1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <err.h> 48 #include <grp.h> 49 #include <limits.h> 50 #include <signal.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <stdint.h> 54 #include <stdio.h> 55 #include <unistd.h> 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/types.h> 59 #include <sys/wait.h> 60 #include <sys/resource.h> 61 #include <sys/stat.h> 62 #include <ufs/ufs/dinode.h> 63 #include <ufs/ufs/dir.h> 64 #include <ufs/ffs/fs.h> 65 #include <sys/disklabel.h> 66 #include <sys/file.h> 67 #include <sys/mman.h> 68 #include <sys/ioctl.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 static struct csum *fscs; 78 #define sblock disk.d_fs 79 #define acg disk.d_cg 80 81 union dinode { 82 struct ufs1_dinode dp1; 83 struct ufs2_dinode dp2; 84 }; 85 #define DIP(dp, field) \ 86 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 87 (dp)->dp1.field : (dp)->dp2.field) 88 89 static caddr_t iobuf; 90 static long iobufsize; 91 static ufs2_daddr_t alloc(int size, int mode); 92 static int charsperline(void); 93 static void clrblock(struct fs *, unsigned char *, int); 94 static void fsinit(time_t); 95 static int ilog2(int); 96 static void initcg(int, time_t); 97 static int isblock(struct fs *, unsigned char *, int); 98 static void iput(union dinode *, ino_t); 99 static int makedir(struct direct *, int); 100 static void setblock(struct fs *, unsigned char *, int); 101 static void wtfs(ufs2_daddr_t, int, char *); 102 static u_int32_t newfs_random(void); 103 104 void 105 mkfs(struct partition *pp, char *fsys) 106 { 107 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 108 long i, j, cylno, csfrags; 109 time_t utime; 110 quad_t sizepb; 111 int width; 112 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 113 union { 114 struct fs fdummy; 115 char cdummy[SBLOCKSIZE]; 116 } dummy; 117 #define fsdummy dummy.fdummy 118 #define chdummy dummy.cdummy 119 120 /* 121 * Our blocks == sector size, and the version of UFS we are using is 122 * specified by Oflag. 123 */ 124 disk.d_bsize = sectorsize; 125 disk.d_ufs = Oflag; 126 if (Rflag) { 127 utime = 1000000000; 128 } else { 129 time(&utime); 130 arc4random_stir(); 131 } 132 sblock.fs_old_flags = FS_FLAGS_UPDATED; 133 sblock.fs_flags = 0; 134 if (Uflag) 135 sblock.fs_flags |= FS_DOSOFTDEP; 136 if (Lflag) 137 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 138 if (lflag) 139 sblock.fs_flags |= FS_MULTILABEL; 140 /* 141 * Validate the given file system size. 142 * Verify that its last block can actually be accessed. 143 * Convert to file system fragment sized units. 144 */ 145 if (fssize <= 0) { 146 printf("preposterous size %jd\n", (intmax_t)fssize); 147 exit(13); 148 } 149 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 150 (char *)&sblock); 151 /* 152 * collect and verify the file system density info 153 */ 154 sblock.fs_avgfilesize = avgfilesize; 155 sblock.fs_avgfpdir = avgfilesperdir; 156 if (sblock.fs_avgfilesize <= 0) 157 printf("illegal expected average file size %d\n", 158 sblock.fs_avgfilesize), exit(14); 159 if (sblock.fs_avgfpdir <= 0) 160 printf("illegal expected number of files per directory %d\n", 161 sblock.fs_avgfpdir), exit(15); 162 /* 163 * collect and verify the block and fragment sizes 164 */ 165 sblock.fs_bsize = bsize; 166 sblock.fs_fsize = fsize; 167 if (!POWEROF2(sblock.fs_bsize)) { 168 printf("block size must be a power of 2, not %d\n", 169 sblock.fs_bsize); 170 exit(16); 171 } 172 if (!POWEROF2(sblock.fs_fsize)) { 173 printf("fragment size must be a power of 2, not %d\n", 174 sblock.fs_fsize); 175 exit(17); 176 } 177 if (sblock.fs_fsize < sectorsize) { 178 printf("increasing fragment size from %d to sector size (%d)\n", 179 sblock.fs_fsize, sectorsize); 180 sblock.fs_fsize = sectorsize; 181 } 182 if (sblock.fs_bsize > MAXBSIZE) { 183 printf("decreasing block size from %d to maximum (%d)\n", 