xref: /freebsd/sbin/newfs/mkfs.c (revision 6990ffd8a95caaba6858ad44ff1b3157d1efba8f)
1 /*
2  * Copyright (c) 1980, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #ifndef lint
35 #if 0
36 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
37 #endif
38 static const char rcsid[] =
39   "$FreeBSD$";
40 #endif /* not lint */
41 
42 #include <err.h>
43 #include <signal.h>
44 #include <string.h>
45 #include <stdio.h>
46 #include <unistd.h>
47 #include <sys/param.h>
48 #include <sys/time.h>
49 #include <sys/types.h>
50 #include <sys/wait.h>
51 #include <sys/resource.h>
52 #include <sys/stat.h>
53 #include <ufs/ufs/dinode.h>
54 #include <ufs/ufs/dir.h>
55 #include <ufs/ffs/fs.h>
56 #include <sys/disklabel.h>
57 #include <sys/file.h>
58 #include <sys/mman.h>
59 #include <sys/ioctl.h>
60 
61 #ifndef STANDALONE
62 #include <stdlib.h>
63 #else
64 extern int atoi __P((char *));
65 extern char * getenv __P((char *));
66 #endif
67 
68 #ifdef FSIRAND
69 extern long random __P((void));
70 extern void srandomdev __P((void));
71 #endif
72 
73 /*
74  * make file system for cylinder-group style file systems
75  */
76 
77 /*
78  * We limit the size of the inode map to be no more than a
79  * third of the cylinder group space, since we must leave at
80  * least an equal amount of space for the block map.
81  *
82  * N.B.: MAXIPG must be a multiple of INOPB(fs).
83  */
84 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
85 
86 #define UMASK		0755
87 #define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
88 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
89 
90 /*
91  * variables set up by front end.
92  */
93 extern int	Nflag;		/* run mkfs without writing file system */
94 extern int	Oflag;		/* format as an 4.3BSD file system */
95 extern int	Uflag;		/* enable soft updates for file system */
96 extern int	fssize;		/* file system size */
97 extern int	ntracks;	/* # tracks/cylinder */
98 extern int	nsectors;	/* # sectors/track */
99 extern int	nphyssectors;	/* # sectors/track including spares */
100 extern int	secpercyl;	/* sectors per cylinder */
101 extern int	sectorsize;	/* bytes/sector */
102 extern int	realsectorsize;	/* bytes/sector in hardware*/
103 extern int	rpm;		/* revolutions/minute of drive */
104 extern int	interleave;	/* hardware sector interleave */
105 extern int	trackskew;	/* sector 0 skew, per track */
106 extern int	fsize;		/* fragment size */
107 extern int	bsize;		/* block size */
108 extern int	cpg;		/* cylinders/cylinder group */
109 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
110 extern int	minfree;	/* free space threshold */
111 extern int	opt;		/* optimization preference (space or time) */
112 extern int	density;	/* number of bytes per inode */
113 extern int	maxcontig;	/* max contiguous blocks to allocate */
114 extern int	rotdelay;	/* rotational delay between blocks */
115 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
116 extern int	nrpos;		/* # of distinguished rotational positions */
117 extern int	bbsize;		/* boot block size */
118 extern int	sbsize;		/* superblock size */
119 extern int	avgfilesize;	/* expected average file size */
120 extern int	avgfilesperdir;	/* expected number of files per directory */
121 extern u_long	memleft;	/* virtual memory available */
122 extern caddr_t	membase;	/* start address of memory based filesystem */
123 extern char *	filename;
124 
125 union {
126 	struct fs fs;
127 	char pad[SBSIZE];
128 } fsun;
129 #define	sblock	fsun.fs
130 struct	csum *fscs;
131 
132 union {
133 	struct cg cg;
134 	char pad[MAXBSIZE];
135 } cgun;
136 #define	acg	cgun.cg
137 
138 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
139 
140 int	fsi, fso;
141 #ifdef FSIRAND
142 int     randinit;
143 #endif
144 daddr_t	alloc();
145 long	calcipg();
146 static int charsperline();
147 void clrblock __P((struct fs *, unsigned char *, int));
148 void fsinit __P((time_t));
149 void initcg __P((int, time_t));
150 int isblock __P((struct fs *, unsigned char *, int));
151 void iput __P((struct dinode *, ino_t));
152 int makedir __P((struct direct *, int));
153 void rdfs __P((daddr_t, int, char *));
154 void setblock __P((struct fs *, unsigned char *, int));
155 void wtfs __P((daddr_t, int, char *));
156 void wtfsflush __P((void));
157 
158 #ifndef STANDALONE
159 #else
160 void free __P((char *));
161 char * calloc __P((u_long, u_long));
162 caddr_t malloc __P((u_long));
163 caddr_t realloc __P((char *, u_long));
164 #endif
165 
166 void
167 mkfs(pp, fsys, fi, fo)
168 	struct partition *pp;
169 	char *fsys;
170 	int fi, fo;
171 {
172 	register long i, mincpc, mincpg, inospercg;
173 	long cylno, rpos, blk, j, warn = 0;
174 	long used, mincpgcnt, bpcg;
175 	off_t usedb;
176 	long mapcramped, inodecramped;
177 	long postblsize, rotblsize, totalsbsize;
178 	time_t utime;
179 	quad_t sizepb;
180 	int width;
181 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
182 
183 #ifndef STANDALONE
184 	time(&utime);
185 #endif
186 #ifdef FSIRAND
187 	if (!randinit) {
188 		randinit = 1;
189 		srandomdev();
190 	}
191 #endif
192 	fsi = fi;
193 	fso = fo;
194 	if (Oflag) {
195 		sblock.fs_inodefmt = FS_42INODEFMT;
196 		sblock.fs_maxsymlinklen = 0;
197 	} else {
198 		sblock.fs_inodefmt = FS_44INODEFMT;
199 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
200 	}
201 	if (Uflag)
202 		sblock.fs_flags |= FS_DOSOFTDEP;
203 	/*
204 	 * Validate the given file system size.
