1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program. 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #define _WANT_P_OSREL 42 #include <sys/param.h> 43 #include <sys/disklabel.h> 44 #include <sys/file.h> 45 #include <sys/ioctl.h> 46 #include <sys/mman.h> 47 #include <sys/resource.h> 48 #include <sys/stat.h> 49 #include <sys/wait.h> 50 #include <err.h> 51 #include <grp.h> 52 #include <limits.h> 53 #include <signal.h> 54 #include <stdlib.h> 55 #include <string.h> 56 #include <stdint.h> 57 #include <stdio.h> 58 #include <time.h> 59 #include <unistd.h> 60 #include <ufs/ufs/dinode.h> 61 #include <ufs/ufs/dir.h> 62 #include <ufs/ffs/fs.h> 63 #include "newfs.h" 64 65 /* 66 * make file system for cylinder-group style file systems 67 */ 68 #define UMASK 0755 69 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 70 71 /* 72 * The definition of "struct cg" used to contain an extra field at the end 73 * to represent the variable-length data that followed the fixed structure. 74 * This had the effect of artificially limiting the number of blocks that 75 * newfs would put in a CG, since newfs thought that the fixed-size header 76 * was bigger than it really was. When we started validating that the CG 77 * header data actually fit into one fs block, the placeholder field caused 78 * a problem because it caused struct cg to be a different size depending on 79 * platform. The placeholder field was later removed, but this caused a 80 * backward compatibility problem with older binaries that still thought 81 * struct cg was larger, and a new file system could fail validation if 82 * viewed by the older binaries. To avoid this compatibility problem, we 83 * now artificially reduce the amount of space that the variable-length data 84 * can use such that new file systems will pass validation by older binaries. 85 */ 86 #define CGSIZEFUDGE 8 87 88 static struct csum *fscs; 89 #define sblock disk.d_fs 90 #define acg disk.d_cg 91 92 union dinode { 93 struct ufs1_dinode dp1; 94 struct ufs2_dinode dp2; 95 }; 96 #define DIP(dp, field) \ 97 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 98 (dp)->dp1.field : (dp)->dp2.field) 99 100 static caddr_t iobuf; 101 static long iobufsize; 102 static ufs2_daddr_t alloc(int size, int mode); 103 static int charsperline(void); 104 static void clrblock(struct fs *, unsigned char *, int); 105 static void fsinit(time_t); 106 static int ilog2(int); 107 static void initcg(int, time_t); 108 static int isblock(struct fs *, unsigned char *, int); 109 static void iput(union dinode *, ino_t); 110 static int makedir(struct direct *, int); 111 static void setblock(struct fs *, unsigned char *, int); 112 static void wtfs(ufs2_daddr_t, int, char *); 113 static u_int32_t newfs_random(void); 114 115 void 116 mkfs(struct partition *pp, char *fsys) 117 { 118 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 119 long i, j, csfrags; 120 uint cg; 121 time_t utime; 122 quad_t sizepb; 123 int width; 124 ino_t maxinum; 125 int minfragsperinode; /* minimum ratio of frags to inodes */ 126 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 127 struct fsrecovery *fsr; 128 char *fsrbuf; 129 union { 130 struct fs fdummy; 131 char cdummy[SBLOCKSIZE]; 132 } dummy; 133 #define fsdummy dummy.fdummy 134 #define chdummy dummy.cdummy 135 136 /* 137 * Our blocks == sector size, and the version of UFS we are using is 138 * specified by Oflag. 139 */ 140 disk.d_bsize = sectorsize; 141 disk.d_ufs = Oflag; 142 if (Rflag) 143 utime = 1000000000; 144 else 145 time(&utime); 146 if ((sblock.fs_si = malloc(sizeof(struct fs_summary_info))) == NULL) { 147 printf("Superblock summary info allocation failed.\n"); 148 exit(18); 149 } 150 sblock.fs_old_flags = FS_FLAGS_UPDATED; 151 sblock.fs_flags = 0; 152 if (Uflag) 153 sblock.fs_flags |= FS_DOSOFTDEP; 154 if (Lflag) 155 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 156 if (Jflag) 157 sblock.fs_flags |= FS_GJOURNAL; 158 if (lflag) 159 sblock.fs_flags |= FS_MULTILABEL; 160 if (tflag) 161 sblock.fs_flags |= FS_TRIM; 162 /* 163 * Validate the given file system size. 164 * Verify that its last block can actually be accessed. 165 * Convert to file system fragment sized units. 