1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #ifndef lint 43 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 44 #endif /* not lint */ 45 #endif 46 #include <sys/cdefs.h> 47 #define _WANT_P_OSREL 48 #include <sys/param.h> 49 #include <sys/disklabel.h> 50 #include <sys/file.h> 51 #include <sys/ioctl.h> 52 #include <sys/mman.h> 53 #include <sys/resource.h> 54 #include <sys/stat.h> 55 #include <sys/wait.h> 56 #include <err.h> 57 #include <grp.h> 58 #include <limits.h> 59 #include <signal.h> 60 #include <stdlib.h> 61 #include <string.h> 62 #include <stdint.h> 63 #include <stdio.h> 64 #include <time.h> 65 #include <unistd.h> 66 #include <ufs/ufs/dinode.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ffs/fs.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 /* 78 * The definition of "struct cg" used to contain an extra field at the end 79 * to represent the variable-length data that followed the fixed structure. 80 * This had the effect of artificially limiting the number of blocks that 81 * newfs would put in a CG, since newfs thought that the fixed-size header 82 * was bigger than it really was. When we started validating that the CG 83 * header data actually fit into one fs block, the placeholder field caused 84 * a problem because it caused struct cg to be a different size depending on 85 * platform. The placeholder field was later removed, but this caused a 86 * backward compatibility problem with older binaries that still thought 87 * struct cg was larger, and a new file system could fail validation if 88 * viewed by the older binaries. To avoid this compatibility problem, we 89 * now artificially reduce the amount of space that the variable-length data 90 * can use such that new file systems will pass validation by older binaries. 91 */ 92 #define CGSIZEFUDGE 8 93 94 static struct csum *fscs; 95 #define sblock disk.d_fs 96 #define acg disk.d_cg 97 98 union dinode { 99 struct ufs1_dinode dp1; 100 struct ufs2_dinode dp2; 101 }; 102 #define DIP(dp, field) \ 103 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 104 (dp)->dp1.field : (dp)->dp2.field) 105 106 static caddr_t iobuf; 107 static long iobufsize; 108 static ufs2_daddr_t alloc(int size, int mode); 109 static int charsperline(void); 110 static void clrblock(struct fs *, unsigned char *, int); 111 static void fsinit(time_t); 112 static int ilog2(int); 113 static void initcg(int, time_t); 114 static int isblock(struct fs *, unsigned char *, int); 115 static void iput(union dinode *, ino_t); 116 static int makedir(struct direct *, int); 117 static void setblock(struct fs *, unsigned char *, int); 118 static void wtfs(ufs2_daddr_t, int, char *); 119 static u_int32_t newfs_random(void); 120 121 void 122 mkfs(struct partition *pp, char *fsys) 123 { 124 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 125 long i, j, csfrags; 126 uint cg; 127 time_t utime; 128 quad_t sizepb; 129 int width; 130 ino_t maxinum; 131 int minfragsperinode; /* minimum ratio of frags to inodes */ 132 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 133 struct fsrecovery *fsr; 134 char *fsrbuf; 135 union { 136 struct fs fdummy; 137 char cdummy[SBLOCKSIZE]; 138 } dummy; 139 #define fsdummy dummy.fdummy 140 #define chdummy dummy.cdummy 141 142 /* 143 * Our blocks == sector size, and the version of UFS we are using is 144 * specified by Oflag. 145 */ 146 disk.d_bsize = sectorsize; 147 disk.d_ufs = Oflag; 148 if (Rflag) 149 utime = 1000000000; 150 else 151 time(&utime); 152 if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) { 153 printf("Superblock summary info allocation failed.\n"); 154 exit(18); 155 } 156 sblock.fs_old_flags = FS_FLAGS_UPDATED; 157 sblock.fs_flags = 0; 158 if (Uflag) 159 sblock.fs_flags |= FS_DOSOFTDEP; 160 if (Lflag) 161 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 162 if (Jflag) 163 sblock.fs_flags |= FS_GJOURNAL; 164 if (lflag) 165 sblock.fs_flags |= FS_MULTILABEL; 166 if (tflag) 167 sblock.fs_flags |= FS_TRIM; 168 /* 169 * Validate the given file system size. 170 * Verify that its last block can actually be accessed. 171 * Convert to file system fragment sized units. 