xref: /freebsd/sbin/newfs/mkfs.c (revision 4c8945a06b01a5c8122cdeb402af36bb46a06acc)
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include <err.h>
48 #include <grp.h>
49 #include <limits.h>
50 #include <signal.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <stdint.h>
54 #include <stdio.h>
55 #include <unistd.h>
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/types.h>
59 #include <sys/wait.h>
60 #include <sys/resource.h>
61 #include <sys/stat.h>
62 #include <ufs/ufs/dinode.h>
63 #include <ufs/ufs/dir.h>
64 #include <ufs/ffs/fs.h>
65 #include <sys/disklabel.h>
66 #include <sys/file.h>
67 #include <sys/mman.h>
68 #include <sys/ioctl.h>
69 #include "newfs.h"
70 
71 /*
72  * make file system for cylinder-group style file systems
73  */
74 #define UMASK		0755
75 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
76 
77 static struct	csum *fscs;
78 #define	sblock	disk.d_fs
79 #define	acg	disk.d_cg
80 
81 union dinode {
82 	struct ufs1_dinode dp1;
83 	struct ufs2_dinode dp2;
84 };
85 #define DIP(dp, field) \
86 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
87 	(dp)->dp1.field : (dp)->dp2.field)
88 
89 static caddr_t iobuf;
90 static long iobufsize;
91 static ufs2_daddr_t alloc(int size, int mode);
92 static int charsperline(void);
93 static void clrblock(struct fs *, unsigned char *, int);
94 static void fsinit(time_t);
95 static int ilog2(int);
96 static void initcg(int, time_t);
97 static int isblock(struct fs *, unsigned char *, int);
98 static void iput(union dinode *, ino_t);
99 static int makedir(struct direct *, int);
100 static void setblock(struct fs *, unsigned char *, int);
101 static void wtfs(ufs2_daddr_t, int, char *);
102 static u_int32_t newfs_random(void);
103 
104 static int
105 do_sbwrite(struct uufsd *disk)
106 {
107 	if (!disk->d_sblock)
108 		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
109 	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
110 	    disk->d_sblock) * disk->d_bsize)));
111 }
112 
113 void
114 mkfs(struct partition *pp, char *fsys)
115 {
116 	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
117 	long i, j, csfrags;
118 	uint cg;
119 	time_t utime;
120 	quad_t sizepb;
121 	int width;
122 	ino_t maxinum;
123 	int minfragsperinode;	/* minimum ratio of frags to inodes */
124 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
125 	union {
126 		struct fs fdummy;
127 		char cdummy[SBLOCKSIZE];
128 	} dummy;
129 #define fsdummy dummy.fdummy
130 #define chdummy dummy.cdummy
131 
132 	/*
133 	 * Our blocks == sector size, and the version of UFS we are using is
134 	 * specified by Oflag.
135 	 */
136 	disk.d_bsize = sectorsize;
137 	disk.d_ufs = Oflag;
138 	if (Rflag) {
139 		utime = 1000000000;
140 	} else {
141 		time(&utime);
142 		arc4random_stir();
143 	}
144 	sblock.fs_old_flags = FS_FLAGS_UPDATED;
145 	sblock.fs_flags = 0;
146 	if (Uflag)
147 		sblock.fs_flags |= FS_DOSOFTDEP;
148 	if (Lflag)
149 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
150 	if (Jflag)
151 		sblock.fs_flags |= FS_GJOURNAL;
152 	if (lflag)
153 		sblock.fs_flags |= FS_MULTILABEL;
154 	if (tflag)
155 		sblock.fs_flags |= FS_TRIM;
156 	/*
157 	 * Validate the given file system size.
158 	 * Verify that its last block can actually be accessed.
159 	 * Convert to file system fragment sized units.
