1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <err.h> 48 #include <grp.h> 49 #include <limits.h> 50 #include <signal.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <stdint.h> 54 #include <stdio.h> 55 #include <unistd.h> 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/types.h> 59 #include <sys/wait.h> 60 #include <sys/resource.h> 61 #include <sys/stat.h> 62 #include <ufs/ufs/dinode.h> 63 #include <ufs/ufs/dir.h> 64 #include <ufs/ffs/fs.h> 65 #include <sys/disklabel.h> 66 #include <sys/file.h> 67 #include <sys/mman.h> 68 #include <sys/ioctl.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 static struct csum *fscs; 78 #define sblock disk.d_fs 79 #define acg disk.d_cg 80 81 union dinode { 82 struct ufs1_dinode dp1; 83 struct ufs2_dinode dp2; 84 }; 85 #define DIP(dp, field) \ 86 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 87 (dp)->dp1.field : (dp)->dp2.field) 88 89 static caddr_t iobuf; 90 static long iobufsize; 91 static ufs2_daddr_t alloc(int size, int mode); 92 static int charsperline(void); 93 static void clrblock(struct fs *, unsigned char *, int); 94 static void fsinit(time_t); 95 static int ilog2(int); 96 static void initcg(int, time_t); 97 static int isblock(struct fs *, unsigned char *, int); 98 static void iput(union dinode *, ino_t); 99 static int makedir(struct direct *, int); 100 static void setblock(struct fs *, unsigned char *, int); 101 static void wtfs(ufs2_daddr_t, int, char *); 102 static u_int32_t newfs_random(void); 103 104 void 105 mkfs(struct partition *pp, char *fsys) 106 { 107 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 108 long i, j, cylno, csfrags; 109 time_t utime; 110 quad_t sizepb; 111 int width; 112 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 113 union { 114 struct fs fdummy; 115 char cdummy[SBLOCKSIZE]; 116 } dummy; 117 #define fsdummy dummy.fdummy 118 #define chdummy dummy.cdummy 119 120 /* 121 * Our blocks == sector size, and the version of UFS we are using is 122 * specified by Oflag. 123 */ 124 disk.d_bsize = sectorsize; 125 disk.d_ufs = Oflag; 126 if (Rflag) { 127 utime = 1000000000; 128 } else { 129 time(&utime); 130 arc4random_stir(); 131 } 132 sblock.fs_old_flags = FS_FLAGS_UPDATED; 133 sblock.fs_flags = 0; 134 if (Uflag) 135 sblock.fs_flags |= FS_DOSOFTDEP; 136 if (Lflag) 137 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 138 if (lflag) 139 sblock.fs_flags |= FS_MULTILABEL; 140 /* 141 * Validate the given file system size. 142 * Verify that its last block can actually be accessed. 143 * Convert to file system fragment sized units. 144 */ 145 if (fssize <= 0) { 146 printf("preposterous size %jd\n", (intmax_t)fssize); 147 exit(13); 148 } 149 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 150 (char *)&sblock); 151 /* 152 * collect and verify the file system density info 153 */ 154 sblock.fs_avgfilesize = avgfilesize; 155 sblock.fs_avgfpdir = avgfilesperdir; 156 if (sblock.fs_avgfilesize <= 0) 157 printf("illegal expected average file size %d\n", 158 sblock.fs_avgfilesize), exit(14); 159 if (sblock.fs_avgfpdir <= 0) 160 printf("illegal expected number of files per directory %d\n", 161 sblock.fs_avgfpdir), exit(15); 162 /* 163 * collect and verify the block and fragment sizes 164 */ 165 sblock.fs_bsize = bsize; 166 sblock.fs_fsize = fsize; 167 if (!POWEROF2(sblock.fs_bsize)) { 168 printf("block size must be a power of 2, not %d\n", 169 sblock.fs_bsize); 170 exit(16); 171 } 172 if (!POWEROF2(sblock.fs_fsize)) { 173 printf("fragment size must be a power of 2, not %d\n", 174 sblock.fs_fsize); 175 exit(17); 176 } 177 if (sblock.fs_fsize < sectorsize) { 178 printf("increasing fragment size from %d to sector size (%d)\n", 179 sblock.fs_fsize, sectorsize); 180 sblock.fs_fsize = sectorsize; 181 } 182 if (sblock.fs_bsize > MAXBSIZE) { 183 printf("decreasing block size from %d to maximum (%d)\n", 184 sblock.fs_bsize, MAXBSIZE); 185 sblock.fs_bsize = MAXBSIZE; 186 } 187 if (sblock.fs_bsize < MINBSIZE) { 188 printf("increasing block size from %d to minimum (%d)\n", 189 sblock.fs_bsize, MINBSIZE); 190 sblock.fs_bsize = MINBSIZE; 191 } 192 if (sblock.fs_fsize > MAXBSIZE) { 193 printf("decreasing fragment size from %d to maximum (%d)\n", 194 sblock.fs_fsize, MAXBSIZE); 195 sblock.fs_fsize = MAXBSIZE; 196 } 197 if (sblock.fs_bsize < sblock.fs_fsize) { 198 printf("increasing block size from %d to fragment size (%d)\n", 199 sblock.fs_bsize, sblock.fs_fsize); 200 sblock.fs_bsize = sblock.fs_fsize; 201 } 202 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 203 printf( 204 "increasing fragment size from %d to block size / %d (%d)\n", 205 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 206 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 207 } 208 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 209 sblock.fs_maxbsize = sblock.fs_bsize; 210 printf("Extent size set to %d\n", sblock.fs_maxbsize); 211 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 212 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 213 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 214 } else { 215 sblock.fs_maxbsize = maxbsize; 216 } 217 sblock.fs_maxcontig = maxcontig; 218 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 219 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 220 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 221 } 222 if (sblock.fs_maxcontig > 1) 223 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 224 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 225 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 226 sblock.fs_qbmask = ~sblock.fs_bmask; 227 sblock.fs_qfmask = ~sblock.fs_fmask; 228 sblock.fs_bshift = ilog2(sblock.fs_bsize); 229 sblock.fs_fshift = ilog2(sblock.fs_fsize); 230 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 231 sblock.fs_fragshift = ilog2(sblock.fs_frag); 232 if (sblock.fs_frag > MAXFRAG) { 233 printf("fragment size %d is still too small (can't happen)\n", 234 sblock.fs_bsize / MAXFRAG); 235 exit(21); 236 } 237 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 238 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 239 if (Oflag == 1) { 240 sblock.fs_magic = FS_UFS1_MAGIC; 241 sblock.fs_sblockloc = SBLOCK_UFS1; 242 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 243 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 244 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 245 sizeof(ufs1_daddr_t)); 246 sblock.fs_old_inodefmt = FS_44INODEFMT; 247 sblock.fs_old_cgoffset = 0; 248 sblock.fs_old_cgmask = 0xffffffff; 249 sblock.fs_old_size = sblock.fs_size; 250 sblock.fs_old_rotdelay = 0; 251 sblock.fs_old_rps = 60; 252 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 253 sblock.fs_old_cpg = 1; 254 sblock.fs_old_interleave = 1; 255 sblock.fs_old_trackskew = 0; 256 sblock.fs_old_cpc = 0; 257 sblock.fs_old_postblformat = 1; 258 sblock.fs_old_nrpos = 1; 259 } else { 260 sblock.fs_magic = FS_BAD2_MAGIC; 261 sblock.fs_sblockloc = SBLOCK_UFS2; 262 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 263 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 264 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 265 sizeof(ufs2_daddr_t)); 266 } 267 sblock.fs_sblkno = 268 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 269 sblock.fs_frag); 270 sblock.fs_cblkno = sblock.fs_sblkno + 271 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 272 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 273 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 274 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 275 sizepb *= NINDIR(&sblock); 276 sblock.fs_maxfilesize += sizepb; 277 } 278 /* 279 * Calculate the number of blocks to put into each cylinder group. 