1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Copyright (c) 1982, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * (c) UNIX System Laboratories, Inc. 14 * Copyright (c) 1980, 1989, 1993 15 * The Regents of the University of California. All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions 19 * are met: 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 3. All advertising materials mentioning features or use of this software 26 * must display the following acknowledgement: 27 * This product includes software developed by the University of 28 * California, Berkeley and its contributors. 29 * 4. Neither the name of the University nor the names of its contributors 30 * may be used to endorse or promote products derived from this software 31 * without specific prior written permission. 32 * 33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 43 * SUCH DAMAGE. 44 */ 45 46 #ifndef lint 47 #if 0 48 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 49 #endif 50 static const char rcsid[] = 51 "$FreeBSD$"; 52 #endif /* not lint */ 53 54 #include <err.h> 55 #include <limits.h> 56 #include <signal.h> 57 #include <stdlib.h> 58 #include <string.h> 59 #include <stdint.h> 60 #include <stdio.h> 61 #include <unistd.h> 62 #include <sys/param.h> 63 #include <sys/time.h> 64 #include <sys/types.h> 65 #include <sys/wait.h> 66 #include <sys/resource.h> 67 #include <sys/stat.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include <sys/disklabel.h> 72 #include <sys/file.h> 73 #include <sys/mman.h> 74 #include <sys/ioctl.h> 75 #include "newfs.h" 76 77 /* 78 * make file system for cylinder-group style file systems 79 */ 80 #define UMASK 0755 81 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 82 83 struct uufsd disk; 84 static struct csum *fscs; 85 #define sblock disk.d_fs 86 #define acg disk.d_cg 87 88 union dinode { 89 struct ufs1_dinode dp1; 90 struct ufs2_dinode dp2; 91 }; 92 #define DIP(dp, field) \ 93 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 94 (dp)->dp1.field : (dp)->dp2.field) 95 96 static int randinit; 97 static caddr_t iobuf; 98 static long iobufsize; 99 static ufs2_daddr_t alloc(int size, int mode); 100 static int charsperline(void); 101 static void clrblock(struct fs *, unsigned char *, int); 102 static void fsinit(time_t); 103 static int ilog2(int); 104 static void initcg(int, time_t); 105 static int isblock(struct fs *, unsigned char *, int); 106 static void iput(union dinode *, ino_t); 107 static int makedir(struct direct *, int); 108 static void setblock(struct fs *, unsigned char *, int); 109 static void wtfs(ufs2_daddr_t, int, char *); 110 111 void 112 mkfs(struct partition *pp, char *fsys) 113 { 114 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 115 long i, j, cylno, csfrags; 116 time_t utime; 117 quad_t sizepb; 118 int width; 119 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 120 121 /* 122 * Our blocks == sector size, and the version of UFS we are using is 123 * specified by Oflag. 124 */ 125 disk.d_bsize = sectorsize; 126 disk.d_ufs = Oflag; 127 if (Rflag) 128 utime = 1000000000; 129 else 130 time(&utime); 131 if (!Rflag && !randinit) { 132 randinit = 1; 133 srandomdev(); 134 } 135 sblock.fs_old_flags = FS_FLAGS_UPDATED; 136 sblock.fs_flags = 0; 137 if (Uflag) 138 sblock.fs_flags |= FS_DOSOFTDEP; 139 /* 140 * Validate the given file system size. 141 * Verify that its last block can actually be accessed. 142 * Convert to file system fragment sized units. 143 */ 144 if (fssize <= 0) { 145 printf("preposterous size %jd\n", (intmax_t)fssize); 146 exit(13); 147 } 148 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 149 (char *)&sblock); 150 /* 151 * collect and verify the file system density info 152 */ 153 sblock.fs_avgfilesize = avgfilesize; 154 sblock.fs_avgfpdir = avgfilesperdir; 155 if (sblock.fs_avgfilesize <= 0) 156 printf("illegal expected average file size %d\n", 157 sblock.fs_avgfilesize), exit(14); 158 if (sblock.fs_avgfpdir <= 0) 159 printf("illegal expected number of files per directory %d\n", 160 sblock.fs_avgfpdir), exit(15); 161 /* 162 * collect and verify the block and fragment sizes 163 */ 164 sblock.fs_bsize = bsize; 165 sblock.fs_fsize = fsize; 166 if (!POWEROF2(sblock.fs_bsize)) { 167 printf("block size must be a power of 2, not %d\n", 168 sblock.fs_bsize); 169 exit(16); 170 } 171 if (!POWEROF2(sblock.fs_fsize)) { 172 printf("fragment size must be a power of 2, not %d\n", 173 sblock.fs_fsize); 174 exit(17); 175 } 176 if (sblock.fs_fsize < sectorsize) { 177 printf("increasing fragment size from %d to sector size (%d)\n", 178 sblock.fs_fsize, sectorsize); 179 sblock.fs_fsize = sectorsize; 180 } 181 if (sblock.fs_bsize > MAXBSIZE) { 182 printf("decreasing block size from %d to maximum (%d)\n", 183 sblock.fs_bsize, MAXBSIZE); 184 sblock.fs_bsize = MAXBSIZE; 185 } 186 if (sblock.fs_bsize < MINBSIZE) { 187 printf("increasing block size from %d to minimum (%d)\n", 188 sblock.fs_bsize, MINBSIZE); 189 sblock.fs_bsize = MINBSIZE; 190 } 191 if (sblock.fs_fsize > MAXBSIZE) { 192 printf("decreasing fragment size from %d to maximum (%d)\n", 193 sblock.fs_fsize, MAXBSIZE); 194 sblock.fs_fsize = MAXBSIZE; 195 } 196 if (sblock.fs_bsize < sblock.fs_fsize) { 197 printf("increasing block size from %d to fragment size (%d)\n", 198 sblock.fs_bsize, sblock.fs_fsize); 199 sblock.fs_bsize = sblock.fs_fsize; 200 } 201 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 202 printf( 203 "increasing fragment size from %d to block size / %d (%d)\n", 204 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 205 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 206 } 207 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 208 sblock.fs_maxbsize = sblock.fs_bsize; 209 printf("Extent size set to %d\n", sblock.fs_maxbsize); 210 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 211 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 212 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 213 } else { 214 sblock.fs_maxbsize = maxbsize; 215 } 216 sblock.fs_maxcontig = maxcontig; 217 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 218 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 219 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 220 } 221 if (sblock.fs_maxcontig > 1) 222 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 223 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 224 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 225 sblock.fs_qbmask = ~sblock.fs_bmask; 226 sblock.fs_qfmask = ~sblock.fs_fmask; 227 sblock.fs_bshift = ilog2(sblock.fs_bsize); 228 sblock.fs_fshift = ilog2(sblock.fs_fsize); 229 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 230 sblock.fs_fragshift = ilog2(sblock.fs_frag); 231 if (sblock.fs_frag > MAXFRAG) { 232 printf("fragment size %d is still too small (can't happen)\n", 233 sblock.fs_bsize / MAXFRAG); 234 exit(21); 235 } 236 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 237 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 238 if (Oflag == 1) { 239 sblock.fs_magic = FS_UFS1_MAGIC; 240 sblock.fs_sblockloc = SBLOCK_UFS1; 241 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 242 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 243 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 244 sizeof(ufs1_daddr_t)); 245 sblock.fs_old_inodefmt = FS_44INODEFMT; 246 sblock.fs_old_cgoffset = 0; 247 sblock.fs_old_cgmask = 0xffffffff; 248 sblock.fs_old_size = sblock.fs_size; 249 sblock.fs_old_rotdelay = 0; 250 sblock.fs_old_rps = 60; 251 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 252 sblock.fs_old_cpg = 1; 253 sblock.fs_old_interleave = 1; 254 sblock.fs_old_trackskew = 0; 255 sblock.fs_old_cpc = 0; 256 sblock.fs_old_postblformat = 1; 257 sblock.fs_old_nrpos = 1; 258 } else { 259 sblock.fs_magic = FS_UFS2_MAGIC; 260 sblock.fs_sblockloc = SBLOCK_UFS2; 261 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 262 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 263 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 264 sizeof(ufs2_daddr_t)); 265 } 266 sblock.fs_sblkno = 267 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 268 sblock.fs_frag); 269 sblock.fs_cblkno = sblock.fs_sblkno + 270 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 271 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 272 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 273 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 274 sizepb *= NINDIR(&sblock); 275 sblock.fs_maxfilesize += sizepb; 276 } 277 /* 278 * Calculate the number of blocks to put into each cylinder group. 