160 	 */
161 	if (fssize <= 0) {
162 		printf("preposterous size %jd\n", (intmax_t)fssize);
163 		exit(13);
164 	}
165 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
166 	    (char *)&sblock);
167 	/*
168 	 * collect and verify the file system density info
169 	 */
170 	sblock.fs_avgfilesize = avgfilesize;
171 	sblock.fs_avgfpdir = avgfilesperdir;
172 	if (sblock.fs_avgfilesize <= 0)
173 		printf("illegal expected average file size %d\n",
174 		    sblock.fs_avgfilesize), exit(14);
175 	if (sblock.fs_avgfpdir <= 0)
176 		printf("illegal expected number of files per directory %d\n",
177 		    sblock.fs_avgfpdir), exit(15);
178 
179 restart:
180 	/*
181 	 * collect and verify the block and fragment sizes
182 	 */
183 	sblock.fs_bsize = bsize;
184 	sblock.fs_fsize = fsize;
185 	if (!POWEROF2(sblock.fs_bsize)) {
186 		printf("block size must be a power of 2, not %d\n",
187 		    sblock.fs_bsize);
188 		exit(16);
189 	}
190 	if (!POWEROF2(sblock.fs_fsize)) {
191 		printf("fragment size must be a power of 2, not %d\n",
192 		    sblock.fs_fsize);
193 		exit(17);
194 	}
195 	if (sblock.fs_fsize < sectorsize) {
196 		printf("increasing fragment size from %d to sector size (%d)\n",
197 		    sblock.fs_fsize, sectorsize);
198 		sblock.fs_fsize = sectorsize;
199 	}
200 	if (sblock.fs_bsize > MAXBSIZE) {
201 		printf("decreasing block size from %d to maximum (%d)\n",
202 		    sblock.fs_bsize, MAXBSIZE);
203 		sblock.fs_bsize = MAXBSIZE;
204 	}
205 	if (sblock.fs_bsize < MINBSIZE) {
206 		printf("increasing block size from %d to minimum (%d)\n",
207 		    sblock.fs_bsize, MINBSIZE);
208 		sblock.fs_bsize = MINBSIZE;
209 	}
210 	if (sblock.fs_fsize > MAXBSIZE) {
211 		printf("decreasing fragment size from %d to maximum (%d)\n",
212 		    sblock.fs_fsize, MAXBSIZE);
213 		sblock.fs_fsize = MAXBSIZE;
214 	}
215 	if (sblock.fs_bsize < sblock.fs_fsize) {
216 		printf("increasing block size from %d to fragment size (%d)\n",
217 		    sblock.fs_bsize, sblock.fs_fsize);
218 		sblock.fs_bsize = sblock.fs_fsize;
219 	}
220 	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
221 		printf(
222 		"increasing fragment size from %d to block size / %d (%d)\n",
223 		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
224 		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
225 	}
226 	if (maxbsize == 0)
227 		maxbsize = bsize;
228 	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
229 		sblock.fs_maxbsize = sblock.fs_bsize;
230 		printf("Extent size set to %d\n", sblock.fs_maxbsize);
231 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
232 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
233 		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
234 	} else {
235 		sblock.fs_maxbsize = maxbsize;
236 	}
237 	/*
238 	 * Maxcontig sets the default for the maximum number of blocks
239 	 * that may be allocated sequentially. With file system clustering
240 	 * it is possible to allocate contiguous blocks up to the maximum
241 	 * transfer size permitted by the controller or buffering.
242 	 */
243 	if (maxcontig == 0)
244 		maxcontig = MAX(1, MAXPHYS / bsize);
245 	sblock.fs_maxcontig = maxcontig;
246 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
247 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
248 		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
249 	}
250 	if (sblock.fs_maxcontig > 1)
251 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
252 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
253 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
254 	sblock.fs_qbmask = ~sblock.fs_bmask;
255 	sblock.fs_qfmask = ~sblock.fs_fmask;
256 	sblock.fs_bshift = ilog2(sblock.fs_bsize);
257 	sblock.fs_fshift = ilog2(sblock.fs_fsize);
258 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
259 	sblock.fs_fragshift = ilog2(sblock.fs_frag);
260 	if (sblock.fs_frag > MAXFRAG) {
261 		printf("fragment size %d is still too small (can't happen)\n",
262 		    sblock.fs_bsize / MAXFRAG);
263 		exit(21);
264 	}
265 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
266 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
267 
268 	/*
269 	 * Before the filesystem is finally initialized, mark it
270 	 * as incompletely initialized.
271 	 */
272 	sblock.fs_magic = FS_BAD_MAGIC;
273 
274 	if (Oflag == 1) {
275 		sblock.fs_sblockloc = SBLOCK_UFS1;
276 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
277 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
278 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
279 		    sizeof(ufs1_daddr_t));
280 		sblock.fs_old_inodefmt = FS_44INODEFMT;
281 		sblock.fs_old_cgoffset = 0;
282 		sblock.fs_old_cgmask = 0xffffffff;
283 		sblock.fs_old_size = sblock.fs_size;
284 		sblock.fs_old_rotdelay = 0;
285 		sblock.fs_old_rps = 60;
286 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
287 		sblock.fs_old_cpg = 1;
288 		sblock.fs_old_interleave = 1;
289 		sblock.fs_old_trackskew = 0;
290 		sblock.fs_old_cpc = 0;
291 		sblock.fs_old_postblformat = 1;
292 		sblock.fs_old_nrpos = 1;
293 	} else {
294 		sblock.fs_sblockloc = SBLOCK_UFS2;
295 		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
296 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
297 		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
298 		    sizeof(ufs2_daddr_t));
299 	}
300 	sblock.fs_sblkno =
301 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
302 		sblock.fs_frag);
303 	sblock.fs_cblkno = sblock.fs_sblkno +
304 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
305 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
306 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
307 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
308 		sizepb *= NINDIR(&sblock);
309 		sblock.fs_maxfilesize += sizepb;
310 	}
311 
312 	/*
313 	 * It's impossible to create a snapshot in case that fs_maxfilesize
314 	 * is smaller than the fssize.