280 * 281 * This algorithm selects the number of blocks per cylinder 282 * group. The first goal is to have at least enough data blocks 283 * in each cylinder group to meet the density requirement. Once 284 * this goal is achieved we try to expand to have at least 285 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 286 * pack as many blocks into each cylinder group map as will fit. 287 * 288 * We start by calculating the smallest number of blocks that we 289 * can put into each cylinder group. If this is too big, we reduce 290 * the density until it fits. 291 */ 292 origdensity = density; 293 for (;;) { 294 fragsperinode = MAX(numfrags(&sblock, density), 1); 295 minfpg = fragsperinode * INOPB(&sblock); 296 if (minfpg > sblock.fs_size) 297 minfpg = sblock.fs_size; 298 sblock.fs_ipg = INOPB(&sblock); 299 sblock.fs_fpg = roundup(sblock.fs_iblkno + 300 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 301 if (sblock.fs_fpg < minfpg) 302 sblock.fs_fpg = minfpg; 303 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 304 INOPB(&sblock)); 305 sblock.fs_fpg = roundup(sblock.fs_iblkno + 306 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 307 if (sblock.fs_fpg < minfpg) 308 sblock.fs_fpg = minfpg; 309 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 310 INOPB(&sblock)); 311 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 312 break; 313 density -= sblock.fs_fsize; 314 } 315 if (density != origdensity) 316 printf("density reduced from %d to %d\n", origdensity, density); 317 /* 318 * Start packing more blocks into the cylinder group until 319 * it cannot grow any larger, the number of cylinder groups 320 * drops below MINCYLGRPS, or we reach the size requested. 321 */ 322 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 323 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 324 INOPB(&sblock)); 325 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 326 break; 327 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 328 continue; 329 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 330 break; 331 sblock.fs_fpg -= sblock.fs_frag; 332 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 333 INOPB(&sblock)); 334 break; 335 } 336 /* 337 * Check to be sure that the last cylinder group has enough blocks 338 * to be viable. If it is too small, reduce the number of blocks 339 * per cylinder group which will have the effect of moving more 340 * blocks into the last cylinder group. 341 */ 342 optimalfpg = sblock.fs_fpg; 343 for (;;) { 344 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 345 lastminfpg = roundup(sblock.fs_iblkno + 346 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 347 if (sblock.fs_size < lastminfpg) { 348 printf("Filesystem size %jd < minimum size of %d\n", 349 (intmax_t)sblock.fs_size, lastminfpg); 350 exit(28); 351 } 352 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 353 sblock.fs_size % sblock.fs_fpg == 0) 354 break; 355 sblock.fs_fpg -= sblock.fs_frag; 356 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 357 INOPB(&sblock)); 358 } 359 if (optimalfpg != sblock.fs_fpg) 360 printf("Reduced frags per cylinder group from %d to %d %s\n", 361 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 362 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 363 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 364 if (Oflag == 1) { 365 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 366 sblock.fs_old_nsect = sblock.fs_old_spc; 367 sblock.fs_old_npsect = sblock.fs_old_spc; 368 sblock.fs_old_ncyl = sblock.fs_ncg; 369 } 370 /* 371 * fill in remaining fields of the super block 372 */ 373 sblock.fs_csaddr = cgdmin(&sblock, 0); 374 sblock.fs_cssize = 375 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 376 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 377 if (fscs == NULL) 378 errx(31, "calloc failed"); 379 