1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <sys/param.h> 48 #include <sys/disklabel.h> 49 #include <sys/file.h> 50 #include <sys/ioctl.h> 51 #include <sys/mman.h> 52 #include <sys/resource.h> 53 #include <sys/stat.h> 54 #include <sys/wait.h> 55 #include <err.h> 56 #include <grp.h> 57 #include <limits.h> 58 #include <signal.h> 59 #include <stdlib.h> 60 #include <string.h> 61 #include <stdint.h> 62 #include <stdio.h> 63 #include <time.h> 64 #include <unistd.h> 65 #include <ufs/ufs/dinode.h> 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ffs/fs.h> 68 #include "newfs.h" 69 70 /* 71 * make file system for cylinder-group style file systems 72 */ 73 #define UMASK 0755 74 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 75 76 static struct csum *fscs; 77 #define sblock disk.d_fs 78 #define acg disk.d_cg 79 80 union dinode { 81 struct ufs1_dinode dp1; 82 struct ufs2_dinode dp2; 83 }; 84 #define DIP(dp, field) \ 85 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 86 (dp)->dp1.field : (dp)->dp2.field) 87 88 static caddr_t iobuf; 89 static long iobufsize; 90 static ufs2_daddr_t alloc(int size, int mode); 91 static int charsperline(void); 92 static void clrblock(struct fs *, unsigned char *, int); 93 static void fsinit(time_t); 94 static int ilog2(int); 95 static void initcg(int, time_t); 96 static int isblock(struct fs *, unsigned char *, int); 97 static void iput(union dinode *, ino_t); 98 static int makedir(struct direct *, int); 99 static void setblock(struct fs *, unsigned char *, int); 100 static void wtfs(ufs2_daddr_t, int, char *); 101 static u_int32_t newfs_random(void); 102 103 static int 104 do_sbwrite(struct uufsd *disk) 105 { 106 if (!disk->d_sblock) 107 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 108 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 109 disk->d_sblock) * disk->d_bsize))); 110 } 111 112 void 113 mkfs(struct partition *pp, char *fsys) 114 { 115 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 116 long i, j, csfrags; 117 uint cg; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 ino_t maxinum; 122 int minfragsperinode; /* minimum ratio of frags to inodes */ 123 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 124 union { 125 struct fs fdummy; 126 char cdummy[SBLOCKSIZE]; 127 } dummy; 128 #define fsdummy dummy.fdummy 129 #define chdummy dummy.cdummy 130 131 /* 132 * Our blocks == sector size, and the version of UFS we are using is 133 * specified by Oflag. 134 */ 135 disk.d_bsize = sectorsize; 136 disk.d_ufs = Oflag; 137 if (Rflag) 138 utime = 1000000000; 139 else 140 time(&utime); 141 sblock.fs_old_flags = FS_FLAGS_UPDATED; 142 sblock.fs_flags = 0; 143 if (Uflag) 144 sblock.fs_flags |= FS_DOSOFTDEP; 145 if (Lflag) 146 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 147 if (Jflag) 148 sblock.fs_flags |= FS_GJOURNAL; 149 if (lflag) 150 sblock.fs_flags |= FS_MULTILABEL; 151 if (tflag) 152 sblock.fs_flags |= FS_TRIM; 153 /* 154 * Validate the given file system size. 155 * Verify that its last block can actually be accessed. 156 * Convert to file system fragment sized units. 157 */ 158 if (fssize <= 0) { 159 printf("preposterous size %jd\n", (intmax_t)fssize); 160 exit(13); 161 } 162 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 163 (char *)&sblock); 164 /* 165 * collect and verify the file system density info 166 */ 167 sblock.fs_avgfilesize = avgfilesize; 168 sblock.fs_avgfpdir = avgfilesperdir; 169 if (sblock.fs_avgfilesize <= 0) 170 printf("illegal expected average file size %d\n", 171 sblock.fs_avgfilesize), exit(14); 172 if (sblock.fs_avgfpdir <= 0) 173 printf("illegal expected number of files per directory %d\n", 174 sblock.fs_avgfpdir), exit(15); 175 176 restart: 177 /* 178 * collect and verify the block and fragment sizes 179 */ 180 sblock.fs_bsize = bsize; 181 sblock.fs_fsize = fsize; 182 if (!POWEROF2(sblock.fs_bsize)) { 183 printf("block size must be a power of 2, not %d\n", 184 sblock.fs_bsize); 185 exit(16); 186 } 187 if (!POWEROF2(sblock.fs_fsize)) { 188 printf("fragment size must be a power of 2, not %d\n", 189 sblock.fs_fsize); 190 exit(17); 191 } 192 if (sblock.fs_fsize < sectorsize) { 193 printf("increasing fragment size from %d to sector size (%d)\n", 194 sblock.fs_fsize, sectorsize); 195 sblock.fs_fsize = sectorsize; 196 } 197 if (sblock.fs_bsize > MAXBSIZE) { 198 printf("decreasing block size from %d to maximum (%d)\n", 199 sblock.fs_bsize, MAXBSIZE); 200 sblock.fs_bsize = MAXBSIZE; 201 } 202 if (sblock.fs_bsize < MINBSIZE) { 203 printf("increasing block size from %d to minimum (%d)\n", 204 sblock.fs_bsize, MINBSIZE); 205 sblock.fs_bsize = MINBSIZE; 206 } 207 if (sblock.fs_fsize > MAXBSIZE) { 208 printf("decreasing fragment size from %d to maximum (%d)\n", 209 sblock.fs_fsize, MAXBSIZE); 210 sblock.fs_fsize = MAXBSIZE; 211 } 212 if (sblock.fs_bsize < sblock.fs_fsize) { 213 printf("increasing block size from %d to fragment size (%d)\n", 214 sblock.fs_bsize, sblock.fs_fsize); 215 sblock.fs_bsize = sblock.fs_fsize; 216 } 217 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 218 printf( 219 "increasing fragment size from %d to block size / %d (%d)\n", 220 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 221 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 222 } 223 if (maxbsize == 0) 224 maxbsize = bsize; 225 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 226 sblock.fs_maxbsize = sblock.fs_bsize; 227 printf("Extent size set to %d\n", sblock.fs_maxbsize); 228 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 229 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 230 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 231 } else { 232 sblock.fs_maxbsize = maxbsize; 233 } 234 /* 235 * Maxcontig sets the default for the maximum number of blocks 236 * that may be allocated sequentially. With file system clustering 237 * it is possible to allocate contiguous blocks up to the maximum 238 * transfer size permitted by the controller or buffering. 239 */ 240 if (maxcontig == 0) 241 maxcontig = MAX(1, MAXPHYS / bsize); 242 sblock.fs_maxcontig = maxcontig; 243 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 244 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 245 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 246 } 247 if (sblock.fs_maxcontig > 1) 248 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 249 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 250 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 251 sblock.fs_qbmask = ~sblock.fs_bmask; 252 sblock.fs_qfmask = ~sblock.fs_fmask; 253 sblock.fs_bshift = ilog2(sblock.fs_bsize); 254 sblock.fs_fshift = ilog2(sblock.fs_fsize); 255 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 256 sblock.fs_fragshift = ilog2(sblock.fs_frag); 257 if (sblock.fs_frag > MAXFRAG) { 258 printf("fragment size %d is still too small (can't happen)\n", 259 sblock.fs_bsize / MAXFRAG); 260 exit(21); 261 } 262 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 263 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 264 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 265 266 /* 267 * Before the filesystem is finally initialized, mark it 268 * as incompletely initialized. 269 */ 270 sblock.fs_magic = FS_BAD_MAGIC; 271 272 if (Oflag == 1) { 273 sblock.fs_sblockloc = SBLOCK_UFS1; 274 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 275 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 276 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 277 sizeof(ufs1_daddr_t)); 278 sblock.fs_old_inodefmt = FS_44INODEFMT; 279 sblock.fs_old_cgoffset = 0; 280 sblock.fs_old_cgmask = 0xffffffff; 281 sblock.fs_old_size = sblock.fs_size; 282 sblock.fs_old_rotdelay = 0; 283 sblock.fs_old_rps = 60; 284 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 285 sblock.fs_old_cpg = 1; 286 sblock.fs_old_interleave = 1; 287 sblock.fs_old_trackskew = 0; 288 sblock.fs_old_cpc = 0; 289 sblock.fs_old_postblformat = 1; 290 sblock.fs_old_nrpos = 1; 291 } else { 292 sblock.fs_sblockloc = SBLOCK_UFS2; 293 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 294 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 295 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 296 sizeof(ufs2_daddr_t)); 297 } 298 sblock.fs_sblkno = 299 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 300 sblock.fs_frag); 301 sblock.fs_cblkno = sblock.fs_sblkno + 302 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 303 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 304 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 305 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 306 sizepb *= NINDIR(&sblock); 307 sblock.fs_maxfilesize += sizepb; 308 } 309 310 /* 311 * It's impossible to create a snapshot in case that fs_maxfilesize 312 * is smaller than the fssize. 