172 */ 173 if (fssize <= 0) { 174 printf("preposterous size %jd\n", (intmax_t)fssize); 175 exit(13); 176 } 177 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 178 (char *)&sblock); 179 /* 180 * collect and verify the file system density info 181 */ 182 sblock.fs_avgfilesize = avgfilesize; 183 sblock.fs_avgfpdir = avgfilesperdir; 184 if (sblock.fs_avgfilesize <= 0) 185 printf("illegal expected average file size %d\n", 186 sblock.fs_avgfilesize), exit(14); 187 if (sblock.fs_avgfpdir <= 0) 188 printf("illegal expected number of files per directory %d\n", 189 sblock.fs_avgfpdir), exit(15); 190 191 restart: 192 /* 193 * collect and verify the block and fragment sizes 194 */ 195 sblock.fs_bsize = bsize; 196 sblock.fs_fsize = fsize; 197 if (!POWEROF2(sblock.fs_bsize)) { 198 printf("block size must be a power of 2, not %d\n", 199 sblock.fs_bsize); 200 exit(16); 201 } 202 if (!POWEROF2(sblock.fs_fsize)) { 203 printf("fragment size must be a power of 2, not %d\n", 204 sblock.fs_fsize); 205 exit(17); 206 } 207 if (sblock.fs_fsize < sectorsize) { 208 printf("increasing fragment size from %d to sector size (%d)\n", 209 sblock.fs_fsize, sectorsize); 210 sblock.fs_fsize = sectorsize; 211 } 212 if (sblock.fs_bsize > MAXBSIZE) { 213 printf("decreasing block size from %d to maximum (%d)\n", 214 sblock.fs_bsize, MAXBSIZE); 215 sblock.fs_bsize = MAXBSIZE; 216 } 217 if (sblock.fs_bsize < MINBSIZE) { 218 printf("increasing block size from %d to minimum (%d)\n", 219 sblock.fs_bsize, MINBSIZE); 220 sblock.fs_bsize = MINBSIZE; 221 } 222 if (sblock.fs_fsize > MAXBSIZE) { 223 printf("decreasing fragment size from %d to maximum (%d)\n", 224 sblock.fs_fsize, MAXBSIZE); 225 sblock.fs_fsize = MAXBSIZE; 226 } 227 if (sblock.fs_bsize < sblock.fs_fsize) { 228 printf("increasing block size from %d to fragment size (%d)\n", 229 sblock.fs_bsize, sblock.fs_fsize); 230 sblock.fs_bsize = sblock.fs_fsize; 231 } 232 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 233 printf( 234 "increasing fragment size from %d to block size / %d (%d)\n", 235 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 236 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 237 } 238 if (maxbsize == 0) 239 maxbsize = bsize; 240 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 241 sblock.fs_maxbsize = sblock.fs_bsize; 242 printf("Extent size set to %d\n", sblock.fs_maxbsize); 243 } else if (maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 244 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 245 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 246 } else { 247 sblock.fs_maxbsize = maxbsize; 248 } 249 /* 250 * Maxcontig sets the default for the maximum number of blocks 251 * that may be allocated sequentially. With file system clustering 252 * it is possible to allocate contiguous blocks up to the maximum 253 * transfer size permitted by the controller or buffering. 254 */ 255 if (maxcontig == 0) 256 maxcontig = MAX(1, MAXPHYS / bsize); 257 sblock.fs_maxcontig = maxcontig; 258 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 259 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 260 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 261 } 262 if (sblock.fs_maxcontig > 1) 263 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 264 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 265 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 266 sblock.fs_qbmask = ~sblock.fs_bmask; 267 sblock.fs_qfmask = ~sblock.fs_fmask; 268 sblock.fs_bshift = ilog2(sblock.fs_bsize); 269 sblock.fs_fshift = ilog2(sblock.fs_fsize); 270 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 271 sblock.fs_fragshift = ilog2(sblock.fs_frag); 272 if (sblock.fs_frag > MAXFRAG) { 273 printf("fragment size %d is still too small (can't happen)\n", 274 sblock.fs_bsize / MAXFRAG); 275 exit(21); 276 } 277 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 278 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 279 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 280 281 /* 282 * Before the filesystem is finally initialized, mark it 283 * as incompletely initialized. 284 */ 285 sblock.fs_magic = FS_BAD_MAGIC; 286 287 if (Oflag == 1) { 288 sblock.fs_sblockloc = SBLOCK_UFS1; 289 sblock.fs_sblockactualloc = SBLOCK_UFS1; 290 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 291 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 292 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 293 sizeof(ufs1_daddr_t)); 294 sblock.fs_old_inodefmt = FS_44INODEFMT; 295 sblock.fs_old_cgoffset = 0; 296 sblock.fs_old_cgmask = 0xffffffff; 297 sblock.fs_old_size = sblock.fs_size; 298 sblock.fs_old_rotdelay = 0; 299 sblock.fs_old_rps = 60; 300 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 301 sblock.fs_old_cpg = 1; 302 sblock.fs_old_interleave = 1; 303 sblock.fs_old_trackskew = 0; 304 sblock.fs_old_cpc = 0; 305 sblock.fs_old_postblformat = 1; 306 sblock.fs_old_nrpos = 1; 307 } else { 308 sblock.fs_sblockloc = SBLOCK_UFS2; 309 sblock.fs_sblockactualloc = SBLOCK_UFS2; 310 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 311 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 312 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 313 sizeof(ufs2_daddr_t)); 314 } 315 sblock.fs_sblkno = 316 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 317 sblock.fs_frag); 318 sblock.fs_cblkno = sblock.fs_sblkno + 319 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 320 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 321 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 322 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 323 sizepb *= NINDIR(&sblock); 324 sblock.fs_maxfilesize += sizepb; 325 } 326 327 /* 328 * It's impossible to create a snapshot in case that fs_maxfilesize 329 * is smaller than the fssize. 