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 380 if (sblock.fs_sbsize > SBLOCKSIZE) 381 sblock.fs_sbsize = SBLOCKSIZE; 382 sblock.fs_minfree = minfree; 383 sblock.fs_maxbpg = maxbpg; 384 sblock.fs_optim = opt; 385 sblock.fs_cgrotor = 0; 386 sblock.fs_pendingblocks = 0; 387 sblock.fs_pendinginodes = 0; 388 sblock.fs_fmod = 0; 389 sblock.fs_ronly = 0; 390 sblock.fs_state = 0; 391 sblock.fs_clean = 1; 392 sblock.fs_id[0] = (long)utime; 393 sblock.fs_id[1] = newfs_random(); 394 sblock.fs_fsmnt[0] = '\0'; 395 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 396 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 397 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 398 sblock.fs_cstotal.cs_nbfree = 399 fragstoblks(&sblock, sblock.fs_dsize) - 400 howmany(csfrags, sblock.fs_frag); 401 sblock.fs_cstotal.cs_nffree = 402 fragnum(&sblock, sblock.fs_size) + 403 (fragnum(&sblock, csfrags) > 0 ? 404 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 405 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 406 sblock.fs_cstotal.cs_ndir = 0; 407 sblock.fs_dsize -= csfrags; 408 sblock.fs_time = utime; 409 if (Oflag == 1) { 410 sblock.fs_old_time = utime; 411 sblock.fs_old_dsize = sblock.fs_dsize; 412 sblock.fs_old_csaddr = sblock.fs_csaddr; 413 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 414 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 415 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 416 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 417 } 418 419 /* 420 * Dump out summary information about file system. 421 */ 422 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 423 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 424 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 425 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 426 sblock.fs_fsize); 427 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 428 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 429 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 430 if (sblock.fs_flags & FS_DOSOFTDEP) 431 printf("\twith soft updates\n"); 432 # undef B2MBFACTOR 433 434 /* 435 * Wipe out old UFS1 superblock(s) if necessary. 436 */ 437 if (!Nflag && Oflag != 1) { 438 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 439 if (i == -1) 440 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 441 442 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 443 fsdummy.fs_magic = 0; 444 bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 445 for (i = 0; i < fsdummy.fs_ncg; i++) 446 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)), 447 chdummy, SBLOCKSIZE); 448 } 449 } 450 if (!Nflag) 451 sbwrite(&disk, 0); 452 if (Eflag == 1) { 453 printf("** Exiting on Eflag 1\n"); 454 exit(0); 455 } 456 if (Eflag == 2) 457 printf("** Leaving BAD MAGIC on Eflag 2\n"); 458 else if (Oflag != 1) 459 sblock.fs_magic = FS_UFS2_MAGIC; 460 461 /* 462 * Now build the cylinders group blocks and 463 * then print out indices of cylinder groups. 464 */ 465 printf("super-block backups (for fsck -b #) at:\n"); 466 i = 0; 467 width = charsperline(); 468 /* 469 * allocate space for superblock, cylinder group map, and 470 * two sets of inode blocks. 471 */ 472 if (sblock.fs_bsize < SBLOCKSIZE) 473 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 474 else 475 iobufsize = 4 * sblock.fs_bsize; 476 if ((iobuf = malloc(iobufsize)) == 0) { 477 printf("Cannot allocate I/O buffer\n"); 478 exit(38); 479 } 480 bzero(iobuf, iobufsize); 481 /* 482 * Make a copy of the superblock into the buffer that we will be 483 * writing out in each cylinder group. 