1 /* 2 * Copyright (c) 2002 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program. 10 * 11 * Copyright (c) 1980, 1989, 1993 12 * The Regents of the University of California. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #if 0 40 #ifndef lint 41 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 42 #endif /* not lint */ 43 #endif 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include <err.h> 48 #include <grp.h> 49 #include <limits.h> 50 #include <signal.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <stdint.h> 54 #include <stdio.h> 55 #include <unistd.h> 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/types.h> 59 #include <sys/wait.h> 60 #include <sys/resource.h> 61 #include <sys/stat.h> 62 #include <ufs/ufs/dinode.h> 63 #include <ufs/ufs/dir.h> 64 #include <ufs/ffs/fs.h> 65 #include <sys/disklabel.h> 66 #include <sys/file.h> 67 #include <sys/mman.h> 68 #include <sys/ioctl.h> 69 #include "newfs.h" 70 71 /* 72 * make file system for cylinder-group style file systems 73 */ 74 #define UMASK 0755 75 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 76 77 static struct csum *fscs; 78 #define sblock disk.d_fs 79 #define acg disk.d_cg 80 81 union dinode { 82 struct ufs1_dinode dp1; 83 struct ufs2_dinode dp2; 84 }; 85 #define DIP(dp, field) \ 86 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ 87 (dp)->dp1.field : (dp)->dp2.field) 88 89 static caddr_t iobuf; 90 static long iobufsize; 91 static ufs2_daddr_t alloc(int size, int mode); 92 static int charsperline(void); 93 static void clrblock(struct fs *, unsigned char *, int); 94 static void fsinit(time_t); 95 static int ilog2(int); 96 static void initcg(int, time_t); 97 static int isblock(struct fs *, unsigned char *, int); 98 static void iput(union dinode *, ino_t); 99 static int makedir(struct direct *, int); 100 static void setblock(struct fs *, unsigned char *, int); 101 static void wtfs(ufs2_daddr_t, int, char *); 102 static u_int32_t newfs_random(void); 103 104 static int 105 do_sbwrite(struct uufsd *disk) 106 { 107 if (!disk->d_sblock) 108 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; 109 return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + 110 disk->d_sblock) * disk->d_bsize))); 111 } 112 113 void 114 mkfs(struct partition *pp, char *fsys) 115 { 116 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 117 long i, j, cylno, csfrags; 118 time_t utime; 119 quad_t sizepb; 120 int width; 121 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 122 union { 123 struct fs fdummy; 124 char cdummy[SBLOCKSIZE]; 125 } dummy; 126 #define fsdummy dummy.fdummy 127 #define chdummy dummy.cdummy 128 129 /* 130 * Our blocks == sector size, and the version of UFS we are using is 131 * specified by Oflag. 132 */ 133 disk.d_bsize = sectorsize; 134 disk.d_ufs = Oflag; 135 if (Rflag) { 136 utime = 1000000000; 137 } else { 138 time(&utime); 139 arc4random_stir(); 140 } 141 sblock.fs_old_flags = FS_FLAGS_UPDATED; 142 sblock.fs_flags = 0; 143 if (Uflag) 144 sblock.fs_flags |= FS_DOSOFTDEP; 145 if (Lflag) 146 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 147 if (Jflag) 148 sblock.fs_flags |= FS_GJOURNAL; 149 if (lflag) 150 sblock.fs_flags |= FS_MULTILABEL; 151 /* 152 * Validate the given file system size. 153 * Verify that its last block can actually be accessed. 154 * Convert to file system fragment sized units. 155 */ 156 if (fssize <= 0) { 157 printf("preposterous size %jd\n", (intmax_t)fssize); 158 exit(13); 159 } 160 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 161 (char *)&sblock); 162 /* 163 * collect and verify the file system density info 164 */ 165 sblock.fs_avgfilesize = avgfilesize; 166 sblock.fs_avgfpdir = avgfilesperdir; 167 if (sblock.fs_avgfilesize <= 0) 168 printf("illegal expected average file size %d\n", 169 sblock.fs_avgfilesize), exit(14); 170 if (sblock.fs_avgfpdir <= 0) 171 printf("illegal expected number of files per directory %d\n", 172 sblock.fs_avgfpdir), exit(15); 173 /* 174 * collect and verify the block and fragment sizes 175 */ 176 sblock.fs_bsize = bsize; 177 