184 sblock.fs_bsize, MAXBSIZE); 185 sblock.fs_bsize = MAXBSIZE; 186 } 187 if (sblock.fs_bsize < MINBSIZE) { 188 printf("increasing block size from %d to minimum (%d)\n", 189 sblock.fs_bsize, MINBSIZE); 190 sblock.fs_bsize = MINBSIZE; 191 } 192 if (sblock.fs_fsize > MAXBSIZE) { 193 printf("decreasing fragment size from %d to maximum (%d)\n", 194 sblock.fs_fsize, MAXBSIZE); 195 sblock.fs_fsize = MAXBSIZE; 196 } 197 if (sblock.fs_bsize < sblock.fs_fsize) { 198 printf("increasing block size from %d to fragment size (%d)\n", 199 sblock.fs_bsize, sblock.fs_fsize); 200 sblock.fs_bsize = sblock.fs_fsize; 201 } 202 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 203 printf( 204 "increasing fragment size from %d to block size / %d (%d)\n", 205 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 206 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 207 } 208 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 209 sblock.fs_maxbsize = sblock.fs_bsize; 210 printf("Extent size set to %d\n", sblock.fs_maxbsize); 211 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 212 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 213 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 214 } else { 215 sblock.fs_maxbsize = maxbsize; 216 } 217 sblock.fs_maxcontig = maxcontig; 218 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 219 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 220 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 221 } 222 if (sblock.fs_maxcontig > 1) 223 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 224 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 225 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 226 sblock.fs_qbmask = ~sblock.fs_bmask; 227 sblock.fs_qfmask = ~sblock.fs_fmask; 228 sblock.fs_bshift = ilog2(sblock.fs_bsize); 229 sblock.fs_fshift = ilog2(sblock.fs_fsize); 230 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 231 sblock.fs_fragshift = ilog2(sblock.fs_frag); 232 if (sblock.fs_frag > MAXFRAG) { 233 printf("fragment size %d is still too small (can't happen)\n", 234 sblock.fs_bsize / MAXFRAG); 235 exit(21); 236 } 237 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 238 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 239 240 /* 241 * Before the filesystem is finally initialized, mark it 242 * as incompletely initialized. 243 */ 244 sblock.fs_magic = FS_BAD_MAGIC; 245 246 if (Oflag == 1) { 247 sblock.fs_sblockloc = SBLOCK_UFS1; 248 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 249 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 250 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 251 sizeof(ufs1_daddr_t)); 252 sblock.fs_old_inodefmt = FS_44INODEFMT; 253 sblock.fs_old_cgoffset = 0; 254 sblock.fs_old_cgmask = 0xffffffff; 255 sblock.fs_old_size = sblock.fs_size; 256 sblock.fs_old_rotdelay = 0; 257 sblock.fs_old_rps = 60; 258 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 259 sblock.fs_old_cpg = 1; 260 sblock.fs_old_interleave = 1; 261 sblock.fs_old_trackskew = 0; 262 sblock.fs_old_cpc = 0; 263 sblock.fs_old_postblformat = 1; 264 sblock.fs_old_nrpos = 1; 265 } else { 266 sblock.fs_sblockloc = SBLOCK_UFS2; 267 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 268 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 269 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 270 sizeof(ufs2_daddr_t)); 271 } 272 sblock.fs_sblkno = 273 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 274 sblock.fs_frag); 275 sblock.fs_cblkno = sblock.fs_sblkno + 276 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 277 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 278 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 279 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 280 sizepb *= NINDIR(&sblock); 281 sblock.fs_maxfilesize += sizepb; 282 } 283 /* 284 * Calculate the number of blocks to put into each cylinder group. 