484 */ 485 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 486 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 487 initcg(cylno, utime); 488 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 489 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 490 cylno < (sblock.fs_ncg-1) ? "," : ""); 491 if (j < 0) 492 tmpbuf[j = 0] = '\0'; 493 if (i + j >= width) { 494 printf("\n"); 495 i = 0; 496 } 497 i += j; 498 printf("%s", tmpbuf); 499 fflush(stdout); 500 } 501 printf("\n"); 502 if (Nflag) 503 exit(0); 504 /* 505 * Now construct the initial file system, 506 * then write out the super-block. 507 */ 508 fsinit(utime); 509 if (Oflag == 1) { 510 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 511 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 512 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 513 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 514 } 515 if (Eflag == 3) { 516 printf("** Exiting on Eflag 3\n"); 517 exit(0); 518 } 519 if (!Nflag) 520 sbwrite(&disk, 0); 521 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 522 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 523 sblock.fs_cssize - i < sblock.fs_bsize ? 524 sblock.fs_cssize - i : sblock.fs_bsize, 525 ((char *)fscs) + i); 526 /* 527 * Update information about this partion in pack 528 * label, to that it may be updated on disk. 529 */ 530 if (pp != NULL) { 531 pp->p_fstype = FS_BSDFFS; 532 pp->p_fsize = sblock.fs_fsize; 533 pp->p_frag = sblock.fs_frag; 534 pp->p_cpg = sblock.fs_fpg; 535 } 536 } 537 538 /* 539 * Initialize a cylinder group. 540 */ 541 void 542 initcg(int cylno, time_t utime) 543 { 544 long i, j, d, dlower, dupper, blkno, start; 545 ufs2_daddr_t cbase, dmax; 546 struct ufs1_dinode *dp1; 547 struct ufs2_dinode *dp2; 548 struct csum *cs; 549 550 /* 551 * Determine block bounds for cylinder group. 552 * Allow space for super block summary information in first 553 * cylinder group. 554 */ 555 cbase = cgbase(&sblock, cylno); 556 dmax = cbase + sblock.fs_fpg; 557 if (dmax > sblock.fs_size) 558 dmax = sblock.fs_size; 559 dlower = cgsblock(&sblock, cylno) - cbase; 560 dupper = cgdmin(&sblock, cylno) - cbase; 561 if (cylno == 0) 562 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 563 cs = &fscs[cylno]; 564 memset(&acg, 0, sblock.fs_cgsize); 565 acg.cg_time = utime; 566 acg.cg_magic = CG_MAGIC; 567 acg.cg_cgx = cylno; 568 acg.cg_niblk = sblock.fs_ipg; 569 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 570 sblock.fs_ipg : 2 * INOPB(&sblock); 571 acg.cg_ndblk = dmax - cbase; 572 if (sblock.fs_contigsumsize > 0) 573 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 574 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 575 if (Oflag == 2) { 576 acg.cg_iusedoff = start; 577 } else { 578 acg.cg_old_ncyl = sblock.fs_old_cpg; 579 acg.cg_old_time = acg.cg_time; 580 acg.cg_time = 0; 581 acg.cg_old_niblk = acg.cg_niblk; 582 acg.cg_niblk = 0; 583 acg.cg_initediblk = 0; 584 acg.cg_old_btotoff = start; 585 acg.cg_old_boff = acg.cg_old_btotoff + 586 sblock.fs_old_cpg * sizeof(int32_t); 587 acg.cg_iusedoff = acg.cg_old_boff + 588 sblock.fs_old_cpg * sizeof(u_int16_t); 589 } 590 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 591 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 592 if (sblock.fs_contigsumsize > 0) { 593 acg.cg_clustersumoff = 594 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 595 acg.cg_clustersumoff -= sizeof(u_int32_t); 596 acg.cg_clusteroff = acg.cg_clustersumoff + 597 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 598 acg.cg_nextfreeoff = acg.cg_clusteroff + 599 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 600 } 601 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 602 printf("Panic: cylinder group too big\n"); 603 exit(37); 604 } 605 acg.cg_cs.cs_nifree += sblock.fs_ipg; 606 if (cylno == 0) 607 for (i = 0; i < (long)ROOTINO; i++) { 608 setbit(cg_inosused(&acg), i); 609 acg.cg_cs.cs_nifree--; 610 } 611 if (cylno > 0) { 612 /* 613 * In cylno 0, beginning space is reserved 614 * for boot and super blocks. 