313 */ 314 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 315 warnx("WARNING: You will be unable to create snapshots on this " 316 "file system. Correct by using a larger blocksize."); 317 } 318 319 /* 320 * Calculate the number of blocks to put into each cylinder group. 321 * 322 * This algorithm selects the number of blocks per cylinder 323 * group. The first goal is to have at least enough data blocks 324 * in each cylinder group to meet the density requirement. Once 325 * this goal is achieved we try to expand to have at least 326 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 327 * pack as many blocks into each cylinder group map as will fit. 328 * 329 * We start by calculating the smallest number of blocks that we 330 * can put into each cylinder group. If this is too big, we reduce 331 * the density until it fits. 332 */ 333 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 334 minfragsperinode = 1 + fssize / maxinum; 335 if (density == 0) { 336 density = MAX(NFPI, minfragsperinode) * fsize; 337 } else if (density < minfragsperinode * fsize) { 338 origdensity = density; 339 density = minfragsperinode * fsize; 340 fprintf(stderr, "density increased from %d to %d\n", 341 origdensity, density); 342 } 343 origdensity = density; 344 for (;;) { 345 fragsperinode = MAX(numfrags(&sblock, density), 1); 346 if (fragsperinode < minfragsperinode) { 347 bsize <<= 1; 348 fsize <<= 1; 349 printf("Block size too small for a file system %s %d\n", 350 "of this size. Increasing blocksize to", bsize); 351 goto restart; 352 } 353 minfpg = fragsperinode * INOPB(&sblock); 354 if (minfpg > sblock.fs_size) 355 minfpg = sblock.fs_size; 356 sblock.fs_ipg = INOPB(&sblock); 357 sblock.fs_fpg = roundup(sblock.fs_iblkno + 358 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 359 if (sblock.fs_fpg < minfpg) 360 sblock.fs_fpg = minfpg; 361 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 362 INOPB(&sblock)); 363 sblock.fs_fpg = roundup(sblock.fs_iblkno + 364 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 365 if (sblock.fs_fpg < minfpg) 366 sblock.fs_fpg = minfpg; 367 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 368 INOPB(&sblock)); 369 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 370 break; 371 density -= sblock.fs_fsize; 372 } 373 if (density != origdensity) 374 printf("density reduced from %d to %d\n", origdensity, density); 375 /* 376 * Start packing more blocks into the cylinder group until 377 * it cannot grow any larger, the number of cylinder groups 378 * drops below MINCYLGRPS, or we reach the size requested. 379 * For UFS1 inodes per cylinder group are stored in an int16_t 380 * so fs_ipg is limited to 2^15 - 1. 381 */ 382 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 383 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 384 INOPB(&sblock)); 385 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 386 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 387 break; 388 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 389 continue; 390 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 391 break; 392 } 393 sblock.fs_fpg -= sblock.fs_frag; 394 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 395 INOPB(&sblock)); 396 break; 397 } 398 /* 399 * Check to be sure that the last cylinder group has enough blocks 400 * to be viable. If it is too small, reduce the number of blocks 401 * per cylinder group which will have the effect of moving more 402 * blocks into the last cylinder group. 403 */ 404 optimalfpg = sblock.fs_fpg; 405 for (;;) { 406 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 407 lastminfpg = roundup(sblock.fs_iblkno + 408 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 409 if (sblock.fs_size < lastminfpg) { 410 printf("Filesystem size %jd < minimum size of %d\n", 411 (intmax_t)sblock.fs_size, lastminfpg); 412 exit(28); 413 } 414 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 415 sblock.fs_size % sblock.fs_fpg == 0) 416 break; 417 sblock.fs_fpg -= sblock.fs_frag; 418 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 419 INOPB(&sblock)); 420 } 421 if (optimalfpg != sblock.fs_fpg) 422 printf("Reduced