330 */ 331 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 332 warnx("WARNING: You will be unable to create snapshots on this " 333 "file system. Correct by using a larger blocksize."); 334 } 335 336 /* 337 * Calculate the number of blocks to put into each cylinder group. 338 * 339 * This algorithm selects the number of blocks per cylinder 340 * group. The first goal is to have at least enough data blocks 341 * in each cylinder group to meet the density requirement. Once 342 * this goal is achieved we try to expand to have at least 343 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 344 * pack as many blocks into each cylinder group map as will fit. 345 * 346 * We start by calculating the smallest number of blocks that we 347 * can put into each cylinder group. If this is too big, we reduce 348 * the density until it fits. 349 */ 350 retry: 351 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 352 minfragsperinode = 1 + fssize / maxinum; 353 if (density == 0) { 354 density = MAX(NFPI, minfragsperinode) * fsize; 355 } else if (density < minfragsperinode * fsize) { 356 origdensity = density; 357 density = minfragsperinode * fsize; 358 fprintf(stderr, "density increased from %d to %d\n", 359 origdensity, density); 360 } 361 origdensity = density; 362 for (;;) { 363 fragsperinode = MAX(numfrags(&sblock, density), 1); 364 if (fragsperinode < minfragsperinode) { 365 bsize <<= 1; 366 fsize <<= 1; 367 printf("Block size too small for a file system %s %d\n", 368 "of this size. Increasing blocksize to", bsize); 369 goto restart; 370 } 371 minfpg = fragsperinode * INOPB(&sblock); 372 if (minfpg > sblock.fs_size) 373 minfpg = sblock.fs_size; 374 sblock.fs_ipg = INOPB(&sblock); 375 sblock.fs_fpg = roundup(sblock.fs_iblkno + 376 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 377 if (sblock.fs_fpg < minfpg) 378 sblock.fs_fpg = minfpg; 379 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 380 INOPB(&sblock)); 381 sblock.fs_fpg = roundup(sblock.fs_iblkno + 382 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 383 if (sblock.fs_fpg < minfpg) 384 sblock.fs_fpg = minfpg; 385 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 386 INOPB(&sblock)); 387 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 388 CGSIZEFUDGE) 389 break; 390 density -= sblock.fs_fsize; 391 } 392 if (density != origdensity) 393 printf("density reduced from %d to %d\n", origdensity, density); 394 /* 395 * Start packing more blocks into the cylinder group until 396 * it cannot grow any larger, the number of cylinder groups 397 * drops below MINCYLGRPS, or we reach the size requested. 398 * For UFS1 inodes per cylinder group are stored in an int16_t 399 * so fs_ipg is limited to 2^15 - 1. 400 */ 401 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 402 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 403 INOPB(&sblock)); 404 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 405 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 406 break; 407 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 408 CGSIZEFUDGE) 409 continue; 410 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize - 411 CGSIZEFUDGE) 412 break; 413 } 414 sblock.fs_fpg -= sblock.fs_frag; 415 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 416 INOPB(&sblock)); 417 break; 418 } 419 /* 420 * Check to be sure that the last cylinder group has enough blocks 421 * to be viable. If it is too small, reduce the number of blocks 422 * per cylinder group which will have the effect of moving more 423 * blocks into the last cylinder group. 