1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Copyright (c) 1982, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * (c) UNIX System Laboratories, Inc. 14 * Copyright (c) 1980, 1989, 1993 15 * The Regents of the University of California. All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions 19 * are met: 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 3. All advertising materials mentioning features or use of this software 26 * must display the following acknowledgement: 27 * This product includes software developed by the University of 28 * California, Berkeley and its contributors. 29 * 4. Neither the name of the University nor the names of its contributors 30 * may be used to endorse or promote products derived from this software 31 * without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 43 * SUCH DAMAGE. 44 */ 45 46 #ifndef lint 47 #if 0 48 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 49 #endif 50 static const char rcsid[] = 51 "$FreeBSD$"; 52 #endif /* not lint */ 53 54 #include <err.h> 55 #include <limits.h> 56 #include <signal.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <stdint.h> 60 #include <stdio.h> 61 #include <unistd.h> 62 #include <sys/param.h> 63 #include <sys/time.h> 64 #include <sys/types.h> 65 #include <sys/wait.h> 66 #include <sys/resource.h> 67 #include <sys/stat.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include <sys/disklabel.h> 72 #include <sys/file.h> 73 #include <sys/mman.h> 74 #include <sys/ioctl.h> 75 #include "newfs.h" 76 77 /* 78 * make file system for cylinder-group style file systems 79 */ 80 #define UMASK 0755 81 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 82 83 static union { 84 struct fs fs; 85 char pad[SBLOCKSIZE]; 86 } fsun; 87 #define sblock fsun.fs 88 static struct csum *fscs; 89 90 static union { 91 struct cg cg; 92 char pad[MAXBSIZE]; 93 } cgun; 94 #define acg cgun.cg 95 96 union dinode { 97 struct ufs1_dinode dp1; 98 struct ufs2_dinode dp2; 99 }; 100 #define DIP(dp, field) \ 101 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 102 (dp)->dp1.field : (dp)->dp2.field) 103 104 static int randinit; 105 static caddr_t iobuf; 106 static long iobufsize; 107 static ufs2_daddr_t alloc(int size, int mode); 108 static int charsperline(void); 109 static void clrblock(struct fs *, unsigned char *, int); 110 static void fsinit(time_t); 111 static int ilog2(int); 112 static void initcg(int, time_t); 113 static int isblock(struct fs *, unsigned char *, int); 114 static void iput(union dinode *, ino_t); 115 static int makedir(struct direct *, int); 116 static void rdfs(ufs2_daddr_t, int, char *); 117 static void setblock(struct fs *, unsigned char *, int); 118 static void wtfs(ufs2_daddr_t, int, char *); 119 static void wtfsflush(void); 120 121 void 122 mkfs(struct partition *pp, char *fsys) 123 { 124 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 125 long i, j, cylno, csfrags; 126 time_t utime; 127 quad_t sizepb; 128 int width; 129 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 130 131 if (Rflag) 132 utime = 1000000000; 133 else 134 time(&utime); 135 if (!Rflag && !randinit) { 136 randinit = 1; 137 srandomdev(); 138 } 139 sblock.fs_old_flags = FS_FLAGS_UPDATED; 140 sblock.fs_flags = 0; 141 if (Uflag) 142 sblock.fs_flags |= FS_DOSOFTDEP; 143 /* 144 * Validate the given file system size. 145 * Verify that its last block can actually be accessed. 146 * Convert to file system fragment sized units. 