frags per cylinder group from %d to %d %s\n", 423 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 424 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 425 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 426 if (Oflag == 1) { 427 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 428 sblock.fs_old_nsect = sblock.fs_old_spc; 429 sblock.fs_old_npsect = sblock.fs_old_spc; 430 sblock.fs_old_ncyl = sblock.fs_ncg; 431 } 432 /* 433 * fill in remaining fields of the super block 434 */ 435 sblock.fs_csaddr = cgdmin(&sblock, 0); 436 sblock.fs_cssize = 437 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 438 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 439 if (fscs == NULL) 440 errx(31, "calloc failed"); 441 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 442 if (sblock.fs_sbsize > SBLOCKSIZE) 443 sblock.fs_sbsize = SBLOCKSIZE; 444 sblock.fs_minfree = minfree; 445 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 446 sblock.fs_metaspace = blknum(&sblock, metaspace); 447 else if (metaspace != -1) 448 /* reserve half of minfree for metadata blocks */ 449 sblock.fs_metaspace = blknum(&sblock, 450 (sblock.fs_fpg * minfree) / 200); 451 if (maxbpg == 0) 452 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 453 else 454 sblock.fs_maxbpg = maxbpg; 455 sblock.fs_optim = opt; 456 sblock.fs_cgrotor = 0; 457 sblock.fs_pendingblocks = 0; 458 sblock.fs_pendinginodes = 0; 459 sblock.fs_fmod = 0; 460 sblock.fs_ronly = 0; 461 sblock.fs_state = 0; 462 sblock.fs_clean = 1; 463 sblock.fs_id[0] = (long)utime; 464 sblock.fs_id[1] = newfs_random(); 465 sblock.fs_fsmnt[0] = '\0'; 466 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 467 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 468 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 469 sblock.fs_cstotal.cs_nbfree = 470 fragstoblks(&sblock, sblock.fs_dsize) - 471 howmany(csfrags, sblock.fs_frag); 472 sblock.fs_cstotal.cs_nffree = 473 fragnum(&sblock, sblock.fs_size) + 474 (fragnum(&sblock, csfrags) > 0 ? 475 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 476 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 477 sblock.fs_cstotal.cs_ndir = 0; 478 sblock.fs_dsize -= csfrags; 479 sblock.fs_time = utime; 480 if (Oflag == 1) { 481 sblock.fs_old_time = utime; 482 sblock.fs_old_dsize = sblock.fs_dsize; 483 sblock.fs_old_csaddr = sblock.fs_csaddr; 484 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 485 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 486 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 487 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 488 } 489 490 /* 491 * Dump out summary information about file system. 492 */ 493 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 494 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 495 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 496 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 497 sblock.fs_fsize); 498 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 499 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 500 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 501 if (sblock.fs_flags & FS_DOSOFTDEP) 502 printf("\twith soft updates\n"); 503 # undef B2MBFACTOR 504 505 if (Eflag && !Nflag) { 506 printf("Erasing sectors [%jd...%jd]\n", 507 sblock.fs_sblockloc / disk.d_bsize, 508 fsbtodb(&sblock, sblock.fs_size) - 1); 509 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 510 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 511 } 512 /* 513 * Wipe out old UFS1 superblock(s) if necessary. 514 */ 515 if (!Nflag && Oflag != 1) { 516 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 517 if (i == -1) 518 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 519 520 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 521 fsdummy.fs_magic = 0; 522 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 523 chdummy, SBLOCKSIZE); 524 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 525 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) 526 break; 527 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 528 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 529 } 530 } 531 } 532 if (!Nflag) 533 do_sbwrite(&disk); 534 if (Xflag == 1) { 535 printf("** Exiting on Xflag 1\n"); 536 exit(0); 537 } 538 if (Xflag == 2) 539 printf("** Leaving BAD MAGIC on Xflag 2\n"); 540 else 541 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 542 543 /* 544 * Now build the cylinders group blocks and 545 * then print out indices of cylinder groups. 