615 */ 616 for (d = 0; d < dlower; d += sblock.fs_frag) { 617 blkno = d / sblock.fs_frag; 618 setblock(&sblock, cg_blksfree(&acg), blkno); 619 if (sblock.fs_contigsumsize > 0) 620 setbit(cg_clustersfree(&acg), blkno); 621 acg.cg_cs.cs_nbfree++; 622 } 623 } 624 if ((i = dupper % sblock.fs_frag)) { 625 acg.cg_frsum[sblock.fs_frag - i]++; 626 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 627 setbit(cg_blksfree(&acg), dupper); 628 acg.cg_cs.cs_nffree++; 629 } 630 } 631 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 632 d += sblock.fs_frag) { 633 blkno = d / sblock.fs_frag; 634 setblock(&sblock, cg_blksfree(&acg), blkno); 635 if (sblock.fs_contigsumsize > 0) 636 setbit(cg_clustersfree(&acg), blkno); 637 acg.cg_cs.cs_nbfree++; 638 } 639 if (d < acg.cg_ndblk) { 640 acg.cg_frsum[acg.cg_ndblk - d]++; 641 for (; d < acg.cg_ndblk; d++) { 642 setbit(cg_blksfree(&acg), d); 643 acg.cg_cs.cs_nffree++; 644 } 645 } 646 if (sblock.fs_contigsumsize > 0) { 647 int32_t *sump = cg_clustersum(&acg); 648 u_char *mapp = cg_clustersfree(&acg); 649 int map = *mapp++; 650 int bit = 1; 651 int run = 0; 652 653 for (i = 0; i < acg.cg_nclusterblks; i++) { 654 if ((map & bit) != 0) 655 run++; 656 else if (run != 0) { 657 if (run > sblock.fs_contigsumsize) 658 run = sblock.fs_contigsumsize; 659 sump[run]++; 660 run = 0; 661 } 662 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 663 bit <<= 1; 664 else { 665 map = *mapp++; 666 bit = 1; 667 } 668 } 669 if (run != 0) { 670 if (run > sblock.fs_contigsumsize) 671 run = sblock.fs_contigsumsize; 672 sump[run]++; 673 } 674 } 675 *cs = acg.cg_cs; 676 /* 677 * Write out the duplicate super block, the cylinder group map 678 * and two blocks worth of inodes in a single write. 679 */ 680 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 681 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 682 start += sblock.fs_bsize; 683 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 684 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 685 for (i = 0; i < acg.cg_initediblk; i++) { 686 if (sblock.fs_magic == FS_UFS1_MAGIC) { 687 dp1->di_gen = newfs_random(); 688 dp1++; 689 } else { 690 dp2->di_gen = newfs_random(); 691 dp2++; 692 } 693 } 694 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 695 /* 696 * For the old file system, we have to initialize all the inodes. 697 */ 698 if (Oflag == 1) { 699 for (i = 2 * sblock.fs_frag; 700 i < sblock.fs_ipg / INOPF(&sblock); 701 i += sblock.fs_frag) { 702 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 703 for (j = 0; j < INOPB(&sblock); j++) { 704 dp1->di_gen = newfs_random(); 705 dp1++; 706 } 707 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 708 sblock.fs_bsize, &iobuf[start]); 709 } 710 } 711 } 712 713 /* 714 * initialize the file system 715 */ 716 #define ROOTLINKCNT 3 717 718 struct direct root_dir[] = { 719 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 720 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 721 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 722 }; 723 724 #define SNAPLINKCNT 2 725 726 struct direct snap_dir[] = { 727 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 728 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 729 }; 730 731 void 732 fsinit(time_t utime) 733 { 734 union dinode node; 735 struct group *grp; 736 737 memset(&node, 0, sizeof node); 738 if ((grp = getgrnam("operator")) == NULL) 739 errx(35, "Cannot retrieve operator gid"); 740 if (sblock.fs_magic == FS_UFS1_MAGIC) { 741 /* 742 * initialize the node 743 */ 744 node.dp1.di_atime = utime; 745 node.dp1.di_mtime = utime; 746 node.dp1.di_ctime = utime; 747 /* 748 * create the root directory 749 */ 750 node.dp1.di_mode = IFDIR | UMASK; 751 node.dp1.di_nlink = ROOTLINKCNT; 752 node.dp1.di_size = makedir(root_dir, ROOTLINKCNT); 753 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 754 node.dp1.di_blocks = 755 btodb(fragroundup(&sblock, node.dp1.di_size)); 