1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if 0 42 #ifndef lint 43 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 44 #endif /* not lint */ 45 #endif 46 #include <sys/cdefs.h> 47 __FBSDID("$FreeBSD$"); 48 49 #define IN_RTLD /* So we pickup the P_OSREL defines */ 50 #include <sys/param.h> 51 #include <sys/disklabel.h> 52 #include <sys/file.h> 53 #include <sys/ioctl.h> 54 #include <sys/mman.h> 55 #include <sys/resource.h> 56 #include <sys/stat.h> 57 #include <sys/wait.h> 58 #include <err.h> 59 #include <grp.h> 60 #include <limits.h> 61 #include <signal.h> 62 #include <stdlib.h> 63 #include <string.h> 64 #include <stdint.h> 65 #include <stdio.h> 66 #include <time.h> 67 #include <unistd.h> 68 #include <ufs/ufs/dinode.h> 69 #include <ufs/ufs/dir.h> 70 #include <ufs/ffs/fs.h> 71 #include "newfs.h" 72 73 /* 74 * make file system for cylinder-group style file systems 75 */ 76 #define UMASK 0755 77 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 78 79 static struct csum *fscs; 80 #define sblock disk.d_fs 81 #define acg disk.d_cg 82 83 union dinode { 84 struct ufs1_dinode dp1; 85 struct ufs2_dinode dp2; 86 }; 87 #define DIP(dp, field) \ 88 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 89 (dp)->dp1.field : (dp)->dp2.field) 90 91 static caddr_t iobuf; 92 static long iobufsize; 93 static ufs2_daddr_t alloc(int size, int mode); 94 static int charsperline(void); 95 static void clrblock(struct fs *, unsigned char *, int); 96 static void fsinit(time_t); 97 static int ilog2(int); 98 static void initcg(int, time_t); 99 static int isblock(struct fs *, unsigned char *, int); 100 static void iput(union dinode *, ino_t); 101 static int makedir(struct direct *, int); 102 static void setblock(struct fs *, unsigned char *, int); 103 static void wtfs(ufs2_daddr_t, int, char *); 104 static u_int32_t newfs_random(void); 105 106 void 107 mkfs(struct partition *pp, char *fsys) 108 { 109 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 110 long i, j, csfrags; 111 uint cg; 112 time_t utime; 113 quad_t sizepb; 114 int width; 115 ino_t maxinum; 116 int minfragsperinode; /* minimum ratio of frags to inodes */ 117 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 118 struct fsrecovery *fsr; 119 char *fsrbuf; 120 union { 121 struct fs fdummy; 122 char cdummy[SBLOCKSIZE]; 123 } dummy; 124 #define fsdummy dummy.fdummy 125 #define chdummy dummy.cdummy 126 127 /* 128 * Our blocks == sector size, and the version of UFS we are using is 129 * specified by Oflag. 130 */ 131 disk.d_bsize = sectorsize; 132 disk.d_ufs = Oflag; 133 if (Rflag) 134 utime = 1000000000; 135 else 136 time(&utime); 137 if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) { 138 printf("Superblock summary info allocation failed.\n"); 139 exit(18); 140 } 141 sblock.fs_old_flags = FS_FLAGS_UPDATED; 142 sblock.fs_flags = 0; 143 if (Uflag) 144 sblock.fs_flags |= FS_DOSOFTDEP; 145 if (Lflag) 146 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 147 if (Jflag) 148 sblock.fs_flags |= FS_GJOURNAL; 149 if (lflag) 150 sblock.fs_flags |= FS_MULTILABEL; 151 if (tflag) 152 sblock.fs_flags |= FS_TRIM; 153 /* 154 * Validate the given file system size. 155 * Verify that its last block can actually be accessed. 156 * Convert to file system fragment sized units. 157 */ 158 if (fssize <= 0) { 159 printf("preposterous size %jd\n", (intmax_t)fssize); 160 exit(13); 161 } 162 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 163 (char *)&sblock); 164 /* 165 * collect and verify the file system density info 166 */ 167 sblock.fs_avgfilesize = avgfilesize; 168 sblock.fs_avgfpdir = avgfilesperdir; 169 if (sblock.fs_avgfilesize <= 0) 170 printf("illegal expected average file size %d\n", 171 sblock.fs_avgfilesize), exit(14); 172 if (sblock.fs_avgfpdir <= 0) 173 printf("illegal expected number of files per directory %d\n", 174 sblock.fs_avgfpdir), exit(15); 175 176 restart: 177 /* 178 * collect and verify the block and fragment sizes 179 */ 180 sblock.fs_bsize = bsize; 181 sblock.fs_fsize = fsize; 182 if (!POWEROF2(sblock.fs_bsize)) { 183 printf("block size must be a power of 2, not %d\n", 184 sblock.fs_bsize); 185 exit(16); 186 } 187 if (!POWEROF2(sblock.fs_fsize)) { 188 printf("fragment size must be a power of 2, not %d\n", 189 sblock.fs_fsize); 190 exit(17); 191 } 192 if (sblock.fs_fsize < sectorsize) { 193 printf("increasing fragment size from %d to sector size (%d)\n", 194 sblock.fs_fsize, sectorsize); 195 sblock.fs_fsize = sectorsize; 196 } 197 if (sblock.fs_bsize > MAXBSIZE) { 198 printf("decreasing block size from %d to maximum (%d)\n", 199 sblock.fs_bsize, MAXBSIZE); 200 sblock.fs_bsize = MAXBSIZE; 201 } 202 if (sblock.fs_bsize < MINBSIZE) { 203 printf("increasing block size from %d to minimum (%d)\n", 204 sblock.fs_bsize, MINBSIZE); 205 sblock.fs_bsize = MINBSIZE; 206 } 207 if (sblock.fs_fsize > MAXBSIZE) { 208 printf("decreasing fragment size from %d to maximum (%d)\n", 209 sblock.fs_fsize, MAXBSIZE); 210 sblock.fs_fsize = MAXBSIZE; 211 } 212 if (sblock.fs_bsize < sblock.fs_fsize) { 213 printf("increasing block size from %d to fragment size (%d)\n", 214 sblock.fs_bsize, sblock.fs_fsize); 215 sblock.fs_bsize = sblock.fs_fsize; 216 } 217 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 218 printf( 219 "increasing fragment size from %d to block size / %d (%d)\n", 220 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 221 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 222 } 223 if (maxbsize == 0) 224 maxbsize = bsize; 225 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 226 sblock.fs_maxbsize = sblock.fs_bsize; 227 printf("Extent size set to %d\n", sblock.fs_maxbsize); 228 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 229 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 230 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 231 } else { 232 sblock.fs_maxbsize = maxbsize; 233 } 234 /* 235 * Maxcontig sets the default for the maximum number of blocks 236 * that may be allocated sequentially. With file system clustering 237 * it is possible to allocate contiguous blocks up to the maximum 238 * transfer size permitted by the controller or buffering. 239 */ 240 if (maxcontig == 0) 241 maxcontig = MAX(1, MAXPHYS / bsize); 242 sblock.fs_maxcontig = maxcontig; 243 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 244 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 245 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 246 } 247 if (sblock.fs_maxcontig > 1) 248 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 249 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 250 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 251 sblock.fs_qbmask = ~sblock.fs_bmask; 252 sblock.fs_qfmask = ~sblock.fs_fmask; 253 sblock.fs_bshift = ilog2(sblock.fs_bsize); 254 sblock.fs_fshift = ilog2(sblock.fs_fsize); 255 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 256 sblock.fs_fragshift = ilog2(sblock.fs_frag); 257 if (sblock.fs_frag > MAXFRAG) { 258 printf("fragment size %d is still too small (can't happen)\n", 259 sblock.fs_bsize / MAXFRAG); 260 exit(21); 261 } 262 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 263 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 264 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 265 266 /* 267 * Before the filesystem is finally initialized, mark it 268 * as incompletely initialized. 269 */ 270 sblock.fs_magic = FS_BAD_MAGIC; 271 272 if (Oflag == 1) { 273 sblock.fs_sblockloc = SBLOCK_UFS1; 274 sblock.fs_sblockactualloc = SBLOCK_UFS1; 275 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 276 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 277 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 278 sizeof(ufs1_daddr_t)); 279 sblock.fs_old_inodefmt = FS_44INODEFMT; 280 sblock.fs_old_cgoffset = 0; 281 sblock.fs_old_cgmask = 0xffffffff; 282 sblock.fs_old_size = sblock.fs_size; 283 sblock.fs_old_rotdelay = 0; 284 sblock.fs_old_rps = 60; 285 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 286 sblock.fs_old_cpg = 1; 287 sblock.fs_old_interleave = 1; 288 sblock.fs_old_trackskew = 0; 289 sblock.fs_old_cpc = 0; 290 sblock.fs_old_postblformat = 1; 291 sblock.fs_old_nrpos = 1; 292 } else { 293 sblock.fs_sblockloc = SBLOCK_UFS2; 294 sblock.fs_sblockactualloc = SBLOCK_UFS2; 295 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 296 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 297 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 298 sizeof(ufs2_daddr_t)); 299 } 300 sblock.fs_sblkno = 301 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 302 sblock.fs_frag); 303 sblock.fs_cblkno = sblock.fs_sblkno + 304 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 305 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 306 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 307 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 308 sizepb *= NINDIR(&sblock); 309 sblock.fs_maxfilesize += sizepb; 310 } 311 312 /* 313 * It's impossible to create a snapshot in case that fs_maxfilesize 314 * is smaller than the fssize. 