315 	 */
316 	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
317 		warnx("WARNING: You will be unable to create snapshots on this "
318 		      "file system.  Correct by using a larger blocksize.");
319 	}
320 
321 	/*
322 	 * Calculate the number of blocks to put into each cylinder group.
323 	 *
324 	 * This algorithm selects the number of blocks per cylinder
325 	 * group. The first goal is to have at least enough data blocks
326 	 * in each cylinder group to meet the density requirement. Once
327 	 * this goal is achieved we try to expand to have at least
328 	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
329 	 * pack as many blocks into each cylinder group map as will fit.
330 	 *
331 	 * We start by calculating the smallest number of blocks that we
332 	 * can put into each cylinder group. If this is too big, we reduce
333 	 * the density until it fits.
334 	 */
335 	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
336 	minfragsperinode = 1 + fssize / maxinum;
337 	if (density == 0) {
338 		density = MAX(NFPI, minfragsperinode) * fsize;
339 	} else if (density < minfragsperinode * fsize) {
340 		origdensity = density;
341 		density = minfragsperinode * fsize;
342 		fprintf(stderr, "density increased from %d to %d\n",
343 		    origdensity, density);
344 	}
345 	origdensity = density;
346 	for (;;) {
347 		fragsperinode = MAX(numfrags(&sblock, density), 1);
348 		if (fragsperinode < minfragsperinode) {
349 			bsize <<= 1;
350 			fsize <<= 1;
351 			printf("Block size too small for a file system %s %d\n",
352 			     "of this size. Increasing blocksize to", bsize);
353 			goto restart;
354 		}
355 		minfpg = fragsperinode * INOPB(&sblock);
356 		if (minfpg > sblock.fs_size)
357 			minfpg = sblock.fs_size;
358 		sblock.fs_ipg = INOPB(&sblock);
359 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
360 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
361 		if (sblock.fs_fpg < minfpg)
362 			sblock.fs_fpg = minfpg;
363 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
364 		    INOPB(&sblock));
365 		sblock.fs_fpg = roundup(sblock.fs_iblkno +
366 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
367 		if (sblock.fs_fpg < minfpg)
368 			sblock.fs_fpg = minfpg;
369 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
370 		    INOPB(&sblock));
371 		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
372 			break;
373 		density -= sblock.fs_fsize;
374 	}
375 	if (density != origdensity)
376 		printf("density reduced from %d to %d\n", origdensity, density);
377 	/*
378 	 * Start packing more blocks into the cylinder group until
379 	 * it cannot grow any larger, the number of cylinder groups
380 	 * drops below MINCYLGRPS, or we reach the size requested.
381 	 * For UFS1 inodes per cylinder group are stored in an int16_t
382 	 * so fs_ipg is limited to 2^15 - 1.
383 	 */
384 	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
385 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
386 		    INOPB(&sblock));
387 		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
388 			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
389 				break;
390 			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
391 				continue;
392 			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
393 				break;
394 		}
395 		sblock.fs_fpg -= sblock.fs_frag;
396 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
397 		    INOPB(&sblock));
398 		break;
399 	}
400 	/*
401 	 * Check to be sure that the last cylinder group has enough blocks
402 	 * to be viable. If it is too small, reduce the number of blocks
403 	 * per cylinder group which will have the effect of moving more
404 	 * blocks into the last cylinder group.