sblock.fs_fsize = fsize; 178 if (!POWEROF2(sblock.fs_bsize)) { 179 printf("block size must be a power of 2, not %d\n", 180 sblock.fs_bsize); 181 exit(16); 182 } 183 if (!POWEROF2(sblock.fs_fsize)) { 184 printf("fragment size must be a power of 2, not %d\n", 185 sblock.fs_fsize); 186 exit(17); 187 } 188 if (sblock.fs_fsize < sectorsize) { 189 printf("increasing fragment size from %d to sector size (%d)\n", 190 sblock.fs_fsize, sectorsize); 191 sblock.fs_fsize = sectorsize; 192 } 193 if (sblock.fs_bsize > MAXBSIZE) { 194 printf("decreasing block size from %d to maximum (%d)\n", 195 sblock.fs_bsize, MAXBSIZE); 196 sblock.fs_bsize = MAXBSIZE; 197 } 198 if (sblock.fs_bsize < MINBSIZE) { 199 printf("increasing block size from %d to minimum (%d)\n", 200 sblock.fs_bsize, MINBSIZE); 201 sblock.fs_bsize = MINBSIZE; 202 } 203 if (sblock.fs_fsize > MAXBSIZE) { 204 printf("decreasing fragment size from %d to maximum (%d)\n", 205 sblock.fs_fsize, MAXBSIZE); 206 sblock.fs_fsize = MAXBSIZE; 207 } 208 if (sblock.fs_bsize < sblock.fs_fsize) { 209 printf("increasing block size from %d to fragment size (%d)\n", 210 sblock.fs_bsize, sblock.fs_fsize); 211 sblock.fs_bsize = sblock.fs_fsize; 212 } 213 if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { 214 printf( 215 "increasing fragment size from %d to block size / %d (%d)\n", 216 sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); 217 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; 218 } 219 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 220 sblock.fs_maxbsize = sblock.fs_bsize; 221 printf("Extent size set to %d\n", sblock.fs_maxbsize); 222 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 223 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 224 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 225 } else { 226 sblock.fs_maxbsize = maxbsize; 227 } 228 sblock.fs_maxcontig = maxcontig; 229 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 230 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 231 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 232 } 233 if (sblock.fs_maxcontig > 1) 234 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 235 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 236 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 237 sblock.fs_qbmask = ~sblock.fs_bmask; 238 sblock.fs_qfmask = ~sblock.fs_fmask; 239 sblock.fs_bshift = ilog2(sblock.fs_bsize); 240 sblock.fs_fshift = ilog2(sblock.fs_fsize); 241 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 242 sblock.fs_fragshift = ilog2(sblock.fs_frag); 243 if (sblock.fs_frag > MAXFRAG) { 244 printf("fragment size %d is still too small (can't happen)\n", 245 sblock.fs_bsize / MAXFRAG); 246 exit(21); 247 } 248 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 249 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 250 251 /* 252 * Before the filesystem is finally initialized, mark it 253 * as incompletely initialized. 254 */ 255 sblock.fs_magic = FS_BAD_MAGIC; 256 257 if (Oflag == 1) { 258 sblock.fs_sblockloc = SBLOCK_UFS1; 259 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 260 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 261 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 262 sizeof(ufs1_daddr_t)); 263 sblock.fs_old_inodefmt = FS_44INODEFMT; 264 sblock.fs_old_cgoffset = 0; 265 sblock.fs_old_cgmask = 0xffffffff; 266 sblock.fs_old_size = sblock.fs_size; 267 sblock.fs_old_rotdelay = 0; 268 sblock.fs_old_rps = 60; 269 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 270 sblock.fs_old_cpg = 1; 271 sblock.fs_old_interleave = 1; 272 sblock.fs_old_trackskew = 0; 273 sblock.fs_old_cpc = 0; 274 sblock.fs_old_postblformat = 1; 275 sblock.fs_old_nrpos = 1; 276 } else { 277 sblock.fs_sblockloc = SBLOCK_UFS2; 278 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 279 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 280 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 281 sizeof(ufs2_daddr_t)); 282 } 283 sblock.fs_sblkno = 284 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 285 sblock.fs_frag); 286 sblock.fs_cblkno = sblock.fs_sblkno + 287 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); 288 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 289 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 290 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 291 sizepb *= NINDIR(&sblock); 292 sblock.fs_maxfilesize += sizepb; 293 } 294 295 /* 296 * It's impossible to create a snapshot in case that fs_maxfilesize 297 * is smaller than the fssize. 