147 */ 148 if (fssize <= 0) { 149 printf("preposterous size %jd\n", (intmax_t)fssize); 150 exit(13); 151 } 152 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 153 (char *)&sblock); 154 /* 155 * collect and verify the file system density info 156 */ 157 sblock.fs_avgfilesize = avgfilesize; 158 sblock.fs_avgfpdir = avgfilesperdir; 159 if (sblock.fs_avgfilesize <= 0) 160 printf("illegal expected average file size %d\n", 161 sblock.fs_avgfilesize), exit(14); 162 if (sblock.fs_avgfpdir <= 0) 163 printf("illegal expected number of files per directory %d\n", 164 sblock.fs_avgfpdir), exit(15); 165 /* 166 * collect and verify the block and fragment sizes 167 */ 168 sblock.fs_bsize = bsize; 169 sblock.fs_fsize = fsize; 170 if (!POWEROF2(sblock.fs_bsize)) { 171 printf("block size must be a power of 2, not %d\n", 172 sblock.fs_bsize); 173 exit(16); 174 } 175 if (!POWEROF2(sblock.fs_fsize)) { 176 printf("fragment size must be a power of 2, not %d\n", 177 sblock.fs_fsize); 178 exit(17); 179 } 180 if (sblock.fs_fsize < sectorsize) { 181 printf("increasing fragment size from %d to sector size (%d)\n", 182 sblock.fs_fsize, sectorsize); 183 sblock.fs_fsize = sectorsize; 184 } 185 if (sblock.fs_bsize > MAXBSIZE) { 186 printf("decreasing block size from %d to maximum (%d)\n", 187 sblock.fs_bsize, MAXBSIZE); 188 sblock.fs_bsize = MAXBSIZE; 189 } 190 if (sblock.fs_bsize < MINBSIZE) { 191 printf("increasing block size from %d to minimum (%d)\n", 192 sblock.fs_bsize, MINBSIZE); 193 sblock.fs_bsize = MINBSIZE; 194 } 195 if (sblock.fs_fsize > MAXBSIZE) { 196 printf("decreasing fragment size from %d to maximum (%d)\n", 197 sblock.fs_fsize, MAXBSIZE); 198 sblock.fs_fsize = MAXBSIZE; 199 } 200 if (sblock.fs_bsize < sblock.fs_fsize) { 201 printf("increasing block size from %d to fragment size (%d)\n", 202 sblock.fs_bsize, sblock.fs_fsize); 203 sblock.fs_bsize = sblock.fs_fsize; 204 } 205 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 206 printf( 207 "increasing fragment size from %d to block size / %d (%d)\n", 208 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 209 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 210 } 211 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 212 sblock.fs_maxbsize = sblock.fs_bsize; 213 printf("Extent size set to %d\n", sblock.fs_maxbsize); 214 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 215 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 216 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 217 } else { 218 sblock.fs_maxbsize = maxbsize; 219 } 220 sblock.fs_maxcontig = maxcontig; 221 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 222 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 223 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 224 } 225 if (sblock.fs_maxcontig > 1) 226 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 227 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 228 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 229 sblock.fs_qbmask = ~sblock.fs_bmask; 230 sblock.fs_qfmask = ~sblock.fs_fmask; 231 sblock.fs_bshift = ilog2(sblock.fs_bsize); 232 sblock.fs_fshift = ilog2(sblock.fs_fsize); 233 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 234 sblock.fs_fragshift = ilog2(sblock.fs_frag); 235 if (sblock.fs_frag > MAXFRAG) { 236 printf("fragment size %d is still too small (can't happen)\n", 237 sblock.fs_bsize / MAXFRAG); 238 exit(21); 239 } 240 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 241 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 242 if (Oflag == 1) { 243 sblock.fs_magic = FS_UFS1_MAGIC; 244 sblock.fs_sblockloc = SBLOCK_UFS1; 245 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 246 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 247 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 248 sizeof(ufs1_daddr_t)); 249 sblock.fs_old_inodefmt = FS_44INODEFMT; 250 sblock.fs_old_cgoffset = 0; 251 sblock.fs_old_cgmask = 0xffffffff; 252 sblock.fs_old_size = sblock.fs_size; 253 sblock.fs_old_rotdelay = 0; 254 sblock.fs_old_rps = 60; 255 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 256 sblock.fs_old_cpg = 1; 257 sblock.fs_old_interleave = 1; 258 sblock.fs_old_trackskew = 0; 259 sblock.fs_old_cpc = 0; 260 sblock.fs_old_postblformat = 1; 261 sblock.fs_old_nrpos = 1; 262 } else { 263 sblock.fs_magic = FS_UFS2_MAGIC; 264 sblock.fs_sblockloc = SBLOCK_UFS2; 265 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 266 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 267 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 268 sizeof(ufs2_daddr_t)); 269 } 270 sblock.fs_sblkno = 271 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 272 sblock.fs_frag); 273 sblock.fs_cblkno = sblock.fs_sblkno + 274 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 275 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 276 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 277 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 278 sizepb *= NINDIR(&sblock); 279 sblock.fs_maxfilesize += sizepb; 280 } 281 /* 282 * Calculate the number of blocks to put into each cylinder group. 283 * 284 * This algorithm selects the number of blocks per cylinder 285 * group. The first goal is to have at least enough data blocks 286 * in each cylinder group to meet the density requirement. Once 287 * this goal is achieved we try to expand to have at least 288 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 289 * pack as many blocks into each cylinder group map as will fit. 290 * 291 * We start by calculating the smallest number of blocks that we 292 * can put into each cylinder group. If this is too big, we reduce 293 * the density until it fits. 294 */ 295 origdensity = density; 296 for (;;) { 297 fragsperinode = MAX(numfrags(&sblock, density), 1); 298 minfpg = fragsperinode * INOPB(&sblock); 299 if (minfpg > sblock.fs_size) 300 minfpg = sblock.fs_size; 301 sblock.fs_ipg = INOPB(&sblock); 302 sblock.fs_fpg = roundup(sblock.fs_iblkno + 303 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 304 if (sblock.fs_fpg < minfpg) 305 sblock.fs_fpg = minfpg; 306 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 307 INOPB(&sblock)); 308 sblock.fs_fpg = roundup(sblock.fs_iblkno + 309 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 310 if (sblock.fs_fpg < minfpg) 311 sblock.fs_fpg = minfpg; 312 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 313 INOPB(&sblock)); 314 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 315 break; 316 density -= sblock.fs_fsize; 317 } 318 if (density != origdensity) 319 printf("density reduced from %d to %d\n", origdensity, density); 320 /* 321 * Start packing more blocks into the cylinder group until 322 * it cannot grow any larger, the number of cylinder groups 323 * drops below MINCYLGRPS, or we reach the size requested. 324 */ 325 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 326 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 327 INOPB(&sblock)); 328 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 329 break; 330 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 331 continue; 332 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 333 break; 334 sblock.fs_fpg -= sblock.fs_frag; 335 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 336 INOPB(&sblock)); 337 break; 338 } 339 /* 340 * Check to be sure that the last cylinder group has enough blocks 341 * to be viable. If it is too small, reduce the number of blocks 342 * per cylinder group which will have the effect of moving more 343 * blocks into the last cylinder group. 