1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <err.h> 48 #include <grp.h> 49 #include <limits.h> 50 #include <signal.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <stdint.h> 54 #include <stdio.h> 55 #include <unistd.h> 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/types.h> 59 #include <sys/wait.h> 60 #include <sys/resource.h> 61 #include <sys/stat.h> 62 #include <ufs/ufs/dinode.h> 63 #include <ufs/ufs/dir.h> 64 #include <ufs/ffs/fs.h> 65 #include <sys/disklabel.h> 66 #include <sys/file.h> 67 #include <sys/mman.h> 68 #include <sys/ioctl.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 static struct csum *fscs; 78 #define sblock disk.d_fs 79 #define acg disk.d_cg 80 81 union dinode { 82 struct ufs1_dinode dp1; 83 struct ufs2_dinode dp2; 84 }; 85 #define DIP(dp, field) \ 86 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 87 (dp)->dp1.field : (dp)->dp2.field) 88 89 static caddr_t iobuf; 90 static long iobufsize; 91 static ufs2_daddr_t alloc(int size, int mode); 92 static int charsperline(void); 93 static void clrblock(struct fs *, unsigned char *, int); 94 static void fsinit(time_t); 95 static int ilog2(int); 96 static void initcg(int, time_t); 97 static int isblock(struct fs *, unsigned char *, int); 98 static void iput(union dinode *, ino_t); 99 static int makedir(struct direct *, int); 100 static void setblock(struct fs *, unsigned char *, int); 101 static void wtfs(ufs2_daddr_t, int, char *); 102 static u_int32_t newfs_random(void); 103 104 void 105 mkfs(struct partition *pp, char *fsys) 106 { 107 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 108 long i, j, cylno, csfrags; 109 time_t utime; 110 quad_t sizepb; 111 int width; 112 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 113 union { 114 struct fs fdummy; 115 char cdummy[SBLOCKSIZE]; 116 } dummy; 117 #define fsdummy dummy.fdummy 118 #define chdummy dummy.cdummy 119 120 /* 121 * Our blocks == sector size, and the version of UFS we are using is 122 * specified by Oflag. 123 */ 124 disk.d_bsize = sectorsize; 125 disk.d_ufs = Oflag; 126 if (Rflag) { 127 utime = 1000000000; 128 } else { 129 time(&utime); 130 arc4random_stir(); 131 } 132 sblock.fs_old_flags = FS_FLAGS_UPDATED; 133 sblock.fs_flags = 0; 134 if (Uflag) 135 sblock.fs_flags |= FS_DOSOFTDEP; 136 if (Lflag) 137 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 138 if (Jflag) 139 sblock.fs_flags |= FS_GJOURNAL; 140 if (lflag) 141 sblock.fs_flags |= FS_MULTILABEL; 142 /* 143 * Validate the given file system size. 144 * Verify that its last block can actually be accessed. 145 * Convert to file system fragment sized units. 146 */ 147 if (fssize <= 0) { 148 printf("preposterous size %jd\n", (intmax_t)fssize); 149 exit(13); 150 } 151 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 152 (char *)&sblock); 153 /* 154 * collect and verify the file system density info 155 */ 156 sblock.fs_avgfilesize = avgfilesize; 157 sblock.fs_avgfpdir = avgfilesperdir; 158 if (sblock.fs_avgfilesize <= 0) 159 printf("illegal expected average file size %d\n", 160 sblock.fs_avgfilesize), exit(14); 161 if (sblock.fs_avgfpdir <= 0) 162 printf("illegal expected number of files per directory %d\n", 163 sblock.fs_avgfpdir), exit(15); 164 /* 165 * collect and verify the block and fragment sizes 166 */ 167 sblock.fs_bsize = bsize; 168 sblock.fs_fsize = fsize; 169 if (!POWEROF2(sblock.fs_bsize)) { 170 printf("block size must be a power of 2, not %d\n", 171 sblock.fs_bsize); 172 exit(16); 173 } 174 if (!POWEROF2(sblock.fs_fsize)) { 175 printf("fragment size must be a power of 2, not %d\n", 176 sblock.fs_fsize); 177 exit(17); 178 } 179 if (sblock.fs_fsize < sectorsize) { 180 printf("increasing fragment size from %d to sector size (%d)\n", 181 sblock.fs_fsize, sectorsize); 182 sblock.fs_fsize = sectorsize; 183 } 184 if (sblock.fs_bsize > MAXBSIZE) { 185 printf("decreasing block size from %d to maximum (%d)\n", 186 sblock.fs_bsize, MAXBSIZE); 