xref: /freebsd/sbin/newfs/mkfs.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <err.h>
48 #include <grp.h>
49 #include <limits.h>
50 #include <signal.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <stdint.h>
54 #include <stdio.h>
55 #include <unistd.h>
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/types.h>
59 #include <sys/wait.h>
60 #include <sys/resource.h>
61 #include <sys/stat.h>
62 #include <ufs/ufs/dinode.h>
63 #include <ufs/ufs/dir.h>
64 #include <ufs/ffs/fs.h>
65 #include <sys/disklabel.h>
66 #include <sys/file.h>
67 #include <sys/mman.h>
68 #include <sys/ioctl.h>
69 #include "newfs.h"
70 
71 /*
72  * make file system for cylinder-group style file systems
73  */
74 #define UMASK		0755
75 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
76 
77 static struct	csum *fscs;
78 #define	sblock	disk.d_fs
79 #define	acg	disk.d_cg
80 
81 union dinode {
82 	struct ufs1_dinode dp1;
83 	struct ufs2_dinode dp2;
84 };
85 #define DIP(dp, field) \
86 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
87 	(dp)->dp1.field : (dp)->dp2.field)
88 
89 static caddr_t iobuf;
90 static long iobufsize;
91 static ufs2_daddr_t alloc(int size, int mode);
92 static int charsperline(void);
93 static void clrblock(struct fs *, unsigned char *, int);
94 static void fsinit(time_t);
95 static int ilog2(int);
96 static void initcg(int, time_t);
97 static int isblock(struct fs *, unsigned char *, int);
98 static void iput(union dinode *, ino_t);
99 static int makedir(struct direct *, int);
100 static void setblock(struct fs *, unsigned char *, int);
101 static void wtfs(ufs2_daddr_t, int, char *);
102 static u_int32_t newfs_random(void);
103 
104 void
105 mkfs(struct partition *pp, char *fsys)
106 {
107 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
108 	long i, j, cylno, csfrags;
109 	time_t utime;
110 	quad_t sizepb;
111 	int width;
112 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
113 	union {
114 		struct fs fdummy;
115 		char cdummy[SBLOCKSIZE];
116 	} dummy;
117 #define fsdummy dummy.fdummy
118 #define chdummy dummy.cdummy
119 
120 	/*
121 	 * Our blocks == sector size, and the version of UFS we are using is
122 	 * specified by Oflag.
123 	 */
124 	disk.d_bsize = sectorsize;
125 	disk.d_ufs = Oflag;
126 	if (Rflag) {
127 		utime = 1000000000;
128 	} else {
129 		time(&utime);
130 		arc4random_stir();
131 	}
132 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
133 	sblock.fs_flags = 0;
134 	if (Uflag)
135 		sblock.fs_flags |= FS_DOSOFTDEP;
136 	if (Lflag)
137 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
138 	if (lflag)
139 		sblock.fs_flags |= FS_MULTILABEL;
140 	/*
141 	 * Validate the given file system size.
142 	 * Verify that its last block can actually be accessed.
143 	 * Convert to file system fragment sized units.