344 */ 345 optimalfpg = sblock.fs_fpg; 346 for (;;) { 347 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 348 lastminfpg = roundup(sblock.fs_iblkno + 349 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 350 if (sblock.fs_size < lastminfpg) { 351 printf("Filesystem size %jd < minimum size of %d\n", 352 (intmax_t)sblock.fs_size, lastminfpg); 353 exit(28); 354 } 355 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 356 sblock.fs_size % sblock.fs_fpg == 0) 357 break; 358 sblock.fs_fpg -= sblock.fs_frag; 359 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 360 INOPB(&sblock)); 361 } 362 if (optimalfpg != sblock.fs_fpg) 363 printf("Reduced frags per cylinder group from %d to %d %s\n", 364 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 365 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 366 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 367 if (Oflag == 1) { 368 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 369 sblock.fs_old_nsect = sblock.fs_old_spc; 370 sblock.fs_old_npsect = sblock.fs_old_spc; 371 sblock.fs_old_ncyl = sblock.fs_ncg; 372 } 373 /* 374 * fill in remaining fields of the super block 375 */ 376 sblock.fs_csaddr = cgdmin(&sblock, 0); 377 sblock.fs_cssize = 378 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 379 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 380 if (fscs == NULL) 381 errx(31, "calloc failed"); 382 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 383 if (sblock.fs_sbsize > SBLOCKSIZE) 384 sblock.fs_sbsize = SBLOCKSIZE; 385 sblock.fs_minfree = minfree; 386 sblock.fs_maxbpg = maxbpg; 387 sblock.fs_optim = opt; 388 sblock.fs_cgrotor = 0; 389 sblock.fs_pendingblocks = 0; 390 sblock.fs_pendinginodes = 0; 391 sblock.fs_fmod = 0; 392 sblock.fs_ronly = 0; 393 sblock.fs_state = 0; 394 sblock.fs_clean = 1; 395 sblock.fs_id[0] = (long)utime; 396 sblock.fs_id[1] = random(); 397 sblock.fs_fsmnt[0] = '\0'; 398 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 399 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 400 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 401 sblock.fs_cstotal.cs_nbfree = 402 fragstoblks(&sblock, sblock.fs_dsize) - 403 howmany(csfrags, sblock.fs_frag); 404 sblock.fs_cstotal.cs_nffree = 405 fragnum(&sblock, sblock.fs_size) + 406 (fragnum(&sblock, csfrags) > 0 ? 407 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 408 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 409 sblock.fs_cstotal.cs_ndir = 0; 410 sblock.fs_dsize -= csfrags; 411 sblock.fs_time = utime; 412 if (Oflag == 1) { 413 sblock.fs_old_time = utime; 414 sblock.fs_old_dsize = sblock.fs_dsize; 415 sblock.fs_old_csaddr = sblock.fs_csaddr; 416 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 417 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 418 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 419 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 420 } 421 422 /* 423 * Dump out summary information about file system. 424 */ 425 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 426 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 427 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 428 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 429 sblock.fs_fsize); 430 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 431 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 432 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 433 if (sblock.fs_flags & FS_DOSOFTDEP) 434 printf("\twith soft updates\n"); 435 # undef B2MBFACTOR 436 /* 437 * Now build the cylinders group blocks and 438 * then print out indices of cylinder groups. 439 */ 440 printf("super-block backups (for fsck -b #) at:\n"); 441 i = 0; 442 width = charsperline(); 443 /* 444 * allocate space for superblock, cylinder group map, and 445 * two sets of inode blocks. 446 */ 447 if (sblock.fs_bsize < SBLOCKSIZE) 448 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 449 else 450 iobufsize = 4 * sblock.fs_bsize; 451 if ((iobuf = malloc(iobufsize)) == 0) { 452 printf("Cannot allocate I/O buffer\n"); 453 exit(38); 454 } 455 bzero(iobuf, iobufsize); 456 /* 457 * Make a copy of the superblock into the buffer that we will be 458 * writing out in each cylinder group. 