1 /*- 2 * Copyright (c) 2014 Alexander V. Chernikov. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #ifndef lint 27 static const char rcsid[] = 28 "$FreeBSD$"; 29 #endif /* not lint */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/ioctl.h> 34 #include <sys/socket.h> 35 36 #include <net/if.h> 37 #include <net/sff8436.h> 38 #include <net/sff8472.h> 39 40 #include <math.h> 41 #include <err.h> 42 #include <errno.h> 43 #include <fcntl.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <unistd.h> 48 49 #include "ifconfig.h" 50 51 struct i2c_info; 52 typedef int (read_i2c)(struct i2c_info *ii, uint8_t addr, uint8_t off, 53 uint8_t len, caddr_t buf); 54 55 struct i2c_info { 56 int s; 57 int error; 58 int bshift; 59 int qsfp; 60 int do_diag; 61 struct ifreq *ifr; 62 read_i2c *f; 63 char *textbuf; 64 size_t bufsize; 65 int cfd; 66 int port_id; 67 int chip_id; 68 }; 69 70 struct _nv { 71 int v; 72 const char *n; 73 }; 74 75 const char *find_value(struct _nv *x, int value); 76 const char *find_zero_bit(struct _nv *x, int value, int sz); 77 78 /* SFF-8472 Rev. 11.4 table 3.4: Connector values */ 79 static struct _nv conn[] = { 80 { 0x00, "Unknown" }, 81 { 0x01, "SC" }, 82 { 0x02, "Fibre Channel Style 1 copper" }, 83 { 0x03, "Fibre Channel Style 2 copper" }, 84 { 0x04, "BNC/TNC" }, 85 { 0x05, "Fibre Channel coaxial" }, 86 { 0x06, "FiberJack" }, 87 { 0x07, "LC" }, 88 { 0x08, "MT-RJ" }, 89 { 0x09, "MU" }, 90 { 0x0A, "SG" }, 91 { 0x0B, "Optical pigtail" }, 92 { 0x0C, "MPO Parallel Optic" }, 93 { 0x20, "HSSDC II" }, 94 { 0x21, "Copper pigtail" }, 95 { 0x22, "RJ45" }, 96 { 0x23, "No separate connector" }, /* SFF-8436 */ 97 { 0, NULL } 98 }; 99 100 /* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */ 101 /* 10G Ethernet/IB compliance codes, byte 3 */ 102 static struct _nv eth_10g[] = { 103 { 0x80, "10G Base-ER" }, 104 { 0x40, "10G Base-LRM" }, 105 { 0x20, "10G Base-LR" }, 106 { 0x10, "10G Base-SR" }, 107 { 0x08, "1X SX" }, 108 { 0x04, "1X LX" }, 109 { 0x02, "1X Copper Active" }, 110 { 0x01, "1X Copper Passive" }, 111 { 0, NULL } 112 }; 113 114 /* Ethernet compliance codes, byte 6 */ 115 static struct _nv eth_compat[] = { 116 { 0x80, "BASE-PX" }, 117 { 0x40, "BASE-BX10" }, 118 { 0x20, "100BASE-FX" }, 119 { 0x10, "100BASE-LX/LX10" }, 120 { 0x08, "1000BASE-T" }, 121 { 0x04, "1000BASE-CX" }, 122 { 0x02, "1000BASE-LX" }, 123 { 0x01, "1000BASE-SX" }, 124 { 0, NULL } 125 }; 126 127 /* FC link length, byte 7 */ 128 static struct _nv fc_len[] = { 129 { 0x80, "very long distance" }, 130 { 0x40, "short distance" }, 131 { 0x20, "intermediate distance" }, 132 { 0x10, "long distance" }, 133 { 0x08, "medium distance" }, 134 { 0, NULL } 135 }; 136 137 /* Channel/Cable technology, byte 7-8 */ 138 static struct _nv cab_tech[] = { 139 { 0x0400, "Shortwave laser (SA)" }, 140 { 0x0200, "Longwave laser (LC)" }, 141 { 0x0100, "Electrical inter-enclosure (EL)" }, 142 { 0x80, "Electrical intra-enclosure (EL)" }, 143 { 0x40, "Shortwave laser (SN)" }, 144 { 0x20, "Shortwave laser (SL)" }, 145 { 0x10, "Longwave laser (LL)" }, 146 { 0x08, "Active Cable" }, 147 { 0x04, "Passive Cable" }, 148 { 0, NULL } 149 }; 150 151 /* FC Transmission