for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) 816 zino[j].di_gen = random(); 817 #endif 818 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 819 sblock.fs_bsize, (char *)zino); 820 } 821 if (cylno > 0) { 822 /* 823 * In cylno 0, beginning space is reserved 824 * for boot and super blocks. 825 */ 826 for (d = 0; d < dlower; d += sblock.fs_frag) { 827 blkno = d / sblock.fs_frag; 828 setblock(&sblock, cg_blksfree(&acg), blkno); 829 if (sblock.fs_contigsumsize > 0) 830 setbit(cg_clustersfree(&acg), blkno); 831 acg.cg_cs.cs_nbfree++; 832 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 833 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 834 [cbtorpos(&sblock, d)]++; 835 } 836 sblock.fs_dsize += dlower; 837 } 838 sblock.fs_dsize += acg.cg_ndblk - dupper; 839 if ((i = dupper % sblock.fs_frag)) { 840 acg.cg_frsum[sblock.fs_frag - i]++; 841 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 842 setbit(cg_blksfree(&acg), dupper); 843 acg.cg_cs.cs_nffree++; 844 } 845 } 846 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 847 blkno = d / sblock.fs_frag; 848 setblock(&sblock, cg_blksfree(&acg), blkno); 849 if (sblock.fs_contigsumsize > 0) 850 setbit(cg_clustersfree(&acg), blkno); 851 acg.cg_cs.cs_nbfree++; 852 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 853 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 854 [cbtorpos(&sblock, d)]++; 855 d += sblock.fs_frag; 856 } 857 if (d < dmax - cbase) { 858 acg.cg_frsum[dmax - cbase - d]++; 859 for (; d < dmax - cbase; d++) { 860 setbit(cg_blksfree(&acg), d); 861 acg.cg_cs.cs_nffree++; 862 } 863 } 864 if (sblock.fs_contigsumsize > 0) { 865 int32_t *sump = cg_clustersum(&acg); 866 u_char *mapp = cg_clustersfree(&acg); 867 int map = *mapp++; 868 int bit = 1; 869 int run = 0; 870 871 for (i = 0; i < acg.cg_nclusterblks; i++) { 872 if ((map & bit) != 0) { 873 run++; 874 } else if (run != 0) { 875 if (run > sblock.fs_contigsumsize) 876 run = sblock.fs_contigsumsize; 877 sump[run]++; 878 run = 0; 879 } 880 if ((i & (NBBY - 1)) != (NBBY - 1)) { 881 bit <<= 1; 882 } else { 883 map = *mapp++; 884 bit = 1; 885 } 886 } 887 if (run != 0) { 888 if (run > sblock.fs_contigsumsize) 889 run = sblock.fs_contigsumsize; 890 sump[run]++; 891 } 892 } 893 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 894 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 895 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 896 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 897 *cs = acg.cg_cs; 898 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 899 sblock.fs_bsize, (char *)&acg); 900 } 901 902 /* 903 * initialize the file system 904 */ 905 struct dinode node; 906 907 #ifdef LOSTDIR 908 #define PREDEFDIR 3 909 #else 910 #define PREDEFDIR 2 911 #endif 912 913 struct direct root_dir[] = { 914 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 915 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 916 #ifdef LOSTDIR 917 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 918 #endif 919 }; 920 struct odirect { 921 u_long d_ino; 922 u_short d_reclen; 923 u_short d_namlen; 924 u_char d_name[MAXNAMLEN + 1]; 925 } oroot_dir[] = { 926 { ROOTINO, sizeof(struct direct), 1, "." }, 927 { ROOTINO, sizeof(struct direct), 2, ".." }, 928 #ifdef LOSTDIR 929 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 930 #endif 931 }; 932 #ifdef LOSTDIR 933 struct direct lost_found_dir[] = { 934 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 935 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 936 { 0, DIRBLKSIZ, 0, 0, 0 }, 937 }; 938 struct odirect olost_found_dir[] = { 939 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 940 { ROOTINO, sizeof(struct direct), 2, ".." }, 941 { 0, DIRBLKSIZ, 0, 0 }, 942 }; 943 #endif 944 char buf[MAXBSIZE]; 945 946 void 947 fsinit(utime) 948 time_t utime; 949 { 950 #ifdef LOSTDIR 951 int i; 952 #endif 953 954 /* 955 * initialize the node 956 */ 957 node.di_atime = utime; 958 node.di_mtime = utime; 959 node.di_ctime = utime; 960 #ifdef LOSTDIR 961 /* 962 * create the lost+found directory 963 */ 