205 	 * Verify that its last block can actually be accessed.
206 	 */
207 	if (fssize <= 0)
208 		printf("preposterous size %d\n", fssize), exit(13);
209 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
210 		 (char *)&sblock);
211 	/*
212 	 * collect and verify the sector and track info
213 	 */
214 	sblock.fs_nsect = nsectors;
215 	sblock.fs_ntrak = ntracks;
216 	if (sblock.fs_ntrak <= 0)
217 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
218 	if (sblock.fs_nsect <= 0)
219 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
220 	/*
221 	 * collect and verify the filesystem density info
222 	 */
223 	sblock.fs_avgfilesize = avgfilesize;
224 	sblock.fs_avgfpdir = avgfilesperdir;
225 	if (sblock.fs_avgfilesize <= 0)
226 		printf("illegal expected average file size %d\n",
227 		    sblock.fs_avgfilesize), exit(14);
228 	if (sblock.fs_avgfpdir <= 0)
229 		printf("illegal expected number of files per directory %d\n",
230 		    sblock.fs_avgfpdir), exit(15);
231 	/*
232 	 * collect and verify the block and fragment sizes
233 	 */
234 	sblock.fs_bsize = bsize;
235 	sblock.fs_fsize = fsize;
236 	if (!POWEROF2(sblock.fs_bsize)) {
237 		printf("block size must be a power of 2, not %d\n",
238 		    sblock.fs_bsize);
239 		exit(16);
240 	}
241 	if (!POWEROF2(sblock.fs_fsize)) {
242 		printf("fragment size must be a power of 2, not %d\n",
243 		    sblock.fs_fsize);
244 		exit(17);
245 	}
246 	if (sblock.fs_fsize < sectorsize) {
247 		printf("fragment size %d is too small, minimum is %d\n",
248 		    sblock.fs_fsize, sectorsize);
249 		exit(18);
250 	}
251 	if (sblock.fs_bsize < MINBSIZE) {
252 		printf("block size %d is too small, minimum is %d\n",
253 		    sblock.fs_bsize, MINBSIZE);
254 		exit(19);
255 	}
256 	if (sblock.fs_bsize < sblock.fs_fsize) {
257 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
258 		    sblock.fs_bsize, sblock.fs_fsize);
259 		exit(20);
260 	}
261 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
262 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
263 	sblock.fs_qbmask = ~sblock.fs_bmask;
264 	sblock.fs_qfmask = ~sblock.fs_fmask;
265 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
266 		sblock.fs_bshift++;
267 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
268 		sblock.fs_fshift++;
269 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
270 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
271 		sblock.fs_fragshift++;
272 	if (sblock.fs_frag > MAXFRAG) {
273 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
274 		    sblock.fs_fsize, sblock.fs_bsize,
275 		    sblock.fs_bsize / MAXFRAG);
276 		exit(21);
277 	}
278 	sblock.fs_nrpos = nrpos;
279 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
280 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
281 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
282 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
283 		sblock.fs_fsbtodb++;
284 	sblock.fs_sblkno =
285 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
286 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
287 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
288 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
289 	sblock.fs_cgoffset = roundup(
290 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
291 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
292 		sblock.fs_cgmask <<= 1;
293 	if (!POWEROF2(sblock.fs_ntrak))
294 		sblock.fs_cgmask <<= 1;
295 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
296 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
297 		sizepb *= NINDIR(&sblock);
298 		sblock.fs_maxfilesize += sizepb;
299 	}
300 	/*
301 	 * Validate specified/determined secpercyl
302 	 * and calculate minimum cylinders per group.
303 	 */
304 	sblock.fs_spc = secpercyl;
305 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
306 	     sblock.fs_cpc > 1 && (i & 1) == 0;
307 	     sblock.fs_cpc >>= 1, i >>= 1)
308 		/* void */;
309 	mincpc = sblock.fs_cpc;
310 	bpcg = sblock.fs_spc * sectorsize;
311 	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
312 	if (inospercg > MAXIPG(&sblock))
313 		inospercg = MAXIPG(&sblock);
314 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
315 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
316 	    sblock.fs_spc);
317 	mincpg = roundup(mincpgcnt, mincpc);
318 	/*
319 	 * Ensure that cylinder group with mincpg has enough space
320 	 * for block maps.
321 	 */
322 	sblock.fs_cpg = mincpg;
323 	sblock.fs_ipg = inospercg;
324 	if (maxcontig > 1)
325 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
326 	mapcramped = 0;
327 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
328 		mapcramped = 1;
329 		if (sblock.fs_bsize < MAXBSIZE) {
330 			sblock.fs_bsize <<= 1;
331 			if ((i & 1) == 0) {
332 				i >>= 1;
333 			} else {
334 				sblock.fs_cpc <<= 1;
335 				mincpc <<= 1;
336 				mincpg = roundup(mincpgcnt, mincpc);
337 				sblock.fs_cpg = mincpg;
338 			}
339 			sblock.fs_frag <<= 1;
340 			sblock.fs_fragshift += 1;
341 			if (sblock.fs_frag <= MAXFRAG)
342 				continue;
343 		}
344 		if (sblock.fs_fsize == sblock.fs_bsize) {
345 			printf("There is no block size that");
346 			printf(" can support this disk\n");
347 			exit(22);
348 		}
349 		sblock.fs_frag >>= 1;
350 		sblock.fs_fragshift -= 1;
351 		sblock.fs_fsize <<= 1;
352 		sblock.fs_nspf <<= 1;
353 	}
354 	/*
355 	 * Ensure that cylinder group with mincpg has enough space for inodes.