459 */ 460 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 461 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 462 initcg(cylno, utime); 463 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 464 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 465 cylno < (sblock.fs_ncg-1) ? "," : ""); 466 if (j < 0) 467 tmpbuf[j = 0] = '\0'; 468 if (i + j >= width) { 469 printf("\n"); 470 i = 0; 471 } 472 i += j; 473 printf("%s", tmpbuf); 474 fflush(stdout); 475 } 476 printf("\n"); 477 if (Nflag) 478 exit(0); 479 /* 480 * Now construct the initial file system, 481 * then write out the super-block. 482 */ 483 fsinit(utime); 484 if (Oflag == 1) { 485 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 486 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 487 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 488 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 489 } 490 wtfs(sblock.fs_sblockloc / sectorsize, SBLOCKSIZE, (char *)&sblock); 491 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 492 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 493 sblock.fs_cssize - i < sblock.fs_bsize ? 494 sblock.fs_cssize - i : sblock.fs_bsize, 495 ((char *)fscs) + i); 496 wtfsflush(); 497 /* 498 * Update information about this partion in pack 499 * label, to that it may be updated on disk. 500 */ 501 if (pp != NULL) { 502 pp->p_fstype = FS_BSDFFS; 503 pp->p_fsize = sblock.fs_fsize; 504 pp->p_frag = sblock.fs_frag; 505 pp->p_cpg = sblock.fs_fpg; 506 } 507 } 508 509 /* 510 * Initialize a cylinder group. 511 */ 512 void 513 initcg(int cylno, time_t utime) 514 { 515 long i, j, d, dlower, dupper, blkno, start; 516 ufs2_daddr_t cbase, dmax; 517 struct ufs1_dinode *dp1; 518 struct ufs2_dinode *dp2; 519 struct csum *cs; 520 521 /* 522 * Determine block bounds for cylinder group. 523 * Allow space for super block summary information in first 524 * cylinder group. 525 */ 526 cbase = cgbase(&sblock, cylno); 527 dmax = cbase + sblock.fs_fpg; 528 if (dmax > sblock.fs_size) 529 dmax = sblock.fs_size; 530 dlower = cgsblock(&sblock, cylno) - cbase; 531 dupper = cgdmin(&sblock, cylno) - cbase; 532 if (cylno == 0) 533 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 534 cs = &fscs[cylno]; 535 memset(&acg, 0, sblock.fs_cgsize); 536 acg.cg_time = utime; 537 acg.cg_magic = CG_MAGIC; 538 acg.cg_cgx = cylno; 539 acg.cg_niblk = sblock.fs_ipg; 540 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 541 sblock.fs_ipg : 2 * INOPB(&sblock); 542 acg.cg_ndblk = dmax - cbase; 543 if (sblock.fs_contigsumsize > 0) 544 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 545 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 546 if (Oflag == 2) { 547 acg.cg_iusedoff = start; 548 } else { 549 acg.cg_old_ncyl = sblock.fs_old_cpg; 550 acg.cg_old_time = acg.cg_time; 551 acg.cg_time = 0; 552 acg.cg_old_niblk = acg.cg_niblk; 553 acg.cg_niblk = 0; 554 acg.cg_initediblk = 0; 555 acg.cg_old_btotoff = start; 556 acg.cg_old_boff = acg.cg_old_btotoff + 557 sblock.fs_old_cpg * sizeof(int32_t); 558 acg.cg_iusedoff = acg.cg_old_boff + 559 sblock.fs_old_cpg * sizeof(u_int16_t); 560 } 561 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 562 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 563 if (sblock.fs_contigsumsize > 0) { 564 acg.cg_clustersumoff = 565 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 566 acg.cg_clustersumoff -= sizeof(u_int32_t); 567 acg.cg_clusteroff = acg.cg_clustersumoff + 568 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 569 acg.cg_nextfreeoff = acg.cg_clusteroff + 570 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 571 } 572 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 573 printf("Panic: cylinder group too big\n"); 574 exit(37); 575 } 576 acg.cg_cs.cs_nifree += sblock.fs_ipg; 577 if (cylno == 0) 578 for (i = 0; i < (long)ROOTINO; i++) { 579 setbit(cg_inosused(&acg), i); 580 acg.cg_cs.cs_nifree--; 581 } 582 if (cylno > 0) { 583 /* 584 * In cylno 0, beginning space is reserved 585 * for boot and super blocks. 