315 */ 316 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 317 warnx("WARNING: You will be unable to create snapshots on this " 318 "file system. Correct by using a larger blocksize."); 319 } 320 321 /* 322 * Calculate the number of blocks to put into each cylinder group. 323 * 324 * This algorithm selects the number of blocks per cylinder 325 * group. The first goal is to have at least enough data blocks 326 * in each cylinder group to meet the density requirement. Once 327 * this goal is achieved we try to expand to have at least 328 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 329 * pack as many blocks into each cylinder group map as will fit. 330 * 331 * We start by calculating the smallest number of blocks that we 332 * can put into each cylinder group. If this is too big, we reduce 333 * the density until it fits. 334 */ 335 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 336 minfragsperinode = 1 + fssize / maxinum; 337 if (density == 0) { 338 density = MAX(NFPI, minfragsperinode) * fsize; 339 } else if (density < minfragsperinode * fsize) { 340 origdensity = density; 341 density = minfragsperinode * fsize; 342 fprintf(stderr, "density increased from %d to %d\n", 343 origdensity, density); 344 } 345 origdensity = density; 346 for (;;) { 347 fragsperinode = MAX(numfrags(&sblock, density), 1); 348 if (fragsperinode < minfragsperinode) { 349 bsize <<= 1; 350 fsize <<= 1; 351 printf("Block size too small for a file system %s %d\n", 352 "of this size. Increasing blocksize to", bsize); 353 goto restart; 354 } 355 minfpg = fragsperinode * INOPB(&sblock); 356 if (minfpg > sblock.fs_size) 357 minfpg = sblock.fs_size; 358 sblock.fs_ipg = INOPB(&sblock); 359 sblock.fs_fpg = roundup(sblock.fs_iblkno + 360 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 361 if (sblock.fs_fpg < minfpg) 362 sblock.fs_fpg = minfpg; 363 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 364 INOPB(&sblock)); 365 sblock.fs_fpg = roundup(sblock.fs_iblkno + 366 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 367 if (sblock.fs_fpg < minfpg) 368 sblock.fs_fpg = minfpg; 369 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 370 INOPB(&sblock)); 371 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 372 break; 373 density -= sblock.fs_fsize; 374 } 375 if (density != origdensity) 376 printf("density reduced from %d to %d\n", origdensity, density); 377 /* 378 * Start packing more blocks into the cylinder group until 379 * it cannot grow any larger, the number of cylinder groups 380 * drops below MINCYLGRPS, or we reach the size requested. 381 * For UFS1 inodes per cylinder group are stored in an int16_t 382 * so fs_ipg is limited to 2^15 - 1. 383 */ 384 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 385 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 386 INOPB(&sblock)); 387 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 388 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 389 break; 390 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 391 continue; 392 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 393 break; 394 } 395 sblock.fs_fpg -= sblock.fs_frag; 396 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 397 INOPB(&sblock)); 398 break; 399 } 400 /* 401 * Check to be sure that the last cylinder group has enough blocks 402 * to be viable. If it is too small, reduce the number of blocks 403 * per cylinder group which will have the effect of moving more 404 * blocks into the last cylinder group. 405 */ 406 optimalfpg = sblock.fs_fpg; 407 for (;;) { 408 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 409 lastminfpg = roundup(sblock.fs_iblkno + 410 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 411 if (sblock.fs_size < lastminfpg) { 412 printf("Filesystem size %jd < minimum size of %d\n", 413 (intmax_t)sblock.fs_size, lastminfpg); 414 exit(28); 415 } 416 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 417 sblock.fs_size % sblock.fs_fpg == 0) 418 break; 419 sblock.fs_fpg -= sblock.fs_frag; 420 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 421 INOPB(&sblock)); 422 } 423 if (optimalfpg != sblock.fs_fpg) 424 printf("Reduced frags per cylinder group from %d to %d %s\n", 425 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 426 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 427 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 428 if (Oflag == 1) { 429 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 430 