298 */ 299 if (sblock.fs_maxfilesize < (u_quad_t)fssize) { 300 warnx("WARNING: You will be unable to create snapshots on this " 301 "file system. Correct by using a larger blocksize."); 302 } 303 304 /* 305 * Calculate the number of blocks to put into each cylinder group. 306 * 307 * This algorithm selects the number of blocks per cylinder 308 * group. The first goal is to have at least enough data blocks 309 * in each cylinder group to meet the density requirement. Once 310 * this goal is achieved we try to expand to have at least 311 * MINCYLGRPS cylinder groups. Once this goal is achieved, we 312 * pack as many blocks into each cylinder group map as will fit. 313 * 314 * We start by calculating the smallest number of blocks that we 315 * can put into each cylinder group. If this is too big, we reduce 316 * the density until it fits. 317 */ 318 origdensity = density; 319 for (;;) { 320 fragsperinode = MAX(numfrags(&sblock, density), 1); 321 minfpg = fragsperinode * INOPB(&sblock); 322 if (minfpg > sblock.fs_size) 323 minfpg = sblock.fs_size; 324 sblock.fs_ipg = INOPB(&sblock); 325 sblock.fs_fpg = roundup(sblock.fs_iblkno + 326 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 327 if (sblock.fs_fpg < minfpg) 328 sblock.fs_fpg = minfpg; 329 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 330 INOPB(&sblock)); 331 sblock.fs_fpg = roundup(sblock.fs_iblkno + 332 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 333 if (sblock.fs_fpg < minfpg) 334 sblock.fs_fpg = minfpg; 335 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 336 INOPB(&sblock)); 337 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 338 break; 339 density -= sblock.fs_fsize; 340 } 341 if (density != origdensity) 342 printf("density reduced from %d to %d\n", origdensity, density); 343 /* 344 * Start packing more blocks into the cylinder group until 345 * it cannot grow any larger, the number of cylinder groups 346 * drops below MINCYLGRPS, or we reach the size requested. 347 */ 348 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 349 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 350 INOPB(&sblock)); 351 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) 352 break; 353 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 354 continue; 355 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 356 break; 357 sblock.fs_fpg -= sblock.fs_frag; 358 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 359 INOPB(&sblock)); 360 break; 361 } 362 /* 363 * Check to be sure that the last cylinder group has enough blocks 364 * to be viable. If it is too small, reduce the number of blocks 365 * per cylinder group which will have the effect of moving more 366 * blocks into the last cylinder group. 367 */ 368 optimalfpg = sblock.fs_fpg; 369 for (;;) { 370 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 371 lastminfpg = roundup(sblock.fs_iblkno + 372 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 373 if (sblock.fs_size < lastminfpg) { 374 printf("Filesystem size %jd < minimum size of %d\n", 375 (intmax_t)sblock.fs_size, lastminfpg); 376 exit(28); 377 } 378 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 379 sblock.fs_size % sblock.fs_fpg == 0) 380 break; 381 sblock.fs_fpg -= sblock.fs_frag; 382 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 383 INOPB(&sblock)); 384 } 385 if (optimalfpg != sblock.fs_fpg) 386 printf("Reduced frags per cylinder group from %d to %d %s\n", 387 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 388 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 389 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 390 if (Oflag == 1) { 391 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 392 sblock.fs_old_nsect = sblock.fs_old_spc; 393 sblock.fs_old_npsect = sblock.fs_old_spc; 394 sblock.fs_old_ncyl = sblock.fs_ncg; 395 } 396 /* 397 * fill in remaining fields of the super block 398 */ 399 sblock.fs_csaddr = cgdmin(&sblock, 0); 400 sblock.fs_cssize = 401 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 402 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 403 if (fscs == NULL) 404 errx(31, "calloc failed"); 405 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 406 if (sblock.fs_sbsize > SBLOCKSIZE) 407 sblock.fs_sbsize = SBLOCKSIZE; 408 sblock.fs_minfree = minfree; 409 sblock.fs_maxbpg = maxbpg; 410 sblock.fs_optim = opt; 411 sblock.fs_cgrotor = 0; 412 sblock.fs_pendingblocks = 0; 413 sblock.fs_pendinginodes = 0; 414 sblock.fs_fmod = 0; 415 sblock.fs_ronly = 0; 416 sblock.fs_state = 0; 417 sblock.fs_clean = 1; 418 sblock.fs_id[0] = (long)utime; 419 sblock.fs_id[1] = newfs_random(); 420 sblock.fs_fsmnt[0] = '\0'; 421 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 422 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 423 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 424 sblock.fs_cstotal.cs_nbfree = 425 fragstoblks(&sblock, sblock.fs_dsize) - 426 howmany(csfrags, sblock.fs_frag); 427 sblock.fs_cstotal.cs_nffree = 428 fragnum(&sblock, sblock.fs_size) + 429 (fragnum(&sblock, csfrags) > 0 ? 430 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 431 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 432 sblock.fs_cstotal.cs_ndir = 0; 433 sblock.fs_dsize -= csfrags; 434 sblock.fs_time = utime; 435 if (Oflag == 1) { 436 sblock.fs_old_time = utime; 437 sblock.fs_old_dsize = sblock.fs_dsize; 438 sblock.fs_old_csaddr = sblock.fs_csaddr; 439 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 440 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 441 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 442 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 443 } 444 445 /* 446 * Dump out summary information about file system. 447 */ 448 # define B2MBFACTOR (1 / (1024.0 * 1024.0)) 449 printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 450 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 451 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 452 sblock.fs_fsize); 453 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 454 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 455 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 456 if (sblock.fs_flags & FS_DOSOFTDEP) 457 printf("\twith soft updates\n"); 458 # undef B2MBFACTOR 459 460 if (Eflag && !Nflag) { 461 printf("Erasing sectors [%jd...%jd]\n", 462 sblock.fs_sblockloc / disk.d_bsize, 463 fsbtodb(&sblock, sblock.fs_size) - 1); 464 berase(&disk, sblock.fs_sblockloc / disk.d_bsize, 465 sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); 466 } 467 /* 468 * Wipe out old UFS1 superblock(s) if necessary. 469 */ 470 if (!Nflag && Oflag != 1) { 471 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); 472 if (i == -1) 473 err(1, "can't read old UFS1 superblock: %s", disk.d_error); 474 475 if (fsdummy.fs_magic == FS_UFS1_MAGIC) { 476 fsdummy.fs_magic = 0; 477 bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, 478 chdummy, SBLOCKSIZE); 479 for (i = 0; i < fsdummy.fs_ncg; i++) 480 bwrite(&disk, part_ofs + fsbtodb(&fsdummy, 481 cgsblock(&fsdummy, i)), chdummy, SBLOCKSIZE); 482 } 483 } 484 if (!Nflag) 485 do_sbwrite(&disk); 486 if (Xflag == 1) { 487 printf("** Exiting on Xflag 1\n"); 488 exit(0); 489 } 490 if (Xflag == 2) 491 printf("** Leaving BAD MAGIC on Xflag 2\n"); 492 else 493 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; 494 495 /* 496 * Now build the cylinders group blocks and 497 * then print out indices of cylinder groups. 498 */ 499 printf("super-block backups (for fsck -b #) at:\n"); 500 i = 0; 501 width = charsperline(); 502 /* 503 * allocate space for superblock, cylinder group map, and 504 * two sets of inode blocks. 