586 */ 587 for (d = 0; d < dlower; d += sblock.fs_frag) { 588 blkno = d / sblock.fs_frag; 589 setblock(&sblock, cg_blksfree(&acg), blkno); 590 if (sblock.fs_contigsumsize > 0) 591 setbit(cg_clustersfree(&acg), blkno); 592 acg.cg_cs.cs_nbfree++; 593 } 594 } 595 if ((i = dupper % sblock.fs_frag)) { 596 acg.cg_frsum[sblock.fs_frag - i]++; 597 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 598 setbit(cg_blksfree(&acg), dupper); 599 acg.cg_cs.cs_nffree++; 600 } 601 } 602 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 603 d += sblock.fs_frag) { 604 blkno = d / sblock.fs_frag; 605 setblock(&sblock, cg_blksfree(&acg), blkno); 606 if (sblock.fs_contigsumsize > 0) 607 setbit(cg_clustersfree(&acg), blkno); 608 acg.cg_cs.cs_nbfree++; 609 } 610 if (d < acg.cg_ndblk) { 611 acg.cg_frsum[acg.cg_ndblk - d]++; 612 for (; d < acg.cg_ndblk; d++) { 613 setbit(cg_blksfree(&acg), d); 614 acg.cg_cs.cs_nffree++; 615 } 616 } 617 if (sblock.fs_contigsumsize > 0) { 618 int32_t *sump = cg_clustersum(&acg); 619 u_char *mapp = cg_clustersfree(&acg); 620 int map = *mapp++; 621 int bit = 1; 622 int run = 0; 623 624 for (i = 0; i < acg.cg_nclusterblks; i++) { 625 if ((map & bit) != 0) 626 run++; 627 else if (run != 0) { 628 if (run > sblock.fs_contigsumsize) 629 run = sblock.fs_contigsumsize; 630 sump[run]++; 631 run = 0; 632 } 633 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 634 bit <<= 1; 635 else { 636 map = *mapp++; 637 bit = 1; 638 } 639 } 640 if (run != 0) { 641 if (run > sblock.fs_contigsumsize) 642 run = sblock.fs_contigsumsize; 643 sump[run]++; 644 } 645 } 646 *cs = acg.cg_cs; 647 /* 648 * Write out the duplicate super block, the cylinder group map 649 * and two blocks worth of inodes in a single write. 650 */ 651 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 652 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 653 start += sblock.fs_bsize; 654 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 655 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 656 for (i = 0; i < acg.cg_initediblk; i++) { 657 if (sblock.fs_magic == FS_UFS1_MAGIC) { 658 dp1->di_gen = random(); 659 dp1++; 660 } else { 661 dp2->di_gen = random(); 662 dp2++; 663 } 664 } 665 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 666 /* 667 * For the old file system, we have to initialize all the inodes. 668 */ 669 if (Oflag == 1) { 670 for (i = 2 * sblock.fs_frag; 671 i < sblock.fs_ipg / INOPF(&sblock); 672 i += sblock.fs_frag) { 673 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 674 for (j = 0; j < INOPB(&sblock); j++) { 675 dp1->di_gen = random(); 676 dp1++; 677 } 678 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 679 sblock.fs_bsize, &iobuf[start]); 680 } 681 } 682 } 683 684 /* 685 * initialize the file system 686 */ 687 #define PREDEFDIR 2 688 689 struct direct root_dir[] = { 690 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 691 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 692 }; 693 694 void 695 fsinit(time_t utime) 696 { 697 union dinode node; 698 699 memset(&node, 0, sizeof node); 700 if (sblock.fs_magic == FS_UFS1_MAGIC) { 701 /* 702 * initialize the node 703 */ 704 node.dp1.di_atime = utime; 705 node.dp1.di_mtime = utime; 706 node.dp1.di_ctime = utime; 707 /* 708 * create the root directory 709 */ 710 node.dp1.di_mode = IFDIR | UMASK; 711 node.dp1.di_nlink = PREDEFDIR; 712 node.dp1.di_size = makedir(root_dir, PREDEFDIR); 713 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 714 node.dp1.di_blocks = 715 btodb(fragroundup(&sblock, node.dp1.di_size)); 716 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 717 iobuf); 718 } else { 719 /* 720 * initialize the node 721 */ 722 node.dp2.di_atime = utime; 723 node.dp2.di_mtime = utime; 724 node.dp2.di_ctime = utime; 725 node.dp2.di_birthtime = utime; 726 /* 727 * create the root directory 728 */ 729 node.dp2.di_mode = IFDIR | UMASK; 730 node.dp2.di_nlink = PREDEFDIR; 731 node.dp2.di_size = makedir(root_dir, PREDEFDIR); 732 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 733 node.dp2.di_blocks = 734 btodb(fragroundup(&sblock, node.dp2.di_size)); 735 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 736 iobuf); 737 } 738 iput(&node, ROOTINO); 739 } 740 741 /* 742 * construct a set of directory entries in "iobuf". 