279 * 280 * This algorithm selects the number of blocks per cylinder 281 * group. The first goal is to have at least enough data blocks 282 * in each cylinder group to meet the density requirement. Once 283 * this goal is achieved we try to expand to have at least 284 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 285 * pack as many blocks into each cylinder group map as will fit. 286 * 287 * We start by calculating the smallest number of blocks that we 288 * can put into each cylinder group. If this is too big, we reduce 289 * the density until it fits. 290 */ 291 origdensity = density; 292 for (;;) { 293 fragsperinode = MAX(numfrags(&sblock, density), 1); 294 minfpg = fragsperinode * INOPB(&sblock); 295 if (minfpg > sblock.fs_size) 296 minfpg = sblock.fs_size; 297 sblock.fs_ipg = INOPB(&sblock); 298 sblock.fs_fpg = roundup(sblock.fs_iblkno + 299 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 300 if (sblock.fs_fpg < minfpg) 301 sblock.fs_fpg = minfpg; 302 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 303 INOPB(&sblock)); 304 sblock.fs_fpg = roundup(sblock.fs_iblkno + 305 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 306 if (sblock.fs_fpg < minfpg) 307 sblock.fs_fpg = minfpg; 308 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 309 INOPB(&sblock)); 310 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 311 break; 312 density -= sblock.fs_fsize; 313 } 314 if (density != origdensity) 315 printf("density reduced from %d to %d\n", origdensity, density); 316 /* 317 * Start packing more blocks into the cylinder group until 318 * it cannot grow any larger, the number of cylinder groups 319 * drops below MINCYLGRPS, or we reach the size requested. 320 */ 321 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 322 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 323 INOPB(&sblock)); 324 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 325 break; 326 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 327 continue; 328 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 329 break; 330 sblock.fs_fpg -= sblock.fs_frag; 331 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 332 INOPB(&sblock)); 333 break; 334 } 335 /* 336 * Check to be sure that the last cylinder group has enough blocks 337 * to be viable. If it is too small, reduce the number of blocks 338 * per cylinder group which will have the effect of moving more 339 * blocks into the last cylinder group. 340 */ 341 optimalfpg = sblock.fs_fpg; 342 for (;;) { 343 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 344 lastminfpg = roundup(sblock.fs_iblkno + 345 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 346 if (sblock.fs_size < lastminfpg) { 347 printf("Filesystem size %jd < minimum size of %d\n", 348 (intmax_t)sblock.fs_size, lastminfpg); 349 exit(28); 350 } 351 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 352 sblock.fs_size % sblock.fs_fpg == 0) 353 break; 354 sblock.fs_fpg -= sblock.fs_frag; 355 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 356 INOPB(&sblock)); 357 } 358 if (optimalfpg != sblock.fs_fpg) 359 printf("Reduced frags per cylinder group from %d to %d %s\n", 360 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 361 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 362 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 363 if (Oflag == 1) { 364 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 365 sblock.fs_old_nsect = sblock.fs_old_spc; 366 sblock.fs_old_npsect = sblock.fs_old_spc; 367 sblock.fs_old_ncyl = sblock.fs_ncg; 368 } 369 /* 370 * fill in remaining fields of the super block 371 */ 372 sblock.fs_csaddr = cgdmin(&sblock, 0); 373 sblock.fs_cssize = 374 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 375 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 376 if (fscs == NULL) 377 errx(31, "calloc failed"); 378 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 