187 sblock.fs_bsize = MAXBSIZE; 188 } 189 if (sblock.fs_bsize < MINBSIZE) { 190 printf("increasing block size from %d to minimum (%d)\n", 191 sblock.fs_bsize, MINBSIZE); 192 sblock.fs_bsize = MINBSIZE; 193 } 194 if (sblock.fs_fsize > MAXBSIZE) { 195 printf("decreasing fragment size from %d to maximum (%d)\n", 196 sblock.fs_fsize, MAXBSIZE); 197 sblock.fs_fsize = MAXBSIZE; 198 } 199 if (sblock.fs_bsize < sblock.fs_fsize) { 200 printf("increasing block size from %d to fragment size (%d)\n", 201 sblock.fs_bsize, sblock.fs_fsize); 202 sblock.fs_bsize = sblock.fs_fsize; 203 } 204 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 205 printf( 206 "increasing fragment size from %d to block size / %d (%d)\n", 207 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 208 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 209 } 210 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 211 sblock.fs_maxbsize = sblock.fs_bsize; 212 printf("Extent size set to %d\n", sblock.fs_maxbsize); 213 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 214 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 215 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 216 } else { 217 sblock.fs_maxbsize = maxbsize; 218 } 219 sblock.fs_maxcontig = maxcontig; 220 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 221 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 222 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 223 } 224 if (sblock.fs_maxcontig > 1) 225 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 226 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 227 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 228 sblock.fs_qbmask = ~sblock.fs_bmask; 229 sblock.fs_qfmask = ~sblock.fs_fmask; 230 sblock.fs_bshift = ilog2(sblock.fs_bsize); 231 sblock.fs_fshift = ilog2(sblock.fs_fsize); 232 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 233 sblock.fs_fragshift = ilog2(sblock.fs_frag); 234 if (sblock.fs_frag > MAXFRAG) { 235 printf("fragment size %d is still too small (can't happen)\n", 236 sblock.fs_bsize / MAXFRAG); 237 exit(21); 238 } 239 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 240 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 241 242 /* 243 * Before the filesystem is finally initialized, mark it 244 * as incompletely initialized. 245 */ 246 sblock.fs_magic = FS_BAD_MAGIC; 247 248 if (Oflag == 1) { 249 sblock.fs_sblockloc = SBLOCK_UFS1; 250 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 251 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 252 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 253 sizeof(ufs1_daddr_t)); 254 sblock.fs_old_inodefmt = FS_44INODEFMT; 255 sblock.fs_old_cgoffset = 0; 256 sblock.fs_old_cgmask = 0xffffffff; 257 sblock.fs_old_size = sblock.fs_size; 258 sblock.fs_old_rotdelay = 0; 259 sblock.fs_old_rps = 60; 260 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 261 sblock.fs_old_cpg = 1; 262 sblock.fs_old_interleave = 1; 263 sblock.fs_old_trackskew = 0; 264 sblock.fs_old_cpc = 0; 265 sblock.fs_old_postblformat = 1; 266 sblock.fs_old_nrpos = 1; 267 } else { 268 sblock.fs_sblockloc = SBLOCK_UFS2; 269 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 270 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 271 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 272 sizeof(ufs2_daddr_t)); 273 } 274 sblock.fs_sblkno = 275 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 276 sblock.fs_frag); 277 sblock.fs_cblkno = sblock.fs_sblkno + 278 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 279 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 280 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 281 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 282 sizepb *= NINDIR(&sblock); 283 sblock.fs_maxfilesize += sizepb; 284 } 285 286 /* 287 * It's impossible to create a snapshot in case that fs_maxfilesize 288 * is smaller than the fssize. 