546 */ 547 printf("super-block backups (for fsck -b #) at:\n"); 548 i = 0; 549 width = charsperline(); 550 /* 551 * allocate space for superblock, cylinder group map, and 552 * two sets of inode blocks. 553 */ 554 if (sblock.fs_bsize < SBLOCKSIZE) 555 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 556 else 557 iobufsize = 4 * sblock.fs_bsize; 558 if ((iobuf = calloc(1, iobufsize)) == 0) { 559 printf("Cannot allocate I/O buffer\n"); 560 exit(38); 561 } 562 /* 563 * Make a copy of the superblock into the buffer that we will be 564 * writing out in each cylinder group. 565 */ 566 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 567 for (cg = 0; cg < sblock.fs_ncg; cg++) { 568 initcg(cg, utime); 569 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 570 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 571 cg < (sblock.fs_ncg-1) ? "," : ""); 572 if (j < 0) 573 tmpbuf[j = 0] = '\0'; 574 if (i + j >= width) { 575 printf("\n"); 576 i = 0; 577 } 578 i += j; 579 printf("%s", tmpbuf); 580 fflush(stdout); 581 } 582 printf("\n"); 583 if (Nflag) 584 exit(0); 585 /* 586 * Now construct the initial file system, 587 * then write out the super-block. 588 */ 589 fsinit(utime); 590 if (Oflag == 1) { 591 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 592 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 593 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 594 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 595 } 596 if (Xflag == 3) { 597 printf("** Exiting on Xflag 3\n"); 598 exit(0); 599 } 600 if (!Nflag) { 601 do_sbwrite(&disk); 602 /* 603 * For UFS1 filesystems with a blocksize of 64K, the first 604 * alternate superblock resides at the location used for 605 * the default UFS2 superblock. As there is a valid 606 * superblock at this location, the boot code will use 607 * it as its first choice. Thus we have to ensure that 608 * all of its statistcs on usage are correct. 609 */ 610 if (Oflag == 1 && sblock.fs_bsize == 65536) 611 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 612 sblock.fs_bsize, (char *)&sblock); 613 } 614 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 615 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 616 sblock.fs_cssize - i < sblock.fs_bsize ? 617 sblock.fs_cssize - i : sblock.fs_bsize, 618 ((char *)fscs) + i); 619 /* 620 * Update information about this partition in pack 621 * label, to that it may be updated on disk. 622 */ 623 if (pp != NULL) { 624 pp->p_fstype = FS_BSDFFS; 625 pp->p_fsize = sblock.fs_fsize; 626 pp->p_frag = sblock.fs_frag; 627 pp->p_cpg = sblock.fs_fpg; 628 } 629 } 630 631 /* 632 * Initialize a cylinder group. 633 */ 634 void 635 initcg(int cylno, time_t utime) 636 { 637 long blkno, start; 638 uint i, j, d, dlower, dupper; 639 ufs2_daddr_t cbase, dmax; 640 struct ufs1_dinode *dp1; 641 struct ufs2_dinode *dp2; 642 struct csum *cs; 643 644 /* 645 * Determine block bounds for cylinder group. 646 * Allow space for super block summary information in first 647 * cylinder group. 648 */ 649 cbase = cgbase(&sblock, cylno); 650 dmax = cbase + sblock.fs_fpg; 651 if (dmax > sblock.fs_size) 652 dmax = sblock.fs_size; 653 dlower = cgsblock(&sblock, cylno) - cbase; 654 dupper = cgdmin(&sblock, cylno) - cbase; 655 if (cylno == 0) 656 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 657 cs = &fscs[cylno]; 658 memset(&acg, 0, sblock.fs_cgsize); 659 acg.cg_time = utime; 660 acg.cg_magic = CG_MAGIC; 661 acg.cg_cgx = cylno; 662 acg.cg_niblk = sblock.fs_ipg; 663 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 664 sblock.fs_ipg : 2 * INOPB(&sblock); 665 acg.cg_ndblk = dmax - cbase; 666 if (sblock.fs_contigsumsize > 0) 667 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 668 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 669 if (Oflag == 2) { 670 acg.cg_iusedoff = start; 671 } else { 672 acg.cg_old_ncyl = sblock.fs_old_cpg; 673 acg.cg_old_time = acg.cg_time; 674 acg.cg_time = 0; 675 acg.cg_old_niblk = acg.cg_niblk; 676 acg.cg_niblk = 0; 677 acg.cg_initediblk = 0; 678 acg.cg_old_btotoff = start; 679 acg.cg_old_boff = acg.cg_old_btotoff + 680 sblock.fs_old_cpg * sizeof(int32_t); 681 acg.cg_iusedoff = acg.cg_old_boff + 682 sblock.fs_old_cpg * sizeof(u_int16_t); 683 } 684 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 685 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 686 if (sblock.fs_contigsumsize > 0) { 687 acg.cg_clustersumoff = 688 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 689 acg.cg_clustersumoff -= sizeof(u_int32_t); 690 acg.cg_clusteroff = acg.cg_clustersumoff + 691 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 692 acg.cg_nextfreeoff = acg.cg_clusteroff + 693 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 694 } 695 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 696 printf("Panic: cylinder group too big\n"); 697 exit(37); 698 } 699 acg.cg_cs.cs_nifree += sblock.fs_ipg; 700 if (cylno == 0) 701 for (i = 0; i < (long)ROOTINO; i++) { 702 setbit(cg_inosused(&acg), i); 703 acg.cg_cs.cs_nifree--; 704 } 705 if (cylno > 0) { 706 /* 707 * In cylno 0, beginning space is reserved 708 * for boot and super blocks. 709 */ 710 for (d = 0; d < dlower; d += sblock.fs_frag) { 711 blkno = d / sblock.fs_frag; 712 setblock(&sblock, cg_blksfree(&acg), blkno); 713 if (sblock.fs_contigsumsize > 0) 714 setbit(cg_clustersfree(&acg), blkno); 715 acg.cg_cs.cs_nbfree++; 716 } 717 } 718 if ((i = dupper % sblock.fs_frag)) { 719 acg.cg_frsum[sblock.fs_frag - i]++; 720 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 721 setbit(cg_blksfree(&acg), dupper); 722 acg.cg_cs.cs_nffree++; 723 } 724 } 725 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 726 d += sblock.fs_frag) { 727 blkno = d / sblock.fs_frag; 728 setblock(&sblock, cg_blksfree(&acg), blkno); 729 if (sblock.fs_contigsumsize > 0) 730 setbit(cg_clustersfree(&acg), blkno); 731 acg.cg_cs.cs_nbfree++; 732 } 733 if (d < acg.cg_ndblk) { 734 acg.cg_frsum[acg.cg_ndblk - d]++; 735 for (; d < acg.cg_ndblk; d++) { 736 setbit(cg_blksfree(&acg), d); 737 acg.cg_cs.cs_nffree++; 738 } 739 } 740 if (sblock.fs_contigsumsize > 0) { 741 int32_t *sump = cg_clustersum(&acg); 742 u_char *mapp = cg_clustersfree(&acg); 743 int map = *mapp++; 744 int bit = 1; 745 int run = 0; 746 747 for (i = 0; i < acg.cg_nclusterblks; i++) { 748 if ((map & bit) != 0) 749 run++; 750 else if (run != 0) { 751 if (run > sblock.fs_contigsumsize) 752 run = sblock.fs_contigsumsize; 753 sump[run]++; 754 run = 0; 755 } 756 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 757 bit <<= 1; 758 else { 759 map = *mapp++; 760 bit = 1; 761 } 762 } 763 if (run != 0) { 764 if (run > sblock.fs_contigsumsize) 765 run = sblock.fs_contigsumsize; 766 sump[run]++; 767 } 768 } 769 *cs = acg.cg_cs; 770 /* 771 * Write out the duplicate super block, the cylinder group map 772 * and two blocks worth of inodes in a single write. 773 */ 774 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 775 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 776 start += sblock.fs_bsize; 777 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 778 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 779 for (i = 0; i < acg.cg_initediblk; i++) { 780 if (sblock.fs_magic == FS_UFS1_MAGIC) { 781 dp1->di_gen = newfs_random(); 782 dp1++; 783 } else { 784 dp2->di_gen = newfs_random(); 785 dp2++; 786 } 787 } 788 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 789 /* 790 * For the old file system, we have to initialize all the inodes. 791 */ 792 if (Oflag == 1) { 793 for (i = 2 * sblock.fs_frag; 794 i < sblock.fs_ipg / INOPF(&sblock); 795 i += sblock.fs_frag) { 796 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 797 for (j = 0; j < INOPB(&sblock); j++) { 798 dp1->di_gen = newfs_random(); 799 dp1++; 800 } 801 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 802 sblock.fs_bsize, &iobuf[start]); 803 } 804 } 805 } 806 807 /* 808 * initialize the file system 809 */ 810 #define ROOTLINKCNT 3 811 812 static struct direct root_dir[] = { 813 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 814 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 815 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 816 }; 817 818 #define SNAPLINKCNT 2 819 820 static struct direct snap_dir[] = { 821 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 822 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 823 }; 824 825 void 826 fsinit(time_t utime) 827 { 828 union dinode node; 829 