sblock.fs_old_nsect = sblock.fs_old_spc; 431 sblock.fs_old_npsect = sblock.fs_old_spc; 432 sblock.fs_old_ncyl = sblock.fs_ncg; 433 } 434 /* 435 * fill in remaining fields of the super block 436 */ 437 sblock.fs_csaddr = cgdmin(&sblock, 0); 438 sblock.fs_cssize = 439 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 440 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 441 if (fscs == NULL) 442 errx(31, "calloc failed"); 443 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 444 if (sblock.fs_sbsize > SBLOCKSIZE) 445 sblock.fs_sbsize = SBLOCKSIZE; 446 if (sblock.fs_sbsize < realsectorsize) 447 sblock.fs_sbsize = realsectorsize; 448 sblock.fs_minfree = minfree; 449 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 450 sblock.fs_metaspace = blknum(&sblock, metaspace); 451 else if (metaspace != -1) 452 /* reserve half of minfree for metadata blocks */ 453 sblock.fs_metaspace = blknum(&sblock, 454 (sblock.fs_fpg * minfree) / 200); 455 if (maxbpg == 0) 456 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 457 else 458 sblock.fs_maxbpg = maxbpg; 459 sblock.fs_optim = opt; 460 sblock.fs_cgrotor = 0; 461 sblock.fs_pendingblocks = 0; 462 sblock.fs_pendinginodes = 0; 463 sblock.fs_fmod = 0; 464 sblock.fs_ronly = 0; 465 sblock.fs_state = 0; 466 sblock.fs_clean = 1; 467 sblock.fs_id[0] = (long)utime; 468 sblock.fs_id[1] = newfs_random(); 469 sblock.fs_fsmnt[0] = '\0'; 470 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 471 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 472 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 473 sblock.fs_cstotal.cs_nbfree = 474 fragstoblks(&sblock, sblock.fs_dsize) - 475 howmany(csfrags, sblock.fs_frag); 476 sblock.fs_cstotal.cs_nffree = 477 fragnum(&sblock, sblock.fs_size) + 478 (fragnum(&sblock, csfrags) > 0 ? 479 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 480 sblock.fs_cstotal.cs_nifree = 481 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 482 sblock.fs_cstotal.cs_ndir = 0; 483 sblock.fs_dsize -= csfrags; 484 sblock.fs_time = utime; 485 if (Oflag == 1) { 486 sblock.fs_old_time = utime; 487 sblock.fs_old_dsize = sblock.fs_dsize; 488 sblock.fs_old_csaddr = sblock.fs_csaddr; 489 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 490 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 491 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 492 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 493 } 494 /* 495 * Set flags for metadata that is being check-hashed. 496 * 497 * Metadata check hashes are not supported in the UFS version 1 498 * filesystem to keep it as small and simple as possible. 499 */ 500 if (Oflag > 1) { 501 sblock.fs_flags |= FS_METACKHASH; 502 if (getosreldate() >= P_OSREL_CK_CYLGRP) 503 sblock.fs_metackhash |= CK_CYLGRP; 504 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 505 sblock.fs_metackhash |= CK_SUPERBLOCK; 506 if (getosreldate() >= P_OSREL_CK_INODE) 507 sblock.fs_metackhash |= CK_INODE; 508 } 509 510 /* 511 * Dump out summary information about file system. 512 */ 513 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 514 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 515 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 516 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 517 sblock.fs_fsize); 518 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 519 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 520 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 521 if (sblock.fs_flags & FS_DOSOFTDEP) 522 printf("\twith soft updates\n"); 523 # undef B2MBFACTOR 524 525 if (Eflag && !Nflag) { 526 printf("Erasing sectors [%jd...%jd]\n", 527 sblock.fs_sblockloc / disk.d_bsize, 528 fsbtodb(&sblock, sblock.fs_size) - 1); 529 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 530 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 531 } 532 /* 533 * Wipe out old UFS1 superblock(s) if necessary. 534 */ 535 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 536 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 537 SBLOCKSIZE); 538 if (i == -1) 539 err(1, "can't read old UFS1 superblock: %s", 540 disk.d_error); 541 542 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 543 fsdummy.fs_magic = 0; 544 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 545 chdummy, SBLOCKSIZE); 546 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 547 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 548 fssize) 549 break; 550 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 551 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 552 } 553 } 554 } 555 /* 556 * Reference the summary information so it will also be written. 