379 if (sblock.fs_sbsize > SBLOCKSIZE) 380 sblock.fs_sbsize = SBLOCKSIZE; 381 sblock.fs_minfree = minfree; 382 sblock.fs_maxbpg = maxbpg; 383 sblock.fs_optim = opt; 384 sblock.fs_cgrotor = 0; 385 sblock.fs_pendingblocks = 0; 386 sblock.fs_pendinginodes = 0; 387 sblock.fs_fmod = 0; 388 sblock.fs_ronly = 0; 389 sblock.fs_state = 0; 390 sblock.fs_clean = 1; 391 sblock.fs_id[0] = (long)utime; 392 sblock.fs_id[1] = random(); 393 sblock.fs_fsmnt[0] = '\0'; 394 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 395 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 396 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 397 sblock.fs_cstotal.cs_nbfree = 398 fragstoblks(&sblock, sblock.fs_dsize) - 399 howmany(csfrags, sblock.fs_frag); 400 sblock.fs_cstotal.cs_nffree = 401 fragnum(&sblock, sblock.fs_size) + 402 (fragnum(&sblock, csfrags) > 0 ? 403 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 404 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 405 sblock.fs_cstotal.cs_ndir = 0; 406 sblock.fs_dsize -= csfrags; 407 sblock.fs_time = utime; 408 if (Oflag == 1) { 409 sblock.fs_old_time = utime; 410 sblock.fs_old_dsize = sblock.fs_dsize; 411 sblock.fs_old_csaddr = sblock.fs_csaddr; 412 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 413 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 414 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 415 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 416 } 417 418 /* 419 * Dump out summary information about file system. 420 */ 421 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 422 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 423 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 424 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 425 sblock.fs_fsize); 426 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 427 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 428 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 429 if (sblock.fs_flags & FS_DOSOFTDEP) 430 printf("\twith soft updates\n"); 431 # undef B2MBFACTOR 432 /* 433 * Now build the cylinders group blocks and 434 * then print out indices of cylinder groups. 435 */ 436 printf("super-block backups (for fsck -b #) at:\n"); 437 i = 0; 438 width = charsperline(); 439 /* 440 * allocate space for superblock, cylinder group map, and 441 * two sets of inode blocks. 442 */ 443 if (sblock.fs_bsize < SBLOCKSIZE) 444 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 445 else 446 iobufsize = 4 * sblock.fs_bsize; 447 if ((iobuf = malloc(iobufsize)) == 0) { 448 printf("Cannot allocate I/O buffer\n"); 449 exit(38); 450 } 451 bzero(iobuf, iobufsize); 452 /* 453 * Make a copy of the superblock into the buffer that we will be 454 * writing out in each cylinder group. 455 */ 456 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 457 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 458 initcg(cylno, utime); 459 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 460 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 461 cylno < (sblock.fs_ncg-1) ? "," : ""); 462 if (j < 0) 463 tmpbuf[j = 0] = '\0'; 464 if (i + j >= width) { 465 printf("\n"); 466 i = 0; 467 } 468 i += j; 469 printf("%s", tmpbuf); 470 fflush(stdout); 471 } 472 printf("\n"); 473 if (Nflag) 474 exit(0); 475 /* 476 * Now construct the initial file system, 477 * then write out the super-block. 478 */ 479 fsinit(utime); 480 if (Oflag == 1) { 481 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 482 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 483 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 484 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 485 } 486 if (!Nflag) 487 sbwrite(&disk, 1); 488 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 489 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 490 sblock.fs_cssize - i < sblock.fs_bsize ? 491 sblock.fs_cssize - i : sblock.fs_bsize, 492 ((char *)fscs) + i); 493 /* 494 * Update information about this partion in pack 495 * label, to that it may be updated on disk. 496 */ 497 if (pp != NULL) { 498 pp->p_fstype = FS_BSDFFS; 499 pp->p_fsize = sblock.fs_fsize; 500 pp->p_frag = sblock.fs_frag; 501 pp->p_cpg = sblock.fs_fpg; 502 } 503 } 504 505 /* 506 * Initialize a cylinder group. 