285 * 286 * This algorithm selects the number of blocks per cylinder 287 * group. The first goal is to have at least enough data blocks 288 * in each cylinder group to meet the density requirement. Once 289 * this goal is achieved we try to expand to have at least 290 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 291 * pack as many blocks into each cylinder group map as will fit. 292 * 293 * We start by calculating the smallest number of blocks that we 294 * can put into each cylinder group. If this is too big, we reduce 295 * the density until it fits. 296 */ 297 origdensity = density; 298 for (;;) { 299 fragsperinode = MAX(numfrags(&sblock, density), 1); 300 minfpg = fragsperinode * INOPB(&sblock); 301 if (minfpg > sblock.fs_size) 302 minfpg = sblock.fs_size; 303 sblock.fs_ipg = INOPB(&sblock); 304 sblock.fs_fpg = roundup(sblock.fs_iblkno + 305 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 306 if (sblock.fs_fpg < minfpg) 307 sblock.fs_fpg = minfpg; 308 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 309 INOPB(&sblock)); 310 sblock.fs_fpg = roundup(sblock.fs_iblkno + 311 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 312 if (sblock.fs_fpg < minfpg) 313 sblock.fs_fpg = minfpg; 314 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 315 INOPB(&sblock)); 316 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 317 break; 318 density -= sblock.fs_fsize; 319 } 320 if (density != origdensity) 321 printf("density reduced from %d to %d\n", origdensity, density); 322 /* 323 * Start packing more blocks into the cylinder group until 324 * it cannot grow any larger, the number of cylinder groups 325 * drops below MINCYLGRPS, or we reach the size requested. 326 */ 327 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 328 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 329 INOPB(&sblock)); 330 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 331 break; 332 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 333 continue; 334 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 335 break; 336 sblock.fs_fpg -= sblock.fs_frag; 337 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 338 INOPB(&sblock)); 339 break; 340 } 341 /* 342 * Check to be sure that the last cylinder group has enough blocks 343 * to be viable. If it is too small, reduce the number of blocks 344 * per cylinder group which will have the effect of moving more 345 * blocks into the last cylinder group. 346 */ 347 optimalfpg = sblock.fs_fpg; 348 for (;;) { 349 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 350 lastminfpg = roundup(sblock.fs_iblkno + 351 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 352 if (sblock.fs_size < lastminfpg) { 353 printf("Filesystem size %jd < minimum size of %d\n", 354 (intmax_t)sblock.fs_size, lastminfpg); 355 exit(28); 356 } 357 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 358 sblock.fs_size % sblock.fs_fpg == 0) 359 break; 360 sblock.fs_fpg -= sblock.fs_frag; 361 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 362 INOPB(&sblock)); 363 } 364 if (optimalfpg != sblock.fs_fpg) 365 printf("Reduced frags per cylinder group from %d to %d %s\n", 366 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 367 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 368 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 369 if (Oflag == 1) { 370 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 371 sblock.fs_old_nsect = sblock.fs_old_spc; 372 sblock.fs_old_npsect = sblock.fs_old_spc; 373 sblock.fs_old_ncyl = sblock.fs_ncg; 374 } 375 /* 376 * fill in remaining fields of the super block 377 */ 378 sblock.fs_csaddr = cgdmin(&sblock, 0); 379 sblock.fs_cssize = 380 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 381 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 382 if (fscs == NULL) 