356 	 */
357 	inodecramped = 0;
358 	inospercg = calcipg(mincpg, bpcg, &usedb);
359 	sblock.fs_ipg = inospercg;
360 	while (inospercg > MAXIPG(&sblock)) {
361 		inodecramped = 1;
362 		if (mincpc == 1 || sblock.fs_frag == 1 ||
363 		    sblock.fs_bsize == MINBSIZE)
364 			break;
365 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
366 		       "minimum bytes per inode is",
367 		       (int)((mincpg * (off_t)bpcg - usedb)
368 			     / MAXIPG(&sblock) + 1));
369 		sblock.fs_bsize >>= 1;
370 		sblock.fs_frag >>= 1;
371 		sblock.fs_fragshift -= 1;
372 		mincpc >>= 1;
373 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
374 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
375 			sblock.fs_bsize <<= 1;
376 			break;
377 		}
378 		mincpg = sblock.fs_cpg;
379 		inospercg = calcipg(mincpg, bpcg, &usedb);
380 		sblock.fs_ipg = inospercg;
381 	}
382 	if (inodecramped) {
383 		if (inospercg > MAXIPG(&sblock)) {
384 			printf("Minimum bytes per inode is %d\n",
385 			       (int)((mincpg * (off_t)bpcg - usedb)
386 				     / MAXIPG(&sblock) + 1));
387 		} else if (!mapcramped) {
388 			printf("With %d bytes per inode, ", density);
389 			printf("minimum cylinders per group is %ld\n", mincpg);
390 		}
391 	}
392 	if (mapcramped) {
393 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
394 		printf("minimum cylinders per group is %ld\n", mincpg);
395 	}
396 	if (inodecramped || mapcramped) {
397 		if (sblock.fs_bsize != bsize)
398 			printf("%s to be changed from %d to %d\n",
399 			    "This requires the block size",
400 			    bsize, sblock.fs_bsize);
401 		if (sblock.fs_fsize != fsize)
402 			printf("\t%s to be changed from %d to %d\n",
403 			    "and the fragment size",
404 			    fsize, sblock.fs_fsize);
405 		exit(23);
406 	}
407 	/*
408 	 * Calculate the number of cylinders per group
409 	 */
410 	sblock.fs_cpg = cpg;
411 	if (sblock.fs_cpg % mincpc != 0) {
412 		printf("%s groups must have a multiple of %ld cylinders\n",
413 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
414 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
415 		if (!cpgflg)
416 			cpg = sblock.fs_cpg;
417 	}
418 	/*
419 	 * Must ensure there is enough space for inodes.
420 	 */
421 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
422 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
423 		inodecramped = 1;
424 		sblock.fs_cpg -= mincpc;
425 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
426 	}
427 	/*
428 	 * Must ensure there is enough space to hold block map.
429 	 */
430 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
431 		mapcramped = 1;
432 		sblock.fs_cpg -= mincpc;
433 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
434 	}
435 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
436 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
437 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
438 		exit(24);
439 	}
440 	if (sblock.fs_cpg < mincpg) {
441 		printf("cylinder groups must have at least %ld cylinders\n",
442 			mincpg);
443 		exit(25);
444 	} else if (sblock.fs_cpg != cpg) {
445 		if (!cpgflg)
446 			printf("Warning: ");
447 		else if (!mapcramped && !inodecramped)
448 			exit(26);
449 		if (mapcramped && inodecramped)
450 			printf("Block size and bytes per inode restrict");
451 		else if (mapcramped)
452 			printf("Block size restricts");
453 		else
454 			printf("Bytes per inode restrict");
455 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
456 		if (cpgflg)
457 			exit(27);
458 	}
459 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
460 	/*
461 	 * Now have size for file system and nsect and ntrak.
462 	 * Determine number of cylinders and blocks in the file system.
463 	 */
464 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
465 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
466 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
467 		sblock.fs_ncyl++;
468 		warn = 1;
469 	}
470 	if (sblock.fs_ncyl < 1) {
471 		printf("file systems must have at least one cylinder\n");
472 		exit(28);
473 	}
474 	/*
475 	 * Determine feasability/values of rotational layout tables.
476 	 *
477 	 * The size of the rotational layout tables is limited by the
478 	 * size of the superblock, SBSIZE. The amount of space available
479 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
480 	 * The size of these tables is inversely proportional to the block
481 	 * size of the file system. The size increases if sectors per track
482 	 * are not powers of two, because more cylinders must be described
483 	 * by the tables before the rotational pattern repeats (fs_cpc).