743 * return size of directory. 744 */ 745 int 746 makedir(struct direct *protodir, int entries) 747 { 748 char *cp; 749 int i, spcleft; 750 751 spcleft = DIRBLKSIZ; 752 memset(iobuf, 0, DIRBLKSIZ); 753 for (cp = iobuf, i = 0; i < entries - 1; i++) { 754 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 755 memmove(cp, &protodir[i], protodir[i].d_reclen); 756 cp += protodir[i].d_reclen; 757 spcleft -= protodir[i].d_reclen; 758 } 759 protodir[i].d_reclen = spcleft; 760 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 761 return (DIRBLKSIZ); 762 } 763 764 /* 765 * allocate a block or frag 766 */ 767 ufs2_daddr_t 768 alloc(int size, int mode) 769 { 770 int i, d, blkno, frag; 771 772 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 773 (char *)&acg); 774 if (acg.cg_magic != CG_MAGIC) { 775 printf("cg 0: bad magic number\n"); 776 return (0); 777 } 778 if (acg.cg_cs.cs_nbfree == 0) { 779 printf("first cylinder group ran out of space\n"); 780 return (0); 781 } 782 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 783 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 784 goto goth; 785 printf("internal error: can't find block in cyl 0\n"); 786 return (0); 787 goth: 788 blkno = fragstoblks(&sblock, d); 789 clrblock(&sblock, cg_blksfree(&acg), blkno); 790 if (sblock.fs_contigsumsize > 0) 791 clrbit(cg_clustersfree(&acg), blkno); 792 acg.cg_cs.cs_nbfree--; 793 sblock.fs_cstotal.cs_nbfree--; 794 fscs[0].cs_nbfree--; 795 if (mode & IFDIR) { 796 acg.cg_cs.cs_ndir++; 797 sblock.fs_cstotal.cs_ndir++; 798 fscs[0].cs_ndir++; 799 } 800 if (size != sblock.fs_bsize) { 801 frag = howmany(size, sblock.fs_fsize); 802 fscs[0].cs_nffree += sblock.fs_frag - frag; 803 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 804 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 805 acg.cg_frsum[sblock.fs_frag - frag]++; 806 for (i = frag; i < sblock.fs_frag; i++) 807 setbit(cg_blksfree(&acg), d + i); 808 } 809 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 810 (char *)&acg); 811 return ((ufs2_daddr_t)d); 812 } 813 814 /* 815 * Allocate an inode on the disk 816 */ 817 void 818 iput(union dinode *ip, ino_t ino) 819 { 820 ufs2_daddr_t d; 821 int c; 822 823 c = ino_to_cg(&sblock, ino); 824 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 825 (char *)&acg); 826 if (acg.cg_magic != CG_MAGIC) { 827 printf("cg 0: bad magic number\n"); 828 exit(31); 829 } 830 acg.cg_cs.cs_nifree--; 831 setbit(cg_inosused(&acg), ino); 832 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 833 (char *)&acg); 834 sblock.fs_cstotal.cs_nifree--; 835 fscs[0].cs_nifree--; 836 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 837 printf("fsinit: inode value out of range (%d).\n", ino); 838 exit(32); 839 } 840 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 841 rdfs(d, sblock.fs_bsize, (char *)iobuf); 842 if (sblock.fs_magic == FS_UFS1_MAGIC) 843 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 844 ip->dp1; 845 else 846 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 847 ip->dp2; 848 wtfs(d, sblock.fs_bsize, (char *)iobuf); 849 } 850 851 /* 852 * read a block from the file system 853 */ 854 void 855 rdfs(ufs2_daddr_t bno, int size, char *bf) 856 { 857 int n; 858 859 wtfsflush(); 860 if (lseek(fso, (off_t)bno * sectorsize, 0) < 0) { 861 printf("seek error: %ld\n", (long)bno); 862 err(33, "rdfs"); 863 } 864 n = read(fso, bf, size); 865 if (n != size) { 866 printf("read error: %ld\n", (long)bno); 867 err(34, "rdfs"); 868 } 869 } 870 871 #define WCSIZE (128 * 1024) 872 ufs2_daddr_t wc_sect; /* units of sectorsize */ 873 int wc_end; /* bytes */ 874 static char wc[WCSIZE]; /* bytes */ 875 876 /* 877 * Flush dirty write behind buffer. 