557 */ 558 sblock.fs_csp = fscs; 559 if (!Nflag && sbput(disk.d_fd, &disk.d_fs, 0) != 0) 560 err(1, "sbput: %s", disk.d_error); 561 if (Xflag == 1) { 562 printf("** Exiting on Xflag 1\n"); 563 exit(0); 564 } 565 if (Xflag == 2) 566 printf("** Leaving BAD MAGIC on Xflag 2\n"); 567 else 568 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 569 570 /* 571 * Now build the cylinders group blocks and 572 * then print out indices of cylinder groups. 573 */ 574 printf("super-block backups (for fsck_ffs -b #) at:\n"); 575 i = 0; 576 width = charsperline(); 577 /* 578 * Allocate space for two sets of inode blocks. 579 */ 580 iobufsize = 2 * sblock.fs_bsize; 581 if ((iobuf = calloc(1, iobufsize)) == 0) { 582 printf("Cannot allocate I/O buffer\n"); 583 exit(38); 584 } 585 /* 586 * Write out all the cylinder groups and backup superblocks. 587 */ 588 for (cg = 0; cg < sblock.fs_ncg; cg++) { 589 if (!Nflag) 590 initcg(cg, utime); 591 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 592 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 593 cg < (sblock.fs_ncg-1) ? "," : ""); 594 if (j < 0) 595 tmpbuf[j = 0] = '\0'; 596 if (i + j >= width) { 597 printf("\n"); 598 i = 0; 599 } 600 i += j; 601 printf("%s", tmpbuf); 602 fflush(stdout); 603 } 604 printf("\n"); 605 if (Nflag) 606 exit(0); 607 /* 608 * Now construct the initial file system, 609 * then write out the super-block. 610 */ 611 fsinit(utime); 612 if (Oflag == 1) { 613 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 614 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 615 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 616 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 617 } 618 if (Xflag == 3) { 619 printf("** Exiting on Xflag 3\n"); 620 exit(0); 621 } 622 if (sbput(disk.d_fd, &disk.d_fs, 0) != 0) 623 err(1, "sbput: %s", disk.d_error); 624 /* 625 * For UFS1 filesystems with a blocksize of 64K, the first 626 * alternate superblock resides at the location used for 627 * the default UFS2 superblock. As there is a valid 628 * superblock at this location, the boot code will use 629 * it as its first choice. Thus we have to ensure that 630 * all of its statistcs on usage are correct. 631 */ 632 if (Oflag == 1 && sblock.fs_bsize == 65536) 633 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 634 sblock.fs_bsize, (char *)&sblock); 635 /* 636 * Read the last sector of the boot block, replace the last 637 * 20 bytes with the recovery information, then write it back. 638 * The recovery information only works for UFS2 filesystems. 639 */ 640 if (sblock.fs_magic == FS_UFS2_MAGIC) { 641 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 642 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 643 fsrbuf, realsectorsize) == -1) 644 err(1, "can't read recovery area: %s", disk.d_error); 645 fsr = 646 (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 647 fsr->fsr_magic = sblock.fs_magic; 648 fsr->fsr_fpg = sblock.fs_fpg; 649 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 650 fsr->fsr_sblkno = sblock.fs_sblkno; 651 fsr->fsr_ncg = sblock.fs_ncg; 652 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 653 realsectorsize, fsrbuf); 654 free(fsrbuf); 655 } 656 /* 657 * Update information about this partition in pack 658 * label, to that it may be updated on disk. 659 */ 660 if (pp != NULL) { 661 pp->p_fstype = FS_BSDFFS; 662 pp->p_fsize = sblock.fs_fsize; 663 pp->p_frag = sblock.fs_frag; 664 pp->p_cpg = sblock.fs_fpg; 665 } 666 } 667 668 /* 669 * Initialize a cylinder group. 670 */ 671 void 672 initcg(int cylno, time_t utime) 673 { 674 long blkno, start; 675 off_t savedactualloc; 676 uint i, j, d, dlower, dupper; 677 ufs2_daddr_t cbase, dmax; 678 struct ufs1_dinode *dp1; 679 struct ufs2_dinode *dp2; 680 struct csum *cs; 681 682 /* 683 * Determine block bounds for cylinder group. 684 * Allow space for super block summary information in first 685 * cylinder group. 