505 */ 506 if (sblock.fs_bsize < SBLOCKSIZE) 507 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 508 else 509 iobufsize = 4 * sblock.fs_bsize; 510 if ((iobuf = calloc(1, iobufsize)) == 0) { 511 printf("Cannot allocate I/O buffer\n"); 512 exit(38); 513 } 514 /* 515 * Make a copy of the superblock into the buffer that we will be 516 * writing out in each cylinder group. 517 */ 518 bcopy((char *)&sblock, iobuf, SBLOCKSIZE); 519 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 520 initcg(cylno, utime); 521 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", 522 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 523 cylno < (sblock.fs_ncg-1) ? "," : ""); 524 if (j < 0) 525 tmpbuf[j = 0] = '\0'; 526 if (i + j >= width) { 527 printf("\n"); 528 i = 0; 529 } 530 i += j; 531 printf("%s", tmpbuf); 532 fflush(stdout); 533 } 534 printf("\n"); 535 if (Nflag) 536 exit(0); 537 /* 538 * Now construct the initial file system, 539 * then write out the super-block. 540 */ 541 fsinit(utime); 542 if (Oflag == 1) { 543 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 544 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 545 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 546 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 547 } 548 if (Xflag == 3) { 549 printf("** Exiting on Xflag 3\n"); 550 exit(0); 551 } 552 if (!Nflag) 553 do_sbwrite(&disk); 554 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 555 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 556 sblock.fs_cssize - i < sblock.fs_bsize ? 557 sblock.fs_cssize - i : sblock.fs_bsize, 558 ((char *)fscs) + i); 559 /* 560 * Update information about this partion in pack 561 * label, to that it may be updated on disk. 562 */ 563 if (pp != NULL) { 564 pp->p_fstype = FS_BSDFFS; 565 pp->p_fsize = sblock.fs_fsize; 566 pp->p_frag = sblock.fs_frag; 567 pp->p_cpg = sblock.fs_fpg; 568 } 569 } 570 571 /* 572 * Initialize a cylinder group. 573 */ 574 void 575 initcg(int cylno, time_t utime) 576 { 577 long i, j, d, dlower, dupper, blkno, start; 578 ufs2_daddr_t cbase, dmax; 579 struct ufs1_dinode *dp1; 580 struct ufs2_dinode *dp2; 581 struct csum *cs; 582 583 /* 584 * Determine block bounds for cylinder group. 585 * Allow space for super block summary information in first 586 * cylinder group. 587 */ 588 cbase = cgbase(&sblock, cylno); 589 dmax = cbase + sblock.fs_fpg; 590 if (dmax > sblock.fs_size) 591 dmax = sblock.fs_size; 592 dlower = cgsblock(&sblock, cylno) - cbase; 593 dupper = cgdmin(&sblock, cylno) - cbase; 594 if (cylno == 0) 595 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 596 cs = &fscs[cylno]; 597 memset(&acg, 0, sblock.fs_cgsize); 598 acg.cg_time = utime; 599 acg.cg_magic = CG_MAGIC; 600 acg.cg_cgx = cylno; 601 acg.cg_niblk = sblock.fs_ipg; 602 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 603 sblock.fs_ipg : 2 * INOPB(&sblock); 604 acg.cg_ndblk = dmax - cbase; 605 if (sblock.fs_contigsumsize > 0) 606 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 607 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 608 if (Oflag == 2) { 609 acg.cg_iusedoff = start; 610 } else { 611 acg.cg_old_ncyl = sblock.fs_old_cpg; 612 acg.cg_old_time = acg.cg_time; 613 acg.cg_time = 0; 614 acg.cg_old_niblk = acg.cg_niblk; 615 acg.cg_niblk = 0; 616 acg.cg_initediblk = 0; 617 acg.cg_old_btotoff = start; 618 acg.cg_old_boff = acg.cg_old_btotoff + 619 sblock.fs_old_cpg * sizeof(int32_t); 620 acg.cg_iusedoff = acg.cg_old_boff + 621 sblock.fs_old_cpg * sizeof(u_int16_t); 622 } 623 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 624 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 625 if (sblock.fs_contigsumsize > 0) { 626 acg.cg_clustersumoff = 627 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 628 acg.cg_clustersumoff -= sizeof(u_int32_t); 629 acg.cg_clusteroff = acg.cg_clustersumoff + 630 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 631 acg.cg_nextfreeoff = acg.cg_clusteroff + 632 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 633 } 634 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 635 printf("Panic: cylinder group too big\n"); 636 exit(37); 637 } 638 acg.cg_cs.cs_nifree += sblock.fs_ipg; 639 if (cylno == 0) 640 for (i = 0; i < (long)ROOTINO; i++) { 641 setbit(cg_inosused(&acg), i); 642 acg.cg_cs.cs_nifree--; 643 } 644 if (cylno > 0) { 645 /* 646 * In cylno 0, beginning space is reserved 647 * for boot and super blocks. 