878 */ 879 static void 880 wtfsflush() 881 { 882 int n; 883 if (wc_end) { 884 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) { 885 printf("seek error: %ld\n", (long)wc_sect); 886 err(35, "wtfs - writecombine"); 887 } 888 n = write(fso, wc, wc_end); 889 if (n != wc_end) { 890 printf("write error: %ld\n", (long)wc_sect); 891 err(36, "wtfs - writecombine"); 892 } 893 wc_end = 0; 894 } 895 } 896 897 /* 898 * write a block to the file system 899 */ 900 static void 901 wtfs(ufs2_daddr_t bno, int size, char *bf) 902 { 903 int done, n; 904 905 if (Nflag) 906 return; 907 done = 0; 908 if (wc_end == 0 && size <= WCSIZE) { 909 wc_sect = bno; 910 bcopy(bf, wc, size); 911 wc_end = size; 912 if (wc_end < WCSIZE) 913 return; 914 done = 1; 915 } 916 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize && 917 wc_end + size <= WCSIZE) { 918 bcopy(bf, wc + wc_end, size); 919 wc_end += size; 920 if (wc_end < WCSIZE) 921 return; 922 done = 1; 923 } 924 wtfsflush(); 925 if (done) 926 return; 927 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 928 printf("seek error: %ld\n", (long)bno); 929 err(35, "wtfs"); 930 } 931 n = write(fso, bf, size); 932 if (n != size) { 933 printf("write error: %ld\n", (long)bno); 934 err(36, "wtfs"); 935 } 936 } 937 938 /* 939 * check if a block is available 940 */ 941 static int 942 isblock(struct fs *fs, unsigned char *cp, int h) 943 { 944 unsigned char mask; 945 946 switch (fs->fs_frag) { 947 case 8: 948 return (cp[h] == 0xff); 949 case 4: 950 mask = 0x0f << ((h & 0x1) << 2); 951 return ((cp[h >> 1] & mask) == mask); 952 case 2: 953 mask = 0x03 << ((h & 0x3) << 1); 954 return ((cp[h >> 2] & mask) == mask); 955 case 1: 956 mask = 0x01 << (h & 0x7); 957 return ((cp[h >> 3] & mask) == mask); 958 default: 959 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 960 return (0); 961 } 962 } 963 964 /* 965 * take a block out of the map 966 */ 967 static void 968 clrblock(struct fs *fs, unsigned char *cp, int h) 969 { 970 switch ((fs)->fs_frag) { 971 case 8: 972 cp[h] = 0; 973 return; 974 case 4: 975 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 976 return; 977 case 2: 978 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 979 return; 980 case 1: 981 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 982 return; 983 default: 984 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 985 return; 986 } 987 } 988 989 /* 990 * put a block into the map 991 */ 992 static void 993 setblock(struct fs *fs, unsigned char *cp, int h) 994 { 995 switch (fs->fs_frag) { 996 case 8: 997 cp[h] = 0xff; 998 return; 999 case 4: 1000 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1001 return; 1002 case 2: 1003 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1004 return; 1005 case 1: 1006 cp[h >> 3] |= (0x01 << (h & 0x7)); 1007 return; 1008 default: 1009 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1010 return; 1011 } 1012 } 1013 1014 /* 1015 * Determine the number of characters in a 1016 * single line. 1017 */ 1018 1019 static int 1020 charsperline(void) 1021 { 1022 int columns; 1023 char *cp; 1024 struct winsize ws; 1025 1026 columns = 0; 1027 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1028 columns = ws.ws_col; 1029 if (columns == 0 && (cp = getenv("COLUMNS"))) 1030 columns = atoi(cp); 1031 if (columns == 0) 1032 columns = 80; /* last resort */ 1033 return (columns); 1034 } 1035 1036 static int 1037 ilog2(int val) 1038 { 1039 u_int n; 1040 1041 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1042 if (1 << n == val) 1043 return (n); 1044 errx(1, "ilog2: %d is not a power of 2\n", val); 1045 } 1046