struct group *grp; 830 gid_t gid; 831 int entries; 832 833 memset(&node, 0, sizeof node); 834 if ((grp = getgrnam("operator")) != NULL) { 835 gid = grp->gr_gid; 836 } else { 837 warnx("Cannot retrieve operator gid, using gid 0."); 838 gid = 0; 839 } 840 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 841 if (sblock.fs_magic == FS_UFS1_MAGIC) { 842 /* 843 * initialize the node 844 */ 845 node.dp1.di_atime = utime; 846 node.dp1.di_mtime = utime; 847 node.dp1.di_ctime = utime; 848 /* 849 * create the root directory 850 */ 851 node.dp1.di_mode = IFDIR | UMASK; 852 node.dp1.di_nlink = entries; 853 node.dp1.di_size = makedir(root_dir, entries); 854 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 855 node.dp1.di_blocks = 856 btodb(fragroundup(&sblock, node.dp1.di_size)); 857 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 858 iobuf); 859 iput(&node, ROOTINO); 860 if (!nflag) { 861 /* 862 * create the .snap directory 863 */ 864 node.dp1.di_mode |= 020; 865 node.dp1.di_gid = gid; 866 node.dp1.di_nlink = SNAPLINKCNT; 867 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 868 node.dp1.di_db[0] = 869 alloc(sblock.fs_fsize, node.dp1.di_mode); 870 node.dp1.di_blocks = 871 btodb(fragroundup(&sblock, node.dp1.di_size)); 872 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 873 sblock.fs_fsize, iobuf); 874 iput(&node, ROOTINO + 1); 875 } 876 } else { 877 /* 878 * initialize the node 879 */ 880 node.dp2.di_atime = utime; 881 node.dp2.di_mtime = utime; 882 node.dp2.di_ctime = utime; 883 node.dp2.di_birthtime = utime; 884 /* 885 * create the root directory 886 */ 887 node.dp2.di_mode = IFDIR | UMASK; 888 node.dp2.di_nlink = entries; 889 node.dp2.di_size = makedir(root_dir, entries); 890 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 891 node.dp2.di_blocks = 892 btodb(fragroundup(&sblock, node.dp2.di_size)); 893 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 894 iobuf); 895 iput(&node, ROOTINO); 896 if (!nflag) { 897 /* 898 * create the .snap directory 899 */ 900 node.dp2.di_mode |= 020; 901 node.dp2.di_gid = gid; 902 node.dp2.di_nlink = SNAPLINKCNT; 903 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 904 node.dp2.di_db[0] = 905 alloc(sblock.fs_fsize, node.dp2.di_mode); 906 node.dp2.di_blocks = 907 btodb(fragroundup(&sblock, node.dp2.di_size)); 908 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 909 sblock.fs_fsize, iobuf); 910 iput(&node, ROOTINO + 1); 911 } 912 } 913 } 914 915 /* 916 * construct a set of directory entries in "iobuf". 917 * return size of directory. 918 */ 919 int 920 makedir(struct direct *protodir, int entries) 921 { 922 char *cp; 923 int i, spcleft; 924 925 spcleft = DIRBLKSIZ; 926 memset(iobuf, 0, DIRBLKSIZ); 927 for (cp = iobuf, i = 0; i < entries - 1; i++) { 928 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 929 memmove(cp, &protodir[i], protodir[i].d_reclen); 930 cp += protodir[i].d_reclen; 931 spcleft -= protodir[i].d_reclen; 932 } 933 protodir[i].d_reclen = spcleft; 934 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 935 return (DIRBLKSIZ); 936 } 937 938 /* 939 * allocate a block or frag 940 */ 941 ufs2_daddr_t 942 alloc(int size, int mode) 943 { 944 int i, blkno, frag; 945 uint d; 946 947 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 948 sblock.fs_cgsize); 949 if (acg.cg_magic != CG_MAGIC) { 950 printf("cg 0: bad magic number\n"); 951 exit(38); 952 } 953 if (acg.cg_cs.cs_nbfree == 0) { 954 printf("first cylinder group ran out of space\n"); 955 exit(39); 956 } 957 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 958 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 959 goto goth; 960 printf("internal error: can't find block in cyl 0\n"); 961 exit(40); 962 goth: 963 blkno = fragstoblks(&sblock, d); 964 clrblock(&sblock, cg_blksfree(&acg), blkno); 965 if (sblock.fs_contigsumsize > 0) 966 clrbit(cg_clustersfree(&acg), blkno); 967 acg.cg_cs.cs_nbfree--; 968 sblock.fs_cstotal.cs_nbfree--; 969 fscs[0].cs_nbfree--; 970 if (mode & IFDIR) { 971 acg.cg_cs.cs_ndir++; 972 sblock.fs_cstotal.cs_ndir++; 973 fscs[0].cs_ndir++; 974 } 975 if (size != sblock.fs_bsize) { 976 frag = howmany(size, sblock.fs_fsize); 977 fscs[0].cs_nffree += sblock.fs_frag - frag; 978 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 979 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 