424 */ 425 optimalfpg = sblock.fs_fpg; 426 for (;;) { 427 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 428 lastminfpg = roundup(sblock.fs_iblkno + 429 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 430 if (sblock.fs_size < lastminfpg) { 431 printf("Filesystem size %jd < minimum size of %d\n", 432 (intmax_t)sblock.fs_size, lastminfpg); 433 exit(28); 434 } 435 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 436 sblock.fs_size % sblock.fs_fpg == 0) 437 break; 438 sblock.fs_fpg -= sblock.fs_frag; 439 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 440 INOPB(&sblock)); 441 } 442 if (optimalfpg != sblock.fs_fpg) 443 printf("Reduced frags per cylinder group from %d to %d %s\n", 444 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 445 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 446 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 447 if (Oflag == 1) { 448 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 449 sblock.fs_old_nsect = sblock.fs_old_spc; 450 sblock.fs_old_npsect = sblock.fs_old_spc; 451 sblock.fs_old_ncyl = sblock.fs_ncg; 452 } 453 /* 454 * fill in remaining fields of the super block 455 */ 456 sblock.fs_csaddr = cgdmin(&sblock, 0); 457 sblock.fs_cssize = 458 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 459 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 460 if (fscs == NULL) 461 errx(31, "calloc failed"); 462 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 463 if (sblock.fs_sbsize > SBLOCKSIZE) 464 sblock.fs_sbsize = SBLOCKSIZE; 465 if (sblock.fs_sbsize < realsectorsize) 466 sblock.fs_sbsize = realsectorsize; 467 sblock.fs_minfree = minfree; 468 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 469 sblock.fs_metaspace = blknum(&sblock, metaspace); 470 else if (metaspace != -1) 471 /* reserve half of minfree for metadata blocks */ 472 sblock.fs_metaspace = blknum(&sblock, 473 (sblock.fs_fpg * minfree) / 200); 474 if (maxbpg == 0) 475 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 476 else 477 sblock.fs_maxbpg = maxbpg; 478 sblock.fs_optim = opt; 479 sblock.fs_cgrotor = 0; 480 sblock.fs_pendingblocks = 0; 481 sblock.fs_pendinginodes = 0; 482 sblock.fs_fmod = 0; 483 sblock.fs_ronly = 0; 484 sblock.fs_state = 0; 485 sblock.fs_clean = 1; 486 sblock.fs_id[0] = (long)utime; 487 sblock.fs_id[1] = newfs_random(); 488 sblock.fs_fsmnt[0] = '\0'; 489 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 490 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 491 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 492 sblock.fs_cstotal.cs_nbfree = 493 fragstoblks(&sblock, sblock.fs_dsize) - 494 howmany(csfrags, sblock.fs_frag); 495 sblock.fs_cstotal.cs_nffree = 496 fragnum(&sblock, sblock.fs_size) + 497 (fragnum(&sblock, csfrags) > 0 ? 498 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 499 sblock.fs_cstotal.cs_nifree = 500 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 501 sblock.fs_cstotal.cs_ndir = 0; 502 sblock.fs_dsize -= csfrags; 503 sblock.fs_time = utime; 504 if (Oflag == 1) { 505 sblock.fs_old_time = utime; 506 sblock.fs_old_dsize = sblock.fs_dsize; 507 sblock.fs_old_csaddr = sblock.fs_csaddr; 508 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 509 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 510 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 511 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 512 } 513 /* 514 * Set flags for metadata that is being check-hashed. 515 * 516 * Metadata check hashes are not supported in the UFS version 1 517 * filesystem to keep it as small and simple as possible. 518 */ 519 if (Oflag > 1) { 520 sblock.fs_flags |= FS_METACKHASH; 521 if (getosreldate() >= P_OSREL_CK_CYLGRP) 522 sblock.fs_metackhash |= CK_CYLGRP; 523 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 524 sblock.fs_metackhash |= CK_SUPERBLOCK; 525 if (getosreldate() >= P_OSREL_CK_INODE) 526 sblock.fs_metackhash |= CK_INODE; 527 } 528 529 /* 530 * Dump out summary information about file system. 531 */ 532 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 533 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 534 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 535 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 536 sblock.fs_fsize); 537 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 538 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 539 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 540 if (sblock.fs_flags & FS_DOSOFTDEP) 541 printf("\twith soft updates\n"); 542 # undef B2MBFACTOR 543 544 if (Eflag && !Nflag) { 545 printf("Erasing sectors [%jd...%jd]\n", 546 sblock.fs_sblockloc / disk.d_bsize, 547 fsbtodb(&sblock, sblock.fs_size) - 1); 548 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 549 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 550 } 551 /* 552 * Wipe out old UFS1 superblock(s) if necessary. 553 */ 554 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 555 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 556 SBLOCKSIZE); 557 if (i == -1) 558 err(1, "can't read old UFS1 superblock: %s", 559 disk.d_error); 560 561 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 562 fsdummy.fs_magic = 0; 563 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 564 chdummy, SBLOCKSIZE); 565 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 566 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 567 fssize) 568 break; 569 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 570 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 571 } 572 } 573 } 574 /* 575 * Reference the summary information so it will also be written. 