756 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 757 iobuf); 758 iput(&node, ROOTINO); 759 /* 760 * create the .snap directory 761 */ 762 node.dp1.di_mode |= 020; 763 node.dp1.di_gid = grp->gr_gid; 764 node.dp1.di_nlink = SNAPLINKCNT; 765 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 766 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 767 node.dp1.di_blocks = 768 btodb(fragroundup(&sblock, node.dp1.di_size)); 769 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 770 iobuf); 771 iput(&node, ROOTINO + 1); 772 } else { 773 /* 774 * initialize the node 775 */ 776 node.dp2.di_atime = utime; 777 node.dp2.di_mtime = utime; 778 node.dp2.di_ctime = utime; 779 node.dp2.di_birthtime = utime; 780 /* 781 * create the root directory 782 */ 783 node.dp2.di_mode = IFDIR | UMASK; 784 node.dp2.di_nlink = ROOTLINKCNT; 785 node.dp2.di_size = makedir(root_dir, ROOTLINKCNT); 786 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 787 node.dp2.di_blocks = 788 btodb(fragroundup(&sblock, node.dp2.di_size)); 789 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 790 iobuf); 791 iput(&node, ROOTINO); 792 /* 793 * create the .snap directory 794 */ 795 node.dp2.di_mode |= 020; 796 node.dp2.di_gid = grp->gr_gid; 797 node.dp2.di_nlink = SNAPLINKCNT; 798 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 799 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 800 node.dp2.di_blocks = 801 btodb(fragroundup(&sblock, node.dp2.di_size)); 802 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 803 iobuf); 804 iput(&node, ROOTINO + 1); 805 } 806 } 807 808 /* 809 * construct a set of directory entries in "iobuf". 810 * return size of directory. 811 */ 812 int 813 makedir(struct direct *protodir, int entries) 814 { 815 char *cp; 816 int i, spcleft; 817 818 spcleft = DIRBLKSIZ; 819 memset(iobuf, 0, DIRBLKSIZ); 820 for (cp = iobuf, i = 0; i < entries - 1; i++) { 821 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 822 memmove(cp, &protodir[i], protodir[i].d_reclen); 823 cp += protodir[i].d_reclen; 824 spcleft -= protodir[i].d_reclen; 825 } 826 protodir[i].d_reclen = spcleft; 827 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 828 return (DIRBLKSIZ); 829 } 830 831 /* 832 * allocate a block or frag 833 */ 834 ufs2_daddr_t 835 alloc(int size, int mode) 836 { 837 int i, d, blkno, frag; 838 839 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 840 sblock.fs_cgsize); 841 if (acg.cg_magic != CG_MAGIC) { 842 printf("cg 0: bad magic number\n"); 843 exit(38); 844 } 845 if (acg.cg_cs.cs_nbfree == 0) { 846 printf("first cylinder group ran out of space\n"); 847 exit(39); 848 } 849 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 850 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 851 goto goth; 852 printf("internal error: can't find block in cyl 0\n"); 853 exit(40); 854 goth: 855 blkno = fragstoblks(&sblock, d); 856 clrblock(&sblock, cg_blksfree(&acg), blkno); 857 if (sblock.fs_contigsumsize > 0) 858 clrbit(cg_clustersfree(&acg), blkno); 859 acg.cg_cs.cs_nbfree--; 860 sblock.fs_cstotal.cs_nbfree--; 861 fscs[0].cs_nbfree--; 862 if (mode & IFDIR) { 863 acg.cg_cs.cs_ndir++; 864 sblock.fs_cstotal.cs_ndir++; 865 fscs[0].cs_ndir++; 866 } 867 if (size != sblock.fs_bsize) { 868 frag = howmany(size, sblock.fs_fsize); 869 fscs[0].cs_nffree += sblock.fs_frag - frag; 870 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 871 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 872 acg.cg_frsum[sblock.fs_frag - frag]++; 873 for (i = frag; i < sblock.fs_frag; i++) 874 setbit(cg_blksfree(&acg), d + i); 875 } 876 /* XXX cgwrite(&disk, 0)??? */ 877 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 878 (char *)&acg); 879 return ((ufs2_daddr_t)d); 880 } 881 882 /* 883 * Allocate an inode on the disk 884 */ 885 void 886 iput(union dinode *ip, ino_t ino) 887 { 888 ufs2_daddr_t d; 889 int c; 890 891 c = ino_to_cg(&sblock, ino); 892 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 893 sblock.fs_cgsize); 894 if (acg.cg_magic != CG_MAGIC) { 895 printf("cg 0: bad magic number\n"); 896 exit(31); 897 } 898 acg.cg_cs.cs_nifree--; 899 setbit(cg_inosused(&acg), ino); 900 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 901 (char *)&acg); 902 sblock.fs_cstotal.cs_nifree--; 903 fscs[0].cs_nifree--; 904 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 905 printf("fsinit: inode value out of range (%d).