507 */ 508 void 509 initcg(int cylno, time_t utime) 510 { 511 long i, j, d, dlower, dupper, blkno, start; 512 ufs2_daddr_t cbase, dmax; 513 struct ufs1_dinode *dp1; 514 struct ufs2_dinode *dp2; 515 struct csum *cs; 516 517 /* 518 * Determine block bounds for cylinder group. 519 * Allow space for super block summary information in first 520 * cylinder group. 521 */ 522 cbase = cgbase(&sblock, cylno); 523 dmax = cbase + sblock.fs_fpg; 524 if (dmax > sblock.fs_size) 525 dmax = sblock.fs_size; 526 dlower = cgsblock(&sblock, cylno) - cbase; 527 dupper = cgdmin(&sblock, cylno) - cbase; 528 if (cylno == 0) 529 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 530 cs = &fscs[cylno]; 531 memset(&acg, 0, sblock.fs_cgsize); 532 acg.cg_time = utime; 533 acg.cg_magic = CG_MAGIC; 534 acg.cg_cgx = cylno; 535 acg.cg_niblk = sblock.fs_ipg; 536 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 537 sblock.fs_ipg : 2 * INOPB(&sblock); 538 acg.cg_ndblk = dmax - cbase; 539 if (sblock.fs_contigsumsize > 0) 540 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 541 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 542 if (Oflag == 2) { 543 acg.cg_iusedoff = start; 544 } else { 545 acg.cg_old_ncyl = sblock.fs_old_cpg; 546 acg.cg_old_time = acg.cg_time; 547 acg.cg_time = 0; 548 acg.cg_old_niblk = acg.cg_niblk; 549 acg.cg_niblk = 0; 550 acg.cg_initediblk = 0; 551 acg.cg_old_btotoff = start; 552 acg.cg_old_boff = acg.cg_old_btotoff + 553 sblock.fs_old_cpg * sizeof(int32_t); 554 acg.cg_iusedoff = acg.cg_old_boff + 555 sblock.fs_old_cpg * sizeof(u_int16_t); 556 } 557 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 558 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 559 if (sblock.fs_contigsumsize > 0) { 560 acg.cg_clustersumoff = 561 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 562 acg.cg_clustersumoff -= sizeof(u_int32_t); 563 acg.cg_clusteroff = acg.cg_clustersumoff + 564 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 565 acg.cg_nextfreeoff = acg.cg_clusteroff + 566 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 567 } 568 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 569 printf("Panic: cylinder group too big\n"); 570 exit(37); 571 } 572 acg.cg_cs.cs_nifree += sblock.fs_ipg; 573 if (cylno == 0) 574 for (i = 0; i < (long)ROOTINO; i++) { 575 setbit(cg_inosused(&acg), i); 576 acg.cg_cs.cs_nifree--; 577 } 578 if (cylno > 0) { 579 /* 580 * In cylno 0, beginning space is reserved 581 * for boot and super blocks. 582 */ 583 for (d = 0; d < dlower; d += sblock.fs_frag) { 584 blkno = d / sblock.fs_frag; 585 setblock(&sblock, cg_blksfree(&acg), blkno); 586 if (sblock.fs_contigsumsize > 0) 587 setbit(cg_clustersfree(&acg), blkno); 588 acg.cg_cs.cs_nbfree++; 589 } 590 } 591 if ((i = dupper % sblock.fs_frag)) { 592 acg.cg_frsum[sblock.fs_frag - i]++; 593 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 594 setbit(cg_blksfree(&acg), dupper); 595 acg.cg_cs.cs_nffree++; 596 } 597 } 598 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 599 d += sblock.fs_frag) { 600 blkno = d / sblock.fs_frag; 601 setblock(&sblock, cg_blksfree(&acg), blkno); 602 if (sblock.fs_contigsumsize > 0) 603 setbit(cg_clustersfree(&acg), blkno); 604 acg.cg_cs.cs_nbfree++; 605 } 606 if (d < acg.cg_ndblk) { 607 acg.cg_frsum[acg.cg_ndblk - d]++; 608 for (; d < acg.cg_ndblk; d++) { 609 setbit(cg_blksfree(&acg), d); 610 acg.cg_cs.cs_nffree++; 611 } 612 } 613 if (sblock.fs_contigsumsize > 0) { 614 int32_t *sump = cg_clustersum(&acg); 615 u_char *mapp = cg_clustersfree(&acg); 616 int map = *mapp++; 617 int bit = 1; 618 int run = 0; 619 620 for (i = 0; i < acg.cg_nclusterblks; i++) { 621 if ((map & bit) != 0) 622 run++; 623 else if (run != 0) { 624 if (run > sblock.fs_contigsumsize) 625 run = sblock.fs_contigsumsize; 626 sump[run]++; 627 run = 0; 628 } 629 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 630 bit <<= 1; 631 else { 632 map = *mapp++; 633 bit = 1; 634 } 635 } 636 if (run != 0) { 637 if (run > sblock.fs_contigsumsize) 638 run = sblock.fs_contigsumsize; 639 sump[run]++; 640 } 641 } 642 *cs = acg.cg_cs; 643 /* 644 * Write out the duplicate super block, the cylinder group map 645 * and two blocks worth of inodes in a single write. 