484 	 */
485 	sblock.fs_interleave = interleave;
486 	sblock.fs_trackskew = trackskew;
487 	sblock.fs_npsect = nphyssectors;
488 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
489 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
490 	if (sblock.fs_sbsize > SBSIZE)
491 		sblock.fs_sbsize = SBSIZE;
492 	if (sblock.fs_ntrak == 1) {
493 		sblock.fs_cpc = 0;
494 		goto next;
495 	}
496 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
497 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
498 	totalsbsize = sizeof(struct fs) + rotblsize;
499 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
500 		/* use old static table space */
501 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
502 		    (char *)(&sblock.fs_firstfield);
503 		sblock.fs_rotbloff = &sblock.fs_space[0] -
504 		    (u_char *)(&sblock.fs_firstfield);
505 	} else {
506 		/* use dynamic table space */
507 		sblock.fs_postbloff = &sblock.fs_space[0] -
508 		    (u_char *)(&sblock.fs_firstfield);
509 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
510 		totalsbsize += postblsize;
511 	}
512 	if (totalsbsize > SBSIZE ||
513 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
514 		printf("%s %s %d %s %d.%s",
515 		    "Warning: insufficient space in super block for\n",
516 		    "rotational layout tables with nsect", sblock.fs_nsect,
517 		    "and ntrak", sblock.fs_ntrak,
518 		    "\nFile system performance may be impaired.\n");
519 		sblock.fs_cpc = 0;
520 		goto next;
521 	}
522 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
523 	if (sblock.fs_sbsize > SBSIZE)
524 		sblock.fs_sbsize = SBSIZE;
525 	/*
526 	 * calculate the available blocks for each rotational position
527 	 */
528 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
529 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
530 			fs_postbl(&sblock, cylno)[rpos] = -1;
531 	for (i = (rotblsize - 1) * sblock.fs_frag;
532 	     i >= 0; i -= sblock.fs_frag) {
533 		cylno = cbtocylno(&sblock, i);
534 		rpos = cbtorpos(&sblock, i);
535 		blk = fragstoblks(&sblock, i);
536 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
537 			fs_rotbl(&sblock)[blk] = 0;
538 		else
539 			fs_rotbl(&sblock)[blk] =
540 			    fs_postbl(&sblock, cylno)[rpos] - blk;
541 		fs_postbl(&sblock, cylno)[rpos] = blk;
542 	}
543 next:
544 	/*
545 	 * Compute/validate number of cylinder groups.
546 	 */
547 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
548 	if (sblock.fs_ncyl % sblock.fs_cpg)
549 		sblock.fs_ncg++;
550 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
551 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
552 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
553 		printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
554 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
555 		    (long)(sblock.fs_fpg / sblock.fs_frag));
556 		printf("number of cylinders per cylinder group (%d) %s.\n",
557 		    sblock.fs_cpg, "must be increased");
558 		exit(29);
559 	}
560 	j = sblock.fs_ncg - 1;
561 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
562 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
563 		if (j == 0) {
564 			printf("Filesystem must have at least %d sectors\n",
565 			    NSPF(&sblock) *
566 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
567 			exit(30);
568 		}
569 		printf(
570 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
571 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
572 		    i / sblock.fs_frag);
573 		printf(
574 "    cylinder group. This implies %ld sector(s) cannot be allocated.\n",
575 		    i * NSPF(&sblock));
576 		sblock.fs_ncg--;
577 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
578 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
579 		    NSPF(&sblock);
580 		warn = 0;
581 	}
582 	if (warn) {
583 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
584 		    sblock.fs_spc -
585 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
586 		    * sblock.fs_spc));
587 	}
588 	/*
589 	 * fill in remaining fields of the super block
590 	 */
591 	sblock.fs_csaddr = cgdmin(&sblock, 0);
592 	sblock.fs_cssize =
593 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
594 	/*
595 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
596 	 * longer used. However, we still initialise them so that the
597 	 * filesystem remains compatible with old kernels.
598 	 */
599 	i = sblock.fs_bsize / sizeof(struct csum);
600 	sblock.fs_csmask = ~(i - 1);
601 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
602 		sblock.fs_csshift++;
603 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
604 	if (fscs == NULL)
605 		errx(31, "calloc failed");
606 	sblock.fs_magic = FS_MAGIC;
607 	sblock.fs_rotdelay = rotdelay;
608 	sblock.fs_minfree = minfree;
609 	sblock.fs_maxcontig = maxcontig;
610 	sblock.fs_maxbpg = maxbpg;
611 	sblock.fs_rps = rpm / 60;
612 	sblock.fs_optim = opt;
613 	sblock.fs_cgrotor = 0;
614 	sblock.fs_cstotal.cs_ndir = 0;
615 	sblock.fs_cstotal.cs_nbfree = 0;
616 	sblock.fs_cstotal.cs_nifree = 0;
617 	sblock.fs_cstotal.cs_nffree = 0;
618 	sblock.fs_fmod = 0;
619 	sblock.fs_ronly = 0;
620 	sblock.fs_clean = 1;
621 #ifdef FSIRAND
622 	sblock.fs_id[0] = (long)utime;
623 	sblock.fs_id[1] = random();
624 #endif
625 
626 	/*
627 	 * Dump out summary information about file system.
628 	 */
629 	printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
630 	    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
631 	    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
632 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
633 	printf(
634 	    "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
635 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
636 	    sblock.fs_ncg, sblock.fs_cpg,
637 	    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
638 	    sblock.fs_ipg,
639 	    sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
640 #undef B2MBFACTOR
641 	/*
642 	 * Now build the cylinders group blocks and
643 	 * then print out indices of cylinder groups.
644 	 */
645 	printf("super-block backups (for fsck -b #) at:\n");
646 	i = 0;
647 	width = charsperline();
648 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
649 		initcg(cylno, utime);
650 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
651 		    fsbtodb(&sblock, cgsblock(&sblock, cylno)),
652 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
653 		if (j < 0)
654 			tmpbuf[j = 0] = '\0';
655 		if (i + j >= width) {
656 			printf("\n");
657 			i = 0;
658 		}
659 		i += j;
660 		printf("%s", tmpbuf);
661 		fflush(stdout);
662 	}
663 	printf("\n");
664 	if (Nflag)
665 		exit(0);
666 	/*
667 	 * Now construct the initial file system,
668 	 * then write out the super-block.