media, byte 9 */ 152 static struct _nv fc_media[] = { 153 { 0x80, "Twin Axial Pair" }, 154 { 0x40, "Twisted Pair" }, 155 { 0x20, "Miniature Coax" }, 156 { 0x10, "Viao Coax" }, 157 { 0x08, "Miltimode, 62.5um" }, 158 { 0x04, "Multimode, 50um" }, 159 { 0x02, "" }, 160 { 0x01, "Single Mode" }, 161 { 0, NULL } 162 }; 163 164 /* FC Speed, byte 10 */ 165 static struct _nv fc_speed[] = { 166 { 0x80, "1200 MBytes/sec" }, 167 { 0x40, "800 MBytes/sec" }, 168 { 0x20, "1600 MBytes/sec" }, 169 { 0x10, "400 MBytes/sec" }, 170 { 0x08, "3200 MBytes/sec" }, 171 { 0x04, "200 MBytes/sec" }, 172 { 0x01, "100 MBytes/sec" }, 173 { 0, NULL } 174 }; 175 176 /* SFF-8436 Rev. 4.8 table 33: Specification compliance */ 177 178 /* 10/40G Ethernet compliance codes, byte 128 + 3 */ 179 static struct _nv eth_1040g[] = { 180 { 0x80, "Reserved" }, 181 { 0x40, "10GBASE-LRM" }, 182 { 0x20, "10GBASE-LR" }, 183 { 0x10, "10GBASE-SR" }, 184 { 0x08, "40GBASE-CR4" }, 185 { 0x04, "40GBASE-SR4" }, 186 { 0x02, "40GBASE-LR4" }, 187 { 0x01, "40G Active Cable" }, 188 { 0, NULL } 189 }; 190 191 const char * 192 find_value(struct _nv *x, int value) 193 { 194 for (; x->n != NULL; x++) 195 if (x->v == value) 196 return (x->n); 197 return (NULL); 198 } 199 200 const char * 201 find_zero_bit(struct _nv *x, int value, int sz) 202 { 203 int v, m; 204 const char *s; 205 206 v = 1; 207 for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) { 208 if ((value & v) == 0) 209 continue; 210 if ((s = find_value(x, value & v)) != NULL) { 211 value &= ~v; 212 return (s); 213 } 214 } 215 216 return (NULL); 217 } 218 219 static void 220 convert_sff_identifier(char *buf, size_t size, uint8_t value) 221 { 222 const char *x; 223 224 x = NULL; 225 if (value <= SFF_8024_ID_LAST) 226 x = sff_8024_id[value]; 227 else { 228 if (value > 0x80) 229 x = "Vendor specific"; 230 else 231 x = "Reserved"; 232 } 233 234 snprintf(buf, size, "%s", x); 235 } 236 237 static void 238 convert_sff_connector(char *buf, size_t size, uint8_t value) 239 { 240 const char *x; 241 242 if ((x = find_value(conn, value)) == NULL) { 243 if (value >= 0x0D && value <= 0x1F) 244 x = "Unallocated"; 245 else if (value >= 0x24 && value <= 0x7F) 246 x = "Unallocated"; 247 else 248 x = "Vendor specific"; 249 } 250 251 snprintf(buf, size, "%s", x); 252 } 253 254 static void 255 get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size) 256 { 257 uint8_t data; 258 259 ii->f(ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&data); 260 convert_sff_identifier(buf, size, data); 261 } 262 263 static void 264 get_sfp_connector(struct i2c_info *ii, char *buf, size_t size) 265 { 266 uint8_t data; 267 268 ii->f(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, (caddr_t)&data); 269 convert_sff_connector(buf, size, data); 270 } 271 272 static void 273 get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size) 274 { 275 uint8_t data; 276 277 ii->f(ii, SFF_8436_BASE, SFF_8436_ID, 1, (caddr_t)&data); 278 convert_sff_identifier(buf, size, data); 279 } 280 281 static void 282 get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size) 283 { 284 uint8_t data; 285 286 ii->f(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, (caddr_t)&data); 