405 	 */
406 	optimalfpg = sblock.fs_fpg;
407 	for (;;) {
408 		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
409 		lastminfpg = roundup(sblock.fs_iblkno +
410 		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
411 		if (sblock.fs_size < lastminfpg) {
412 			printf("Filesystem size %jd < minimum size of %d\n",
413 			    (intmax_t)sblock.fs_size, lastminfpg);
414 			exit(28);
415 		}
416 		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
417 		    sblock.fs_size % sblock.fs_fpg == 0)
418 			break;
419 		sblock.fs_fpg -= sblock.fs_frag;
420 		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
421 		    INOPB(&sblock));
422 	}
423 	if (optimalfpg != sblock.fs_fpg)
424 		printf("Reduced frags per cylinder group from %d to %d %s\n",
425 		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
426 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
427 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
428 	if (Oflag == 1) {
429 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
430 		sblock.fs_old_nsect = sblock.fs_old_spc;
431 		sblock.fs_old_npsect = sblock.fs_old_spc;
432 		sblock.fs_old_ncyl = sblock.fs_ncg;
433 	}
434 	/*
435 	 * fill in remaining fields of the super block
436 	 */
437 	sblock.fs_csaddr = cgdmin(&sblock, 0);
438 	sblock.fs_cssize =
439 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
440 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
441 	if (fscs == NULL)
442 		errx(31, "calloc failed");
443 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
444 	if (sblock.fs_sbsize > SBLOCKSIZE)
445 		sblock.fs_sbsize = SBLOCKSIZE;
446 	sblock.fs_minfree = minfree;
447 	if (maxbpg == 0)
448 		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
449 	else
450 		sblock.fs_maxbpg = maxbpg;
451 	sblock.fs_optim = opt;
452 	sblock.fs_cgrotor = 0;
453 	sblock.fs_pendingblocks = 0;
454 	sblock.fs_pendinginodes = 0;
455 	sblock.fs_fmod = 0;
456 	sblock.fs_ronly = 0;
457 	sblock.fs_state = 0;
458 	sblock.fs_clean = 1;
459 	sblock.fs_id[0] = (long)utime;
460 	sblock.fs_id[1] = newfs_random();
461 	sblock.fs_fsmnt[0] = '\0';
462 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
463 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
464 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
465 	sblock.fs_cstotal.cs_nbfree =
466 	    fragstoblks(&sblock, sblock.fs_dsize) -
467 	    howmany(csfrags, sblock.fs_frag);
468 	sblock.fs_cstotal.cs_nffree =
469 	    fragnum(&sblock, sblock.fs_size) +
470 	    (fragnum(&sblock, csfrags) > 0 ?
471 	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
472 	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
473 	sblock.fs_cstotal.cs_ndir = 0;
474 	sblock.fs_dsize -= csfrags;
475 	sblock.fs_time = utime;
476 	if (Oflag == 1) {
477 		sblock.fs_old_time = utime;
478 		sblock.fs_old_dsize = sblock.fs_dsize;
479 		sblock.fs_old_csaddr = sblock.fs_csaddr;
480 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
481 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
482 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
483 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
484 	}
485 
486 	/*
487 	 * Dump out summary information about file system.
488 	 */
489 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
490 	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
491 	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
492 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
493 	    sblock.fs_fsize);
494 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
495 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
496 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
497 	if (sblock.fs_flags & FS_DOSOFTDEP)
498 		printf("\twith soft updates\n");
499 #	undef B2MBFACTOR
500 
501 	if (Eflag && !Nflag) {
502 		printf("Erasing sectors [%jd...%jd]\n",
503 		    sblock.fs_sblockloc / disk.d_bsize,
504 		    fsbtodb(&sblock, sblock.fs_size) - 1);
505 		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
506 		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
507 	}
508 	/*
509 	 * Wipe out old UFS1 superblock(s) if necessary.
510 	 */
511 	if (!Nflag && Oflag != 1) {
512 		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
513 		if (i == -1)
514 			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
515 
516 		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
517 			fsdummy.fs_magic = 0;
518 			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
519 			    chdummy, SBLOCKSIZE);
520 			for (cg = 0; cg < fsdummy.fs_ncg; cg++)
521 				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
522 				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
523 		}
524 	}
525 	if (!Nflag)
526 		do_sbwrite(&disk);
527 	if (Xflag == 1) {
528 		printf("** Exiting on Xflag 1\n");
529 		exit(0);
530 	}
531 	if (Xflag == 2)
532 		printf("** Leaving BAD MAGIC on Xflag 2\n");
533 	else
534 		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
535 
536 	/*
537 	 * Now build the cylinders group blocks and
538 	 * then print out indices of cylinder groups.
539 	 */
540 	printf("super-block backups (for fsck -b #) at:\n");
541 	i = 0;
542 	width = charsperline();
543 	/*
544 	 * allocate space for superblock, cylinder group map, and
545 	 * two sets of inode blocks.
546 	 */
547 	if (sblock.fs_bsize < SBLOCKSIZE)
548 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
549 	else
550 		iobufsize = 4 * sblock.fs_bsize;
551 	if ((iobuf = calloc(1, iobufsize)) == 0) {
552 		printf("Cannot allocate I/O buffer\n");
553 		exit(38);
554 	}
555 	/*
556 	 * Make a copy of the superblock into the buffer that we will be
557 	 * writing out in each cylinder group.