383 errx(31, "calloc failed"); 384 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 385 if (sblock.fs_sbsize > SBLOCKSIZE) 386 sblock.fs_sbsize = SBLOCKSIZE; 387 sblock.fs_minfree = minfree; 388 sblock.fs_maxbpg = maxbpg; 389 sblock.fs_optim = opt; 390 sblock.fs_cgrotor = 0; 391 sblock.fs_pendingblocks = 0; 392 sblock.fs_pendinginodes = 0; 393 sblock.fs_fmod = 0; 394 sblock.fs_ronly = 0; 395 sblock.fs_state = 0; 396 sblock.fs_clean = 1; 397 sblock.fs_id[0] = (long)utime; 398 sblock.fs_id[1] = newfs_random(); 399 sblock.fs_fsmnt[0] = '\0'; 400 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 401 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 402 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 403 sblock.fs_cstotal.cs_nbfree = 404 fragstoblks(&sblock, sblock.fs_dsize) - 405 howmany(csfrags, sblock.fs_frag); 406 sblock.fs_cstotal.cs_nffree = 407 fragnum(&sblock, sblock.fs_size) + 408 (fragnum(&sblock, csfrags) > 0 ? 409 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 410 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 411 sblock.fs_cstotal.cs_ndir = 0; 412 sblock.fs_dsize -= csfrags; 413 sblock.fs_time = utime; 414 if (Oflag == 1) { 415 sblock.fs_old_time = utime; 416 sblock.fs_old_dsize = sblock.fs_dsize; 417 sblock.fs_old_csaddr = sblock.fs_csaddr; 418 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 419 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 420 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 421 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 422 } 423 424 /* 425 * Dump out summary information about file system. 426 */ 427 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 428 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 429 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 430 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 431 sblock.fs_fsize); 432 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 433 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 434 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 435 if (sblock.fs_flags & FS_DOSOFTDEP) 436 printf("\twith soft updates\n"); 437 # undef B2MBFACTOR 438 439 /* 440 * Wipe out old UFS1 superblock(s) if necessary. 441 */ 442 if (!Nflag && Oflag != 1) { 443 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 444 if (i == -1) 445 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 446 447 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 448 fsdummy.fs_magic = 0; 449 bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 450 for (i = 0; i < fsdummy.fs_ncg; i++) 451 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)), 452 chdummy, SBLOCKSIZE); 453 } 454 } 455 if (!Nflag) 456 sbwrite(&disk, 0); 457 if (Eflag == 1) { 458 printf("** Exiting on Eflag 1\n"); 459 exit(0); 460 } 461 if (Eflag == 2) 462 printf("** Leaving BAD MAGIC on Eflag 2\n"); 463 else 464 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 465 466 /* 467 * Now build the cylinders group blocks and 468 * then print out indices of cylinder groups. 469 */ 470 printf("super-block backups (for fsck -b #) at:\n"); 471 i = 0; 472 width = charsperline(); 473 /* 474 * allocate space for superblock, cylinder group map, and 475 * two sets of inode blocks. 476 */ 477 if (sblock.fs_bsize < SBLOCKSIZE) 478 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 479 else 480 iobufsize = 4 * sblock.fs_bsize; 481 if ((iobuf = malloc(iobufsize)) == 0) { 482 printf("Cannot allocate I/O buffer\n"); 483 exit(38); 484 } 485 bzero(iobuf, iobufsize); 486 /* 487 * Make a copy of the superblock into the buffer that we will be 488 * writing out in each cylinder group. 