144 	 */
145 	if (fssize <= 0) {
146 		printf("preposterous size %jd\n", (intmax_t)fssize);
147 		exit(13);
148 	}
149 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
150 	    (char *)&sblock);
151 	/*
152 	 * collect and verify the file system density info
153 	 */
154 	sblock.fs_avgfilesize = avgfilesize;
155 	sblock.fs_avgfpdir = avgfilesperdir;
156 	if (sblock.fs_avgfilesize <= 0)
157 		printf("illegal expected average file size %d\n",
158 		    sblock.fs_avgfilesize), exit(14);
159 	if (sblock.fs_avgfpdir <= 0)
160 		printf("illegal expected number of files per directory %d\n",
161 		    sblock.fs_avgfpdir), exit(15);
162 	/*
163 	 * collect and verify the block and fragment sizes
164 	 */
165 	sblock.fs_bsize = bsize;
166 	sblock.fs_fsize = fsize;
167 	if (!POWEROF2(sblock.fs_bsize)) {
168 		printf("block size must be a power of 2, not %d\n",
169 		    sblock.fs_bsize);
170 		exit(16);
171 	}
172 	if (!POWEROF2(sblock.fs_fsize)) {
173 		printf("fragment size must be a power of 2, not %d\n",
174 		    sblock.fs_fsize);
175 		exit(17);
176 	}
177 	if (sblock.fs_fsize < sectorsize) {
178 		printf("increasing fragment size from %d to sector size (%d)\n",
179 		    sblock.fs_fsize, sectorsize);
180 		sblock.fs_fsize = sectorsize;
181 	}
182 	if (sblock.fs_bsize > MAXBSIZE) {
183 		printf("decreasing block size from %d to maximum (%d)\n",
184 		    sblock.fs_bsize, MAXBSIZE);
185 		sblock.fs_bsize = MAXBSIZE;
186 	}
187 	if (sblock.fs_bsize < MINBSIZE) {
188 		printf("increasing block size from %d to minimum (%d)\n",
189 		    sblock.fs_bsize, MINBSIZE);
190 		sblock.fs_bsize = MINBSIZE;
191 	}
192 	if (sblock.fs_fsize > MAXBSIZE) {
193 		printf("decreasing fragment size from %d to maximum (%d)\n",
194 		    sblock.fs_fsize, MAXBSIZE);
195 		sblock.fs_fsize = MAXBSIZE;
196 	}
197 	if (sblock.fs_bsize < sblock.fs_fsize) {
198 		printf("increasing block size from %d to fragment size (%d)\n",
199 		    sblock.fs_bsize, sblock.fs_fsize);
200 		sblock.fs_bsize = sblock.fs_fsize;
201 	}
202 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
203 		printf(
204 		"increasing fragment size from %d to block size / %d (%d)\n",
205 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
206 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
207 	}
208 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
209 		sblock.fs_maxbsize = sblock.fs_bsize;
210 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
211 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
212 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
213 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
214 	} else {
215 		sblock.fs_maxbsize = maxbsize;
216 	}
217 	sblock.fs_maxcontig = maxcontig;
218 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
219 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
220 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
221 	}
222 	if (sblock.fs_maxcontig > 1)
223 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
224 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
225 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
226 	sblock.fs_qbmask = ~sblock.fs_bmask;
227 	sblock.fs_qfmask = ~sblock.fs_fmask;
228 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
229 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
230 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
231 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
232 	if (sblock.fs_frag > MAXFRAG) {
233 		printf("fragment size %d is still too small (can't happen)\n",
234 		    sblock.fs_bsize / MAXFRAG);
235 		exit(21);
236 	}
237 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
238 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
239 	if (Oflag == 1) {
240 		sblock.fs_magic = FS_UFS1_MAGIC;
241 		sblock.fs_sblockloc = SBLOCK_UFS1;
242 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
243 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
244 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
245 		    sizeof(ufs1_daddr_t));
246 		sblock.fs_old_inodefmt = FS_44INODEFMT;
247 		sblock.fs_old_cgoffset = 0;
248 		sblock.fs_old_cgmask = 0xffffffff;
249 		sblock.fs_old_size = sblock.fs_size;
250 		sblock.fs_old_rotdelay = 0;
251 		sblock.fs_old_rps = 60;
252 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
253 		sblock.fs_old_cpg = 1;
254 		sblock.fs_old_interleave = 1;
255 		sblock.fs_old_trackskew = 0;
256 		sblock.fs_old_cpc = 0;
257 		sblock.fs_old_postblformat = 1;
258 		sblock.fs_old_nrpos = 1;
259 	} else {
260 		sblock.fs_magic = FS_BAD2_MAGIC;
261 		sblock.fs_sblockloc = SBLOCK_UFS2;
262 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
263 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
264 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
265 		    sizeof(ufs2_daddr_t));
266 	}
267 	sblock.fs_sblkno =
268 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
269 		sblock.fs_frag);
270 	sblock.fs_cblkno = sblock.fs_sblkno +
271 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
272 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
273 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
274 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
275 		sizepb *= NINDIR(&sblock);
276 		sblock.fs_maxfilesize += sizepb;
277 	}
278 	/*
279 	 * Calculate the number of blocks to put into each cylinder group.