980 acg.cg_frsum[sblock.fs_frag - frag]++; 981 for (i = frag; i < sblock.fs_frag; i++) 982 setbit(cg_blksfree(&acg), d + i); 983 } 984 /* XXX cgwrite(&disk, 0)??? */ 985 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 986 (char *)&acg); 987 return ((ufs2_daddr_t)d); 988 } 989 990 /* 991 * Allocate an inode on the disk 992 */ 993 void 994 iput(union dinode *ip, ino_t ino) 995 { 996 ufs2_daddr_t d; 997 998 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 999 sblock.fs_cgsize); 1000 if (acg.cg_magic != CG_MAGIC) { 1001 printf("cg 0: bad magic number\n"); 1002 exit(31); 1003 } 1004 acg.cg_cs.cs_nifree--; 1005 setbit(cg_inosused(&acg), ino); 1006 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1007 (char *)&acg); 1008 sblock.fs_cstotal.cs_nifree--; 1009 fscs[0].cs_nifree--; 1010 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 1011 printf("fsinit: inode value out of range (%ju).\n", 1012 (uintmax_t)ino); 1013 exit(32); 1014 } 1015 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1016 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 1017 if (sblock.fs_magic == FS_UFS1_MAGIC) 1018 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1019 ip->dp1; 1020 else 1021 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 1022 ip->dp2; 1023 wtfs(d, sblock.fs_bsize, (char *)iobuf); 1024 } 1025 1026 /* 1027 * possibly write to disk 1028 */ 1029 static void 1030 wtfs(ufs2_daddr_t bno, int size, char *bf) 1031 { 1032 if (Nflag) 1033 return; 1034 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1035 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1036 } 1037 1038 /* 1039 * check if a block is available 1040 */ 1041 static int 1042 isblock(struct fs *fs, unsigned char *cp, int h) 1043 { 1044 unsigned char mask; 1045 1046 switch (fs->fs_frag) { 1047 case 8: 1048 return (cp[h] == 0xff); 1049 case 4: 1050 mask = 0x0f << ((h & 0x1) << 2); 1051 return ((cp[h >> 1] & mask) == mask); 1052 case 2: 1053 mask = 0x03 << ((h & 0x3) << 1); 1054 return ((cp[h >> 2] & mask) == mask); 1055 case 1: 1056 mask = 0x01 << (h & 0x7); 1057 return ((cp[h >> 3] & mask) == mask); 1058 default: 1059 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1060 return (0); 1061 } 1062 } 1063 1064 /* 1065 * take a block out of the map 1066 */ 1067 static void 1068 clrblock(struct fs *fs, unsigned char *cp, int h) 1069 { 1070 switch ((fs)->fs_frag) { 1071 case 8: 1072 cp[h] = 0; 1073 return; 1074 case 4: 1075 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1076 return; 1077 case 2: 1078 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1079 return; 1080 case 1: 1081 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1082 return; 1083 default: 1084 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1085 return; 1086 } 1087 } 1088 1089 /* 1090 * put a block into the map 1091 */ 1092 static void 1093 setblock(struct fs *fs, unsigned char *cp, int h) 1094 { 1095 switch (fs->fs_frag) { 1096 case 8: 1097 cp[h] = 0xff; 1098 return; 1099 case 4: 1100 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1101 return; 1102 case 2: 1103 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1104 return; 1105 case 1: 1106 cp[h >> 3] |= (0x01 << (h & 0x7)); 1107 return; 1108 default: 1109 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1110 return; 1111 } 1112 } 1113 1114 /* 1115 * Determine the number of characters in a 1116 * single line. 1117 */ 1118 1119 static int 1120 charsperline(void) 1121 { 1122 int columns; 1123 char *cp; 1124 struct winsize ws; 1125 1126 columns = 0; 1127 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1128 columns = ws.ws_col; 1129 if (columns == 0 && (cp = getenv("COLUMNS"))) 1130 columns = atoi(cp); 1131 if (columns == 0) 1132 columns = 80; /* last resort */ 1133 return (columns); 1134 } 1135 1136 static int 1137 ilog2(int val) 1138 { 1139 u_int n; 1140 1141 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1142 if (1 << n == val) 1143 return (n); 1144 errx(1, "ilog2: %d is not a power of 2\n", val); 1145 } 1146 1147 /* 1148 * For the regression test, return predictable random values. 1149 * Otherwise use a true random number generator. 1150 */ 1151 static u_int32_t 1152 newfs_random(void) 1153 { 1154 static int nextnum = 1; 1155 1156 if (Rflag) 1157 return (nextnum++); 1158 return (arc4random()); 1159 } 1160