686 */ 687 cbase = cgbase(&sblock, cylno); 688 dmax = cbase + sblock.fs_fpg; 689 if (dmax > sblock.fs_size) 690 dmax = sblock.fs_size; 691 dlower = cgsblock(&sblock, cylno) - cbase; 692 dupper = cgdmin(&sblock, cylno) - cbase; 693 if (cylno == 0) 694 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 695 cs = &fscs[cylno]; 696 memset(&acg, 0, sblock.fs_cgsize); 697 acg.cg_time = utime; 698 acg.cg_magic = CG_MAGIC; 699 acg.cg_cgx = cylno; 700 acg.cg_niblk = sblock.fs_ipg; 701 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 702 acg.cg_ndblk = dmax - cbase; 703 if (sblock.fs_contigsumsize > 0) 704 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 705 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 706 if (Oflag == 2) { 707 acg.cg_iusedoff = start; 708 } else { 709 acg.cg_old_ncyl = sblock.fs_old_cpg; 710 acg.cg_old_time = acg.cg_time; 711 acg.cg_time = 0; 712 acg.cg_old_niblk = acg.cg_niblk; 713 acg.cg_niblk = 0; 714 acg.cg_initediblk = 0; 715 acg.cg_old_btotoff = start; 716 acg.cg_old_boff = acg.cg_old_btotoff + 717 sblock.fs_old_cpg * sizeof(int32_t); 718 acg.cg_iusedoff = acg.cg_old_boff + 719 sblock.fs_old_cpg * sizeof(u_int16_t); 720 } 721 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 722 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 723 if (sblock.fs_contigsumsize > 0) { 724 acg.cg_clustersumoff = 725 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 726 acg.cg_clustersumoff -= sizeof(u_int32_t); 727 acg.cg_clusteroff = acg.cg_clustersumoff + 728 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 729 acg.cg_nextfreeoff = acg.cg_clusteroff + 730 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 731 } 732 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 733 printf("Panic: cylinder group too big\n"); 734 exit(37); 735 } 736 acg.cg_cs.cs_nifree += sblock.fs_ipg; 737 if (cylno == 0) 738 for (i = 0; i < (long)UFS_ROOTINO; i++) { 739 setbit(cg_inosused(&acg), i); 740 acg.cg_cs.cs_nifree--; 741 } 742 if (cylno > 0) { 743 /* 744 * In cylno 0, beginning space is reserved 745 * for boot and super blocks. 746 */ 747 for (d = 0; d < dlower; d += sblock.fs_frag) { 748 blkno = d / sblock.fs_frag; 749 setblock(&sblock, cg_blksfree(&acg), blkno); 750 if (sblock.fs_contigsumsize > 0) 751 setbit(cg_clustersfree(&acg), blkno); 752 acg.cg_cs.cs_nbfree++; 753 } 754 } 755 if ((i = dupper % sblock.fs_frag)) { 756 acg.cg_frsum[sblock.fs_frag - i]++; 757 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 758 setbit(cg_blksfree(&acg), dupper); 759 acg.cg_cs.cs_nffree++; 760 } 761 } 762 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 763 d += sblock.fs_frag) { 764 blkno = d / sblock.fs_frag; 765 setblock(&sblock, cg_blksfree(&acg), blkno); 766 if (sblock.fs_contigsumsize > 0) 767 setbit(cg_clustersfree(&acg), blkno); 768 acg.cg_cs.cs_nbfree++; 769 } 770 if (d < acg.cg_ndblk) { 771 acg.cg_frsum[acg.cg_ndblk - d]++; 772 for (; d < acg.cg_ndblk; d++) { 773 setbit(cg_blksfree(&acg), d); 774 acg.cg_cs.cs_nffree++; 775 } 776 } 777 if (sblock.fs_contigsumsize > 0) { 778 int32_t *sump = cg_clustersum(&acg); 779 u_char *mapp = cg_clustersfree(&acg); 780 int map = *mapp++; 781 int bit = 1; 782 int run = 0; 783 784 for (i = 0; i < acg.cg_nclusterblks; i++) { 785 if ((map & bit) != 0) 786 run++; 787 else if (run != 0) { 788 if (run > sblock.fs_contigsumsize) 789 run = sblock.fs_contigsumsize; 790 sump[run]++; 791 run = 0; 792 } 793 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 794 bit <<= 1; 795 else { 796 map = *mapp++; 797 bit = 1; 798 } 799 } 800 if (run != 0) { 801 if (run > sblock.fs_contigsumsize) 802 run = sblock.fs_contigsumsize; 803 sump[run]++; 804 } 805 } 806 *cs = acg.cg_cs; 807 /* 808 * Write out the duplicate super block. Then write the cylinder 809 * group map and two blocks worth of inodes in a single write. 810 */ 811 savedactualloc = sblock.fs_sblockactualloc; 812 sblock.fs_sblockactualloc = 813 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 814 if (sbput(disk.d_fd, &disk.d_fs, 0) != 0) 815 err(1, "sbput: %s", disk.d_error); 816 sblock.fs_sblockactualloc = savedactualloc; 817 if (cgput(&disk, &acg) != 0) 818 err(1, "initcg: cgput: %s", disk.d_error); 819 start = 0; 820 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 821 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 822 for (i = 0; i < acg.cg_initediblk; i++) { 823 if (sblock.fs_magic == FS_UFS1_MAGIC) { 824 dp1->di_gen = newfs_random(); 825 dp1++; 826 } else { 827 dp2->di_gen = newfs_random(); 828 dp2++; 829 } 830 } 831 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 832 /* 833 * For the old file system, we have to initialize all the inodes. 