280 	 *
281 	 * This algorithm selects the number of blocks per cylinder
282 	 * group. The first goal is to have at least enough data blocks
283 	 * in each cylinder group to meet the density requirement. Once
284 	 * this goal is achieved we try to expand to have at least
285 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
286 	 * pack as many blocks into each cylinder group map as will fit.
287 	 *
288 	 * We start by calculating the smallest number of blocks that we
289 	 * can put into each cylinder group. If this is too big, we reduce
290 	 * the density until it fits.
291 	 */
292 	origdensity = density;
293 	for (;;) {
294 		fragsperinode = MAX(numfrags(&sblock, density), 1);
295 		minfpg = fragsperinode * INOPB(&sblock);
296 		if (minfpg > sblock.fs_size)
297 			minfpg = sblock.fs_size;
298 		sblock.fs_ipg = INOPB(&sblock);
299 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
300 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
301 		if (sblock.fs_fpg < minfpg)
302 			sblock.fs_fpg = minfpg;
303 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
304 		    INOPB(&sblock));
305 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
306 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
307 		if (sblock.fs_fpg < minfpg)
308 			sblock.fs_fpg = minfpg;
309 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
310 		    INOPB(&sblock));
311 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
312 			break;
313 		density -= sblock.fs_fsize;
314 	}
315 	if (density != origdensity)
316 		printf("density reduced from %d to %d\n", origdensity, density);
317 	/*
318 	 * Start packing more blocks into the cylinder group until
319 	 * it cannot grow any larger, the number of cylinder groups
320 	 * drops below MINCYLGRPS, or we reach the size requested.
321 	 */
322 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
323 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
324 		    INOPB(&sblock));
325 		if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
326 			break;
327 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
328 			continue;
329 		if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
330 			break;
331 		sblock.fs_fpg -= sblock.fs_frag;
332 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
333 		    INOPB(&sblock));
334 		break;
335 	}
336 	/*
337 	 * Check to be sure that the last cylinder group has enough blocks
338 	 * to be viable. If it is too small, reduce the number of blocks
339 	 * per cylinder group which will have the effect of moving more
340 	 * blocks into the last cylinder group.
341 	 */
342 	optimalfpg = sblock.fs_fpg;
343 	for (;;) {
344 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
345 		lastminfpg = roundup(sblock.fs_iblkno +
346 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
347 		if (sblock.fs_size < lastminfpg) {
348 			printf("Filesystem size %jd < minimum size of %d\n",
349 			    (intmax_t)sblock.fs_size, lastminfpg);
350 			exit(28);
351 		}
352 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
353 		    sblock.fs_size % sblock.fs_fpg == 0)
354 			break;
355 		sblock.fs_fpg -= sblock.fs_frag;
356 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
357 		    INOPB(&sblock));
358 	}
359 	if (optimalfpg != sblock.fs_fpg)
360 		printf("Reduced frags per cylinder group from %d to %d %s\n",
361 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
362 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
363 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
364 	if (Oflag == 1) {
365 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
366 		sblock.fs_old_nsect = sblock.fs_old_spc;
367 		sblock.fs_old_npsect = sblock.fs_old_spc;
368 		sblock.fs_old_ncyl = sblock.fs_ncg;
369 	}
370 	/*
371 	 * fill in remaining fields of the super block
372 	 */
373 	sblock.fs_csaddr = cgdmin(&sblock, 0);
374 	sblock.fs_cssize =
375 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
376 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
377 	if (fscs == NULL)
378 		errx(31, "calloc failed");
379 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
380 	if (sblock.fs_sbsize > SBLOCKSIZE)
381 		sblock.fs_sbsize = SBLOCKSIZE;
382 	sblock.fs_minfree = minfree;
383 	sblock.fs_maxbpg = maxbpg;
384 	sblock.fs_optim = opt;
385 	sblock.fs_cgrotor = 0;
386 	sblock.fs_pendingblocks = 0;
387 	sblock.fs_pendinginodes = 0;
388 	sblock.fs_fmod = 0;
389 	sblock.fs_ronly = 0;
390 	sblock.fs_state = 0;
391 	sblock.fs_clean = 1;
392 	sblock.fs_id[0] = (long)utime;
393 	sblock.fs_id[1] = newfs_random();
394 	sblock.fs_fsmnt[0] = '\0';
395 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
396 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
397 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
398 	sblock.fs_cstotal.cs_nbfree =
399 	    fragstoblks(&sblock, sblock.fs_dsize) -
400 	    howmany(csfrags, sblock.fs_frag);
401 	sblock.fs_cstotal.cs_nffree =
402 	    fragnum(&sblock, sblock.fs_size) +
403 	    (fragnum(&sblock, csfrags) > 0 ?