489 */ 490 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 491 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 492 initcg(cylno, utime); 493 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 494 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 495 cylno < (sblock.fs_ncg-1) ? "," : ""); 496 if (j < 0) 497 tmpbuf[j = 0] = '\0'; 498 if (i + j >= width) { 499 printf("\n"); 500 i = 0; 501 } 502 i += j; 503 printf("%s", tmpbuf); 504 fflush(stdout); 505 } 506 printf("\n"); 507 if (Nflag) 508 exit(0); 509 /* 510 * Now construct the initial file system, 511 * then write out the super-block. 512 */ 513 fsinit(utime); 514 if (Oflag == 1) { 515 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 516 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 517 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 518 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 519 } 520 if (Eflag == 3) { 521 printf("** Exiting on Eflag 3\n"); 522 exit(0); 523 } 524 if (!Nflag) 525 sbwrite(&disk, 0); 526 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 527 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 528 sblock.fs_cssize - i < sblock.fs_bsize ? 529 sblock.fs_cssize - i : sblock.fs_bsize, 530 ((char *)fscs) + i); 531 /* 532 * Update information about this partion in pack 533 * label, to that it may be updated on disk. 534 */ 535 if (pp != NULL) { 536 pp->p_fstype = FS_BSDFFS; 537 pp->p_fsize = sblock.fs_fsize; 538 pp->p_frag = sblock.fs_frag; 539 pp->p_cpg = sblock.fs_fpg; 540 } 541 } 542 543 /* 544 * Initialize a cylinder group. 545 */ 546 void 547 initcg(int cylno, time_t utime) 548 { 549 long i, j, d, dlower, dupper, blkno, start; 550 ufs2_daddr_t cbase, dmax; 551 struct ufs1_dinode *dp1; 552 struct ufs2_dinode *dp2; 553 struct csum *cs; 554 555 /* 556 * Determine block bounds for cylinder group. 557 * Allow space for super block summary information in first 558 * cylinder group. 559 */ 560 cbase = cgbase(&sblock, cylno); 561 dmax = cbase + sblock.fs_fpg; 562 if (dmax > sblock.fs_size) 563 dmax = sblock.fs_size; 564 dlower = cgsblock(&sblock, cylno) - cbase; 565 dupper = cgdmin(&sblock, cylno) - cbase; 566 if (cylno == 0) 567 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 568 cs = &fscs[cylno]; 569 memset(&acg, 0, sblock.fs_cgsize); 570 acg.cg_time = utime; 571 acg.cg_magic = CG_MAGIC; 572 acg.cg_cgx = cylno; 573 acg.cg_niblk = sblock.fs_ipg; 574 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 575 sblock.fs_ipg : 2 * INOPB(&sblock); 576 acg.cg_ndblk = dmax - cbase; 577 if (sblock.fs_contigsumsize > 0) 578 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 579 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 580 if (Oflag == 2) { 581 acg.cg_iusedoff = start; 582 } else { 583 acg.cg_old_ncyl = sblock.fs_old_cpg; 584 acg.cg_old_time = acg.cg_time; 585 acg.cg_time = 0; 586 acg.cg_old_niblk = acg.cg_niblk; 587 acg.cg_niblk = 0; 588 acg.cg_initediblk = 0; 589 acg.cg_old_btotoff = start; 590 acg.cg_old_boff = acg.cg_old_btotoff + 591 sblock.fs_old_cpg * sizeof(int32_t); 592 acg.cg_iusedoff = acg.cg_old_boff + 593 sblock.fs_old_cpg * sizeof(u_int16_t); 594 } 595 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 596 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 597 if (sblock.fs_contigsumsize > 0) { 598 acg.cg_clustersumoff = 599 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 600 acg.cg_clustersumoff -= sizeof(u_int32_t); 601 acg.cg_clusteroff = acg.cg_clustersumoff + 602 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 603 acg.cg_nextfreeoff = acg.cg_clusteroff + 604 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 605 } 606 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 607 printf("Panic: cylinder group too big\n"); 608 exit(37); 609 } 610 acg.cg_cs.cs_nifree += sblock.fs_ipg; 611 if (cylno == 0) 612 for (i = 0; i < (long)ROOTINO; i++) { 613 setbit(cg_inosused(&acg), i); 614 acg.cg_cs.cs_nifree--; 615 } 616 if (cylno > 0) { 617 /* 618 * In cylno 0, beginning space is reserved 619 * for boot and super blocks. 