646 */ 647 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 648 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 649 start += sblock.fs_bsize; 650 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 651 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 652 for (i = 0; i < acg.cg_initediblk; i++) { 653 if (sblock.fs_magic == FS_UFS1_MAGIC) { 654 dp1->di_gen = random(); 655 dp1++; 656 } else { 657 dp2->di_gen = random(); 658 dp2++; 659 } 660 } 661 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 662 /* 663 * For the old file system, we have to initialize all the inodes. 664 */ 665 if (Oflag == 1) { 666 for (i = 2 * sblock.fs_frag; 667 i < sblock.fs_ipg / INOPF(&sblock); 668 i += sblock.fs_frag) { 669 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 670 for (j = 0; j < INOPB(&sblock); j++) { 671 dp1->di_gen = random(); 672 dp1++; 673 } 674 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 675 sblock.fs_bsize, &iobuf[start]); 676 } 677 } 678 } 679 680 /* 681 * initialize the file system 682 */ 683 #define PREDEFDIR 2 684 685 struct direct root_dir[] = { 686 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 687 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 688 }; 689 690 void 691 fsinit(time_t utime) 692 { 693 union dinode node; 694 695 memset(&node, 0, sizeof node); 696 if (sblock.fs_magic == FS_UFS1_MAGIC) { 697 /* 698 * initialize the node 699 */ 700 node.dp1.di_atime = utime; 701 node.dp1.di_mtime = utime; 702 node.dp1.di_ctime = utime; 703 /* 704 * create the root directory 705 */ 706 node.dp1.di_mode = IFDIR | UMASK; 707 node.dp1.di_nlink = PREDEFDIR; 708 node.dp1.di_size = makedir(root_dir, PREDEFDIR); 709 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 710 node.dp1.di_blocks = 711 btodb(fragroundup(&sblock, node.dp1.di_size)); 712 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 713 iobuf); 714 } else { 715 /* 716 * initialize the node 717 */ 718 node.dp2.di_atime = utime; 719 node.dp2.di_mtime = utime; 720 node.dp2.di_ctime = utime; 721 node.dp2.di_birthtime = utime; 722 /* 723 * create the root directory 724 */ 725 node.dp2.di_mode = IFDIR | UMASK; 726 node.dp2.di_nlink = PREDEFDIR; 727 node.dp2.di_size = makedir(root_dir, PREDEFDIR); 728 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 729 node.dp2.di_blocks = 730 btodb(fragroundup(&sblock, node.dp2.di_size)); 731 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 732 iobuf); 733 } 734 iput(&node, ROOTINO); 735 } 736 737 /* 738 * construct a set of directory entries in "iobuf". 739 * return size of directory. 740 */ 741 int 742 makedir(struct direct *protodir, int entries) 743 { 744 char *cp; 745 int i, spcleft; 746 747 spcleft = DIRBLKSIZ; 748 memset(iobuf, 0, DIRBLKSIZ); 749 for (cp = iobuf, i = 0; i < entries - 1; i++) { 750 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 751 memmove(cp, &protodir[i], protodir[i].d_reclen); 752 cp += protodir[i].d_reclen; 753 spcleft -= protodir[i].d_reclen; 754 } 755 protodir[i].d_reclen = spcleft; 756 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 757 return (DIRBLKSIZ); 758 } 759 760 /* 761 * allocate a block or frag 762 */ 763 ufs2_daddr_t 764 alloc(int size, int mode) 765 { 766 int i, d, blkno, frag; 767 768 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 769 sblock.fs_cgsize); 770 if (acg.cg_magic != CG_MAGIC) { 771 printf("cg 0: bad magic number\n"); 772 return (0); 773 } 774 if (acg.cg_cs.cs_nbfree == 0) { 775 printf("first cylinder group ran out of space\n"); 776 return (0); 777 } 778 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 779 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 780 goto goth; 781 printf("internal error: can't find block in cyl 0\n"); 782 return (0); 783 goth: 784 blkno = fragstoblks(&sblock, d); 785 clrblock(&sblock, cg_blksfree(&acg), blkno); 786 if (sblock.fs_contigsumsize > 0) 787 clrbit(cg_clustersfree(&acg), blkno); 788 acg.cg_cs.cs_nbfree--; 789 sblock.fs_cstotal.cs_nbfree--; 790 fscs[0].cs_nbfree--; 791 if (mode & IFDIR) { 792 acg.cg_cs.cs_ndir++; 793 sblock.fs_cstotal.cs_ndir++; 794 fscs[0].cs_ndir++; 795 } 796 if (size != sblock.fs_bsize) { 797 frag = howmany(size, sblock.fs_fsize); 798 fscs[0].cs_nffree += sblock.fs_frag - frag; 799 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 800 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 801 acg.cg_frsum[sblock.fs_frag - frag]++; 802 for (i = frag; i < sblock.fs_frag; i++) 803 setbit(cg_blksfree(&acg), d + i); 804 } 805 /* XXX cgwrite(&disk, 0)??? */ 806 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 807 (char *)&acg); 808 return ((ufs2_daddr_t)d); 809 } 810 811 /* 812 * Allocate an inode on the disk 813 */ 814 void 815 iput(union dinode *ip, ino_t ino) 816 { 817 ufs2_daddr_t d; 818 int c; 819 820 c = ino_to_cg(&sblock, ino); 821 bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 822 sblock.fs_cgsize); 823 if (acg.cg_magic != CG_MAGIC) { 824 printf("cg 0: bad magic number\n"); 825 exit(31); 826 } 827 acg.cg_cs.cs_nifree--; 828 setbit(cg_inosused(&acg), ino); 829 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 830 (char *)&acg); 831 sblock.fs_cstotal.cs_nifree--; 832 fscs[0].cs_nifree--; 833 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 834 printf("fsinit: inode value out of range (%d).\n", ino); 835 exit(32); 836 } 837 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 838 bread(&disk, d, (char *)iobuf, sblock.fs_bsize); 839 if (sblock.fs_magic == FS_UFS1_MAGIC) 840 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 841 ip->dp1; 842 else 843 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 844 ip->dp2; 845 wtfs(d, sblock.fs_size, (char *)iobuf); 846 } 847 848 /* 849 * possibly write to disk 850 */ 851 static void 852 wtfs(ufs2_daddr_t bno, int size, char *bf) 853 { 854 if (Nflag) 855 return; 856 bwrite(&disk, bno, bf, size); 857 } 858 859 /* 860 * check if a block is available 861 */ 862 static int 863 isblock(struct fs *fs, unsigned char *cp, int h) 864 { 865 unsigned char mask; 866 867 switch (fs->fs_frag) { 868 case 8: 869 return (cp[h] == 0xff); 870 case 4: 871 mask = 0x0f << ((h & 0x1) << 2); 872 return ((cp[h >> 1] & mask) == mask); 873 case 2: 874 mask = 0x03 << ((h & 0x3) << 1); 875 return ((cp[h >> 2] & mask) == mask); 876 case 1: 877 mask = 0x01 << (h & 0x7); 878 return ((cp[h >> 3] & mask) == mask); 879 default: 880 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 881 return (0); 882 } 883 } 884 885 /* 886 * take a block out of the map 887 */ 888 static void 889 clrblock(struct fs *fs, unsigned char *cp, int h) 890 { 891 switch ((fs)->fs_frag) { 892 case 8: 893 cp[h] = 0; 894 return; 895 case 4: 896 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 897 return; 898 case 2: 899 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 900 return; 901 case 1: 902 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 903 return; 904 default: 905 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 906 return; 907 } 908 } 909 910 /* 911 * put a block into the map 912 */ 913 static void 914 setblock(struct fs *fs, unsigned char *cp, int h) 915 { 916 switch (fs->fs_frag) { 917 case 8: 918 cp[h] = 0xff; 919 return; 920 case 4: 921 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 922 return; 923 case 2: 924 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 925 return; 926 case 1: 927 cp[h >> 3] |= (0x01 << (h & 0x7)); 928 return; 929 default: 930 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 931 return; 932 } 933 } 934 935 /* 936 * Determine the number of characters in a 937 * single line. 938 */ 939 940 static int 941 charsperline(void) 942 { 943 int columns; 944 char *cp; 945 struct winsize ws; 946 947 columns = 0; 948 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 949 columns = ws.ws_col; 950 if (columns == 0 && (cp = getenv("COLUMNS"))) 951 columns = atoi(cp); 952 if (columns == 0) 953 columns = 80; /* last resort */ 954 return (columns); 955 } 956 957 static int 958 ilog2(int val) 959 { 960 u_int n; 961 962 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 963 if (1 << n == val) 964 return (n); 965 errx(1, "ilog2: %d is not a power of 2\n", val); 966 } 967