289 */ 290 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 291 warnx("WARNING: You will be unable to create snapshots on this " 292 "file system. Correct by using a larger blocksize."); 293 } 294 295 /* 296 * Calculate the number of blocks to put into each cylinder group. 297 * 298 * This algorithm selects the number of blocks per cylinder 299 * group. The first goal is to have at least enough data blocks 300 * in each cylinder group to meet the density requirement. Once 301 * this goal is achieved we try to expand to have at least 302 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 303 * pack as many blocks into each cylinder group map as will fit. 304 * 305 * We start by calculating the smallest number of blocks that we 306 * can put into each cylinder group. If this is too big, we reduce 307 * the density until it fits. 308 */ 309 origdensity = density; 310 for (;;) { 311 fragsperinode = MAX(numfrags(&sblock, density), 1); 312 minfpg = fragsperinode * INOPB(&sblock); 313 if (minfpg > sblock.fs_size) 314 minfpg = sblock.fs_size; 315 sblock.fs_ipg = INOPB(&sblock); 316 sblock.fs_fpg = roundup(sblock.fs_iblkno + 317 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 318 if (sblock.fs_fpg < minfpg) 319 sblock.fs_fpg = minfpg; 320 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 321 INOPB(&sblock)); 322 sblock.fs_fpg = roundup(sblock.fs_iblkno + 323 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 324 if (sblock.fs_fpg < minfpg) 325 sblock.fs_fpg = minfpg; 326 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 327 INOPB(&sblock)); 328 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 329 break; 330 density -= sblock.fs_fsize; 331 } 332 if (density != origdensity) 333 printf("density reduced from %d to %d\n", origdensity, density); 334 /* 335 * Start packing more blocks into the cylinder group until 336 * it cannot grow any larger, the number of cylinder groups 337 * drops below MINCYLGRPS, or we reach the size requested. 338 */ 339 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 340 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 341 INOPB(&sblock)); 342 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 343 break; 344 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 345 continue; 346 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 347 break; 348 sblock.fs_fpg -= sblock.fs_frag; 349 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 350 INOPB(&sblock)); 351 break; 352 } 353 /* 354 * Check to be sure that the last cylinder group has enough blocks 355 * to be viable. If it is too small, reduce the number of blocks 356 * per cylinder group which will have the effect of moving more 357 * blocks into the last cylinder group. 358 */ 359 optimalfpg = sblock.fs_fpg; 360 for (;;) { 361 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 362 lastminfpg = roundup(sblock.fs_iblkno + 363 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 364 if (sblock.fs_size < lastminfpg) { 365 printf("Filesystem size %jd < minimum size of %d\n", 366 (intmax_t)sblock.fs_size, lastminfpg); 367 exit(28); 368 } 369 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 370 sblock.fs_size % sblock.fs_fpg == 0) 371 break; 372 sblock.fs_fpg -= sblock.fs_frag; 373 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 374 INOPB(&sblock)); 375 } 376 if (optimalfpg != sblock.fs_fpg) 377 printf("Reduced frags per cylinder group from %d to %d %s\n", 378 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 379 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 380 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 381 if (Oflag == 1) { 382 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 383 sblock.fs_old_nsect = sblock.fs_old_spc; 384 sblock.fs_old_npsect = sblock.fs_old_spc; 385 sblock.fs_old_ncyl = sblock.fs_ncg; 386 } 387 /* 388 * fill in remaining fields of the super block 389 */ 390 sblock.fs_csaddr = cgdmin(&sblock, 0); 391 sblock.fs_cssize = 392 