964 if (Oflag) { 965 (void)makedir((struct direct *)olost_found_dir, 2); 966 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 967 memmove(&buf[i], &olost_found_dir[2], 968 DIRSIZ(0, &olost_found_dir[2])); 969 } else { 970 (void)makedir(lost_found_dir, 2); 971 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 972 memmove(&buf[i], &lost_found_dir[2], 973 DIRSIZ(0, &lost_found_dir[2])); 974 } 975 node.di_mode = IFDIR | UMASK; 976 node.di_nlink = 2; 977 node.di_size = sblock.fs_bsize; 978 node.di_db[0] = alloc(node.di_size, node.di_mode); 979 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 980 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 981 iput(&node, LOSTFOUNDINO); 982 #endif 983 /* 984 * create the root directory 985 */ 986 if (mfs) 987 node.di_mode = IFDIR | 01777; 988 else 989 node.di_mode = IFDIR | UMASK; 990 node.di_nlink = PREDEFDIR; 991 if (Oflag) 992 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); 993 else 994 node.di_size = makedir(root_dir, PREDEFDIR); 995 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 996 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 997 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 998 iput(&node, ROOTINO); 999 } 1000 1001 /* 1002 * construct a set of directory entries in "buf". 1003 * return size of directory. 1004 */ 1005 int 1006 makedir(protodir, entries) 1007 register struct direct *protodir; 1008 int entries; 1009 { 1010 char *cp; 1011 int i, spcleft; 1012 1013 spcleft = DIRBLKSIZ; 1014 for (cp = buf, i = 0; i < entries - 1; i++) { 1015 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1016 memmove(cp, &protodir[i], protodir[i].d_reclen); 1017 cp += protodir[i].d_reclen; 1018 spcleft -= protodir[i].d_reclen; 1019 } 1020 protodir[i].d_reclen = spcleft; 1021 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1022 return (DIRBLKSIZ); 1023 } 1024 1025 /* 1026 * allocate a block or frag 1027 */ 1028 daddr_t 1029 alloc(size, mode) 1030 int size; 1031 int mode; 1032 { 1033 int i, frag; 1034 daddr_t d, blkno; 1035 1036 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1037 (char *)&acg); 1038 if (acg.cg_magic != CG_MAGIC) { 1039 printf("cg 0: bad magic number\n"); 1040 return (0); 1041 } 1042 if (acg.cg_cs.cs_nbfree == 0) { 1043 printf("first cylinder group ran out of space\n"); 1044 return (0); 1045 } 1046 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1047 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1048 goto goth; 1049 printf("internal error: can't find block in cyl 0\n"); 1050 return (0); 1051 goth: 1052 blkno = fragstoblks(&sblock, d); 1053 clrblock(&sblock, cg_blksfree(&acg), blkno); 1054 if (sblock.fs_contigsumsize > 0) 1055 clrbit(cg_clustersfree(&acg), blkno); 1056 acg.cg_cs.cs_nbfree--; 1057 sblock.fs_cstotal.cs_nbfree--; 1058 fscs[0].cs_nbfree--; 1059 if (mode & IFDIR) { 1060 acg.cg_cs.cs_ndir++; 1061 sblock.fs_cstotal.cs_ndir++; 1062 fscs[0].cs_ndir++; 1063 } 1064 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 1065 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 1066 if (size != sblock.fs_bsize) { 1067 frag = howmany(size, sblock.fs_fsize); 1068 fscs[0].cs_nffree += sblock.fs_frag - frag; 1069 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1070 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1071 acg.cg_frsum[sblock.fs_frag - frag]++; 1072 for (i = frag; i < sblock.fs_frag; i++) 1073 setbit(cg_blksfree(&acg), d + i); 1074 } 1075 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1076 (char *)&acg); 1077 return (d); 1078 } 1079 1080 /* 1081 * Calculate number of inodes per group. 1082 */ 1083 long 1084 calcipg(cpg, bpcg, usedbp) 1085 long cpg; 1086 long bpcg; 1087 off_t *usedbp; 1088 { 1089 int i; 1090 long ipg, new_ipg, ncg, ncyl; 1091 off_t usedb; 1092 1093 /* 1094 * Prepare to scale by fssize / (number of sectors in cylinder groups). 1095 * Note that fssize is still in sectors, not filesystem blocks. 1096 */ 1097 ncyl = howmany(fssize, (u_int)secpercyl); 1098 ncg = howmany(ncyl, cpg); 1099 /* 1100 * Iterate a few times to allow for ipg depending on itself. 