620 */ 621 for (d = 0; d < dlower; d += sblock.fs_frag) { 622 blkno = d / sblock.fs_frag; 623 setblock(&sblock, cg_blksfree(&acg), blkno); 624 if (sblock.fs_contigsumsize > 0) 625 setbit(cg_clustersfree(&acg), blkno); 626 acg.cg_cs.cs_nbfree++; 627 } 628 } 629 if ((i = dupper % sblock.fs_frag)) { 630 acg.cg_frsum[sblock.fs_frag - i]++; 631 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 632 setbit(cg_blksfree(&acg), dupper); 633 acg.cg_cs.cs_nffree++; 634 } 635 } 636 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 637 d += sblock.fs_frag) { 638 blkno = d / sblock.fs_frag; 639 setblock(&sblock, cg_blksfree(&acg), blkno); 640 if (sblock.fs_contigsumsize > 0) 641 setbit(cg_clustersfree(&acg), blkno); 642 acg.cg_cs.cs_nbfree++; 643 } 644 if (d < acg.cg_ndblk) { 645 acg.cg_frsum[acg.cg_ndblk - d]++; 646 for (; d < acg.cg_ndblk; d++) { 647 setbit(cg_blksfree(&acg), d); 648 acg.cg_cs.cs_nffree++; 649 } 650 } 651 if (sblock.fs_contigsumsize > 0) { 652 int32_t *sump = cg_clustersum(&acg); 653 u_char *mapp = cg_clustersfree(&acg); 654 int map = *mapp++; 655 int bit = 1; 656 int run = 0; 657 658 for (i = 0; i < acg.cg_nclusterblks; i++) { 659 if ((map & bit) != 0) 660 run++; 661 else if (run != 0) { 662 if (run > sblock.fs_contigsumsize) 663 run = sblock.fs_contigsumsize; 664 sump[run]++; 665 run = 0; 666 } 667 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 668 bit <<= 1; 669 else { 670 map = *mapp++; 671 bit = 1; 672 } 673 } 674 if (run != 0) { 675 if (run > sblock.fs_contigsumsize) 676 run = sblock.fs_contigsumsize; 677 sump[run]++; 678 } 679 } 680 *cs = acg.cg_cs; 681 /* 682 * Write out the duplicate super block, the cylinder group map 683 * and two blocks worth of inodes in a single write. 684 */ 685 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 686 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 687 start += sblock.fs_bsize; 688 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 689 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 690 for (i = 0; i < acg.cg_initediblk; i++) { 691 if (sblock.fs_magic == FS_UFS1_MAGIC) { 692 dp1->di_gen = newfs_random(); 693 dp1++; 694 } else { 695 dp2->di_gen = newfs_random(); 696 dp2++; 697 } 698 } 699 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 700 /* 701 * For the old file system, we have to initialize all the inodes. 702 */ 703 if (Oflag == 1) { 704 for (i = 2 * sblock.fs_frag; 705 i < sblock.fs_ipg / INOPF(&sblock); 706 i += sblock.fs_frag) { 707 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 708 for (j = 0; j < INOPB(&sblock); j++) { 709 dp1->di_gen = newfs_random(); 710 dp1++; 711 } 712 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 713 sblock.fs_bsize, &iobuf[start]); 714 } 715 } 716 } 717 718 /* 719 * initialize the file system 720 */ 721 #define ROOTLINKCNT 3 722 723 struct direct root_dir[] = { 724 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 725 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 726 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 727 }; 728 729 #define SNAPLINKCNT 2 730 731 struct direct snap_dir[] = { 732 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 733 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 734 }; 735 736 void 737 fsinit(time_t utime) 738 { 739 union dinode node; 740 struct group *grp; 741 742 memset(&node, 0, sizeof node); 743 if ((grp = getgrnam("operator")) == NULL) 744 errx(35, "Cannot retrieve operator gid"); 745 if (sblock.fs_magic == FS_UFS1_MAGIC) { 746 /* 747 * initialize the node 748 */ 749 node.dp1.di_atime = utime; 750 node.dp1.di_mtime = utime; 751 node.dp1.di_ctime = utime; 752 /* 753 * create the root directory 754 */ 755 node.dp1.di_mode = IFDIR | UMASK; 756 node.dp1.di_nlink = ROOTLINKCNT; 757 node.dp1.di_size = makedir(root_dir, ROOTLINKCNT); 758 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 759 node.dp1.di_blocks = 760 