648 */ 649 for (d = 0; d < dlower; d += sblock.fs_frag) { 650 blkno = d / sblock.fs_frag; 651 setblock(&sblock, cg_blksfree(&acg), blkno); 652 if (sblock.fs_contigsumsize > 0) 653 setbit(cg_clustersfree(&acg), blkno); 654 acg.cg_cs.cs_nbfree++; 655 } 656 } 657 if ((i = dupper % sblock.fs_frag)) { 658 acg.cg_frsum[sblock.fs_frag - i]++; 659 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 660 setbit(cg_blksfree(&acg), dupper); 661 acg.cg_cs.cs_nffree++; 662 } 663 } 664 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 665 d += sblock.fs_frag) { 666 blkno = d / sblock.fs_frag; 667 setblock(&sblock, cg_blksfree(&acg), blkno); 668 if (sblock.fs_contigsumsize > 0) 669 setbit(cg_clustersfree(&acg), blkno); 670 acg.cg_cs.cs_nbfree++; 671 } 672 if (d < acg.cg_ndblk) { 673 acg.cg_frsum[acg.cg_ndblk - d]++; 674 for (; d < acg.cg_ndblk; d++) { 675 setbit(cg_blksfree(&acg), d); 676 acg.cg_cs.cs_nffree++; 677 } 678 } 679 if (sblock.fs_contigsumsize > 0) { 680 int32_t *sump = cg_clustersum(&acg); 681 u_char *mapp = cg_clustersfree(&acg); 682 int map = *mapp++; 683 int bit = 1; 684 int run = 0; 685 686 for (i = 0; i < acg.cg_nclusterblks; i++) { 687 if ((map & bit) != 0) 688 run++; 689 else if (run != 0) { 690 if (run > sblock.fs_contigsumsize) 691 run = sblock.fs_contigsumsize; 692 sump[run]++; 693 run = 0; 694 } 695 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 696 bit <<= 1; 697 else { 698 map = *mapp++; 699 bit = 1; 700 } 701 } 702 if (run != 0) { 703 if (run > sblock.fs_contigsumsize) 704 run = sblock.fs_contigsumsize; 705 sump[run]++; 706 } 707 } 708 *cs = acg.cg_cs; 709 /* 710 * Write out the duplicate super block, the cylinder group map 711 * and two blocks worth of inodes in a single write. 712 */ 713 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 714 bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); 715 start += sblock.fs_bsize; 716 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 717 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 718 for (i = 0; i < acg.cg_initediblk; i++) { 719 if (sblock.fs_magic == FS_UFS1_MAGIC) { 720 dp1->di_gen = newfs_random(); 721 dp1++; 722 } else { 723 dp2->di_gen = newfs_random(); 724 dp2++; 725 } 726 } 727 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); 728 /* 729 * For the old file system, we have to initialize all the inodes. 730 */ 731 if (Oflag == 1) { 732 for (i = 2 * sblock.fs_frag; 733 i < sblock.fs_ipg / INOPF(&sblock); 734 i += sblock.fs_frag) { 735 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 736 for (j = 0; j < INOPB(&sblock); j++) { 737 dp1->di_gen = newfs_random(); 738 dp1++; 739 } 740 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 741 sblock.fs_bsize, &iobuf[start]); 742 } 743 } 744 } 745 746 /* 747 * initialize the file system 748 */ 749 #define ROOTLINKCNT 3 750 751 struct direct root_dir[] = { 752 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 753 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 754 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, 755 }; 756 757 #define SNAPLINKCNT 2 758 759 struct direct snap_dir[] = { 760 { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, 761 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 762 }; 763 764 void 765 fsinit(time_t utime) 766 { 767 union dinode node; 768 struct group *grp; 769 gid_t gid; 770 int entries; 771 772 memset(&node, 0, sizeof node); 773 if ((grp = getgrnam("operator")) != NULL) { 774 gid = grp->gr_gid; 775 } else { 776 warnx("Cannot retrieve operator gid, using gid 0."); 777 gid = 0; 778 } 779 entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; 780 if (sblock.fs_magic == FS_UFS1_MAGIC) { 781 /* 782 * initialize the node 783 */ 784 node.dp1.di_atime = utime; 785 node.dp1.di_mtime = utime; 786 node.dp1.di_ctime = utime; 