669 	 */
670 	fsinit(utime);
671 	sblock.fs_time = utime;
672 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
673 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
674 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
675 			sblock.fs_cssize - i < sblock.fs_bsize ?
676 			    sblock.fs_cssize - i : sblock.fs_bsize,
677 			((char *)fscs) + i);
678 	/*
679 	 * Write out the duplicate super blocks
680 	 */
681 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
682 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
683 		    sbsize, (char *)&sblock);
684 	wtfsflush();
685 	/*
686 	 * Update information about this partion in pack
687 	 * label, to that it may be updated on disk.
688 	 */
689 	pp->p_fstype = FS_BSDFFS;
690 	pp->p_fsize = sblock.fs_fsize;
691 	pp->p_frag = sblock.fs_frag;
692 	pp->p_cpg = sblock.fs_cpg;
693 }
694 
695 /*
696  * Initialize a cylinder group.
697  */
698 void
699 initcg(cylno, utime)
700 	int cylno;
701 	time_t utime;
702 {
703 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
704 	long i;
705 	register struct csum *cs;
706 #ifdef FSIRAND
707 	long j;
708 #endif
709 
710 	/*
711 	 * Determine block bounds for cylinder group.
712 	 * Allow space for super block summary information in first
713 	 * cylinder group.
714 	 */
715 	cbase = cgbase(&sblock, cylno);
716 	dmax = cbase + sblock.fs_fpg;
717 	if (dmax > sblock.fs_size)
718 		dmax = sblock.fs_size;
719 	dlower = cgsblock(&sblock, cylno) - cbase;
720 	dupper = cgdmin(&sblock, cylno) - cbase;
721 	if (cylno == 0)
722 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
723 	cs = fscs + cylno;
724 	memset(&acg, 0, sblock.fs_cgsize);
725 	acg.cg_time = utime;
726 	acg.cg_magic = CG_MAGIC;
727 	acg.cg_cgx = cylno;
728 	if (cylno == sblock.fs_ncg - 1)
729 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
730 	else
731 		acg.cg_ncyl = sblock.fs_cpg;
732 	acg.cg_niblk = sblock.fs_ipg;
733 	acg.cg_ndblk = dmax - cbase;
734 	if (sblock.fs_contigsumsize > 0)
735 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
736 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
737 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
738 	acg.cg_iusedoff = acg.cg_boff +
739 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
740 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
741 	if (sblock.fs_contigsumsize <= 0) {
742 		acg.cg_nextfreeoff = acg.cg_freeoff +
743 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
744 	} else {
745 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
746 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
747 		    sizeof(u_int32_t);
748 		acg.cg_clustersumoff =
749 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
750 		acg.cg_clusteroff = acg.cg_clustersumoff +
751 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
752 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
753 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
754 	}
755 	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
756 		printf("Panic: cylinder group too big\n");
757 		exit(37);
758 	}
759 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
760 	if (cylno == 0)
761 		for (i = 0; i < ROOTINO; i++) {
762 			setbit(cg_inosused(&acg), i);
763 			acg.cg_cs.cs_nifree--;
764 		}
765 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
766 #ifdef FSIRAND
767 		for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++)
768 			zino[j].di_gen = random();
769 #endif
770 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
771 		    sblock.fs_bsize, (char *)zino);
772 	}
773 	if (cylno > 0) {
774 		/*
775 		 * In cylno 0, beginning space is reserved
776 		 * for boot and super blocks.
777 		 */
778 		for (d = 0; d < dlower; d += sblock.fs_frag) {
779 			blkno = d / sblock.fs_frag;
780 			setblock(&sblock, cg_blksfree(&acg), blkno);
781 			if (sblock.fs_contigsumsize > 0)
782 				setbit(cg_clustersfree(&acg), blkno);
783 			acg.cg_cs.cs_nbfree++;
784 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
785 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
786 			    [cbtorpos(&sblock, d)]++;
787 		}
788 		sblock.fs_dsize += dlower;
789 	}
790 	sblock.fs_dsize += acg.cg_ndblk - dupper;
791 	if ((i = dupper % sblock.fs_frag)) {
792 		acg.cg_frsum[sblock.fs_frag - i]++;
793 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
794 			setbit(cg_blksfree(&acg), dupper);
795 			acg.cg_cs.cs_nffree++;
796 		}
797 	}
798 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
799 		blkno = d / sblock.fs_frag;
800 		setblock(&sblock, cg_blksfree(&acg), blkno);
801 		if (sblock.fs_contigsumsize > 0)
802 			setbit(cg_clustersfree(&acg), blkno);
803 		acg.cg_cs.cs_nbfree++;
804 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
805 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
806 		    [cbtorpos(&sblock, d)]++;
807 		d += sblock.fs_frag;
808 	}
809 	if (d < dmax - cbase) {
810 		acg.cg_frsum[dmax - cbase - d]++;
811 		for (; d < dmax - cbase; d++) {
812 			setbit(cg_blksfree(&acg), d);
813 			acg.cg_cs.cs_nffree++;
814 		}
815 	}
816 	if (sblock.fs_contigsumsize > 0) {
817 		int32_t *sump = cg_clustersum(&acg);
818 		u_char *mapp = cg_clustersfree(&acg);
819 		int map = *mapp++;
820 		int bit = 1;
821 		int run = 0;
822 
823 		for (i = 0; i < acg.cg_nclusterblks; i++) {
824 			if ((map & bit) != 0) {
825 				run++;
826 			} else if (run != 0) {
827 				if (run > sblock.fs_contigsumsize)
828 					run = sblock.fs_contigsumsize;
829 				sump[run]++;
830 				run = 0;
831 			}
832 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
833 				bit <<= 1;
834 			} else {
835 				map = *mapp++;
836 				bit = 1;