btodb(fragroundup(&sblock, node.dp1.di_size)); 761 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 762 iobuf); 763 iput(&node, ROOTINO); 764 /* 765 * create the .snap directory 766 */ 767 node.dp1.di_mode |= 020; 768 node.dp1.di_gid = grp->gr_gid; 769 node.dp1.di_nlink = SNAPLINKCNT; 770 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 771 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 772 node.dp1.di_blocks = 773 btodb(fragroundup(&sblock, node.dp1.di_size)); 774 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 775 iobuf); 776 iput(&node, ROOTINO + 1); 777 } else { 778 /* 779 * initialize the node 780 */ 781 node.dp2.di_atime = utime; 782 node.dp2.di_mtime = utime; 783 node.dp2.di_ctime = utime; 784 node.dp2.di_birthtime = utime; 785 /* 786 * create the root directory 787 */ 788 node.dp2.di_mode = IFDIR | UMASK; 789 node.dp2.di_nlink = ROOTLINKCNT; 790 node.dp2.di_size = makedir(root_dir, ROOTLINKCNT); 791 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 792 node.dp2.di_blocks = 793 btodb(fragroundup(&sblock, node.dp2.di_size)); 794 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 795 iobuf); 796 iput(&node, ROOTINO); 797 /* 798 * create the .snap directory 799 */ 800 node.dp2.di_mode |= 020; 801 node.dp2.di_gid = grp->gr_gid; 802 node.dp2.di_nlink = SNAPLINKCNT; 803 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 804 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 805 node.dp2.di_blocks = 806 btodb(fragroundup(&sblock, node.dp2.di_size)); 807 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 808 iobuf); 809 iput(&node, ROOTINO + 1); 810 } 811 } 812 813 /* 814 * construct a set of directory entries in "iobuf". 815 * return size of directory. 816 */ 817 int 818 makedir(struct direct *protodir, int entries) 819 { 820 char *cp; 821 int i, spcleft; 822 823 spcleft = DIRBLKSIZ; 824 memset(iobuf, 0, DIRBLKSIZ); 825 for (cp = iobuf, i = 0; i < entries - 1; i++) { 826 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 827 memmove(cp, &protodir[i], protodir[i].d_reclen); 828 cp += protodir[i].d_reclen; 829 spcleft -= protodir[i].d_reclen; 830 } 831 protodir[i].d_reclen = spcleft; 832 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 833 return (DIRBLKSIZ); 834 } 835 836 /* 837 * allocate a block or frag 838 */ 839 ufs2_daddr_t 840 alloc(int size, int mode) 841 { 842 int i, d, blkno, frag; 843 844 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 845 sblock.fs_cgsize); 846 if (acg.cg_magic != CG_MAGIC) { 847 printf("cg 0: bad magic number\n"); 848 exit(38); 849 } 850 if (acg.cg_cs.cs_nbfree == 0) { 851 printf("first cylinder group ran out of space\n"); 852 exit(39); 853 } 854 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 855 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 856 goto goth; 857 printf("internal error: can't find block in cyl 0\n"); 858 exit(40); 859 goth: 860 blkno = fragstoblks(&sblock, d); 861 clrblock(&sblock, cg_blksfree(&acg), blkno); 862 if (sblock.fs_contigsumsize > 0) 863 clrbit(cg_clustersfree(&acg), blkno); 864 acg.cg_cs.cs_nbfree--; 865 sblock.fs_cstotal.cs_nbfree--; 866 fscs[0].cs_nbfree--; 867 if (mode & IFDIR) { 868 acg.cg_cs.cs_ndir++; 869 sblock.fs_cstotal.cs_ndir++; 870 fscs[0].cs_ndir++; 871 } 872 if (size != sblock.fs_bsize) { 873 frag = howmany(size, sblock.fs_fsize); 874 fscs[0].cs_nffree += sblock.fs_frag - frag; 875 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 876 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 877 acg.cg_frsum[sblock.fs_frag - frag]++; 878 for (i = frag; i < sblock.fs_frag; i++) 879 setbit(cg_blksfree(&acg), d + i); 880 } 881 /* XXX cgwrite(&disk, 0)??? */ 882 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 883 (char *)&acg); 884 return ((ufs2_daddr_t)d); 885 } 886 887 /* 888 * Allocate an inode on the disk 889 */ 890 void 891 iput(union dinode *ip, ino_t ino) 892 { 893 ufs2_daddr_t d; 894 int c; 895 896 c = ino_to_cg(&sblock, ino); 897 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 898 sblock.fs_cgsize); 899 if (acg.cg_magic != CG_MAGIC) { 900 printf("cg 0: bad magic number\n"); 901 exit(31); 902 } 903 acg.cg_cs.cs_nifree--; 904 setbit(cg_inosused(&acg), ino); 905 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 906 (char *)&acg); 907 sblock.fs_cstotal.cs_nifree--; 908 fscs[0].cs_nifree--; 909 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 910 printf("fsinit: inode value out of range (%d).