576 */ 577 sblock.fs_csp = fscs; 578 if (!Nflag && sbwrite(&disk, 0) != 0) 579 err(1, "sbwrite: %s", disk.d_error); 580 if (Xflag == 1) { 581 printf("** Exiting on Xflag 1\n"); 582 exit(0); 583 } 584 if (Xflag == 2) 585 printf("** Leaving BAD MAGIC on Xflag 2\n"); 586 else 587 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 588 589 /* 590 * Now build the cylinders group blocks and 591 * then print out indices of cylinder groups. 592 */ 593 printf("super-block backups (for fsck_ffs -b #) at:\n"); 594 i = 0; 595 width = charsperline(); 596 /* 597 * Allocate space for two sets of inode blocks. 598 */ 599 iobufsize = 2 * sblock.fs_bsize; 600 if ((iobuf = calloc(1, iobufsize)) == 0) { 601 printf("Cannot allocate I/O buffer\n"); 602 exit(38); 603 } 604 /* 605 * Write out all the cylinder groups and backup superblocks. 606 */ 607 for (cg = 0; cg < sblock.fs_ncg; cg++) { 608 if (!Nflag) 609 initcg(cg, utime); 610 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 611 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 612 cg < (sblock.fs_ncg-1) ? "," : ""); 613 if (j < 0) 614 tmpbuf[j = 0] = '\0'; 615 if (i + j >= width) { 616 printf("\n"); 617 i = 0; 618 } 619 i += j; 620 printf("%s", tmpbuf); 621 fflush(stdout); 622 } 623 printf("\n"); 624 if (Nflag) 625 exit(0); 626 /* 627 * Now construct the initial file system, 628 * then write out the super-block. 629 */ 630 fsinit(utime); 631 if (Oflag == 1) { 632 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 633 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 634 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 635 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 636 } 637 if (Xflag == 3) { 638 printf("** Exiting on Xflag 3\n"); 639 exit(0); 640 } 641 if (sbwrite(&disk, 0) != 0) 642 err(1, "sbwrite: %s", disk.d_error); 643 /* 644 * For UFS1 filesystems with a blocksize of 64K, the first 645 * alternate superblock resides at the location used for 646 * the default UFS2 superblock. As there is a valid 647 * superblock at this location, the boot code will use 648 * it as its first choice. Thus we have to ensure that 649 * all of its statistcs on usage are correct. 650 */ 651 if (Oflag == 1 && sblock.fs_bsize == 65536) 652 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 653 sblock.fs_bsize, (char *)&sblock); 654 /* 655 * Read the last sector of the boot block, replace the last 656 * 20 bytes with the recovery information, then write it back. 657 * The recovery information only works for UFS2 filesystems. 658 * For UFS1, zero out the area to ensure that an old UFS2 659 * recovery block is not accidentally found. 660 */ 661 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 662 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 663 fsrbuf, realsectorsize) == -1) 664 err(1, "can't read recovery area: %s", disk.d_error); 665 fsr = (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 666 if (sblock.fs_magic != FS_UFS2_MAGIC) { 667 memset(fsr, 0, sizeof *fsr); 668 } else { 669 fsr->fsr_magic = sblock.fs_magic; 670 fsr->fsr_fpg = sblock.fs_fpg; 671 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 672 fsr->fsr_sblkno = sblock.fs_sblkno; 673 fsr->fsr_ncg = sblock.fs_ncg; 674 } 675 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 676 realsectorsize, fsrbuf); 677 free(fsrbuf); 678 /* 679 * Update information about this partition in pack 680 * label, to that it may be updated on disk. 681 */ 682 if (pp != NULL) { 683 pp->p_fstype = FS_BSDFFS; 684 pp->p_fsize = sblock.fs_fsize; 685 pp->p_frag = sblock.fs_frag; 686 pp->p_cpg = sblock.fs_fpg; 687 } 688 /* 689 * This should NOT happen. If it does complain loudly and 690 * take evasive action. 691 */ 692 if ((int32_t)CGSIZE(&sblock) > sblock.fs_bsize) { 693 printf("INTERNAL ERROR: ipg %d, fpg %d, contigsumsize %d, ", 694 sblock.fs_ipg, sblock.fs_fpg, sblock.fs_contigsumsize); 695 printf("old_cpg %d, size_cg %zu, CGSIZE %zu\n", 696 sblock.fs_old_cpg, sizeof(struct cg), CGSIZE(&sblock)); 697 printf("Please file a FreeBSD bug report and include this " 698 "output\n"); 699 maxblkspercg = fragstoblks(&sblock, sblock.fs_fpg) - 1; 700 density = 0; 701 goto retry; 702 } 703 } 704 705 /* 706 * Initialize a cylinder group. 707 */ 708 void 709 initcg(int cylno, time_t utime) 710 { 711 long blkno, start; 712 off_t savedactualloc; 713 uint i, j, d, dlower, dupper; 714 ufs2_daddr_t cbase, dmax; 715 struct ufs1_dinode *dp1; 716 struct ufs2_dinode *dp2; 717 struct csum *cs; 718 719 /* 720 * Determine block bounds for cylinder group. 