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 393 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 394 if (fscs == NULL) 395 errx(31, "calloc failed"); 396 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 397 if (sblock.fs_sbsize > SBLOCKSIZE) 398 sblock.fs_sbsize = SBLOCKSIZE; 399 sblock.fs_minfree = minfree; 400 sblock.fs_maxbpg = maxbpg; 401 sblock.fs_optim = opt; 402 sblock.fs_cgrotor = 0; 403 sblock.fs_pendingblocks = 0; 404 sblock.fs_pendinginodes = 0; 405 sblock.fs_fmod = 0; 406 sblock.fs_ronly = 0; 407 sblock.fs_state = 0; 408 sblock.fs_clean = 1; 409 sblock.fs_id[0] = (long)utime; 410 sblock.fs_id[1] = newfs_random(); 411 sblock.fs_fsmnt[0] = '\0'; 412 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 413 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 414 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 415 sblock.fs_cstotal.cs_nbfree = 416 fragstoblks(&sblock, sblock.fs_dsize) - 417 howmany(csfrags, sblock.fs_frag); 418 sblock.fs_cstotal.cs_nffree = 419 fragnum(&sblock, sblock.fs_size) + 420 (fragnum(&sblock, csfrags) > 0 ? 421 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 422 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 423 sblock.fs_cstotal.cs_ndir = 0; 424 sblock.fs_dsize -= csfrags; 425 sblock.fs_time = utime; 426 if (Oflag == 1) { 427 sblock.fs_old_time = utime; 428 sblock.fs_old_dsize = sblock.fs_dsize; 429 sblock.fs_old_csaddr = sblock.fs_csaddr; 430 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 431 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 432 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 433 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 434 } 435 436 /* 437 * Dump out summary information about file system. 438 */ 439 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 440 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 441 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 442 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 443 sblock.fs_fsize); 444 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 445 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 446 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 447 if (sblock.fs_flags & FS_DOSOFTDEP) 448 printf("\twith soft updates\n"); 449 # undef B2MBFACTOR 450 451 /* 452 * Wipe out old UFS1 superblock(s) if necessary. 453 */ 454 if (!Nflag && Oflag != 1) { 455 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 456 if (i == -1) 457 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 458 459 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 460 fsdummy.fs_magic = 0; 461 bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 462 for (i = 0; i < fsdummy.fs_ncg; i++) 463 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)), 464 chdummy, SBLOCKSIZE); 465 } 466 } 467 if (!Nflag) 468 sbwrite(&disk, 0); 469 if (Eflag == 1) { 470 printf("** Exiting on Eflag 1\n"); 471 exit(0); 472 } 473 if (Eflag == 2) 474 printf("** Leaving BAD MAGIC on Eflag 2\n"); 475 else 476 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 477 478 /* 479 * Now build the cylinders group blocks and 480 * then print out indices of cylinder groups. 481 */ 482 printf("super-block backups (for fsck -b #) at:\n"); 483 i = 0; 484 width = charsperline(); 485 /* 486 * allocate space for superblock, cylinder group map, and 487 * two sets of inode blocks. 488 */ 489 if (sblock.fs_bsize < SBLOCKSIZE) 490 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 491 else 492 iobufsize = 4 * sblock.fs_bsize; 493 if ((iobuf = malloc(iobufsize)) == 0) { 494 printf("Cannot allocate I/O buffer\n"); 495 exit(38); 496 } 497 bzero(iobuf, iobufsize); 498 /* 499 * Make a copy of the superblock into the buffer that we will be 500 * writing out in each cylinder group. 