787 /* 788 * create the root directory 789 */ 790 node.dp1.di_mode = IFDIR | UMASK; 791 node.dp1.di_nlink = entries; 792 node.dp1.di_size = makedir(root_dir, entries); 793 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); 794 node.dp1.di_blocks = 795 btodb(fragroundup(&sblock, node.dp1.di_size)); 796 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, 797 iobuf); 798 iput(&node, ROOTINO); 799 if (!nflag) { 800 /* 801 * create the .snap directory 802 */ 803 node.dp1.di_mode |= 020; 804 node.dp1.di_gid = gid; 805 node.dp1.di_nlink = SNAPLINKCNT; 806 node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); 807 node.dp1.di_db[0] = 808 alloc(sblock.fs_fsize, node.dp1.di_mode); 809 node.dp1.di_blocks = 810 btodb(fragroundup(&sblock, node.dp1.di_size)); 811 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), 812 sblock.fs_fsize, iobuf); 813 iput(&node, ROOTINO + 1); 814 } 815 } else { 816 /* 817 * initialize the node 818 */ 819 node.dp2.di_atime = utime; 820 node.dp2.di_mtime = utime; 821 node.dp2.di_ctime = utime; 822 node.dp2.di_birthtime = utime; 823 /* 824 * create the root directory 825 */ 826 node.dp2.di_mode = IFDIR | UMASK; 827 node.dp2.di_nlink = entries; 828 node.dp2.di_size = makedir(root_dir, entries); 829 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); 830 node.dp2.di_blocks = 831 btodb(fragroundup(&sblock, node.dp2.di_size)); 832 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, 833 iobuf); 834 iput(&node, ROOTINO); 835 if (!nflag) { 836 /* 837 * create the .snap directory 838 */ 839 node.dp2.di_mode |= 020; 840 node.dp2.di_gid = gid; 841 node.dp2.di_nlink = SNAPLINKCNT; 842 node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); 843 node.dp2.di_db[0] = 844 alloc(sblock.fs_fsize, node.dp2.di_mode); 845 node.dp2.di_blocks = 846 btodb(fragroundup(&sblock, node.dp2.di_size)); 847 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 848 sblock.fs_fsize, iobuf); 849 iput(&node, ROOTINO + 1); 850 } 851 } 852 } 853 854 /* 855 * construct a set of directory entries in "iobuf". 856 * return size of directory. 857 */ 858 int 859 makedir(struct direct *protodir, int entries) 860 { 861 char *cp; 862 int i, spcleft; 863 864 spcleft = DIRBLKSIZ; 865 memset(iobuf, 0, DIRBLKSIZ); 866 for (cp = iobuf, i = 0; i < entries - 1; i++) { 867 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 868 memmove(cp, &protodir[i], protodir[i].d_reclen); 869 cp += protodir[i].d_reclen; 870 spcleft -= protodir[i].d_reclen; 871 } 872 protodir[i].d_reclen = spcleft; 873 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 874 return (DIRBLKSIZ); 875 } 876 877 /* 878 * allocate a block or frag 879 */ 880 ufs2_daddr_t 881 alloc(int size, int mode) 882 { 883 int i, d, blkno, frag; 884 885 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 886 sblock.fs_cgsize); 887 if (acg.cg_magic != CG_MAGIC) { 888 printf("cg 0: bad magic number\n"); 889 exit(38); 890 } 891 if (acg.cg_cs.cs_nbfree == 0) { 892 printf("first cylinder group ran out of space\n"); 893 exit(39); 894 } 895 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 896 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 897 goto goth; 898 printf("internal error: can't find block in cyl 0\n"); 899 exit(40); 900 goth: 901 blkno = fragstoblks(&sblock, d); 902 clrblock(&sblock, cg_blksfree(&acg), blkno); 903 if (sblock.fs_contigsumsize > 0) 904 clrbit(cg_clustersfree(&acg), blkno); 905 acg.cg_cs.cs_nbfree--; 906 sblock.fs_cstotal.cs_nbfree--; 907 fscs[0].cs_nbfree--; 908 if (mode & IFDIR) { 909 acg.cg_cs.cs_ndir++; 910 sblock.fs_cstotal.cs_ndir++; 911 fscs[0].cs_ndir++; 912 } 913 if (size != sblock.fs_bsize) { 914 frag = howmany(size, sblock.fs_fsize); 915 fscs[0].cs_nffree += sblock.fs_frag - frag; 916 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 917 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 918 acg.cg_frsum[sblock.fs_frag - frag]++; 919 for (i = frag; i < sblock.fs_frag; i++) 920 setbit(cg_blksfree(&acg), d + i); 921 } 922 /* XXX cgwrite(&disk, 0)??? */ 923 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 