721 * Allow space for super block summary information in first 722 * cylinder group. 723 */ 724 cbase = cgbase(&sblock, cylno); 725 dmax = cbase + sblock.fs_fpg; 726 if (dmax > sblock.fs_size) 727 dmax = sblock.fs_size; 728 dlower = cgsblock(&sblock, cylno) - cbase; 729 dupper = cgdmin(&sblock, cylno) - cbase; 730 if (cylno == 0) 731 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 732 cs = &fscs[cylno]; 733 memset(&acg, 0, sblock.fs_cgsize); 734 acg.cg_time = utime; 735 acg.cg_magic = CG_MAGIC; 736 acg.cg_cgx = cylno; 737 acg.cg_niblk = sblock.fs_ipg; 738 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 739 acg.cg_ndblk = dmax - cbase; 740 if (sblock.fs_contigsumsize > 0) 741 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 742 start = sizeof(acg); 743 if (Oflag == 2) { 744 acg.cg_iusedoff = start; 745 } else { 746 acg.cg_old_ncyl = sblock.fs_old_cpg; 747 acg.cg_old_time = acg.cg_time; 748 acg.cg_time = 0; 749 acg.cg_old_niblk = acg.cg_niblk; 750 acg.cg_niblk = 0; 751 acg.cg_initediblk = 0; 752 acg.cg_old_btotoff = start; 753 acg.cg_old_boff = acg.cg_old_btotoff + 754 sblock.fs_old_cpg * sizeof(int32_t); 755 acg.cg_iusedoff = acg.cg_old_boff + 756 sblock.fs_old_cpg * sizeof(u_int16_t); 757 } 758 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 759 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 760 if (sblock.fs_contigsumsize > 0) { 761 acg.cg_clustersumoff = 762 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 763 acg.cg_clustersumoff -= sizeof(u_int32_t); 764 acg.cg_clusteroff = acg.cg_clustersumoff + 765 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 766 acg.cg_nextfreeoff = acg.cg_clusteroff + 767 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 768 } 769 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 770 printf("Panic: cylinder group too big by %d bytes\n", 771 acg.cg_nextfreeoff - (unsigned)sblock.fs_cgsize); 772 exit(37); 773 } 774 acg.cg_cs.cs_nifree += sblock.fs_ipg; 775 if (cylno == 0) 776 for (i = 0; i < (long)UFS_ROOTINO; i++) { 777 setbit(cg_inosused(&acg), i); 778 acg.cg_cs.cs_nifree--; 779 } 780 if (cylno > 0) { 781 /* 782 * In cylno 0, beginning space is reserved 783 * for boot and super blocks. 784 */ 785 for (d = 0; d < dlower; d += sblock.fs_frag) { 786 blkno = d / sblock.fs_frag; 787 setblock(&sblock, cg_blksfree(&acg), blkno); 788 if (sblock.fs_contigsumsize > 0) 789 setbit(cg_clustersfree(&acg), blkno); 790 acg.cg_cs.cs_nbfree++; 791 } 792 } 793 if ((i = dupper % sblock.fs_frag)) { 794 acg.cg_frsum[sblock.fs_frag - i]++; 795 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 796 setbit(cg_blksfree(&acg), dupper); 797 acg.cg_cs.cs_nffree++; 798 } 799 } 800 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 801 d += sblock.fs_frag) { 802 blkno = d / sblock.fs_frag; 803 setblock(&sblock, cg_blksfree(&acg), blkno); 804 if (sblock.fs_contigsumsize > 0) 805 setbit(cg_clustersfree(&acg), blkno); 806 acg.cg_cs.cs_nbfree++; 807 } 808 if (d < acg.cg_ndblk) { 809 acg.cg_frsum[acg.cg_ndblk - d]++; 810 for (; d < acg.cg_ndblk; d++) { 811 setbit(cg_blksfree(&acg), d); 812 acg.cg_cs.cs_nffree++; 813 } 814 } 815 if (sblock.fs_contigsumsize > 0) { 816 int32_t *sump = cg_clustersum(&acg); 817 u_char *mapp = cg_clustersfree(&acg); 818 int map = *mapp++; 819 int bit = 1; 820 int run = 0; 821 822 for (i = 0; i < acg.cg_nclusterblks; i++) { 823 if ((map & bit) != 0) 824 run++; 825 else if (run != 0) { 826 if (run > sblock.fs_contigsumsize) 827 run = sblock.fs_contigsumsize; 828 sump[run]++; 829 run = 0; 830 } 831 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 832 bit <<= 1; 833 else { 834 map = *mapp++; 835 bit = 1; 836 } 837 } 838 if (run != 0) { 839 if (run > sblock.fs_contigsumsize) 840 run = sblock.fs_contigsumsize; 841 sump[run]++; 842 } 843 } 844 *cs = acg.cg_cs; 845 /* 846 * Write out the duplicate super block. Then write the cylinder 847 * group map and two blocks worth of inodes in a single write. 848 */ 849 savedactualloc = sblock.fs_sblockactualloc; 850 sblock.fs_sblockactualloc = 851 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 852 if (sbwrite(&disk, 0) != 0) 853 err(1, "sbwrite: %s", disk.d_error); 854 sblock.fs_sblockactualloc = savedactualloc; 855 if (cgwrite(&disk) != 0) 856 err(1, "initcg: cgwrite: %s", disk.d_error); 857 start = 0; 858 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 859 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 860 for (i = 0; i < acg.cg_initediblk; i++) { 861 if (sblock.fs_magic == FS_UFS1_MAGIC) { 862 dp1->di_gen = newfs_random(); 863 dp1++; 864 } else { 865 dp2->di_gen = newfs_random(); 866 dp2++; 867 } 868 } 869 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 870 /* 871 * For the old file system, we have to initialize all the inodes. 