837 			}
838 		}
839 		if (run != 0) {
840 			if (run > sblock.fs_contigsumsize)
841 				run = sblock.fs_contigsumsize;
842 			sump[run]++;
843 		}
844 	}
845 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
846 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
847 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
848 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
849 	*cs = acg.cg_cs;
850 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
851 		sblock.fs_bsize, (char *)&acg);
852 }
853 
854 /*
855  * initialize the file system
856  */
857 struct dinode node;
858 
859 #ifdef LOSTDIR
860 #define PREDEFDIR 3
861 #else
862 #define PREDEFDIR 2
863 #endif
864 
865 struct direct root_dir[] = {
866 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
867 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
868 #ifdef LOSTDIR
869 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
870 #endif
871 };
872 struct odirect {
873 	u_long	d_ino;
874 	u_short	d_reclen;
875 	u_short	d_namlen;
876 	u_char	d_name[MAXNAMLEN + 1];
877 } oroot_dir[] = {
878 	{ ROOTINO, sizeof(struct direct), 1, "." },
879 	{ ROOTINO, sizeof(struct direct), 2, ".." },
880 #ifdef LOSTDIR
881 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
882 #endif
883 };
884 #ifdef LOSTDIR
885 struct direct lost_found_dir[] = {
886 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
887 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
888 	{ 0, DIRBLKSIZ, 0, 0, 0 },
889 };
890 struct odirect olost_found_dir[] = {
891 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
892 	{ ROOTINO, sizeof(struct direct), 2, ".." },
893 	{ 0, DIRBLKSIZ, 0, 0 },
894 };
895 #endif
896 char buf[MAXBSIZE];
897 
898 void
899 fsinit(utime)
900 	time_t utime;
901 {
902 #ifdef LOSTDIR
903 	int i;
904 #endif
905 
906 	/*
907 	 * initialize the node
908 	 */
909 	node.di_atime = utime;
910 	node.di_mtime = utime;
911 	node.di_ctime = utime;
912 #ifdef LOSTDIR
913 	/*
914 	 * create the lost+found directory
915 	 */
916 	if (Oflag) {
917 		(void)makedir((struct direct *)olost_found_dir, 2);
918 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
919 			memmove(&buf[i], &olost_found_dir[2],
920 			    DIRSIZ(0, &olost_found_dir[2]));
921 	} else {
922 		(void)makedir(lost_found_dir, 2);
923 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
924 			memmove(&buf[i], &lost_found_dir[2],
925 			    DIRSIZ(0, &lost_found_dir[2]));
926 	}
927 	node.di_mode = IFDIR | UMASK;
928 	node.di_nlink = 2;
929 	node.di_size = sblock.fs_bsize;
930 	node.di_db[0] = alloc(node.di_size, node.di_mode);
931 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
932 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
933 	iput(&node, LOSTFOUNDINO);
934 #endif
935 	/*
936 	 * create the root directory
937 	 */
938 	node.di_mode = IFDIR | UMASK;
939 	node.di_nlink = PREDEFDIR;
940 	if (Oflag)
941 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
942 	else
943 		node.di_size = makedir(root_dir, PREDEFDIR);
944 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
945 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
946 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
947 	iput(&node, ROOTINO);
948 }
949 
950 /*
951  * construct a set of directory entries in "buf".
952  * return size of directory.
953  */
954 int
955 makedir(protodir, entries)
956 	register struct direct *protodir;
957 	int entries;
958 {
959 	char *cp;
960 	int i, spcleft;
961 
962 	spcleft = DIRBLKSIZ;
963 	for (cp = buf, i = 0; i < entries - 1; i++) {
964 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
965 		memmove(cp, &protodir[i], protodir[i].d_reclen);
966 		cp += protodir[i].d_reclen;
967 		spcleft -= protodir[i].d_reclen;
968 	}
969 	protodir[i].d_reclen = spcleft;
970 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
971 	return (DIRBLKSIZ);
972 }
973 
974 /*
975  * allocate a block or frag
976  */
977 daddr_t
978 alloc(size, mode)
979 	int size;
980 	int mode;
981 {
982 	int i, frag;
983 	daddr_t d, blkno;
984 
985 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
986 	    (char *)&acg);
987 	if (acg.cg_magic != CG_MAGIC) {
988 		printf("cg 0: bad magic number\n");
989 		return (0);
990 	}
991 	if (acg.cg_cs.cs_nbfree == 0) {
992 		printf("first cylinder group ran out of space\n");
993 		return (0);
994 	}
995 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
996 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
997 			goto goth;
998 	printf("internal error: can't find block in cyl 0\n");
999 	return (0);
1000 goth:
1001 	blkno = fragstoblks(&sblock, d);
1002 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1003 	if (sblock.fs_contigsumsize > 0)
1004 		clrbit(cg_clustersfree(&acg), blkno);
1005 	acg.cg_cs.cs_nbfree--;
1006 	sblock.fs_cstotal.cs_nbfree--;
1007 	fscs[0].cs_nbfree--;
1008 	if (mode & IFDIR) {
1009 		acg.cg_cs.cs_ndir++;
1010 		sblock.fs_cstotal.cs_ndir++;
1011 		fscs[0].cs_ndir++;
1012 	}
1013 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1014 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1015 	if (size != sblock.fs_bsize) {
1016 		frag = howmany(size, sblock.fs_fsize);
1017 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1018 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1019 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1020 		acg.cg_frsum[sblock.fs_frag - frag]++;
1021 		for (i = frag; i < sblock.fs_frag; i++)
1022 			setbit(cg_blksfree(&acg), d + i);
1023 	}
1024 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1025 	    (char *)&acg);
1026 	return (d);
1027 }
1028 
1029 /*
1030  * Calculate number of inodes per group.