404 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
405 	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
406 	sblock.fs_cstotal.cs_ndir = 0;
407 	sblock.fs_dsize -= csfrags;
408 	sblock.fs_time = utime;
409 	if (Oflag == 1) {
410 		sblock.fs_old_time = utime;
411 		sblock.fs_old_dsize = sblock.fs_dsize;
412 		sblock.fs_old_csaddr = sblock.fs_csaddr;
413 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
414 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
415 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
416 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
417 	}
418 
419 	/*
420 	 * Dump out summary information about file system.
421 	 */
422 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
423 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
424 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
425 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
426 	    sblock.fs_fsize);
427 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
428 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
429 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
430 	if (sblock.fs_flags & FS_DOSOFTDEP)
431 		printf("\twith soft updates\n");
432 #	undef B2MBFACTOR
433 
434 	/*
435 	 * Wipe out old UFS1 superblock(s) if necessary.
436 	 */
437 	if (!Nflag && Oflag != 1) {
438 		i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
439 		if (i == -1)
440 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
441 
442 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
443 			fsdummy.fs_magic = 0;
444 			bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
445 			for (i = 0; i < fsdummy.fs_ncg; i++)
446 				bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)),
447 	                    chdummy, SBLOCKSIZE);
448 		}
449 	}
450 	if (!Nflag)
451 		sbwrite(&disk, 0);
452 	if (Eflag == 1) {
453 		printf("** Exiting on Eflag 1\n");
454 		exit(0);
455 	}
456 	if (Eflag == 2)
457 		printf("** Leaving BAD MAGIC on Eflag 2\n");
458 	else if (Oflag != 1)
459 		sblock.fs_magic = FS_UFS2_MAGIC;
460 
461 	/*
462 	 * Now build the cylinders group blocks and
463 	 * then print out indices of cylinder groups.
464 	 */
465 	printf("super-block backups (for fsck -b #) at:\n");
466 	i = 0;
467 	width = charsperline();
468 	/*
469 	 * allocate space for superblock, cylinder group map, and
470 	 * two sets of inode blocks.
471 	 */
472 	if (sblock.fs_bsize < SBLOCKSIZE)
473 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
474 	else
475 		iobufsize = 4 * sblock.fs_bsize;
476 	if ((iobuf = malloc(iobufsize)) == 0) {
477 		printf("Cannot allocate I/O buffer\n");
478 		exit(38);
479 	}
480 	bzero(iobuf, iobufsize);
481 	/*
482 	 * Make a copy of the superblock into the buffer that we will be
483 	 * writing out in each cylinder group.
484 	 */
485 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
486 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
487 		initcg(cylno, utime);
488 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
489 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
490 		    cylno < (sblock.fs_ncg-1) ? "," : "");
491 		if (j < 0)
492 			tmpbuf[j = 0] = '\0';
493 		if (i + j >= width) {
494 			printf("\n");
495 			i = 0;
496 		}
497 		i += j;
498 		printf("%s", tmpbuf);
499 		fflush(stdout);
500 	}
501 	printf("\n");
502 	if (Nflag)
503 		exit(0);
504 	/*
505 	 * Now construct the initial file system,
506 	 * then write out the super-block.
507 	 */
508 	fsinit(utime);
509 	if (Oflag == 1) {
510 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
511 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
512 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
513 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
514 	}
515 	if (Eflag == 3) {
516 		printf("** Exiting on Eflag 3\n");
517 		exit(0);
518 	}
519 	if (!Nflag)
520 		sbwrite(&disk, 0);
521 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
522 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
523 			sblock.fs_cssize - i < sblock.fs_bsize ?
524 			sblock.fs_cssize - i : sblock.fs_bsize,
525 			((char *)fscs) + i);
526 	/*
527 	 * Update information about this partion in pack
528 	 * label, to that it may be updated on disk.