166 */ 167 if (fssize <= 0) { 168 printf("preposterous size %jd\n", (intmax_t)fssize); 169 exit(13); 170 } 171 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 172 (char *)&sblock); 173 /* 174 * collect and verify the file system density info 175 */ 176 sblock.fs_avgfilesize = avgfilesize; 177 sblock.fs_avgfpdir = avgfilesperdir; 178 if (sblock.fs_avgfilesize <= 0) 179 printf("illegal expected average file size %d\n", 180 sblock.fs_avgfilesize), exit(14); 181 if (sblock.fs_avgfpdir <= 0) 182 printf("illegal expected number of files per directory %d\n", 183 sblock.fs_avgfpdir), exit(15); 184 185 restart: 186 /* 187 * collect and verify the block and fragment sizes 188 */ 189 sblock.fs_bsize = bsize; 190 sblock.fs_fsize = fsize; 191 if (!POWEROF2(sblock.fs_bsize)) { 192 printf("block size must be a power of 2, not %d\n", 193 sblock.fs_bsize); 194 exit(16); 195 } 196 if (!POWEROF2(sblock.fs_fsize)) { 197 printf("fragment size must be a power of 2, not %d\n", 198 sblock.fs_fsize); 199 exit(17); 200 } 201 if (sblock.fs_fsize < sectorsize) { 202 printf("increasing fragment size from %d to sector size (%d)\n", 203 sblock.fs_fsize, sectorsize); 204 sblock.fs_fsize = sectorsize; 205 } 206 if (sblock.fs_bsize > MAXBSIZE) { 207 printf("decreasing block size from %d to maximum (%d)\n", 208 sblock.fs_bsize, MAXBSIZE); 209 sblock.fs_bsize = MAXBSIZE; 210 } 211 if (sblock.fs_bsize < MINBSIZE) { 212 printf("increasing block size from %d to minimum (%d)\n", 213 sblock.fs_bsize, MINBSIZE); 214 sblock.fs_bsize = MINBSIZE; 215 } 216 if (sblock.fs_fsize > MAXBSIZE) { 217 printf("decreasing fragment size from %d to maximum (%d)\n", 218 sblock.fs_fsize, MAXBSIZE); 219 sblock.fs_fsize = MAXBSIZE; 220 } 221 if (sblock.fs_bsize < sblock.fs_fsize) { 222 printf("increasing block size from %d to fragment size (%d)\n", 223 sblock.fs_bsize, sblock.fs_fsize); 224 sblock.fs_bsize = sblock.fs_fsize; 225 } 226 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 227 printf( 228 "increasing fragment size from %d to block size / %d (%d)\n", 229 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 230 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 231 } 232 if (maxbsize == 0) 233 maxbsize = bsize; 234 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 235 sblock.fs_maxbsize = sblock.fs_bsize; 236 printf("Extent size set to %d\n", sblock.fs_maxbsize); 237 } else if (maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 238 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 239 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 240 } else { 241 sblock.fs_maxbsize = maxbsize; 242 } 243 /* 244 * Maxcontig sets the default for the maximum number of blocks 245 * that may be allocated sequentially. With file system clustering 246 * it is possible to allocate contiguous blocks up to the maximum 247 * transfer size permitted by the controller or buffering. 248 */ 249 if (maxcontig == 0) 250 maxcontig = MAX(1, MAXPHYS / bsize); 251 sblock.fs_maxcontig = maxcontig; 252 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 253 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 254 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 255 } 256 if (sblock.fs_maxcontig > 1) 257 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 258 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 259 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 260 sblock.fs_qbmask = ~sblock.fs_bmask; 261 sblock.fs_qfmask = ~sblock.fs_fmask; 262 sblock.fs_bshift = ilog2(sblock.fs_bsize); 263 sblock.fs_fshift = ilog2(sblock.fs_fsize); 264 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 265 sblock.fs_fragshift = ilog2(sblock.fs_frag); 266 if (sblock.fs_frag > MAXFRAG) { 267 printf("fragment size %d is still too small (can't happen)\n", 268 sblock.fs_bsize / MAXFRAG); 269 exit(21); 270 } 271 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 272 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 273 sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); 274 275 /* 276 * Before the filesystem is finally initialized, mark it 277 * as incompletely initialized. 278 */ 279 sblock.fs_magic = FS_BAD_MAGIC; 280 281 if (Oflag == 1) { 282 sblock.fs_sblockloc = SBLOCK_UFS1; 283 sblock.fs_sblockactualloc = SBLOCK_UFS1; 284 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 285 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 286 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 287 sizeof(ufs1_daddr_t)); 288 sblock.fs_old_inodefmt = FS_44INODEFMT; 289 sblock.fs_old_cgoffset = 0; 290 sblock.fs_old_cgmask = 0xffffffff; 291 sblock.fs_old_size = sblock.fs_size; 292 sblock.fs_old_rotdelay = 0; 293 sblock.fs_old_rps = 60; 294 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 295 sblock.fs_old_cpg = 1; 296 sblock.fs_old_interleave = 1; 297 sblock.fs_old_trackskew = 0; 298 sblock.fs_old_cpc = 0; 299 sblock.fs_old_postblformat = 1; 300 sblock.fs_old_nrpos = 1; 301 } else { 302 sblock.fs_sblockloc = SBLOCK_UFS2; 303 sblock.fs_sblockactualloc = SBLOCK_UFS2; 304 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 305 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 306 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 307 sizeof(ufs2_daddr_t)); 308 } 309 sblock.fs_sblkno = 310 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 311 sblock.fs_frag); 312 sblock.fs_cblkno = sblock.fs_sblkno + 313 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 314 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 315 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 316 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 317 sizepb *= NINDIR(&sblock); 318 sblock.fs_maxfilesize += sizepb; 319 } 320 321 /* 322 * It's impossible to create a snapshot in case that fs_maxfilesize 323 * is smaller than the fssize. 