1031  */
1032 long
1033 calcipg(cpg, bpcg, usedbp)
1034 	long cpg;
1035 	long bpcg;
1036 	off_t *usedbp;
1037 {
1038 	int i;
1039 	long ipg, new_ipg, ncg, ncyl;
1040 	off_t usedb;
1041 
1042 	/*
1043 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1044 	 * Note that fssize is still in sectors, not filesystem blocks.
1045 	 */
1046 	ncyl = howmany(fssize, (u_int)secpercyl);
1047 	ncg = howmany(ncyl, cpg);
1048 	/*
1049 	 * Iterate a few times to allow for ipg depending on itself.
1050 	 */
1051 	ipg = 0;
1052 	for (i = 0; i < 10; i++) {
1053 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1054 			* NSPF(&sblock) * (off_t)sectorsize;
1055 		new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
1056 			  / ncg / secpercyl / cpg;
1057 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1058 		if (new_ipg == ipg)
1059 			break;
1060 		ipg = new_ipg;
1061 	}
1062 	*usedbp = usedb;
1063 	return (ipg);
1064 }
1065 
1066 /*
1067  * Allocate an inode on the disk
1068  */
1069 void
1070 iput(ip, ino)
1071 	register struct dinode *ip;
1072 	register ino_t ino;
1073 {
1074 	struct dinode buf[MAXINOPB];
1075 	daddr_t d;
1076 	int c;
1077 
1078 #ifdef FSIRAND
1079 	ip->di_gen = random();
1080 #endif
1081 	c = ino_to_cg(&sblock, ino);
1082 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1083 	    (char *)&acg);
1084 	if (acg.cg_magic != CG_MAGIC) {
1085 		printf("cg 0: bad magic number\n");
1086 		exit(31);
1087 	}
1088 	acg.cg_cs.cs_nifree--;
1089 	setbit(cg_inosused(&acg), ino);
1090 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1091 	    (char *)&acg);
1092 	sblock.fs_cstotal.cs_nifree--;
1093 	fscs[0].cs_nifree--;
1094 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1095 		printf("fsinit: inode value out of range (%d).\n", ino);
1096 		exit(32);
1097 	}
1098 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1099 	rdfs(d, sblock.fs_bsize, (char *)buf);
1100 	buf[ino_to_fsbo(&sblock, ino)] = *ip;
1101 	wtfs(d, sblock.fs_bsize, (char *)buf);
1102 }
1103 
1104 #ifdef STANDALONE
1105 /*
1106  * Replace libc function with one suited to our needs.
1107  */
1108 caddr_t
1109 malloc(size)
1110 	register u_long size;
1111 {
1112 	char *base, *i;
1113 	static u_long pgsz;
1114 	struct rlimit rlp;
1115 
1116 	if (pgsz == 0) {
1117 		base = sbrk(0);
1118 		pgsz = getpagesize() - 1;
1119 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1120 		base = sbrk(i - base);
1121 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1122 			warn("getrlimit");
1123 		rlp.rlim_cur = rlp.rlim_max;
1124 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1125 			warn("setrlimit");
1126 		memleft = rlp.rlim_max - (u_long)base;
1127 	}
1128 	size = (size + pgsz) &~ pgsz;
1129 	if (size > memleft)
1130 		size = memleft;
1131 	memleft -= size;
1132 	if (size == 0)
1133 		return (0);
1134 	return ((caddr_t)sbrk(size));
1135 }
1136 
1137 /*
1138  * Replace libc function with one suited to our needs.
1139  */
1140 caddr_t
1141 realloc(ptr, size)
1142 	char *ptr;
1143 	u_long size;
1144 {
1145 	void *p;
1146 
1147 	if ((p = malloc(size)) == NULL)
1148 		return (NULL);
1149 	memmove(p, ptr, size);
1150 	free(ptr);
1151 	return (p);
1152 }
1153 
1154 /*
1155  * Replace libc function with one suited to our needs.
1156  */
1157 char *
1158 calloc(size, numelm)
1159 	u_long size, numelm;
1160 {
1161 	caddr_t base;
1162 
1163 	size *= numelm;
1164 	if ((base = malloc(size)) == NULL)
1165 		return (NULL);
1166 	memset(base, 0, size);
1167 	return (base);
1168 }
1169 
1170 /*
1171  * Replace libc function with one suited to our needs.