501 */ 502 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 503 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 504 initcg(cylno, utime); 505 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 506 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 507 cylno < (sblock.fs_ncg-1) ? "," : ""); 508 if (j < 0) 509 tmpbuf[j = 0] = '\0'; 510 if (i + j >= width) { 511 printf("\n"); 512 i = 0; 513 } 514 i += j; 515 printf("%s", tmpbuf); 516 fflush(stdout); 517 } 518 printf("\n"); 519 if (Nflag) 520 exit(0); 521 /* 522 * Now construct the initial file system, 523 * then write out the super-block. 524 */ 525 fsinit(utime); 526 if (Oflag == 1) { 527 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 528 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 529 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 530 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 531 } 532 if (Eflag == 3) { 533 printf("** Exiting on Eflag 3\n"); 534 exit(0); 535 } 536 if (!Nflag) 537 sbwrite(&disk, 0); 538 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 539 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 540 sblock.fs_cssize - i < sblock.fs_bsize ? 541 sblock.fs_cssize - i : sblock.fs_bsize, 542 ((char *)fscs) + i); 543 /* 544 * Update information about this partion in pack 545 * label, to that it may be updated on disk. 546 */ 547 if (pp != NULL) { 548 pp->p_fstype = FS_BSDFFS; 549 pp->p_fsize = sblock.fs_fsize; 550 pp->p_frag = sblock.fs_frag; 551 pp->p_cpg = sblock.fs_fpg; 552 } 553 } 554 555 /* 556 * Initialize a cylinder group. 557 */ 558 void 559 initcg(int cylno, time_t utime) 560 { 561 long i, j, d, dlower, dupper, blkno, start; 562 ufs2_daddr_t cbase, dmax; 563 struct ufs1_dinode *dp1; 564 struct ufs2_dinode *dp2; 565 struct csum *cs; 566 567 /* 568 * Determine block bounds for cylinder group. 569 * Allow space for super block summary information in first 570 * cylinder group. 571 */ 572 cbase = cgbase(&sblock, cylno); 573 dmax = cbase + sblock.fs_fpg; 574 if (dmax > sblock.fs_size) 575 dmax = sblock.fs_size; 576 dlower = cgsblock(&sblock, cylno) - cbase; 577 dupper = cgdmin(&sblock, cylno) - cbase; 578 if (cylno == 0) 579 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 580 cs = &fscs[cylno]; 581 memset(&acg, 0, sblock.fs_cgsize); 582 acg.cg_time = utime; 583 acg.cg_magic = CG_MAGIC; 584 acg.cg_cgx = cylno; 585 acg.cg_niblk = sblock.fs_ipg; 586 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 587 sblock.fs_ipg : 2 * INOPB(&sblock); 588 acg.cg_ndblk = dmax - cbase; 589 if (sblock.fs_contigsumsize > 0) 590 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 591 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 592 if (Oflag == 2) { 593 acg.cg_iusedoff = start; 594 } else { 595 acg.cg_old_ncyl = sblock.fs_old_cpg; 596 acg.cg_old_time = acg.cg_time; 597 acg.cg_time = 0; 598 acg.cg_old_niblk = acg.cg_niblk; 599 acg.cg_niblk = 0; 600 acg.cg_initediblk = 0; 601 acg.cg_old_btotoff = start; 602 acg.cg_old_boff = acg.cg_old_btotoff + 603 sblock.fs_old_cpg * sizeof(int32_t); 604 acg.cg_iusedoff = acg.cg_old_boff + 605 sblock.fs_old_cpg * sizeof(u_int16_t); 606 } 607 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 608 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 609 if (sblock.fs_contigsumsize > 0) { 610 acg.cg_clustersumoff = 611 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 612 acg.cg_clustersumoff -= sizeof(u_int32_t); 613 acg.cg_clusteroff = acg.cg_clustersumoff + 614 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 615 acg.cg_nextfreeoff = acg.cg_clusteroff + 616 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 617 } 618 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 619 printf("Panic: cylinder group too big\n"); 620 exit(37); 621 } 622 acg.cg_cs.cs_nifree += sblock.fs_ipg; 623 if (cylno == 0) 624 for (i = 0; i < (long)ROOTINO; i++) { 625 setbit(cg_inosused(&acg), i); 626 acg.cg_cs.cs_nifree--; 627 } 628 if (cylno > 0) { 629 /* 630 * In cylno 0, beginning space is reserved 631 * for boot and super blocks. 