324 */ 325 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 326 warnx("WARNING: You will be unable to create snapshots on this " 327 "file system. Correct by using a larger blocksize."); 328 } 329 330 /* 331 * Calculate the number of blocks to put into each cylinder group. 332 * 333 * This algorithm selects the number of blocks per cylinder 334 * group. The first goal is to have at least enough data blocks 335 * in each cylinder group to meet the density requirement. Once 336 * this goal is achieved we try to expand to have at least 337 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 338 * pack as many blocks into each cylinder group map as will fit. 339 * 340 * We start by calculating the smallest number of blocks that we 341 * can put into each cylinder group. If this is too big, we reduce 342 * the density until it fits. 343 */ 344 retry: 345 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 346 minfragsperinode = 1 + fssize / maxinum; 347 if (density == 0) { 348 density = MAX(NFPI, minfragsperinode) * fsize; 349 } else if (density < minfragsperinode * fsize) { 350 origdensity = density; 351 density = minfragsperinode * fsize; 352 fprintf(stderr, "density increased from %d to %d\n", 353 origdensity, density); 354 } 355 origdensity = density; 356 for (;;) { 357 fragsperinode = MAX(numfrags(&sblock, density), 1); 358 if (fragsperinode < minfragsperinode) { 359 bsize <<= 1; 360 fsize <<= 1; 361 printf("Block size too small for a file system %s %d\n", 362 "of this size. Increasing blocksize to", bsize); 363 goto restart; 364 } 365 minfpg = fragsperinode * INOPB(&sblock); 366 if (minfpg > sblock.fs_size) 367 minfpg = sblock.fs_size; 368 sblock.fs_ipg = INOPB(&sblock); 369 sblock.fs_fpg = roundup(sblock.fs_iblkno + 370 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 371 if (sblock.fs_fpg < minfpg) 372 sblock.fs_fpg = minfpg; 373 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 374 INOPB(&sblock)); 375 sblock.fs_fpg = roundup(sblock.fs_iblkno + 376 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 377 if (sblock.fs_fpg < minfpg) 378 sblock.fs_fpg = minfpg; 379 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 380 INOPB(&sblock)); 381 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 382 CGSIZEFUDGE) 383 break; 384 density -= sblock.fs_fsize; 385 } 386 if (density != origdensity) 387 printf("density reduced from %d to %d\n", origdensity, density); 388 /* 389 * Start packing more blocks into the cylinder group until 390 * it cannot grow any larger, the number of cylinder groups 391 * drops below MINCYLGRPS, or we reach the size requested. 392 * For UFS1 inodes per cylinder group are stored in an int16_t 393 * so fs_ipg is limited to 2^15 - 1. 394 */ 395 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 396 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 397 INOPB(&sblock)); 398 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { 399 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 400 break; 401 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 402 CGSIZEFUDGE) 403 continue; 404 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize - 405 CGSIZEFUDGE) 406 break; 407 } 408 sblock.fs_fpg -= sblock.fs_frag; 409 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 410 INOPB(&sblock)); 411 break; 412 } 413 /* 414 * Check to be sure that the last cylinder group has enough blocks 415 * to be viable. If it is too small, reduce the number of blocks 416 * per cylinder group which will have the effect of moving more 417 * blocks into the last cylinder group. 