1172  */
1173 void
1174 free(ptr)
1175 	char *ptr;
1176 {
1177 
1178 	/* do not worry about it for now */
1179 }
1180 
1181 #else   /* !STANDALONE */
1182 
1183 #ifdef __ELF__
1184 extern char *_etext;
1185 #define etext _etext
1186 #else
1187 extern char *etext;
1188 #endif
1189 
1190 #endif  /* STANDALONE */
1191 
1192 /*
1193  * read a block from the file system
1194  */
1195 void
1196 rdfs(bno, size, bf)
1197 	daddr_t bno;
1198 	int size;
1199 	char *bf;
1200 {
1201 	int n;
1202 
1203 	wtfsflush();
1204 	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1205 		printf("seek error: %ld\n", (long)bno);
1206 		err(33, "rdfs");
1207 	}
1208 	n = read(fsi, bf, size);
1209 	if (n != size) {
1210 		printf("read error: %ld\n", (long)bno);
1211 		err(34, "rdfs");
1212 	}
1213 }
1214 
1215 #define WCSIZE (128 * 1024)
1216 daddr_t wc_sect;		/* units of sectorsize */
1217 int wc_end;			/* bytes */
1218 static char wc[WCSIZE];		/* bytes */
1219 
1220 /*
1221  * Flush dirty write behind buffer.
1222  */
1223 void
1224 wtfsflush()
1225 {
1226 	int n;
1227 	if (wc_end) {
1228 		if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1229 			printf("seek error: %ld\n", (long)wc_sect);
1230 			err(35, "wtfs - writecombine");
1231 		}
1232 		n = write(fso, wc, wc_end);
1233 		if (n != wc_end) {
1234 			printf("write error: %ld\n", (long)wc_sect);
1235 			err(36, "wtfs - writecombine");
1236 		}
1237 		wc_end = 0;
1238 	}
1239 }
1240 
1241 /*
1242  * write a block to the file system
1243  */
1244 void
1245 wtfs(bno, size, bf)
1246 	daddr_t bno;
1247 	int size;
1248 	char *bf;
1249 {
1250 	int n;
1251 	int done;
1252 
1253 	if (Nflag)
1254 		return;
1255 	done = 0;
1256 	if (wc_end == 0 && size <= WCSIZE) {
1257 		wc_sect = bno;
1258 		bcopy(bf, wc, size);
1259 		wc_end = size;
1260 		if (wc_end < WCSIZE)
1261 			return;
1262 		done = 1;
1263 	}
1264 	if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1265 	    wc_end + size <= WCSIZE) {
1266 		bcopy(bf, wc + wc_end, size);
1267 		wc_end += size;
1268 		if (wc_end < WCSIZE)
1269 			return;
1270 		done = 1;
1271 	}
1272 	wtfsflush();
1273 	if (done)
1274 		return;
1275 	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1276 		printf("seek error: %ld\n", (long)bno);
1277 		err(35, "wtfs");
1278 	}
1279 	n = write(fso, bf, size);
1280 	if (n != size) {
1281 		printf("write error: %ld\n", (long)bno);
1282 		err(36, "wtfs");
1283 	}
1284 }
1285 
1286 /*
1287  * check if a block is available
1288  */
1289 int
1290 isblock(fs, cp, h)
1291 	struct fs *fs;
1292 	unsigned char *cp;
1293 	int h;
1294 {
1295 	unsigned char mask;
1296 
1297 	switch (fs->fs_frag) {
1298 	case 8:
1299 		return (cp[h] == 0xff);
1300 	case 4:
1301 		mask = 0x0f << ((h & 0x1) << 2);
1302 		return ((cp[h >> 1] & mask) == mask);
1303 	case 2:
1304 		mask = 0x03 << ((h & 0x3) << 1);
1305 		return ((cp[h >> 2] & mask) == mask);
1306 	case 1:
1307 		mask = 0x01 << (h & 0x7);
1308 		return ((cp[h >> 3] & mask) == mask);
1309 	default:
1310 #ifdef STANDALONE
1311 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1312 #else
1313 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1314 #endif
1315 		return (0);
1316 	}
1317 }
1318 
1319 /*
1320  * take a block out of the map
1321  */
1322 void
1323 clrblock(fs, cp, h)
1324 	struct fs *fs;
1325 	unsigned char *cp;
1326 	int h;
1327 {
1328 	switch ((fs)->fs_frag) {
1329 	case 8:
1330 		cp[h] = 0;
1331 		return;
1332 	case 4:
1333 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1334 		return;
1335 	case 2:
1336 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1337 		return;
1338 	case 1:
1339 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1340 		return;
1341 	default:
1342 #ifdef STANDALONE
1343 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1344 #else
1345 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1346 #endif
1347 		return;
1348 	}
1349 }
1350 
1351 /*
1352  * put a block into the map
1353  */
1354 void
1355 setblock(fs, cp, h)
1356 	struct fs *fs;
1357 	unsigned char *cp;
1358 	int h;
1359 {
1360 	switch (fs->fs_frag) {
1361 	case 8:
1362 		cp[h] = 0xff;
1363 		return;
1364 	case 4:
1365 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1366 		return;
1367 	case 2:
1368 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1369 		return;
1370 	case 1:
1371 		cp[h >> 3] |= (0x01 << (h & 0x7));
1372 		return;
1373 	default:
1374 #ifdef STANDALONE
1375 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1376 #else
1377 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1378 #endif
1379 		return;
1380 	}
1381 }
1382 
1383 /*
1384  * Determine the number of characters in a
1385  * single line.
1386  */
1387 
1388 static int
1389 charsperline()
1390 {
1391 	int columns;
1392 	char *cp;
1393 	struct winsize ws;
1394 
1395 	columns = 0;
1396 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1397 		columns = ws.ws_col;
1398 	if (columns == 0 && (cp = getenv("COLUMNS")))
1399 		columns = atoi(cp);
1400 	if (columns == 0)
1401 		columns = 80;	/* last resort */
1402 	return columns;
1403 }
1404