529 	 */
530 	if (pp != NULL) {
531 		pp->p_fstype = FS_BSDFFS;
532 		pp->p_fsize = sblock.fs_fsize;
533 		pp->p_frag = sblock.fs_frag;
534 		pp->p_cpg = sblock.fs_fpg;
535 	}
536 }
537 
538 /*
539  * Initialize a cylinder group.
540  */
541 void
542 initcg(int cylno, time_t utime)
543 {
544 	long i, j, d, dlower, dupper, blkno, start;
545 	ufs2_daddr_t cbase, dmax;
546 	struct ufs1_dinode *dp1;
547 	struct ufs2_dinode *dp2;
548 	struct csum *cs;
549 
550 	/*
551 	 * Determine block bounds for cylinder group.
552 	 * Allow space for super block summary information in first
553 	 * cylinder group.
554 	 */
555 	cbase = cgbase(&sblock, cylno);
556 	dmax = cbase + sblock.fs_fpg;
557 	if (dmax > sblock.fs_size)
558 		dmax = sblock.fs_size;
559 	dlower = cgsblock(&sblock, cylno) - cbase;
560 	dupper = cgdmin(&sblock, cylno) - cbase;
561 	if (cylno == 0)
562 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
563 	cs = &fscs[cylno];
564 	memset(&acg, 0, sblock.fs_cgsize);
565 	acg.cg_time = utime;
566 	acg.cg_magic = CG_MAGIC;
567 	acg.cg_cgx = cylno;
568 	acg.cg_niblk = sblock.fs_ipg;
569 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
570 	    sblock.fs_ipg : 2 * INOPB(&sblock);
571 	acg.cg_ndblk = dmax - cbase;
572 	if (sblock.fs_contigsumsize > 0)
573 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
574 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
575 	if (Oflag == 2) {
576 		acg.cg_iusedoff = start;
577 	} else {
578 		acg.cg_old_ncyl = sblock.fs_old_cpg;
579 		acg.cg_old_time = acg.cg_time;
580 		acg.cg_time = 0;
581 		acg.cg_old_niblk = acg.cg_niblk;
582 		acg.cg_niblk = 0;
583 		acg.cg_initediblk = 0;
584 		acg.cg_old_btotoff = start;
585 		acg.cg_old_boff = acg.cg_old_btotoff +
586 		    sblock.fs_old_cpg * sizeof(int32_t);
587 		acg.cg_iusedoff = acg.cg_old_boff +
588 		    sblock.fs_old_cpg * sizeof(u_int16_t);
589 	}
590 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
591 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
592 	if (sblock.fs_contigsumsize > 0) {
593 		acg.cg_clustersumoff =
594 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
595 		acg.cg_clustersumoff -= sizeof(u_int32_t);
596 		acg.cg_clusteroff = acg.cg_clustersumoff +
597 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
598 		acg.cg_nextfreeoff = acg.cg_clusteroff +
599 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
600 	}
601 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
602 		printf("Panic: cylinder group too big\n");
603 		exit(37);
604 	}
605 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
606 	if (cylno == 0)
607 		for (i = 0; i < (long)ROOTINO; i++) {
608 			setbit(cg_inosused(&acg), i);
609 			acg.cg_cs.cs_nifree--;
610 		}
611 	if (cylno > 0) {
612 		/*
613 		 * In cylno 0, beginning space is reserved
614 		 * for boot and super blocks.