834 */ 835 if (Oflag == 1) { 836 for (i = 2 * sblock.fs_frag; 837 i < sblock.fs_ipg / INOPF(&sblock); 838 i += sblock.fs_frag) { 839 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 840 for (j = 0; j < INOPB(&sblock); j++) { 841 dp1->di_gen = newfs_random(); 842 dp1++; 843 } 844 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 845 sblock.fs_bsize, &iobuf[start]); 846 } 847 } 848 } 849 850 /* 851 * initialize the file system 852 */ 853 #define ROOTLINKCNT 3 854 855 static struct direct root_dir[] = { 856 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 857 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 858 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 859 }; 860 861 #define SNAPLINKCNT 2 862 863 static struct direct snap_dir[] = { 864 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 865 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 866 }; 867 868 void 869 fsinit(time_t utime) 870 { 871 union dinode node; 872 struct group *grp; 873 gid_t gid; 874 int entries; 875 876 memset(&node, 0, sizeof node); 877 if ((grp = getgrnam("operator")) != NULL) { 878 gid = grp->gr_gid; 879 } else { 880 warnx("Cannot retrieve operator gid, using gid 0."); 881 gid = 0; 882 } 883 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 884 if (sblock.fs_magic == FS_UFS1_MAGIC) { 885 /* 886 * initialize the node 887 */ 888 node.dp1.di_atime = utime; 889 node.dp1.di_mtime = utime; 890 node.dp1.di_ctime = utime; 891 /* 892 * create the root directory 893 */ 894 node.dp1.di_mode = IFDIR | UMASK; 895 node.dp1.di_nlink = entries; 896 node.dp1.di_size = makedir(root_dir, entries); 897 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 898 node.dp1.di_blocks = 899 btodb(fragroundup(&sblock, node.dp1.di_size)); 900 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 901 iobuf); 902 iput(&node, UFS_ROOTINO); 903 if (!nflag) { 904 /* 905 * create the .snap directory 906 */ 907 node.dp1.di_mode |= 020; 908 node.dp1.di_gid = gid; 909 node.dp1.di_nlink = SNAPLINKCNT; 910 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 911 node.dp1.di_db[0] = 912 alloc(sblock.fs_fsize, node.dp1.di_mode); 913 node.dp1.di_blocks = 914 btodb(fragroundup(&sblock, node.dp1.di_size)); 915 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 916 sblock.fs_fsize, iobuf); 917 iput(&node, UFS_ROOTINO + 1); 918 } 919 } else { 920 /* 921 * initialize the node 922 */ 923 node.dp2.di_atime = utime; 924 node.dp2.di_mtime = utime; 925 node.dp2.di_ctime = utime; 926 node.dp2.di_birthtime = utime; 927 /* 928 * create the root directory 929 */ 930 node.dp2.di_mode = IFDIR | UMASK; 931 node.dp2.di_nlink = entries; 932 node.dp2.di_size = makedir(root_dir, entries); 933 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 934 node.dp2.di_blocks = 935 btodb(fragroundup(&sblock, node.dp2.di_size)); 936 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 937 iobuf); 938 iput(&node, UFS_ROOTINO); 939 if (!nflag) { 940 /* 941 * create the .snap directory 942 */ 943 node.dp2.di_mode |= 020; 944 node.dp2.di_gid = gid; 945 node.dp2.di_nlink = SNAPLINKCNT; 946 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 947 node.dp2.di_db[0] = 948 alloc(sblock.fs_fsize, node.dp2.di_mode); 949 node.dp2.di_blocks = 950 btodb(fragroundup(&sblock, node.dp2.di_size)); 951 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 952 sblock.fs_fsize, iobuf); 953 iput(&node, UFS_ROOTINO + 1); 954 } 955 } 956 } 957 958 /* 959 * construct a set of directory entries in "iobuf". 960 * return size of directory. 961 */ 962 int 963 makedir(struct direct *protodir, int entries) 964 { 965 char *cp; 966 int i, spcleft; 967 968 spcleft = DIRBLKSIZ; 969 memset(iobuf, 0, DIRBLKSIZ); 970 for (cp = iobuf, i = 0; i < entries - 1; i++) { 971 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 972 memmove(cp, &protodir[i], protodir[i].d_reclen); 973 cp += protodir[i].d_reclen; 974 spcleft -= protodir[i].d_reclen; 975 } 976 protodir[i].d_reclen = spcleft; 977 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 978 return (DIRBLKSIZ); 979 } 980 981 /* 982 * allocate a block or frag 983 */ 984 ufs2_daddr_t 985 alloc(int size, int mode) 986 { 987 int i, blkno, frag; 988 uint d; 989 990 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 991 sblock.fs_cgsize); 992 if (acg.cg_magic != CG_MAGIC) { 993 printf("cg 0: bad magic number\n"); 994 exit(38); 995 } 996 if (acg.cg_cs.cs_nbfree == 0) { 997 printf("first cylinder group ran out of space\n"); 998 exit(39); 999 } 1000 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1001 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1002 goto goth; 1003 printf("internal error: can't find block in cyl 0\n"); 1004 exit(40); 1005 goth: 1006 blkno = fragstoblks(&sblock, d); 1007 clrblock(&sblock, cg_blksfree(&acg), blkno); 1008 if (sblock.fs_contigsumsize > 