\n", ino); 911 exit(32); 912 } 913 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 914 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 915 if (sblock.fs_magic == FS_UFS1_MAGIC) 916 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 917 ip->dp1; 918 else 919 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 920 ip->dp2; 921 wtfs(d, sblock.fs_bsize, (char *)iobuf); 922 } 923 924 /* 925 * possibly write to disk 926 */ 927 static void 928 wtfs(ufs2_daddr_t bno, int size, char *bf) 929 { 930 if (Nflag) 931 return; 932 if (bwrite(&disk, bno, bf, size) < 0) 933 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 934 } 935 936 /* 937 * check if a block is available 938 */ 939 static int 940 isblock(struct fs *fs, unsigned char *cp, int h) 941 { 942 unsigned char mask; 943 944 switch (fs->fs_frag) { 945 case 8: 946 return (cp[h] == 0xff); 947 case 4: 948 mask = 0x0f << ((h & 0x1) << 2); 949 return ((cp[h >> 1] & mask) == mask); 950 case 2: 951 mask = 0x03 << ((h & 0x3) << 1); 952 return ((cp[h >> 2] & mask) == mask); 953 case 1: 954 mask = 0x01 << (h & 0x7); 955 return ((cp[h >> 3] & mask) == mask); 956 default: 957 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 958 return (0); 959 } 960 } 961 962 /* 963 * take a block out of the map 964 */ 965 static void 966 clrblock(struct fs *fs, unsigned char *cp, int h) 967 { 968 switch ((fs)->fs_frag) { 969 case 8: 970 cp[h] = 0; 971 return; 972 case 4: 973 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 974 return; 975 case 2: 976 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 977 return; 978 case 1: 979 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 980 return; 981 default: 982 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 983 return; 984 } 985 } 986 987 /* 988 * put a block into the map 989 */ 990 static void 991 setblock(struct fs *fs, unsigned char *cp, int h) 992 { 993 switch (fs->fs_frag) { 994 case 8: 995 cp[h] = 0xff; 996 return; 997 case 4: 998 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 999 return; 1000 case 2: 1001 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1002 return; 1003 case 1: 1004 cp[h >> 3] |= (0x01 << (h & 0x7)); 1005 return; 1006 default: 1007 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1008 return; 1009 } 1010 } 1011 1012 /* 1013 * Determine the number of characters in a 1014 * single line. 1015 */ 1016 1017 static int 1018 charsperline(void) 1019 { 1020 int columns; 1021 char *cp; 1022 struct winsize ws; 1023 1024 columns = 0; 1025 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1026 columns = ws.ws_col; 1027 if (columns == 0 && (cp = getenv("COLUMNS"))) 1028 columns = atoi(cp); 1029 if (columns == 0) 1030 columns = 80; /* last resort */ 1031 return (columns); 1032 } 1033 1034 static int 1035 ilog2(int val) 1036 { 1037 u_int n; 1038 1039 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1040 if (1 << n == val) 1041 return (n); 1042 errx(1, "ilog2: %d is not a power of 2\n", val); 1043 } 1044 1045 /* 1046 * For the regression test, return predictable random values. 1047 * Otherwise use a true random number generator. 1048 */ 1049 static u_int32_t 1050 newfs_random(void) 1051 { 1052 static int nextnum = 1; 1053 1054 if (Rflag) 1055 return (nextnum++); 1056 return (arc4random()); 1057 } 1058