615 		 */
616 		for (d = 0; d < dlower; d += sblock.fs_frag) {
617 			blkno = d / sblock.fs_frag;
618 			setblock(&sblock, cg_blksfree(&acg), blkno);
619 			if (sblock.fs_contigsumsize > 0)
620 				setbit(cg_clustersfree(&acg), blkno);
621 			acg.cg_cs.cs_nbfree++;
622 		}
623 	}
624 	if ((i = dupper % sblock.fs_frag)) {
625 		acg.cg_frsum[sblock.fs_frag - i]++;
626 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
627 			setbit(cg_blksfree(&acg), dupper);
628 			acg.cg_cs.cs_nffree++;
629 		}
630 	}
631 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
632 	     d += sblock.fs_frag) {
633 		blkno = d / sblock.fs_frag;
634 		setblock(&sblock, cg_blksfree(&acg), blkno);
635 		if (sblock.fs_contigsumsize > 0)
636 			setbit(cg_clustersfree(&acg), blkno);
637 		acg.cg_cs.cs_nbfree++;
638 	}
639 	if (d < acg.cg_ndblk) {
640 		acg.cg_frsum[acg.cg_ndblk - d]++;
641 		for (; d < acg.cg_ndblk; d++) {
642 			setbit(cg_blksfree(&acg), d);
643 			acg.cg_cs.cs_nffree++;
644 		}
645 	}
646 	if (sblock.fs_contigsumsize > 0) {
647 		int32_t *sump = cg_clustersum(&acg);
648 		u_char *mapp = cg_clustersfree(&acg);
649 		int map = *mapp++;
650 		int bit = 1;
651 		int run = 0;
652 
653 		for (i = 0; i < acg.cg_nclusterblks; i++) {
654 			if ((map & bit) != 0)
655 				run++;
656 			else if (run != 0) {
657 				if (run > sblock.fs_contigsumsize)
658 					run = sblock.fs_contigsumsize;
659 				sump[run]++;
660 				run = 0;
661 			}
662 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
663 				bit <<= 1;
664 			else {
665 				map = *mapp++;
666 				bit = 1;
667 			}
668 		}
669 		if (run != 0) {
670 			if (run > sblock.fs_contigsumsize)
671 				run = sblock.fs_contigsumsize;
672 			sump[run]++;
673 		}
674 	}
675 	*cs = acg.cg_cs;
676 	/*
677 	 * Write out the duplicate super block, the cylinder group map
678 	 * and two blocks worth of inodes in a single write.
679 	 */
680 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
681 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
682 	start += sblock.fs_bsize;
683 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
684 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
685 	for (i = 0; i < acg.cg_initediblk; i++) {
686 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
687 			dp1->di_gen = newfs_random();
688 			dp1++;
689 		} else {
690 			dp2->di_gen = newfs_random();
691 			dp2++;
692 		}
693 	}
694 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
695 	/*
696 	 * For the old file system, we have to initialize all the inodes.
697 	 */
698 	if (Oflag == 1) {
699 		for (i = 2 * sblock.fs_frag;
700 		     i < sblock.fs_ipg / INOPF(&sblock);
701 		     i += sblock.fs_frag) {
702 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
703 			for (j = 0; j < INOPB(&sblock); j++) {
704 				dp1->di_gen = newfs_random();
705 				dp1++;
706 			}
707 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
708 			    sblock.fs_bsize, &iobuf[start]);
709 		}
710 	}
711 }
712 
713 /*
714  * initialize the file system
715  */
716 #define ROOTLINKCNT 3
717 
718 struct direct root_dir[] = {
719 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
720 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
721 	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
722 };
723 
724 #define SNAPLINKCNT 2
725 
726 struct direct snap_dir[] = {
727 	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
728 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
729 };
730 
731 void
732 fsinit(time_t utime)
733 {
734 	union dinode node;
735 	struct group *grp;
736 
737 	memset(&node, 0, sizeof node);
738 	if ((grp = getgrnam("operator")) == NULL)
739 		errx(35, "Cannot retrieve operator gid");
740 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
741 		/*
742 		 * initialize the node
743 		 */
744 		node.dp1.di_atime = utime;
745 		node.dp1.di_mtime = utime;
746 		node.dp1.di_ctime = utime;
747 		/*
748 		 * create the root directory
749 		 */
750 		node.dp1.di_mode = IFDIR | UMASK;
751 		node.dp1.di_nlink = ROOTLINKCNT;
752 		node.dp1.di_size = makedir(root_dir, ROOTLINKCNT);