632 */ 633 for (d = 0; d < dlower; d += sblock.fs_frag) { 634 blkno = d / sblock.fs_frag; 635 setblock(&sblock, cg_blksfree(&acg), blkno); 636 if (sblock.fs_contigsumsize > 0) 637 setbit(cg_clustersfree(&acg), blkno); 638 acg.cg_cs.cs_nbfree++; 639 } 640 } 641 if ((i = dupper % sblock.fs_frag)) { 642 acg.cg_frsum[sblock.fs_frag - i]++; 643 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 644 setbit(cg_blksfree(&acg), dupper); 645 acg.cg_cs.cs_nffree++; 646 } 647 } 648 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 649 d += sblock.fs_frag) { 650 blkno = d / sblock.fs_frag; 651 setblock(&sblock, cg_blksfree(&acg), blkno); 652 if (sblock.fs_contigsumsize > 0) 653 setbit(cg_clustersfree(&acg), blkno); 654 acg.cg_cs.cs_nbfree++; 655 } 656 if (d < acg.cg_ndblk) { 657 acg.cg_frsum[acg.cg_ndblk - d]++; 658 for (; d < acg.cg_ndblk; d++) { 659 setbit(cg_blksfree(&acg), d); 660 acg.cg_cs.cs_nffree++; 661 } 662 } 663 if (sblock.fs_contigsumsize > 0) { 664 int32_t *sump = cg_clustersum(&acg); 665 u_char *mapp = cg_clustersfree(&acg); 666 int map = *mapp++; 667 int bit = 1; 668 int run = 0; 669 670 for (i = 0; i < acg.cg_nclusterblks; i++) { 671 if ((map & bit) != 0) 672 run++; 673 else if (run != 0) { 674 if (run > sblock.fs_contigsumsize) 675 run = sblock.fs_contigsumsize; 676 sump[run]++; 677 run = 0; 678 } 679 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 680 bit <<= 1; 681 else { 682 map = *mapp++; 683 bit = 1; 684 } 685 } 686 if (run != 0) { 687 if (run > sblock.fs_contigsumsize) 688 run = sblock.fs_contigsumsize; 689 sump[run]++; 690 } 691 } 692 *cs = acg.cg_cs; 693 /* 694 * Write out the duplicate super block, the cylinder group map 695 * and two blocks worth of inodes in a single write. 696 */ 697 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 698 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 699 start += sblock.fs_bsize; 700 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 701 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 702 for (i = 0; i < acg.cg_initediblk; i++) { 703 if (sblock.fs_magic == FS_UFS1_MAGIC) { 704 dp1->di_gen = newfs_random(); 705 dp1++; 706 } else { 707 dp2->di_gen = newfs_random(); 708 dp2++; 709 } 710 } 711 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 712 /* 713 * For the old file system, we have to initialize all the inodes. 714 */ 715 if (Oflag == 1) { 716 for (i = 2 * sblock.fs_frag; 717 i < sblock.fs_ipg / INOPF(&sblock); 718 i += sblock.fs_frag) { 719 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 720 for (j = 0; j < INOPB(&sblock); j++) { 721 dp1->di_gen = newfs_random(); 722 dp1++; 723 } 724 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 725 sblock.fs_bsize, &iobuf[start]); 726 } 727 } 728 } 729 730 /* 731 * initialize the file system 732 */ 733 #define ROOTLINKCNT 3 734 735 struct direct root_dir[] = { 736 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 737 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 738 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 739 }; 740 741 #define SNAPLINKCNT 2 742 743 struct direct snap_dir[] = { 744 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 745 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 746 }; 747 748 void 749 fsinit(time_t utime) 750 { 751 union dinode node; 752 struct group *grp; 753 gid_t gid; 754 int entries; 755 756 memset(&node, 0, sizeof node); 757 if ((grp = getgrnam("operator")) != NULL) { 758 gid = grp->gr_gid; 759 } else { 760 warnx("Cannot retrieve operator gid, using gid 0."); 761 gid = 0; 762 } 763 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 764 if (sblock.fs_magic == FS_UFS1_MAGIC) { 765 /* 766 * initialize the node 767 */ 768 node.dp1.di_atime = utime; 769 node.dp1.di_mtime = utime; 770 node.dp1.di_ctime = utime; 771 /* 772 * create the root directory 773 */ 774 node.dp1.di_mode = IFDIR | UMASK; 775 node.dp1.di_nlink = entries; 776 node.dp1.di_size = makedir(root_dir, entries); 777 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 