558 	 */
559 	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
560 	for (cg = 0; cg < sblock.fs_ncg; cg++) {
561 		initcg(cg, utime);
562 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
563 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
564 		    cg < (sblock.fs_ncg-1) ? "," : "");
565 		if (j < 0)
566 			tmpbuf[j = 0] = '\0';
567 		if (i + j >= width) {
568 			printf("\n");
569 			i = 0;
570 		}
571 		i += j;
572 		printf("%s", tmpbuf);
573 		fflush(stdout);
574 	}
575 	printf("\n");
576 	if (Nflag)
577 		exit(0);
578 	/*
579 	 * Now construct the initial file system,
580 	 * then write out the super-block.
581 	 */
582 	fsinit(utime);
583 	if (Oflag == 1) {
584 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
585 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
586 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
587 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
588 	}
589 	if (Xflag == 3) {
590 		printf("** Exiting on Xflag 3\n");
591 		exit(0);
592 	}
593 	if (!Nflag) {
594 		do_sbwrite(&disk);
595 		/*
596 		 * For UFS1 filesystems with a blocksize of 64K, the first
597 		 * alternate superblock resides at the location used for
598 		 * the default UFS2 superblock. As there is a valid
599 		 * superblock at this location, the boot code will use
600 		 * it as its first choice. Thus we have to ensure that
601 		 * all of its statistcs on usage are correct.
602 		 */
603 		if (Oflag == 1 && sblock.fs_bsize == 65536)
604 			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
605 			    sblock.fs_bsize, (char *)&sblock);
606 	}
607 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
608 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
609 			sblock.fs_cssize - i < sblock.fs_bsize ?
610 			sblock.fs_cssize - i : sblock.fs_bsize,
611 			((char *)fscs) + i);
612 	/*
613 	 * Update information about this partition in pack
614 	 * label, to that it may be updated on disk.
615 	 */
616 	if (pp != NULL) {
617 		pp->p_fstype = FS_BSDFFS;
618 		pp->p_fsize = sblock.fs_fsize;
619 		pp->p_frag = sblock.fs_frag;
620 		pp->p_cpg = sblock.fs_fpg;
621 	}
622 }
623 
624 /*
625  * Initialize a cylinder group.
626  */
627 void
628 initcg(int cylno, time_t utime)
629 {
630 	long blkno, start;
631 	uint i, j, d, dlower, dupper;
632 	ufs2_daddr_t cbase, dmax;
633 	struct ufs1_dinode *dp1;
634 	struct ufs2_dinode *dp2;
635 	struct csum *cs;
636 
637 	/*
638 	 * Determine block bounds for cylinder group.
639 	 * Allow space for super block summary information in first
640 	 * cylinder group.
641 	 */
642 	cbase = cgbase(&sblock, cylno);
643 	dmax = cbase + sblock.fs_fpg;
644 	if (dmax > sblock.fs_size)
645 		dmax = sblock.fs_size;
646 	dlower = cgsblock(&sblock, cylno) - cbase;
647 	dupper = cgdmin(&sblock, cylno) - cbase;
648 	if (cylno == 0)
649 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
650 	cs = &fscs[cylno];
651 	memset(&acg, 0, sblock.fs_cgsize);
652 	acg.cg_time = utime;
653 	acg.cg_magic = CG_MAGIC;
654 	acg.cg_cgx = cylno;
655 	acg.cg_niblk = sblock.fs_ipg;
656 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
657 	    sblock.fs_ipg : 2 * INOPB(&sblock);
658 	acg.cg_ndblk = dmax - cbase;
659 	if (sblock.fs_contigsumsize > 0)
660 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
661 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
662 	if (Oflag == 2) {
663 		acg.cg_iusedoff = start;
664 	} else {
665 		acg.cg_old_ncyl = sblock.fs_old_cpg;
666 		acg.cg_old_time = acg.cg_time;
667 		acg.cg_time = 0;
668 		acg.cg_old_niblk = acg.cg_niblk;
669 		acg.cg_niblk = 0;
670 		acg.cg_initediblk = 0;
671 		acg.cg_old_btotoff = start;
672 		acg.cg_old_boff = acg.cg_old_btotoff +
673 		    sblock.fs_old_cpg * sizeof(int32_t);
674 		acg.cg_iusedoff = acg.cg_old_boff +
675 		    sblock.fs_old_cpg * sizeof(u_int16_t);
676 	}
677 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
678 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
679 	if (sblock.fs_contigsumsize > 0) {
680 		acg.cg_clustersumoff =
681 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
682 		acg.cg_clustersumoff -= sizeof(u_int32_t);
683 		acg.cg_clusteroff = acg.cg_clustersumoff +
684 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
685 		acg.cg_nextfreeoff = acg.cg_clusteroff +
686 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
687 	}
688 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
689 		printf("Panic: cylinder group too big\n");
690 		exit(37);
691 	}
692 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
693 	if (cylno == 0)
694 		for (i = 0; i < (long)ROOTINO; i++) {
695 			setbit(cg_inosused(&acg), i);
696 			acg.cg_cs.cs_nifree--;
697 		}
698 	if (cylno > 0) {
699 		/*
700 		 * In cylno 0, beginning space is reserved
701 		 * for boot and super blocks.