418 */ 419 optimalfpg = sblock.fs_fpg; 420 for (;;) { 421 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 422 lastminfpg = roundup(sblock.fs_iblkno + 423 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 424 if (sblock.fs_size < lastminfpg) { 425 printf("Filesystem size %jd < minimum size of %d\n", 426 (intmax_t)sblock.fs_size, lastminfpg); 427 exit(28); 428 } 429 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 430 sblock.fs_size % sblock.fs_fpg == 0) 431 break; 432 sblock.fs_fpg -= sblock.fs_frag; 433 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 434 INOPB(&sblock)); 435 } 436 if (optimalfpg != sblock.fs_fpg) 437 printf("Reduced frags per cylinder group from %d to %d %s\n", 438 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 439 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 440 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 441 if (Oflag == 1) { 442 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 443 sblock.fs_old_nsect = sblock.fs_old_spc; 444 sblock.fs_old_npsect = sblock.fs_old_spc; 445 sblock.fs_old_ncyl = sblock.fs_ncg; 446 } 447 /* 448 * fill in remaining fields of the super block 449 */ 450 sblock.fs_csaddr = cgdmin(&sblock, 0); 451 sblock.fs_cssize = 452 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 453 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 454 if (fscs == NULL) 455 errx(31, "calloc failed"); 456 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 457 if (sblock.fs_sbsize > SBLOCKSIZE) 458 sblock.fs_sbsize = SBLOCKSIZE; 459 if (sblock.fs_sbsize < realsectorsize) 460 sblock.fs_sbsize = realsectorsize; 461 sblock.fs_minfree = minfree; 462 if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) 463 sblock.fs_metaspace = blknum(&sblock, metaspace); 464 else if (metaspace != -1) 465 /* reserve half of minfree for metadata blocks */ 466 sblock.fs_metaspace = blknum(&sblock, 467 (sblock.fs_fpg * minfree) / 200); 468 if (maxbpg == 0) 469 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 470 else 471 sblock.fs_maxbpg = maxbpg; 472 sblock.fs_optim = opt; 473 sblock.fs_cgrotor = 0; 474 sblock.fs_pendingblocks = 0; 475 sblock.fs_pendinginodes = 0; 476 sblock.fs_fmod = 0; 477 sblock.fs_ronly = 0; 478 sblock.fs_state = 0; 479 sblock.fs_clean = 1; 480 sblock.fs_id[0] = (long)utime; 481 sblock.fs_id[1] = newfs_random(); 482 sblock.fs_fsmnt[0] = '\0'; 483 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 484 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 485 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 486 sblock.fs_cstotal.cs_nbfree = 487 fragstoblks(&sblock, sblock.fs_dsize) - 488 howmany(csfrags, sblock.fs_frag); 489 sblock.fs_cstotal.cs_nffree = 490 fragnum(&sblock, sblock.fs_size) + 491 (fragnum(&sblock, csfrags) > 0 ? 492 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 493 sblock.fs_cstotal.cs_nifree = 494 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 495 sblock.fs_cstotal.cs_ndir = 0; 496 sblock.fs_dsize -= csfrags; 497 sblock.fs_time = utime; 498 if (Oflag == 1) { 499 sblock.fs_old_time = utime; 500 sblock.fs_old_dsize = sblock.fs_dsize; 501 sblock.fs_old_csaddr = sblock.fs_csaddr; 502 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 503 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 504 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 505 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 506 } 507 /* 508 * Set flags for metadata that is being check-hashed. 509 * 510 * Metadata check hashes are not supported in the UFS version 1 511 * filesystem to keep it as small and simple as possible. 512 */ 513 if (Oflag > 1) { 514 sblock.fs_flags |= FS_METACKHASH; 515 if (getosreldate() >= P_OSREL_CK_CYLGRP) 516 sblock.fs_metackhash |= CK_CYLGRP; 517 if (getosreldate() >= P_OSREL_CK_SUPERBLOCK) 518 sblock.fs_metackhash |= CK_SUPERBLOCK; 519 if (getosreldate() >= P_OSREL_CK_INODE) 520 sblock.fs_metackhash |= CK_INODE; 521 } 522 523 /* 524 * Dump out summary information about file system. 525 */ 526 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 527 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 528 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 529 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 530 sblock.fs_fsize); 531 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 532 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 533 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 534 if (sblock.fs_flags & FS_DOSOFTDEP) 535 printf("\twith soft updates\n"); 536 # undef B2MBFACTOR 537 538 if (Eflag && !Nflag) { 539 printf("Erasing sectors [%jd...%jd]\n", 540 sblock.fs_sblockloc / disk.d_bsize, 541 fsbtodb(&sblock, sblock.fs_size) - 1); 542 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 543 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 544 } 545 /* 546 * Wipe out old UFS1 superblock(s) if necessary. 547 */ 548 if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { 549 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, 550 SBLOCKSIZE); 551 if (i == -1) 552 err(1, "can't read old UFS1 superblock: %s", 553 disk.d_error); 554 555 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 556 fsdummy.fs_magic = 0; 557 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 558 chdummy, SBLOCKSIZE); 559 for (cg = 0; cg < fsdummy.fs_ncg; cg++) { 560 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > 561 fssize) 562 break; 563 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 564 cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); 565 } 566 } 567 } 568 /* 569 * Reference the summary information so it will also be written. 