872 */ 873 if (Oflag == 1) { 874 for (i = 2 * sblock.fs_frag; 875 i < sblock.fs_ipg / INOPF(&sblock); 876 i += sblock.fs_frag) { 877 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 878 for (j = 0; j < INOPB(&sblock); j++) { 879 dp1->di_gen = newfs_random(); 880 dp1++; 881 } 882 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 883 sblock.fs_bsize, &iobuf[start]); 884 } 885 } 886 } 887 888 /* 889 * initialize the file system 890 */ 891 #define ROOTLINKCNT 3 892 893 static struct direct root_dir[] = { 894 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 895 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 896 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 897 }; 898 899 #define SNAPLINKCNT 2 900 901 static struct direct snap_dir[] = { 902 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 903 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 904 }; 905 906 void 907 fsinit(time_t utime) 908 { 909 union dinode node; 910 struct group *grp; 911 gid_t gid; 912 int entries; 913 914 memset(&node, 0, sizeof node); 915 if ((grp = getgrnam("operator")) != NULL) { 916 gid = grp->gr_gid; 917 } else { 918 warnx("Cannot retrieve operator gid, using gid 0."); 919 gid = 0; 920 } 921 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 922 if (sblock.fs_magic == FS_UFS1_MAGIC) { 923 /* 924 * initialize the node 925 */ 926 node.dp1.di_atime = utime; 927 node.dp1.di_mtime = utime; 928 node.dp1.di_ctime = utime; 929 /* 930 * create the root directory 931 */ 932 node.dp1.di_mode = IFDIR | UMASK; 933 node.dp1.di_nlink = entries; 934 node.dp1.di_size = makedir(root_dir, entries); 935 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 936 node.dp1.di_blocks = 937 btodb(fragroundup(&sblock, node.dp1.di_size)); 938 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 939 iobuf); 940 iput(&node, UFS_ROOTINO); 941 if (!nflag) { 942 /* 943 * create the .snap directory 944 */ 945 node.dp1.di_mode |= 020; 946 node.dp1.di_gid = gid; 947 node.dp1.di_nlink = SNAPLINKCNT; 948 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 949 node.dp1.di_db[0] = 950 alloc(sblock.fs_fsize, node.dp1.di_mode); 951 node.dp1.di_blocks = 952 btodb(fragroundup(&sblock, node.dp1.di_size)); 953 node.dp1.di_dirdepth = 1; 954 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 955 sblock.fs_fsize, iobuf); 956 iput(&node, UFS_ROOTINO + 1); 957 } 958 } else { 959 /* 960 * initialize the node 961 */ 962 node.dp2.di_atime = utime; 963 node.dp2.di_mtime = utime; 964 node.dp2.di_ctime = utime; 965 node.dp2.di_birthtime = utime; 966 /* 967 * create the root directory 968 */ 969 node.dp2.di_mode = IFDIR | UMASK; 970 node.dp2.di_nlink = entries; 971 node.dp2.di_size = makedir(root_dir, entries); 972 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 973 node.dp2.di_blocks = 974 btodb(fragroundup(&sblock, node.dp2.di_size)); 975 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 976 iobuf); 977 iput(&node, UFS_ROOTINO); 978 if (!nflag) { 979 /* 980 * create the .snap directory 981 */ 982 node.dp2.di_mode |= 020; 983 node.dp2.di_gid = gid; 984 node.dp2.di_nlink = SNAPLINKCNT; 985 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 986 node.dp2.di_db[0] = 987 alloc(sblock.fs_fsize, node.dp2.di_mode); 988 node.dp2.di_blocks = 989 btodb(fragroundup(&sblock, node.dp2.di_size)); 990 node.dp2.di_dirdepth = 1; 991 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 992 sblock.fs_fsize, iobuf); 993 iput(&node, UFS_ROOTINO + 1); 994 } 995 } 996 } 997 998 /* 999 * construct a set of directory entries in "iobuf". 1000 * return size of directory. 1001 */ 1002 int 1003 makedir(struct direct *protodir, int entries) 1004 { 1005 char *cp; 1006 int i, spcleft; 1007 1008 spcleft = DIRBLKSIZ; 1009 memset(iobuf, 0, DIRBLKSIZ); 1010 for (cp = iobuf, i = 0; i < entries - 1; i++) { 1011 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1012 memmove(cp, &protodir[i], protodir[i].d_reclen); 1013 cp += protodir[i].d_reclen; 1014 spcleft -= protodir[i].d_reclen; 1015 } 1016 protodir[i].d_reclen = spcleft; 1017 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1018 return (DIRBLKSIZ); 1019 } 1020 1021 /* 1022 * allocate a block or frag 1023 */ 1024 ufs2_daddr_t 1025 alloc(int size, int mode) 1026 { 1027 int i, blkno, frag; 1028 uint d; 1029 1030 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1031 sblock.fs_cgsize); 1032 if (acg.cg_magic != CG_MAGIC) { 1033 printf("cg 0: bad magic number\n"); 1034 exit(38); 1035 } 1036 if (acg.cg_cs.cs_nbfree == 0) { 1037 printf("first cylinder group ran out of space\n"); 1038 exit(39); 1039 } 1040 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1041 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1042 goto