1101 */ 1102 ipg = 0; 1103 for (i = 0; i < 10; i++) { 1104 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 1105 * NSPF(&sblock) * (off_t)sectorsize; 1106 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize 1107 / ncg / secpercyl / cpg; 1108 new_ipg = roundup(new_ipg, INOPB(&sblock)); 1109 if (new_ipg == ipg) 1110 break; 1111 ipg = new_ipg; 1112 } 1113 *usedbp = usedb; 1114 return (ipg); 1115 } 1116 1117 /* 1118 * Allocate an inode on the disk 1119 */ 1120 void 1121 iput(ip, ino) 1122 register struct dinode *ip; 1123 register ino_t ino; 1124 { 1125 struct dinode buf[MAXINOPB]; 1126 daddr_t d; 1127 int c; 1128 1129 #ifdef FSIRAND 1130 ip->di_gen = random(); 1131 #endif 1132 c = ino_to_cg(&sblock, ino); 1133 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1134 (char *)&acg); 1135 if (acg.cg_magic != CG_MAGIC) { 1136 printf("cg 0: bad magic number\n"); 1137 exit(31); 1138 } 1139 acg.cg_cs.cs_nifree--; 1140 setbit(cg_inosused(&acg), ino); 1141 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1142 (char *)&acg); 1143 sblock.fs_cstotal.cs_nifree--; 1144 fscs[0].cs_nifree--; 1145 if (ino >= sblock.fs_ipg * sblock.fs_ncg) { 1146 printf("fsinit: inode value out of range (%d).\n", ino); 1147 exit(32); 1148 } 1149 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1150 rdfs(d, sblock.fs_bsize, (char *)buf); 1151 buf[ino_to_fsbo(&sblock, ino)] = *ip; 1152 wtfs(d, sblock.fs_bsize, (char *)buf); 1153 } 1154 1155 /* 1156 * Notify parent process that the filesystem has created itself successfully. 1157 * 1158 * We have to wait until the mount has actually completed! 1159 */ 1160 void 1161 started() 1162 { 1163 int retry = 100; /* 10 seconds, 100ms */ 1164 1165 while (mfs_ppid && retry) { 1166 struct stat st; 1167 1168 if ( 1169 stat(mfs_mtpt, &st) < 0 || 1170 st.st_dev != mfs_mtstat.st_dev 1171 ) { 1172 break; 1173 } 1174 usleep(100*1000); 1175 --retry; 1176 } 1177 if (retry == 0) { 1178 fatal("mfs mount failed waiting for mount to go active"); 1179 } 1180 exit(0); 1181 } 1182 1183 #ifdef STANDALONE 1184 /* 1185 * Replace libc function with one suited to our needs. 1186 */ 1187 caddr_t 1188 malloc(size) 1189 register u_long size; 1190 { 1191 char *base, *i; 1192 static u_long pgsz; 1193 struct rlimit rlp; 1194 1195 if (pgsz == 0) { 1196 base = sbrk(0); 1197 pgsz = getpagesize() - 1; 1198 i = (char *)((u_long)(base + pgsz) &~ pgsz); 1199 base = sbrk(i - base); 1200 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1201 warn("getrlimit"); 1202 rlp.rlim_cur = rlp.rlim_max; 1203 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1204 warn("setrlimit"); 1205 memleft = rlp.rlim_max - (u_long)base; 1206 } 1207 size = (size + pgsz) &~ pgsz; 1208 if (size > memleft) 1209 size = memleft; 1210 memleft -= size; 1211 if (size == 0) 1212 return (0); 1213 return ((caddr_t)sbrk(size)); 1214 } 1215 1216 /* 1217 * Replace libc function with one suited to our needs. 1218 */ 1219 caddr_t 1220 realloc(ptr, size) 1221 char *ptr; 1222 u_long size; 1223 { 1224 void *p; 1225 1226 if ((p = malloc(size)) == NULL) 1227 return (NULL); 1228 memmove(p, ptr, size); 1229 free(ptr); 1230 return (p); 1231 } 1232 1233 /* 1234 * Replace libc function with one suited to our needs. 1235 */ 1236 char * 1237 calloc(size, numelm) 1238 u_long size, numelm; 1239 { 1240 caddr_t base; 1241 1242 size *= numelm; 1243 if ((base = malloc(size)) == NULL) 1244 return (NULL); 1245 memset(base, 0, size); 1246 return (base); 1247 } 1248 1249 /* 1250 * Replace libc function with one suited to our needs. 