924 (char *)&acg); 925 return ((ufs2_daddr_t)d); 926 } 927 928 /* 929 * Allocate an inode on the disk 930 */ 931 void 932 iput(union dinode *ip, ino_t ino) 933 { 934 ufs2_daddr_t d; 935 int c; 936 937 c = ino_to_cg(&sblock, ino); 938 bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, 939 sblock.fs_cgsize); 940 if (acg.cg_magic != CG_MAGIC) { 941 printf("cg 0: bad magic number\n"); 942 exit(31); 943 } 944 acg.cg_cs.cs_nifree--; 945 setbit(cg_inosused(&acg), ino); 946 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 947 (char *)&acg); 948 sblock.fs_cstotal.cs_nifree--; 949 fscs[0].cs_nifree--; 950 if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { 951 printf("fsinit: inode value out of range (%d).\n", ino); 952 exit(32); 953 } 954 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 955 bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); 956 if (sblock.fs_magic == FS_UFS1_MAGIC) 957 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 958 ip->dp1; 959 else 960 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = 961 ip->dp2; 962 wtfs(d, sblock.fs_bsize, (char *)iobuf); 963 } 964 965 /* 966 * possibly write to disk 967 */ 968 static void 969 wtfs(ufs2_daddr_t bno, int size, char *bf) 970 { 971 if (Nflag) 972 return; 973 if (bwrite(&disk, part_ofs + bno, bf, size) < 0) 974 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); 975 } 976 977 /* 978 * check if a block is available 979 */ 980 static int 981 isblock(struct fs *fs, unsigned char *cp, int h) 982 { 983 unsigned char mask; 984 985 switch (fs->fs_frag) { 986 case 8: 987 return (cp[h] == 0xff); 988 case 4: 989 mask = 0x0f << ((h & 0x1) << 2); 990 return ((cp[h >> 1] & mask) == mask); 991 case 2: 992 mask = 0x03 << ((h & 0x3) << 1); 993 return ((cp[h >> 2] & mask) == mask); 994 case 1: 995 mask = 0x01 << (h & 0x7); 996 return ((cp[h >> 3] & mask) == mask); 997 default: 998 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 999 return (0); 1000 } 1001 } 1002 1003 /* 1004 * take a block out of the map 1005 */ 1006 static void 1007 clrblock(struct fs *fs, unsigned char *cp, int h) 1008 { 1009 switch ((fs)->fs_frag) { 1010 case 8: 1011 cp[h] = 0; 1012 return; 1013 case 4: 1014 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1015 return; 1016 case 2: 1017 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1018 return; 1019 case 1: 1020 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1021 return; 1022 default: 1023 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1024 return; 1025 } 1026 } 1027 1028 /* 1029 * put a block into the map 1030 */ 1031 static void 1032 setblock(struct fs *fs, unsigned char *cp, int h) 1033 { 1034 switch (fs->fs_frag) { 1035 case 8: 1036 cp[h] = 0xff; 1037 return; 1038 case 4: 1039 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1040 return; 1041 case 2: 1042 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1043 return; 1044 case 1: 1045 cp[h >> 3] |= (0x01 << (h & 0x7)); 1046 return; 1047 default: 1048 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1049 return; 1050 } 1051 } 1052 1053 /* 1054 * Determine the number of characters in a 1055 * single line. 1056 */ 1057 1058 static int 1059 charsperline(void) 1060 { 1061 int columns; 1062 char *cp; 1063 struct winsize ws; 1064 1065 columns = 0; 1066 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1067 columns = ws.ws_col; 1068 if (columns == 0 && (cp = getenv("COLUMNS"))) 1069 columns = atoi(cp); 1070 if (columns == 0) 1071 columns = 80; /* last resort */ 1072 return (columns); 1073 } 1074 1075 static int 1076 ilog2(int val) 1077 { 1078 u_int n; 1079 1080 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 1081 if (1 << n == val) 1082 return (n); 1083 errx(1, "ilog2: %d is not a power of 2\n", val); 1084 } 1085 1086 /* 1087 * For the regression test, return predictable random values. 1088 * Otherwise use a true random number generator. 1089 */ 1090 static u_int32_t 1091 newfs_random(void) 1092 { 1093 static int nextnum = 1; 1094 1095 if (Rflag) 1096 return (nextnum++); 1097 return (arc4random()); 1098 } 1099