goth; 1043 printf("internal error: can't find block in cyl 0\n"); 1044 exit(40); 1045 goth: 1046 blkno = fragstoblks(&sblock, d); 1047 clrblock(&sblock, cg_blksfree(&acg), blkno); 1048 if (sblock.fs_contigsumsize > 0) 1049 clrbit(cg_clustersfree(&acg), blkno); 1050 acg.cg_cs.cs_nbfree--; 1051 sblock.fs_cstotal.cs_nbfree--; 1052 fscs[0].cs_nbfree--; 1053 if (mode & IFDIR) { 1054 acg.cg_cs.cs_ndir++; 1055 sblock.fs_cstotal.cs_ndir++; 1056 fscs[0].cs_ndir++; 1057 } 1058 if (size != sblock.fs_bsize) { 1059 frag = howmany(size, sblock.fs_fsize); 1060 fscs[0].cs_nffree += sblock.fs_frag - frag; 1061 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1062 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1063 acg.cg_frsum[sblock.fs_frag - frag]++; 1064 for (i = frag; i < sblock.fs_frag; i++) 1065 setbit(cg_blksfree(&acg), d + i); 1066 } 1067 if (cgwrite(&disk) != 0) 1068 err(1, "alloc: cgwrite: %s", disk.d_error); 1069 return ((ufs2_daddr_t)d); 1070 } 1071 1072 /* 1073 * Allocate an inode on the disk 1074 */ 1075 void 1076 iput(union dinode *ip, ino_t ino) 1077 { 1078 union dinodep dp; 1079 1080 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1081 sblock.fs_cgsize); 1082 if (acg.cg_magic != CG_MAGIC) { 1083 printf("cg 0: bad magic number\n"); 1084 exit(31); 1085 } 1086 acg.cg_cs.cs_nifree--; 1087 setbit(cg_inosused(&acg), ino); 1088 if (cgwrite(&disk) != 0) 1089 err(1, "iput: cgwrite: %s", disk.d_error); 1090 sblock.fs_cstotal.cs_nifree--; 1091 fscs[0].cs_nifree--; 1092 if (getinode(&disk, &dp, ino) == -1) { 1093 printf("iput: %s\n", disk.d_error); 1094 exit(32); 1095 } 1096 if (sblock.fs_magic == FS_UFS1_MAGIC) 1097 *dp.dp1 = ip->dp1; 1098 else 1099 *dp.dp2 = ip->dp2; 1100 putinode(&disk); 1101 } 1102 1103 /* 1104 * possibly write to disk 1105 */ 1106 static void 1107 wtfs(ufs2_daddr_t bno, int size, char *bf) 1108 { 1109 if (Nflag) 1110 return; 1111 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1112 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1113 } 1114 1115 /* 1116 * check if a block is available 1117 */ 1118 static int 1119 isblock(struct fs *fs, unsigned char *cp, int h) 1120 { 1121 unsigned char mask; 1122 1123 switch (fs->fs_frag) { 1124 case 8: 1125 return (cp[h] == 0xff); 1126 case 4: 1127 mask = 0x0f << ((h & 0x1) << 2); 1128 return ((cp[h >> 1] & mask) == mask); 1129 case 2: 1130 mask = 0x03 << ((h & 0x3) << 1); 1131 return ((cp[h >> 2] & mask) == mask); 1132 case 1: 1133 mask = 0x01 << (h & 0x7); 1134 return ((cp[h >> 3] & mask) == mask); 1135 default: 1136 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1137 return (0); 1138 } 1139 } 1140 1141 /* 1142 * take a block out of the map 1143 */ 1144 static void 1145 clrblock(struct fs *fs, unsigned char *cp, int h) 1146 { 1147 switch ((fs)->fs_frag) { 1148 case 8: 1149 cp[h] = 0; 1150 return; 1151 case 4: 1152 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1153 return; 1154 case 2: 1155 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1156 return; 1157 case 1: 1158 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1159 return; 1160 default: 1161 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1162 return; 1163 } 1164 } 1165 1166 /* 1167 * put a block into the map 1168 */ 1169 static void 1170 setblock(struct fs *fs, unsigned char *cp, int h) 1171 { 1172 switch (fs->fs_frag) { 1173 case 8: 1174 cp[h] = 0xff; 1175 return; 1176 case 4: 1177 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1178 return; 1179 case 2: 1180 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1181 return; 1182 case 1: 1183 cp[h >> 3] |= (0x01 << (h & 0x7)); 1184 return; 1185 default: 1186 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1187 return; 1188 } 1189 } 1190 1191 /* 1192 * Determine the number of characters in a 1193 * single line. 1194 */ 1195 1196 static int 1197 charsperline(void) 1198 { 1199 int columns; 1200 char *cp; 1201 struct winsize ws; 1202 1203 columns = 0; 1204 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1205 columns = ws.ws_col; 1206 if (columns == 0 && (cp = getenv("COLUMNS"))) 1207 columns = atoi(cp); 1208 if (columns == 0) 1209 columns = 80; /* last resort */ 1210 return (columns); 1211 } 1212 1213 static int 1214 ilog2(int val) 1215 { 1216 u_int n; 1217 1218 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1219 if (1 << n == val) 1220 return (n); 1221 errx(1, "ilog2: %d is not a power of 2\n", val); 1222 } 1223 1224 /* 1225 * For the regression test, return predictable random values. 1226 * Otherwise use a true random number generator. 1227 */ 1228 static u_int32_t 1229 newfs_random(void) 1230 { 1231 static u_int32_t nextnum = 1; 1232 1233 if (Rflag) 1234 return (nextnum++); 1235 return (arc4random()); 1236 } 1237