702 		 */
703 		for (d = 0; d < dlower; d += sblock.fs_frag) {
704 			blkno = d / sblock.fs_frag;
705 			setblock(&sblock, cg_blksfree(&acg), blkno);
706 			if (sblock.fs_contigsumsize > 0)
707 				setbit(cg_clustersfree(&acg), blkno);
708 			acg.cg_cs.cs_nbfree++;
709 		}
710 	}
711 	if ((i = dupper % sblock.fs_frag)) {
712 		acg.cg_frsum[sblock.fs_frag - i]++;
713 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
714 			setbit(cg_blksfree(&acg), dupper);
715 			acg.cg_cs.cs_nffree++;
716 		}
717 	}
718 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
719 	     d += sblock.fs_frag) {
720 		blkno = d / sblock.fs_frag;
721 		setblock(&sblock, cg_blksfree(&acg), blkno);
722 		if (sblock.fs_contigsumsize > 0)
723 			setbit(cg_clustersfree(&acg), blkno);
724 		acg.cg_cs.cs_nbfree++;
725 	}
726 	if (d < acg.cg_ndblk) {
727 		acg.cg_frsum[acg.cg_ndblk - d]++;
728 		for (; d < acg.cg_ndblk; d++) {
729 			setbit(cg_blksfree(&acg), d);
730 			acg.cg_cs.cs_nffree++;
731 		}
732 	}
733 	if (sblock.fs_contigsumsize > 0) {
734 		int32_t *sump = cg_clustersum(&acg);
735 		u_char *mapp = cg_clustersfree(&acg);
736 		int map = *mapp++;
737 		int bit = 1;
738 		int run = 0;
739 
740 		for (i = 0; i < acg.cg_nclusterblks; i++) {
741 			if ((map & bit) != 0)
742 				run++;
743 			else if (run != 0) {
744 				if (run > sblock.fs_contigsumsize)
745 					run = sblock.fs_contigsumsize;
746 				sump[run]++;
747 				run = 0;
748 			}
749 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
750 				bit <<= 1;
751 			else {
752 				map = *mapp++;
753 				bit = 1;
754 			}
755 		}
756 		if (run != 0) {
757 			if (run > sblock.fs_contigsumsize)
758 				run = sblock.fs_contigsumsize;
759 			sump[run]++;
760 		}
761 	}
762 	*cs = acg.cg_cs;
763 	/*
764 	 * Write out the duplicate super block, the cylinder group map
765 	 * and two blocks worth of inodes in a single write.
766 	 */
767 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
768 	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
769 	start += sblock.fs_bsize;
770 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
771 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
772 	for (i = 0; i < acg.cg_initediblk; i++) {
773 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
774 			dp1->di_gen = newfs_random();
775 			dp1++;
776 		} else {
777 			dp2->di_gen = newfs_random();
778 			dp2++;
779 		}
780 	}
781 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
782 	/*
783 	 * For the old file system, we have to initialize all the inodes.
784 	 */
785 	if (Oflag == 1) {
786 		for (i = 2 * sblock.fs_frag;
787 		     i < sblock.fs_ipg / INOPF(&sblock);
788 		     i += sblock.fs_frag) {
789 			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
790 			for (j = 0; j < INOPB(&sblock); j++) {
791 				dp1->di_gen = newfs_random();
792 				dp1++;
793 			}
794 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
795 			    sblock.fs_bsize, &iobuf[start]);
796 		}
797 	}
798 }
799 
800 /*
801  * initialize the file system
802  */
803 #define ROOTLINKCNT 3
804 
805 struct direct root_dir[] = {
806 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
807 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
808 	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
809 };
810 
811 #define SNAPLINKCNT 2
812 
813 struct direct snap_dir[] = {
814 	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
815 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
816 };
817 
818 void
819 fsinit(time_t utime)
820 {
821 	union dinode node;
822 	struct group *grp;
823 	gid_t gid;
824 	int entries;
825 
826 	memset(&node, 0, sizeof node);
827 	if ((grp = getgrnam("operator")) != NULL) {
828 		gid = grp->gr_gid;
829 	} else {
830 		warnx("Cannot retrieve operator gid, using gid 0.");
831 		gid = 0;
832 	}
833 	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
834 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
835 		/*
836 		 * initialize the node
837 		 */
838 		node.dp1.di_atime = utime;
839 		node.dp1.di_mtime = utime;
840 		node.dp1.di_ctime = utime;
841 		/*
842 		 * create the root directory
843 		 */
844 		node.dp1.di_mode = IFDIR | UMASK;
845 		node.dp1.di_nlink = entries;
846 		node.dp1.di_size = makedir(root_dir, entries);