\n", ino); 906 exit(32); 907 } 908 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 909 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 910 if (sblock.fs_magic == FS_UFS1_MAGIC) 911 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 912 ip->dp1; 913 else 914 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 915 ip->dp2; 916 wtfs(d, sblock.fs_bsize, (char *)iobuf); 917 } 918 919 /* 920 * possibly write to disk 921 */ 922 static void 923 wtfs(ufs2_daddr_t bno, int size, char *bf) 924 { 925 if (Nflag) 926 return; 927 if (bwrite(&disk, bno, bf, size) < 0) 928 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 929 } 930 931 /* 932 * check if a block is available 933 */ 934 static int 935 isblock(struct fs *fs, unsigned char *cp, int h) 936 { 937 unsigned char mask; 938 939 switch (fs->fs_frag) { 940 case 8: 941 return (cp[h] == 0xff); 942 case 4: 943 mask = 0x0f << ((h & 0x1) << 2); 944 return ((cp[h >> 1] & mask) == mask); 945 case 2: 946 mask = 0x03 << ((h & 0x3) << 1); 947 return ((cp[h >> 2] & mask) == mask); 948 case 1: 949 mask = 0x01 << (h & 0x7); 950 return ((cp[h >> 3] & mask) == mask); 951 default: 952 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 953 return (0); 954 } 955 } 956 957 /* 958 * take a block out of the map 959 */ 960 static void 961 clrblock(struct fs *fs, unsigned char *cp, int h) 962 { 963 switch ((fs)->fs_frag) { 964 case 8: 965 cp[h] = 0; 966 return; 967 case 4: 968 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 969 return; 970 case 2: 971 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 972 return; 973 case 1: 974 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 975 return; 976 default: 977 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 978 return; 979 } 980 } 981 982 /* 983 * put a block into the map 984 */ 985 static void 986 setblock(struct fs *fs, unsigned char *cp, int h) 987 { 988 switch (fs->fs_frag) { 989 case 8: 990 cp[h] = 0xff; 991 return; 992 case 4: 993 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 994 return; 995 case 2: 996 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 997 return; 998 case 1: 999 cp[h >> 3] |= (0x01 << (h & 0x7)); 1000 return; 1001 default: 1002 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1003 return; 1004 } 1005 } 1006 1007 /* 1008 * Determine the number of characters in a 1009 * single line. 1010 */ 1011 1012 static int 1013 charsperline(void) 1014 { 1015 int columns; 1016 char *cp; 1017 struct winsize ws; 1018 1019 columns = 0; 1020 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1021 columns = ws.ws_col; 1022 if (columns == 0 && (cp = getenv("COLUMNS"))) 1023 columns = atoi(cp); 1024 if (columns == 0) 1025 columns = 80; /* last resort */ 1026 return (columns); 1027 } 1028 1029 static int 1030 ilog2(int val) 1031 { 1032 u_int n; 1033 1034 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1035 if (1 << n == val) 1036 return (n); 1037 errx(1, "ilog2: %d is not a power of 2\n", val); 1038 } 1039 1040 /* 1041 * For the regression test, return predictable random values. 1042 * Otherwise use a true random number generator. 1043 */ 1044 static u_int32_t 1045 newfs_random(void) 1046 { 1047 static int nextnum = 1; 1048 1049 if (Rflag) 1050 return (nextnum++); 1051 return (arc4random()); 1052 } 1053