778 node.dp1.di_blocks = 779 btodb(fragroundup(&sblock, node.dp1.di_size)); 780 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 781 iobuf); 782 iput(&node, ROOTINO); 783 if (!nflag) { 784 /* 785 * create the .snap directory 786 */ 787 node.dp1.di_mode |= 020; 788 node.dp1.di_gid = gid; 789 node.dp1.di_nlink = SNAPLINKCNT; 790 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 791 node.dp1.di_db[0] = 792 alloc(sblock.fs_fsize, node.dp1.di_mode); 793 node.dp1.di_blocks = 794 btodb(fragroundup(&sblock, node.dp1.di_size)); 795 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 796 sblock.fs_fsize, iobuf); 797 iput(&node, ROOTINO + 1); 798 } 799 } else { 800 /* 801 * initialize the node 802 */ 803 node.dp2.di_atime = utime; 804 node.dp2.di_mtime = utime; 805 node.dp2.di_ctime = utime; 806 node.dp2.di_birthtime = utime; 807 /* 808 * create the root directory 809 */ 810 node.dp2.di_mode = IFDIR | UMASK; 811 node.dp2.di_nlink = entries; 812 node.dp2.di_size = makedir(root_dir, entries); 813 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 814 node.dp2.di_blocks = 815 btodb(fragroundup(&sblock, node.dp2.di_size)); 816 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 817 iobuf); 818 iput(&node, ROOTINO); 819 if (!nflag) { 820 /* 821 * create the .snap directory 822 */ 823 node.dp2.di_mode |= 020; 824 node.dp2.di_gid = gid; 825 node.dp2.di_nlink = SNAPLINKCNT; 826 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 827 node.dp2.di_db[0] = 828 alloc(sblock.fs_fsize, node.dp2.di_mode); 829 node.dp2.di_blocks = 830 btodb(fragroundup(&sblock, node.dp2.di_size)); 831 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 832 sblock.fs_fsize, iobuf); 833 iput(&node, ROOTINO + 1); 834 } 835 } 836 } 837 838 /* 839 * construct a set of directory entries in "iobuf". 840 * return size of directory. 841 */ 842 int 843 makedir(struct direct *protodir, int entries) 844 { 845 char *cp; 846 int i, spcleft; 847 848 spcleft = DIRBLKSIZ; 849 memset(iobuf, 0, DIRBLKSIZ); 850 for (cp = iobuf, i = 0; i < entries - 1; i++) { 851 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 852 memmove(cp, &protodir[i], protodir[i].d_reclen); 853 cp += protodir[i].d_reclen; 854 spcleft -= protodir[i].d_reclen; 855 } 856 protodir[i].d_reclen = spcleft; 857 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 858 return (DIRBLKSIZ); 859 } 860 861 /* 862 * allocate a block or frag 863 */ 864 ufs2_daddr_t 865 alloc(int size, int mode) 866 { 867 int i, d, blkno, frag; 868 869 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 870 sblock.fs_cgsize); 871 if (acg.cg_magic != CG_MAGIC) { 872 printf("cg 0: bad magic number\n"); 873 exit(38); 874 } 875 if (acg.cg_cs.cs_nbfree == 0) { 876 printf("first cylinder group ran out of space\n"); 877 exit(39); 878 } 879 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 880 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 881 goto goth; 882 printf("internal error: can't find block in cyl 0\n"); 883 exit(40); 884 goth: 885 blkno = fragstoblks(&sblock, d); 886 clrblock(&sblock, cg_blksfree(&acg), blkno); 887 if (sblock.fs_contigsumsize > 0) 888 clrbit(cg_clustersfree(&acg), blkno); 889 acg.cg_cs.cs_nbfree--; 890 sblock.fs_cstotal.cs_nbfree--; 891 fscs[0].cs_nbfree--; 892 if (mode & IFDIR) { 893 acg.cg_cs.cs_ndir++; 894 sblock.fs_cstotal.cs_ndir++; 895 fscs[0].cs_ndir++; 896 } 897 if (size != sblock.fs_bsize) { 898 frag = howmany(size, sblock.fs_fsize); 899 fscs[0].cs_nffree += sblock.fs_frag - frag; 900 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 901 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 902 acg.cg_frsum[sblock.fs_frag - frag]++; 903 for (i = frag; i < sblock.fs_frag; i++) 904 setbit(cg_blksfree(&acg), d + i); 905 } 906 /* XXX cgwrite(&disk, 0)??? */ 907 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 908 (char *)&acg); 909 return ((ufs2_daddr_t)d); 910 } 911 912 /* 913 * Allocate an inode on the