1251 */ 1252 void 1253 free(ptr) 1254 char *ptr; 1255 { 1256 1257 /* do not worry about it for now */ 1258 } 1259 1260 #else /* !STANDALONE */ 1261 1262 void 1263 raise_data_limit() 1264 { 1265 struct rlimit rlp; 1266 1267 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1268 warn("getrlimit"); 1269 rlp.rlim_cur = rlp.rlim_max; 1270 if (setrlimit(RLIMIT_DATA, &rlp) < 0) 1271 warn("setrlimit"); 1272 } 1273 1274 #ifdef __ELF__ 1275 extern char *_etext; 1276 #define etext _etext 1277 #else 1278 extern char *etext; 1279 #endif 1280 1281 void 1282 get_memleft() 1283 { 1284 static u_long pgsz; 1285 struct rlimit rlp; 1286 u_long freestart; 1287 u_long dstart; 1288 u_long memused; 1289 1290 pgsz = getpagesize() - 1; 1291 dstart = ((u_long)&etext) &~ pgsz; 1292 freestart = ((u_long)(sbrk(0) + pgsz) &~ pgsz); 1293 if (getrlimit(RLIMIT_DATA, &rlp) < 0) 1294 warn("getrlimit"); 1295 memused = freestart - dstart; 1296 memleft = rlp.rlim_cur - memused; 1297 } 1298 #endif /* STANDALONE */ 1299 1300 /* 1301 * read a block from the file system 1302 */ 1303 void 1304 rdfs(bno, size, bf) 1305 daddr_t bno; 1306 int size; 1307 char *bf; 1308 { 1309 int n; 1310 1311 if (mfs) { 1312 memmove(bf, membase + bno * sectorsize, size); 1313 return; 1314 } 1315 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) { 1316 printf("seek error: %ld\n", (long)bno); 1317 err(33, "rdfs"); 1318 } 1319 n = read(fsi, bf, size); 1320 if (n != size) { 1321 printf("read error: %ld\n", (long)bno); 1322 err(34, "rdfs"); 1323 } 1324 } 1325 1326 /* 1327 * write a block to the file system 1328 */ 1329 void 1330 wtfs(bno, size, bf) 1331 daddr_t bno; 1332 int size; 1333 char *bf; 1334 { 1335 int n; 1336 1337 if (mfs) { 1338 memmove(membase + bno * sectorsize, bf, size); 1339 return; 1340 } 1341 if (Nflag) 1342 return; 1343 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 1344 printf("seek error: %ld\n", (long)bno); 1345 err(35, "wtfs"); 1346 } 1347 n = write(fso, bf, size); 1348 if (n != size) { 1349 printf("write error: %ld\n", (long)bno); 1350 err(36, "wtfs"); 1351 } 1352 } 1353 1354 /* 1355 * check if a block is available 1356 */ 1357 int 1358 isblock(fs, cp, h) 1359 struct fs *fs; 1360 unsigned char *cp; 1361 int h; 1362 { 1363 unsigned char mask; 1364 1365 switch (fs->fs_frag) { 1366 case 8: 1367 return (cp[h] == 0xff); 1368 case 4: 1369 mask = 0x0f << ((h & 0x1) << 2); 1370 return ((cp[h >> 1] & mask) == mask); 1371 case 2: 1372 mask = 0x03 << ((h & 0x3) << 1); 1373 return ((cp[h >> 2] & mask) == mask); 1374 case 1: 1375 mask = 0x01 << (h & 0x7); 1376 return ((cp[h >> 3] & mask) == mask); 1377 default: 1378 #ifdef STANDALONE 1379 printf("isblock bad fs_frag %d\n", fs->fs_frag); 1380 #else 1381 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1382 #endif 1383 return (0); 1384 } 1385 } 1386 1387 /* 1388 * take a block out of the map 1389 */ 1390 void 1391 clrblock(fs, cp, h) 1392 struct fs *fs; 1393 unsigned char *cp; 1394 int h; 1395 { 1396 switch ((fs)->fs_frag) { 1397 case 8: 1398 cp[h] = 0; 1399 return; 1400 case 4: 1401 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1402 return; 1403 case 2: 1404 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1405 return; 1406 case 1: 1407 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1408 return; 1409 default: 1410 #ifdef STANDALONE 1411 printf("clrblock bad fs_frag %d\n", fs->fs_frag); 1412 #else 1413 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1414 #endif 1415 return; 1416 } 1417 } 1418 1419 /* 1420 * put a block into the map 1421 */ 1422 void 1423 setblock(fs, cp, h) 1424 struct fs *fs; 1425 unsigned char *cp; 1426 int h; 1427 { 1428 switch (fs->fs_frag) { 1429 case 8: 1430 cp[h] = 0xff; 1431 return; 1432 case 4: 1433 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1434 return; 1435 case 2: 1436 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1437 return; 1438 case 1: 1439 cp[h >> 3] |= (0x01 << (h & 0x7)); 1440 return; 1441 default: 1442 #ifdef STANDALONE 1443 printf("setblock bad fs_frag %d\n", fs->fs_frag); 1444 #else 1445 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1446 #endif 1447 return; 1448 } 1449 } 1450 1451 /* 1452 * Determine the number of characters in a 1453 * single line. 1454 */ 1455 1456 static int 1457 charsperline() 1458 { 1459 int columns; 1460 char *cp; 1461 struct winsize ws; 1462 1463 columns = 0; 1464 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1465 columns = ws.ws_col; 1466 if (columns == 0 && (cp = getenv("COLUMNS"))) 1467 columns = atoi(cp); 1468 if (columns == 0) 1469 columns = 80; /* last resort */ 1470 return columns; 1471 } 1472