570 */ 571 sblock.fs_csp = fscs; 572 if (!Nflag && sbwrite(&disk, 0) != 0) 573 err(1, "sbwrite: %s", disk.d_error); 574 if (Xflag == 1) { 575 printf("** Exiting on Xflag 1\n"); 576 exit(0); 577 } 578 if (Xflag == 2) 579 printf("** Leaving BAD MAGIC on Xflag 2\n"); 580 else 581 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 582 583 /* 584 * Now build the cylinders group blocks and 585 * then print out indices of cylinder groups. 586 */ 587 printf("super-block backups (for fsck_ffs -b #) at:\n"); 588 i = 0; 589 width = charsperline(); 590 /* 591 * Allocate space for two sets of inode blocks. 592 */ 593 iobufsize = 2 * sblock.fs_bsize; 594 if ((iobuf = calloc(1, iobufsize)) == 0) { 595 printf("Cannot allocate I/O buffer\n"); 596 exit(38); 597 } 598 /* 599 * Write out all the cylinder groups and backup superblocks. 600 */ 601 for (cg = 0; cg < sblock.fs_ncg; cg++) { 602 if (!Nflag) 603 initcg(cg, utime); 604 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 605 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), 606 cg < (sblock.fs_ncg-1) ? "," : ""); 607 if (j < 0) 608 tmpbuf[j = 0] = '\0'; 609 if (i + j >= width) { 610 printf("\n"); 611 i = 0; 612 } 613 i += j; 614 printf("%s", tmpbuf); 615 fflush(stdout); 616 } 617 printf("\n"); 618 if (Nflag) 619 exit(0); 620 /* 621 * Now construct the initial file system, 622 * then write out the super-block. 623 */ 624 fsinit(utime); 625 if (Oflag == 1) { 626 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 627 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 628 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 629 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 630 } 631 if (Xflag == 3) { 632 printf("** Exiting on Xflag 3\n"); 633 exit(0); 634 } 635 if (sbwrite(&disk, 0) != 0) 636 err(1, "sbwrite: %s", disk.d_error); 637 /* 638 * For UFS1 filesystems with a blocksize of 64K, the first 639 * alternate superblock resides at the location used for 640 * the default UFS2 superblock. As there is a valid 641 * superblock at this location, the boot code will use 642 * it as its first choice. Thus we have to ensure that 643 * all of its statistcs on usage are correct. 644 */ 645 if (Oflag == 1 && sblock.fs_bsize == 65536) 646 wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), 647 sblock.fs_bsize, (char *)&sblock); 648 /* 649 * Read the last sector of the boot block, replace the last 650 * 20 bytes with the recovery information, then write it back. 651 * The recovery information only works for UFS2 filesystems. 652 * For UFS1, zero out the area to ensure that an old UFS2 653 * recovery block is not accidentally found. 654 */ 655 if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, 656 part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 657 fsrbuf, realsectorsize) == -1) 658 err(1, "can't read recovery area: %s", disk.d_error); 659 fsr = (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; 660 if (sblock.fs_magic != FS_UFS2_MAGIC) { 661 memset(fsr, 0, sizeof *fsr); 662 } else { 663 fsr->fsr_magic = sblock.fs_magic; 664 fsr->fsr_fpg = sblock.fs_fpg; 665 fsr->fsr_fsbtodb = sblock.fs_fsbtodb; 666 fsr->fsr_sblkno = sblock.fs_sblkno; 667 fsr->fsr_ncg = sblock.fs_ncg; 668 } 669 wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, 670 realsectorsize, fsrbuf); 671 free(fsrbuf); 672 /* 673 * Update information about this partition in pack 674 * label, to that it may be updated on disk. 675 */ 676 if (pp != NULL) { 677 pp->p_fstype = FS_BSDFFS; 678 pp->p_fsize = sblock.fs_fsize; 679 pp->p_frag = sblock.fs_frag; 680 pp->p_cpg = sblock.fs_fpg; 681 } 682 /* 683 * This should NOT happen. If it does complain loudly and 684 * take evasive action. 685 */ 686 if ((int32_t)CGSIZE(&sblock) > sblock.fs_bsize) { 687 printf("INTERNAL ERROR: ipg %d, fpg %d, contigsumsize %d, ", 688 sblock.fs_ipg, sblock.fs_fpg, sblock.fs_contigsumsize); 689 printf("old_cpg %d, size_cg %zu, CGSIZE %zu\n", 690 sblock.fs_old_cpg, sizeof(struct cg), CGSIZE(&sblock)); 691 printf("Please file a FreeBSD bug report and include this " 692 "output\n"); 693 maxblkspercg = fragstoblks(&sblock, sblock.fs_fpg) - 1; 694 density = 0; 695 goto retry; 696 } 697 } 698 699 /* 700 * Initialize a cylinder group. 701 */ 702 void 703 initcg(int cylno, time_t utime) 704 { 705 long blkno, start; 706 off_t savedactualloc; 707 uint i, j, d, dlower, dupper; 708 ufs2_daddr_t cbase, dmax; 709 struct ufs1_dinode *dp1; 710 struct ufs2_dinode *dp2; 711 struct csum *cs; 712 713 /* 714 * Determine block bounds for cylinder group. 