753 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
754 		node.dp1.di_blocks =
755 		    btodb(fragroundup(&sblock, node.dp1.di_size));
756 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
757 		    iobuf);
758 		iput(&node, ROOTINO);
759 		/*
760 		 * create the .snap directory
761 		 */
762 		node.dp1.di_mode |= 020;
763 		node.dp1.di_gid = grp->gr_gid;
764 		node.dp1.di_nlink = SNAPLINKCNT;
765 		node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
766 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
767 		node.dp1.di_blocks =
768 		    btodb(fragroundup(&sblock, node.dp1.di_size));
769 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
770 		    iobuf);
771 		iput(&node, ROOTINO + 1);
772 	} else {
773 		/*
774 		 * initialize the node
775 		 */
776 		node.dp2.di_atime = utime;
777 		node.dp2.di_mtime = utime;
778 		node.dp2.di_ctime = utime;
779 		node.dp2.di_birthtime = utime;
780 		/*
781 		 * create the root directory
782 		 */
783 		node.dp2.di_mode = IFDIR | UMASK;
784 		node.dp2.di_nlink = ROOTLINKCNT;
785 		node.dp2.di_size = makedir(root_dir, ROOTLINKCNT);
786 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
787 		node.dp2.di_blocks =
788 		    btodb(fragroundup(&sblock, node.dp2.di_size));
789 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
790 		    iobuf);
791 		iput(&node, ROOTINO);
792 		/*
793 		 * create the .snap directory
794 		 */
795 		node.dp2.di_mode |= 020;
796 		node.dp2.di_gid = grp->gr_gid;
797 		node.dp2.di_nlink = SNAPLINKCNT;
798 		node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
799 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
800 		node.dp2.di_blocks =
801 		    btodb(fragroundup(&sblock, node.dp2.di_size));
802 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
803 		    iobuf);
804 		iput(&node, ROOTINO + 1);
805 	}
806 }
807 
808 /*
809  * construct a set of directory entries in "iobuf".
810  * return size of directory.
811  */
812 int
813 makedir(struct direct *protodir, int entries)
814 {
815 	char *cp;
816 	int i, spcleft;
817 
818 	spcleft = DIRBLKSIZ;
819 	memset(iobuf, 0, DIRBLKSIZ);
820 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
821 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
822 		memmove(cp, &protodir[i], protodir[i].d_reclen);
823 		cp += protodir[i].d_reclen;
824 		spcleft -= protodir[i].d_reclen;
825 	}
826 	protodir[i].d_reclen = spcleft;
827 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
828 	return (DIRBLKSIZ);
829 }
830 
831 /*
832  * allocate a block or frag
833  */
834 ufs2_daddr_t
835 alloc(int size, int mode)
836 {
837 	int i, d, blkno, frag;
838 
839 	bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
840 	    sblock.fs_cgsize);
841 	if (acg.cg_magic != CG_MAGIC) {
842 		printf("cg 0: bad magic number\n");
843 		exit(38);
844 	}
845 	if (acg.cg_cs.cs_nbfree == 0) {
846 		printf("first cylinder group ran out of space\n");
847 		exit(39);
848 	}
849 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
850 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
851 			goto goth;
852 	printf("internal error: can't find block in cyl 0\n");
853 	exit(40);
854 goth:
855 	blkno = fragstoblks(&sblock, d);
856 	clrblock(&sblock, cg_blksfree(&acg), blkno);
857 	if (sblock.fs_contigsumsize > 0)
858 		clrbit(cg_clustersfree(&acg), blkno);
859 	acg.cg_cs.cs_nbfree--;
860 	sblock.fs_cstotal.cs_nbfree--;
861 	fscs[0].cs_nbfree--;
862 	if (mode & IFDIR) {
863 		acg.cg_cs.cs_ndir++;
864 		sblock.fs_cstotal.cs_ndir++;
865 		fscs[0].cs_ndir++;
866 	}
867 	if (size != sblock.fs_bsize) {
868 		frag = howmany(size, sblock.fs_fsize);
869 		fscs[0].cs_nffree += sblock.fs_frag - frag;
870 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
871 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
872 		acg.cg_frsum[sblock.fs_frag - frag]++;
873 		for (i = frag; i < sblock.fs_frag; i++)
874 			setbit(cg_blksfree(&acg), d + i);
875 	}
876 	/* XXX cgwrite(&disk, 0)??? */
877 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
878 	    (char *)&acg);
879 	return ((ufs2_daddr_t)d);
880 }
881 
882 /*