847 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
848 		node.dp1.di_blocks =
849 		    btodb(fragroundup(&sblock, node.dp1.di_size));
850 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
851 		    iobuf);
852 		iput(&node, ROOTINO);
853 		if (!nflag) {
854 			/*
855 			 * create the .snap directory
856 			 */
857 			node.dp1.di_mode |= 020;
858 			node.dp1.di_gid = gid;
859 			node.dp1.di_nlink = SNAPLINKCNT;
860 			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
861 				node.dp1.di_db[0] =
862 				    alloc(sblock.fs_fsize, node.dp1.di_mode);
863 			node.dp1.di_blocks =
864 			    btodb(fragroundup(&sblock, node.dp1.di_size));
865 				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
866 				    sblock.fs_fsize, iobuf);
867 			iput(&node, ROOTINO + 1);
868 		}
869 	} else {
870 		/*
871 		 * initialize the node
872 		 */
873 		node.dp2.di_atime = utime;
874 		node.dp2.di_mtime = utime;
875 		node.dp2.di_ctime = utime;
876 		node.dp2.di_birthtime = utime;
877 		/*
878 		 * create the root directory
879 		 */
880 		node.dp2.di_mode = IFDIR | UMASK;
881 		node.dp2.di_nlink = entries;
882 		node.dp2.di_size = makedir(root_dir, entries);
883 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
884 		node.dp2.di_blocks =
885 		    btodb(fragroundup(&sblock, node.dp2.di_size));
886 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
887 		    iobuf);
888 		iput(&node, ROOTINO);
889 		if (!nflag) {
890 			/*
891 			 * create the .snap directory
892 			 */
893 			node.dp2.di_mode |= 020;
894 			node.dp2.di_gid = gid;
895 			node.dp2.di_nlink = SNAPLINKCNT;
896 			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
897 				node.dp2.di_db[0] =
898 				    alloc(sblock.fs_fsize, node.dp2.di_mode);
899 			node.dp2.di_blocks =
900 			    btodb(fragroundup(&sblock, node.dp2.di_size));
901 				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
902 				    sblock.fs_fsize, iobuf);
903 			iput(&node, ROOTINO + 1);
904 		}
905 	}
906 }
907 
908 /*
909  * construct a set of directory entries in "iobuf".
910  * return size of directory.
911  */
912 int
913 makedir(struct direct *protodir, int entries)
914 {
915 	char *cp;
916 	int i, spcleft;
917 
918 	spcleft = DIRBLKSIZ;
919 	memset(iobuf, 0, DIRBLKSIZ);
920 	for (cp = iobuf, i = 0; i < entries - 1; i++) {
921 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
922 		memmove(cp, &protodir[i], protodir[i].d_reclen);
923 		cp += protodir[i].d_reclen;
924 		spcleft -= protodir[i].d_reclen;
925 	}
926 	protodir[i].d_reclen = spcleft;
927 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
928 	return (DIRBLKSIZ);
929 }
930 
931 /*
932  * allocate a block or frag
933  */
934 ufs2_daddr_t
935 alloc(int size, int mode)
936 {
937 	int i, blkno, frag;
938 	uint d;
939 
940 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
941 	    sblock.fs_cgsize);
942 	if (acg.cg_magic != CG_MAGIC) {
943 		printf("cg 0: bad magic number\n");
944 		exit(38);
945 	}
946 	if (acg.cg_cs.cs_nbfree == 0) {
947 		printf("first cylinder group ran out of space\n");
948 		exit(39);
949 	}
950 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
951 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
952 			goto goth;
953 	printf("internal error: can't find block in cyl 0\n");
954 	exit(40);
955 goth:
956 	blkno = fragstoblks(&sblock, d);
957 	clrblock(&sblock, cg_blksfree(&acg), blkno);
958 	if (sblock.fs_contigsumsize > 0)
959 		clrbit(cg_clustersfree(&acg), blkno);
960 	acg.cg_cs.cs_nbfree--;
961 	sblock.fs_cstotal.cs_nbfree--;
962 	fscs[0].cs_nbfree--;
963 	if (mode & IFDIR) {
964 		acg.cg_cs.cs_ndir++;
965 		sblock.fs_cstotal.cs_ndir++;
966 		fscs[0].cs_ndir++;
967 	}
968 	if (size != sblock.fs_bsize) {
969 		frag = howmany(size, sblock.fs_fsize);
970 		fscs[0].cs_nffree += sblock.fs_frag - frag;
971 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
972 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
973 		acg.cg_frsum[sblock.fs_frag - frag]++;
974 		for (i = frag; i < sblock.fs_frag; i++)
975 			setbit(cg_blksfree(&acg), d + i);
976 	}
977 	/* XXX cgwrite(&disk, 0)??? */
978 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
979 	    (char *)&acg);
980 	return ((ufs2_daddr_t)d);
981 }
982 
983 /*