715 * Allow space for super block summary information in first 716 * cylinder group. 717 */ 718 cbase = cgbase(&sblock, cylno); 719 dmax = cbase + sblock.fs_fpg; 720 if (dmax > sblock.fs_size) 721 dmax = sblock.fs_size; 722 dlower = cgsblock(&sblock, cylno) - cbase; 723 dupper = cgdmin(&sblock, cylno) - cbase; 724 if (cylno == 0) 725 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 726 cs = &fscs[cylno]; 727 memset(&acg, 0, sblock.fs_cgsize); 728 acg.cg_time = utime; 729 acg.cg_magic = CG_MAGIC; 730 acg.cg_cgx = cylno; 731 acg.cg_niblk = sblock.fs_ipg; 732 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 733 acg.cg_ndblk = dmax - cbase; 734 if (sblock.fs_contigsumsize > 0) 735 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 736 start = sizeof(acg); 737 if (Oflag == 2) { 738 acg.cg_iusedoff = start; 739 } else { 740 acg.cg_old_ncyl = sblock.fs_old_cpg; 741 acg.cg_old_time = acg.cg_time; 742 acg.cg_time = 0; 743 acg.cg_old_niblk = acg.cg_niblk; 744 acg.cg_niblk = 0; 745 acg.cg_initediblk = 0; 746 acg.cg_old_btotoff = start; 747 acg.cg_old_boff = acg.cg_old_btotoff + 748 sblock.fs_old_cpg * sizeof(int32_t); 749 acg.cg_iusedoff = acg.cg_old_boff + 750 sblock.fs_old_cpg * sizeof(u_int16_t); 751 } 752 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 753 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 754 if (sblock.fs_contigsumsize > 0) { 755 acg.cg_clustersumoff = 756 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 757 acg.cg_clustersumoff -= sizeof(u_int32_t); 758 acg.cg_clusteroff = acg.cg_clustersumoff + 759 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 760 acg.cg_nextfreeoff = acg.cg_clusteroff + 761 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 762 } 763 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 764 printf("Panic: cylinder group too big by %d bytes\n", 765 acg.cg_nextfreeoff - (unsigned)sblock.fs_cgsize); 766 exit(37); 767 } 768 acg.cg_cs.cs_nifree += sblock.fs_ipg; 769 if (cylno == 0) 770 for (i = 0; i < (long)UFS_ROOTINO; i++) { 771 setbit(cg_inosused(&acg), i); 772 acg.cg_cs.cs_nifree--; 773 } 774 if (cylno > 0) { 775 /* 776 * In cylno 0, beginning space is reserved 777 * for boot and super blocks. 778 */ 779 for (d = 0; d < dlower; d += sblock.fs_frag) { 780 blkno = d / sblock.fs_frag; 781 setblock(&sblock, cg_blksfree(&acg), blkno); 782 if (sblock.fs_contigsumsize > 0) 783 setbit(cg_clustersfree(&acg), blkno); 784 acg.cg_cs.cs_nbfree++; 785 } 786 } 787 if ((i = dupper % sblock.fs_frag)) { 788 acg.cg_frsum[sblock.fs_frag - i]++; 789 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 790 setbit(cg_blksfree(&acg), dupper); 791 acg.cg_cs.cs_nffree++; 792 } 793 } 794 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 795 d += sblock.fs_frag) { 796 blkno = d / sblock.fs_frag; 797 setblock(&sblock, cg_blksfree(&acg), blkno); 798 if (sblock.fs_contigsumsize > 0) 799 setbit(cg_clustersfree(&acg), blkno); 800 acg.cg_cs.cs_nbfree++; 801 } 802 if (d < acg.cg_ndblk) { 803 acg.cg_frsum[acg.cg_ndblk - d]++; 804 for (; d < acg.cg_ndblk; d++) { 805 setbit(cg_blksfree(&acg), d); 806 acg.cg_cs.cs_nffree++; 807 } 808 } 809 if (sblock.fs_contigsumsize > 0) { 810 int32_t *sump = cg_clustersum(&acg); 811 u_char *mapp = cg_clustersfree(&acg); 812 int map = *mapp++; 813 int bit = 1; 814 int run = 0; 815 816 for (i = 0; i < acg.cg_nclusterblks; i++) { 817 if ((map & bit) != 0) 818 run++; 819 else if (run != 0) { 820 if (run > sblock.fs_contigsumsize) 821 run = sblock.fs_contigsumsize; 822 sump[run]++; 823 run = 0; 824 } 825 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 826 bit <<= 1; 827 else { 828 map = *mapp++; 829 bit = 1; 830 } 831 } 832 if (run != 0) { 833 if (run > sblock.fs_contigsumsize) 834 run = sblock.fs_contigsumsize; 835 sump[run]++; 836 } 837 } 838 *cs = acg.cg_cs; 839 /* 840 * Write out the duplicate super block. Then write the cylinder 841 * group map and two blocks worth of inodes in a single write. 842 */ 843 savedactualloc = sblock.fs_sblockactualloc; 844 sblock.fs_sblockactualloc = 845 dbtob(fsbtodb(&sblock, cgsblock(&sblock, cylno))); 846 if (sbwrite(&disk, 0) != 0) 847 err(1, "sbwrite: %s", disk.d_error); 848 sblock.fs_sblockactualloc = savedactualloc; 849 if (cgwrite(&disk) != 0) 850 err(1, "initcg: cgwrite: %s", disk.d_error); 851 start = 0; 852 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 853 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 854 for (i = 0; i < acg.cg_initediblk; i++) { 855 if (sblock.fs_magic == FS_UFS1_MAGIC) { 856 dp1->di_gen = newfs_random(); 857 dp1++; 858 } else { 859 dp2->di_gen = newfs_random(); 860 dp2++; 861 } 862 } 863 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf); 864 /* 865 * For the old file system, we have to initialize all the inodes. 