disk 914 */ 915 void 916 iput(union dinode *ip, ino_t ino) 917 { 918 ufs2_daddr_t d; 919 int c; 920 921 c = ino_to_cg(&sblock, ino); 922 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 923 sblock.fs_cgsize); 924 if (acg.cg_magic != CG_MAGIC) { 925 printf("cg 0: bad magic number\n"); 926 exit(31); 927 } 928 acg.cg_cs.cs_nifree--; 929 setbit(cg_inosused(&acg), ino); 930 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 931 (char *)&acg); 932 sblock.fs_cstotal.cs_nifree--; 933 fscs[0].cs_nifree--; 934 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 935 printf("fsinit: inode value out of range (%d).\n", ino); 936 exit(32); 937 } 938 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 939 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 940 if (sblock.fs_magic == FS_UFS1_MAGIC) 941 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 942 ip->dp1; 943 else 944 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 945 ip->dp2; 946 wtfs(d, sblock.fs_bsize, (char *)iobuf); 947 } 948 949 /* 950 * possibly write to disk 951 */ 952 static void 953 wtfs(ufs2_daddr_t bno, int size, char *bf) 954 { 955 if (Nflag) 956 return; 957 if (bwrite(&disk, bno, bf, size) < 0) 958 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 959 } 960 961 /* 962 * check if a block is available 963 */ 964 static int 965 isblock(struct fs *fs, unsigned char *cp, int h) 966 { 967 unsigned char mask; 968 969 switch (fs->fs_frag) { 970 case 8: 971 return (cp[h] == 0xff); 972 case 4: 973 mask = 0x0f << ((h & 0x1) << 2); 974 return ((cp[h >> 1] & mask) == mask); 975 case 2: 976 mask = 0x03 << ((h & 0x3) << 1); 977 return ((cp[h >> 2] & mask) == mask); 978 case 1: 979 mask = 0x01 << (h & 0x7); 980 return ((cp[h >> 3] & mask) == mask); 981 default: 982 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 983 return (0); 984 } 985 } 986 987 /* 988 * take a block out of the map 989 */ 990 static void 991 clrblock(struct fs *fs, unsigned char *cp, int h) 992 { 993 switch ((fs)->fs_frag) { 994 case 8: 995 cp[h] = 0; 996 return; 997 case 4: 998 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 999 return; 1000 case 2: 1001 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1002 return; 1003 case 1: 1004 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1005 return; 1006 default: 1007 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1008 return; 1009 } 1010 } 1011 1012 /* 1013 * put a block into the map 1014 */ 1015 static void 1016 setblock(struct fs *fs, unsigned char *cp, int h) 1017 { 1018 switch (fs->fs_frag) { 1019 case 8: 1020 cp[h] = 0xff; 1021 return; 1022 case 4: 1023 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1024 return; 1025 case 2: 1026 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1027 return; 1028 case 1: 1029 cp[h >> 3] |= (0x01 << (h & 0x7)); 1030 return; 1031 default: 1032 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1033 return; 1034 } 1035 } 1036 1037 /* 1038 * Determine the number of characters in a 1039 * single line. 1040 */ 1041 1042 static int 1043 charsperline(void) 1044 { 1045 int columns; 1046 char *cp; 1047 struct winsize ws; 1048 1049 columns = 0; 1050 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1051 columns = ws.ws_col; 1052 if (columns == 0 && (cp = getenv("COLUMNS"))) 1053 columns = atoi(cp); 1054 if (columns == 0) 1055 columns = 80; /* last resort */ 1056 return (columns); 1057 } 1058 1059 static int 1060 ilog2(int val) 1061 { 1062 u_int n; 1063 1064 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1065 if (1 << n == val) 1066 return (n); 1067 errx(1, "ilog2: %d is not a power of 2\n", val); 1068 } 1069 1070 /* 1071 * For the regression test, return predictable random values. 1072 * Otherwise use a true random number generator. 1073 */ 1074 static u_int32_t 1075 newfs_random(void) 1076 { 1077 static int nextnum = 1; 1078 1079 if (Rflag) 1080 return (nextnum++); 1081 return (arc4random()); 1082 } 1083