984  * Allocate an inode on the disk
985  */
986 void
987 iput(union dinode *ip, ino_t ino)
988 {
989 	ufs2_daddr_t d;
990 	int c;
991 
992 	c = ino_to_cg(&sblock, ino);
993 	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
994 	    sblock.fs_cgsize);
995 	if (acg.cg_magic != CG_MAGIC) {
996 		printf("cg 0: bad magic number\n");
997 		exit(31);
998 	}
999 	acg.cg_cs.cs_nifree--;
1000 	setbit(cg_inosused(&acg), ino);
1001 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1002 	    (char *)&acg);
1003 	sblock.fs_cstotal.cs_nifree--;
1004 	fscs[0].cs_nifree--;
1005 	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1006 		printf("fsinit: inode value out of range (%d).\n", ino);
1007 		exit(32);
1008 	}
1009 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1010 	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1011 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1012 		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1013 		    ip->dp1;
1014 	else
1015 		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1016 		    ip->dp2;
1017 	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1018 }
1019 
1020 /*
1021  * possibly write to disk
1022  */
1023 static void
1024 wtfs(ufs2_daddr_t bno, int size, char *bf)
1025 {
1026 	if (Nflag)
1027 		return;
1028 	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1029 		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1030 }
1031 
1032 /*
1033  * check if a block is available
1034  */
1035 static int
1036 isblock(struct fs *fs, unsigned char *cp, int h)
1037 {
1038 	unsigned char mask;
1039 
1040 	switch (fs->fs_frag) {
1041 	case 8:
1042 		return (cp[h] == 0xff);
1043 	case 4:
1044 		mask = 0x0f << ((h & 0x1) << 2);
1045 		return ((cp[h >> 1] & mask) == mask);
1046 	case 2:
1047 		mask = 0x03 << ((h & 0x3) << 1);
1048 		return ((cp[h >> 2] & mask) == mask);
1049 	case 1:
1050 		mask = 0x01 << (h & 0x7);
1051 		return ((cp[h >> 3] & mask) == mask);
1052 	default:
1053 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1054 		return (0);
1055 	}
1056 }
1057 
1058 /*
1059  * take a block out of the map
1060  */
1061 static void
1062 clrblock(struct fs *fs, unsigned char *cp, int h)
1063 {
1064 	switch ((fs)->fs_frag) {
1065 	case 8:
1066 		cp[h] = 0;
1067 		return;
1068 	case 4:
1069 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1070 		return;
1071 	case 2:
1072 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1073 		return;
1074 	case 1:
1075 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1076 		return;
1077 	default:
1078 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1079 		return;
1080 	}
1081 }
1082 
1083 /*
1084  * put a block into the map
1085  */
1086 static void
1087 setblock(struct fs *fs, unsigned char *cp, int h)
1088 {
1089 	switch (fs->fs_frag) {
1090 	case 8:
1091 		cp[h] = 0xff;
1092 		return;
1093 	case 4:
1094 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1095 		return;
1096 	case 2:
1097 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1098 		return;
1099 	case 1:
1100 		cp[h >> 3] |= (0x01 << (h & 0x7));
1101 		return;
1102 	default:
1103 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1104 		return;
1105 	}
1106 }
1107 
1108 /*
1109  * Determine the number of characters in a
1110  * single line.
1111  */
1112 
1113 static int
1114 charsperline(void)
1115 {
1116 	int columns;
1117 	char *cp;
1118 	struct winsize ws;
1119 
1120 	columns = 0;
1121 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1122 		columns = ws.ws_col;
1123 	if (columns == 0 && (cp = getenv("COLUMNS")))
1124 		columns = atoi(cp);
1125 	if (columns == 0)
1126 		columns = 80;	/* last resort */
1127 	return (columns);
1128 }
1129 
1130 static int
1131 ilog2(int val)
1132 {
1133 	u_int n;
1134 
1135 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1136 		if (1 << n == val)
1137 			return (n);
1138 	errx(1, "ilog2: %d is not a power of 2\n", val);
1139 }
1140 
1141 /*
1142  * For the regression test, return predictable random values.
1143  * Otherwise use a true random number generator.
1144  */
1145 static u_int32_t
1146 newfs_random(void)
1147 {
1148 	static int nextnum = 1;
1149 
1150 	if (Rflag)
1151 		return (nextnum++);
1152 	return (arc4random());
1153 }
1154