866 */ 867 if (Oflag == 1) { 868 for (i = 2 * sblock.fs_frag; 869 i < sblock.fs_ipg / INOPF(&sblock); 870 i += sblock.fs_frag) { 871 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 872 for (j = 0; j < INOPB(&sblock); j++) { 873 dp1->di_gen = newfs_random(); 874 dp1++; 875 } 876 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 877 sblock.fs_bsize, &iobuf[start]); 878 } 879 } 880 } 881 882 /* 883 * initialize the file system 884 */ 885 #define ROOTLINKCNT 3 886 887 static struct direct root_dir[] = { 888 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 889 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 890 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 891 }; 892 893 #define SNAPLINKCNT 2 894 895 static struct direct snap_dir[] = { 896 { UFS_ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 897 { UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 898 }; 899 900 void 901 fsinit(time_t utime) 902 { 903 union dinode node; 904 struct group *grp; 905 gid_t gid; 906 int entries; 907 908 memset(&node, 0, sizeof node); 909 if ((grp = getgrnam("operator")) != NULL) { 910 gid = grp->gr_gid; 911 } else { 912 warnx("Cannot retrieve operator gid, using gid 0."); 913 gid = 0; 914 } 915 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 916 if (sblock.fs_magic == FS_UFS1_MAGIC) { 917 /* 918 * initialize the node 919 */ 920 node.dp1.di_atime = utime; 921 node.dp1.di_mtime = utime; 922 node.dp1.di_ctime = utime; 923 /* 924 * create the root directory 925 */ 926 node.dp1.di_mode = IFDIR | UMASK; 927 node.dp1.di_nlink = entries; 928 node.dp1.di_size = makedir(root_dir, entries); 929 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 930 node.dp1.di_blocks = 931 btodb(fragroundup(&sblock, node.dp1.di_size)); 932 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 933 iobuf); 934 iput(&node, UFS_ROOTINO); 935 if (!nflag) { 936 /* 937 * create the .snap directory 938 */ 939 node.dp1.di_mode |= 020; 940 node.dp1.di_gid = gid; 941 node.dp1.di_nlink = SNAPLINKCNT; 942 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 943 node.dp1.di_db[0] = 944 alloc(sblock.fs_fsize, node.dp1.di_mode); 945 node.dp1.di_blocks = 946 btodb(fragroundup(&sblock, node.dp1.di_size)); 947 node.dp1.di_dirdepth = 1; 948 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 949 sblock.fs_fsize, iobuf); 950 iput(&node, UFS_ROOTINO + 1); 951 } 952 } else { 953 /* 954 * initialize the node 955 */ 956 node.dp2.di_atime = utime; 957 node.dp2.di_mtime = utime; 958 node.dp2.di_ctime = utime; 959 node.dp2.di_birthtime = utime; 960 /* 961 * create the root directory 962 */ 963 node.dp2.di_mode = IFDIR | UMASK; 964 node.dp2.di_nlink = entries; 965 node.dp2.di_size = makedir(root_dir, entries); 966 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 967 node.dp2.di_blocks = 968 btodb(fragroundup(&sblock, node.dp2.di_size)); 969 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 970 iobuf); 971 iput(&node, UFS_ROOTINO); 972 if (!nflag) { 973 /* 974 * create the .snap directory 975 */ 976 node.dp2.di_mode |= 020; 977 node.dp2.di_gid = gid; 978 node.dp2.di_nlink = SNAPLINKCNT; 979 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 980 node.dp2.di_db[0] = 981 alloc(sblock.fs_fsize, node.dp2.di_mode); 982 node.dp2.di_blocks = 983 btodb(fragroundup(&sblock, node.dp2.di_size)); 984 node.dp2.di_dirdepth = 1; 985 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 986 sblock.fs_fsize, iobuf); 987 iput(&node, UFS_ROOTINO + 1); 988 } 989 } 990 } 991 992 /* 993 * construct a set of directory entries in "iobuf". 994 * return size of directory. 995 */ 996 int 997 makedir(struct direct *protodir, int entries) 998 { 999 char *cp; 1000 int i, spcleft; 1001 1002 spcleft = DIRBLKSIZ; 1003 memset(iobuf, 0, DIRBLKSIZ); 1004 for (cp = iobuf, i = 0; i < entries - 1; i++) { 1005 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1006 memmove(cp, &protodir[i], protodir[i].d_reclen); 1007 cp += protodir[i].d_reclen; 1008 spcleft -= protodir[i].d_reclen; 1009 } 1010 protodir[i].d_reclen = spcleft; 1011 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1012 return (DIRBLKSIZ); 1013 } 1014 1015 /* 1016 * allocate a block or frag 1017 */ 1018 ufs2_daddr_t 1019 alloc(int size, int mode) 1020 { 1021 int i, blkno, frag; 1022 uint d; 1023 1024 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1025 sblock.fs_cgsize); 1026 if (acg.cg_magic != CG_MAGIC) { 1027 printf("cg 0: bad magic number\n"); 1028 exit(38); 1029 } 1030 if (acg.cg_cs.cs_nbfree == 0) { 1031 printf("first cylinder group ran out of space\n"); 1032 exit(39); 1033 } 1034 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1035 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1036 