883  * Allocate an inode on the disk
884  */
885 void
886 iput(union dinode *ip, ino_t ino)
887 {
888 	ufs2_daddr_t d;
889 	int c;
890 
891 	c = ino_to_cg(&sblock, ino);
892 	bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
893 	    sblock.fs_cgsize);
894 	if (acg.cg_magic != CG_MAGIC) {
895 		printf("cg 0: bad magic number\n");
896 		exit(31);
897 	}
898 	acg.cg_cs.cs_nifree--;
899 	setbit(cg_inosused(&acg), ino);
900 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
901 	    (char *)&acg);
902 	sblock.fs_cstotal.cs_nifree--;
903 	fscs[0].cs_nifree--;
904 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
905 		printf("fsinit: inode value out of range (%d).\n", ino);
906 		exit(32);
907 	}
908 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
909 	bread(&disk, d, (char *)iobuf, sblock.fs_bsize);
910 	if (sblock.fs_magic == FS_UFS1_MAGIC)
911 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
912 		    ip->dp1;
913 	else
914 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
915 		    ip->dp2;
916 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
917 }
918 
919 /*
920  * possibly write to disk
921  */
922 static void
923 wtfs(ufs2_daddr_t bno, int size, char *bf)
924 {
925 	if (Nflag)
926 		return;
927 	if (bwrite(&disk, bno, bf, size) < 0)
928 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
929 }
930 
931 /*
932  * check if a block is available
933  */
934 static int
935 isblock(struct fs *fs, unsigned char *cp, int h)
936 {
937 	unsigned char mask;
938 
939 	switch (fs->fs_frag) {
940 	case 8:
941 		return (cp[h] == 0xff);
942 	case 4:
943 		mask = 0x0f << ((h & 0x1) << 2);
944 		return ((cp[h >> 1] & mask) == mask);
945 	case 2:
946 		mask = 0x03 << ((h & 0x3) << 1);
947 		return ((cp[h >> 2] & mask) == mask);
948 	case 1:
949 		mask = 0x01 << (h & 0x7);
950 		return ((cp[h >> 3] & mask) == mask);
951 	default:
952 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
953 		return (0);
954 	}
955 }
956 
957 /*
958  * take a block out of the map
959  */
960 static void
961 clrblock(struct fs *fs, unsigned char *cp, int h)
962 {
963 	switch ((fs)->fs_frag) {
964 	case 8:
965 		cp[h] = 0;
966 		return;
967 	case 4:
968 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
969 		return;
970 	case 2:
971 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
972 		return;
973 	case 1:
974 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
975 		return;
976 	default:
977 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
978 		return;
979 	}
980 }
981 
982 /*
983  * put a block into the map
984  */
985 static void
986 setblock(struct fs *fs, unsigned char *cp, int h)
987 {
988 	switch (fs->fs_frag) {
989 	case 8:
990 		cp[h] = 0xff;
991 		return;
992 	case 4:
993 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
994 		return;
995 	case 2:
996 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
997 		return;
998 	case 1:
999 		cp[h >> 3] |= (0x01 << (h & 0x7));
1000 		return;
1001 	default:
1002 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1003 		return;
1004 	}
1005 }
1006 
1007 /*
1008  * Determine the number of characters in a
1009  * single line.
1010  */
1011 
1012 static int
1013 charsperline(void)
1014 {
1015 	int columns;
1016 	char *cp;
1017 	struct winsize ws;
1018 
1019 	columns = 0;
1020 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1021 		columns = ws.ws_col;
1022 	if (columns == 0 && (cp = getenv("COLUMNS")))
1023 		columns = atoi(cp);
1024 	if (columns == 0)
1025 		columns = 80;	/* last resort */
1026 	return (columns);
1027 }
1028 
1029 static int
1030 ilog2(int val)
1031 {
1032 	u_int n;
1033 
1034 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1035 		if (1 << n == val)
1036 			return (n);
1037 	errx(1, "ilog2: %d is not a power of 2\n", val);
1038 }
1039 
1040 /*
1041  * For the regression test, return predictable random values.
1042  * Otherwise use a true random number generator.
1043  */
1044 static u_int32_t
1045 newfs_random(void)
1046 {
1047 	static int nextnum = 1;
1048 
1049 	if (Rflag)
1050 		return (nextnum++);
1051 	return (arc4random());
1052 }
1053