0) 1009 clrbit(cg_clustersfree(&acg), blkno); 1010 acg.cg_cs.cs_nbfree--; 1011 sblock.fs_cstotal.cs_nbfree--; 1012 fscs[0].cs_nbfree--; 1013 if (mode & IFDIR) { 1014 acg.cg_cs.cs_ndir++; 1015 sblock.fs_cstotal.cs_ndir++; 1016 fscs[0].cs_ndir++; 1017 } 1018 if (size != sblock.fs_bsize) { 1019 frag = howmany(size, sblock.fs_fsize); 1020 fscs[0].cs_nffree += sblock.fs_frag - frag; 1021 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1022 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1023 acg.cg_frsum[sblock.fs_frag - frag]++; 1024 for (i = frag; i < sblock.fs_frag; i++) 1025 setbit(cg_blksfree(&acg), d + i); 1026 } 1027 if (cgput(&disk, &acg) != 0) 1028 err(1, "alloc: cgput: %s", disk.d_error); 1029 return ((ufs2_daddr_t)d); 1030 } 1031 1032 /* 1033 * Allocate an inode on the disk 1034 */ 1035 void 1036 iput(union dinode *ip, ino_t ino) 1037 { 1038 union dinodep dp; 1039 1040 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1041 sblock.fs_cgsize); 1042 if (acg.cg_magic != CG_MAGIC) { 1043 printf("cg 0: bad magic number\n"); 1044 exit(31); 1045 } 1046 acg.cg_cs.cs_nifree--; 1047 setbit(cg_inosused(&acg), ino); 1048 if (cgput(&disk, &acg) != 0) 1049 err(1, "iput: cgput: %s", disk.d_error); 1050 sblock.fs_cstotal.cs_nifree--; 1051 fscs[0].cs_nifree--; 1052 if (getinode(&disk, &dp, ino) == -1) { 1053 printf("iput: %s\n", disk.d_error); 1054 exit(32); 1055 } 1056 if (sblock.fs_magic == FS_UFS1_MAGIC) 1057 *dp.dp1 = ip->dp1; 1058 else 1059 *dp.dp2 = ip->dp2; 1060 putinode(&disk); 1061 } 1062 1063 /* 1064 * possibly write to disk 1065 */ 1066 static void 1067 wtfs(ufs2_daddr_t bno, int size, char *bf) 1068 { 1069 if (Nflag) 1070 return; 1071 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1072 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1073 } 1074 1075 /* 1076 * check if a block is available 1077 */ 1078 static int 1079 isblock(struct fs *fs, unsigned char *cp, int h) 1080 { 1081 unsigned char mask; 1082 1083 switch (fs->fs_frag) { 1084 case 8: 1085 return (cp[h] == 0xff); 1086 case 4: 1087 mask = 0x0f << ((h & 0x1) << 2); 1088 return ((cp[h >> 1] & mask) == mask); 1089 case 2: 1090 mask = 0x03 << ((h & 0x3) << 1); 1091 return ((cp[h >> 2] & mask) == mask); 1092 case 1: 1093 mask = 0x01 << (h & 0x7); 1094 return ((cp[h >> 3] & mask) == mask); 1095 default: 1096 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1097 return (0); 1098 } 1099 } 1100 1101 /* 1102 * take a block out of the map 1103 */ 1104 static void 1105 clrblock(struct fs *fs, unsigned char *cp, int h) 1106 { 1107 switch ((fs)->fs_frag) { 1108 case 8: 1109 cp[h] = 0; 1110 return; 1111 case 4: 1112 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1113 return; 1114 case 2: 1115 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1116 return; 1117 case 1: 1118 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1119 return; 1120 default: 1121 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1122 return; 1123 } 1124 } 1125 1126 /* 1127 * put a block into the map 1128 */ 1129 static void 1130 setblock(struct fs *fs, unsigned char *cp, int h) 1131 { 1132 switch (fs->fs_frag) { 1133 case 8: 1134 cp[h] = 0xff; 1135 return; 1136 case 4: 1137 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1138 return; 1139 case 2: 1140 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1141 return; 1142 case 1: 1143 cp[h >> 3] |= (0x01 << (h & 0x7)); 1144 return; 1145 default: 1146 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1147 return; 1148 } 1149 } 1150 1151 /* 1152 * Determine the number of characters in a 1153 * single line. 1154 */ 1155 1156 static int 1157 charsperline(void) 1158 { 1159 int columns; 1160 char *cp; 1161 struct winsize ws; 1162 1163 columns = 0; 1164 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1165 columns = ws.ws_col; 1166 if (columns == 0 && (cp = getenv("COLUMNS"))) 1167 columns = atoi(cp); 1168 if (columns == 0) 1169 columns = 80; /* last resort */ 1170 return (columns); 1171 } 1172 1173 static int 1174 ilog2(int val) 1175 { 1176 u_int n; 1177 1178 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1179 if (1 << n == val) 1180 return (n); 1181 errx(1, "ilog2: %d is not a power of 2\n", val); 1182 } 1183 1184 /* 1185 * For the regression test, return predictable random values. 1186 * Otherwise use a true random number generator. 1187 */ 1188 static u_int32_t 1189 newfs_random(void) 1190 { 1191 static int nextnum = 1; 1192 1193 if (Rflag) 1194 return (nextnum++); 1195 return (arc4random()); 1196 } 1197