goto goth; 1037 printf("internal error: can't find block in cyl 0\n"); 1038 exit(40); 1039 goth: 1040 blkno = fragstoblks(&sblock, d); 1041 clrblock(&sblock, cg_blksfree(&acg), blkno); 1042 if (sblock.fs_contigsumsize > 0) 1043 clrbit(cg_clustersfree(&acg), blkno); 1044 acg.cg_cs.cs_nbfree--; 1045 sblock.fs_cstotal.cs_nbfree--; 1046 fscs[0].cs_nbfree--; 1047 if (mode & IFDIR) { 1048 acg.cg_cs.cs_ndir++; 1049 sblock.fs_cstotal.cs_ndir++; 1050 fscs[0].cs_ndir++; 1051 } 1052 if (size != sblock.fs_bsize) { 1053 frag = howmany(size, sblock.fs_fsize); 1054 fscs[0].cs_nffree += sblock.fs_frag - frag; 1055 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1056 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1057 acg.cg_frsum[sblock.fs_frag - frag]++; 1058 for (i = frag; i < sblock.fs_frag; i++) 1059 setbit(cg_blksfree(&acg), d + i); 1060 } 1061 if (cgwrite(&disk) != 0) 1062 err(1, "alloc: cgwrite: %s", disk.d_error); 1063 return ((ufs2_daddr_t)d); 1064 } 1065 1066 /* 1067 * Allocate an inode on the disk 1068 */ 1069 void 1070 iput(union dinode *ip, ino_t ino) 1071 { 1072 union dinodep dp; 1073 1074 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 1075 sblock.fs_cgsize); 1076 if (acg.cg_magic != CG_MAGIC) { 1077 printf("cg 0: bad magic number\n"); 1078 exit(31); 1079 } 1080 acg.cg_cs.cs_nifree--; 1081 setbit(cg_inosused(&acg), ino); 1082 if (cgwrite(&disk) != 0) 1083 err(1, "iput: cgwrite: %s", disk.d_error); 1084 sblock.fs_cstotal.cs_nifree--; 1085 fscs[0].cs_nifree--; 1086 if (getinode(&disk, &dp, ino) == -1) { 1087 printf("iput: %s\n", disk.d_error); 1088 exit(32); 1089 } 1090 if (sblock.fs_magic == FS_UFS1_MAGIC) 1091 *dp.dp1 = ip->dp1; 1092 else 1093 *dp.dp2 = ip->dp2; 1094 putinode(&disk); 1095 } 1096 1097 /* 1098 * possibly write to disk 1099 */ 1100 static void 1101 wtfs(ufs2_daddr_t bno, int size, char *bf) 1102 { 1103 if (Nflag) 1104 return; 1105 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 1106 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 1107 } 1108 1109 /* 1110 * check if a block is available 1111 */ 1112 static int 1113 isblock(struct fs *fs, unsigned char *cp, int h) 1114 { 1115 unsigned char mask; 1116 1117 switch (fs->fs_frag) { 1118 case 8: 1119 return (cp[h] == 0xff); 1120 case 4: 1121 mask = 0x0f << ((h & 0x1) << 2); 1122 return ((cp[h >> 1] & mask) == mask); 1123 case 2: 1124 mask = 0x03 << ((h & 0x3) << 1); 1125 return ((cp[h >> 2] & mask) == mask); 1126 case 1: 1127 mask = 0x01 << (h & 0x7); 1128 return ((cp[h >> 3] & mask) == mask); 1129 default: 1130 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1131 return (0); 1132 } 1133 } 1134 1135 /* 1136 * take a block out of the map 1137 */ 1138 static void 1139 clrblock(struct fs *fs, unsigned char *cp, int h) 1140 { 1141 switch ((fs)->fs_frag) { 1142 case 8: 1143 cp[h] = 0; 1144 return; 1145 case 4: 1146 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1147 return; 1148 case 2: 1149 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1150 return; 1151 case 1: 1152 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1153 return; 1154 default: 1155 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1156 return; 1157 } 1158 } 1159 1160 /* 1161 * put a block into the map 1162 */ 1163 static void 1164 setblock(struct fs *fs, unsigned char *cp, int h) 1165 { 1166 switch (fs->fs_frag) { 1167 case 8: 1168 cp[h] = 0xff; 1169 return; 1170 case 4: 1171 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1172 return; 1173 case 2: 1174 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1175 return; 1176 case 1: 1177 cp[h >> 3] |= (0x01 << (h & 0x7)); 1178 return; 1179 default: 1180 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1181 return; 1182 } 1183 } 1184 1185 /* 1186 * Determine the number of characters in a 1187 * single line. 1188 */ 1189 1190 static int 1191 charsperline(void) 1192 { 1193 int columns; 1194 char *cp; 1195 struct winsize ws; 1196 1197 columns = 0; 1198 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1199 columns = ws.ws_col; 1200 if (columns == 0 && (cp = getenv("COLUMNS"))) 1201 columns = atoi(cp); 1202 if (columns == 0) 1203 columns = 80; /* last resort */ 1204 return (columns); 1205 } 1206 1207 static int 1208 ilog2(int val) 1209 { 1210 u_int n; 1211 1212 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1213 if (1 << n == val) 1214 return (n); 1215 errx(1, "ilog2: %d is not a power of 2\n", val); 1216 } 1217 1218 /* 1219 * For the regression test, return predictable random values. 1220 * Otherwise use a true random number generator. 1221 */ 1222 static u_int32_t 1223 newfs_random(void) 1224 { 1225 static u_int32_t nextnum = 1; 1226 1227 if (Rflag) 1228 return (nextnum++); 1229 return (arc4random()); 1230 } 1231