287 convert_sff_connector(buf, size, data); 288 } 289 290 static void 291 printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size) 292 { 293 char xbuf[12]; 294 const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed; 295 296 tech_class = NULL; 297 tech_len = NULL; 298 tech_tech = NULL; 299 tech_media = NULL; 300 tech_speed = NULL; 301 302 /* Read bytes 3-10 at once */ 303 ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]); 304 305 /* Check 10G ethernet first */ 306 tech_class = find_zero_bit(eth_10g, xbuf[3], 1); 307 if (tech_class == NULL) { 308 /* No match. Try 1G */ 309 tech_class = find_zero_bit(eth_compat, xbuf[6], 1); 310 } 311 312 tech_len = find_zero_bit(fc_len, xbuf[7], 1); 313 tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2); 314 tech_media = find_zero_bit(fc_media, xbuf[9], 1); 315 tech_speed = find_zero_bit(fc_speed, xbuf[10], 1); 316 317 printf("Class: %s\n", tech_class); 318 printf("Length: %s\n", tech_len); 319 printf("Tech: %s\n", tech_tech); 320 printf("Media: %s\n", tech_media); 321 printf("Speed: %s\n", tech_speed); 322 } 323 324 static void 325 get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) 326 { 327 const char *tech_class; 328 uint8_t code; 329 330 /* Check 10G Ethernet/IB first */ 331 ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, (caddr_t)&code); 332 tech_class = find_zero_bit(eth_10g, code, 1); 333 if (tech_class == NULL) { 334 /* No match. Try Ethernet 1G */ 335 ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 336 1, (caddr_t)&code); 337 tech_class = find_zero_bit(eth_compat, code, 1); 338 } 339 340 if (tech_class == NULL) 341 tech_class = "Unknown"; 342 343 snprintf(buf, size, "%s", tech_class); 344 } 345 346 static void 347 get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) 348 { 349 const char *tech_class; 350 uint8_t code; 351 352 /* Check 10/40G Ethernet class only */ 353 ii->f(ii, SFF_8436_BASE, SFF_8436_CODE_E1040G, 1, (caddr_t)&code); 354 tech_class = find_zero_bit(eth_1040g, code, 1); 355 if (tech_class == NULL) 356 tech_class = "Unknown"; 357 358 snprintf(buf, size, "%s", tech_class); 359 } 360 361 /* 362 * Print SFF-8472/SFF-8436 string to supplied buffer. 363 * All (vendor-specific) strings are padded right with '0x20'. 364 */ 365 static void 366 convert_sff_name(char *buf, size_t size, char *xbuf) 367 { 368 char *p; 369 370 for (p = &xbuf[16]; *(p - 1) == 0x20; p--) 371 ; 372 *p = '\0'; 373 snprintf(buf, size, "%s", xbuf); 374 } 375 376 static void 377 convert_sff_date(char *buf, size_t size, char *xbuf) 378 { 379 380 snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1], 381 xbuf[2], xbuf[3], xbuf[4], xbuf[5]); 382 } 383 384 static void 385 get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) 386 { 387 char xbuf[17]; 388 389 memset(xbuf, 0, sizeof(xbuf)); 390 ii->f(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, xbuf); 391 convert_sff_name(buf, size, xbuf); 392 } 393 394 static void 395 get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) 396 { 397 char xbuf[17]; 398 399 memset(xbuf, 0, sizeof(xbuf)); 400 ii->f(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, xbuf); 401 convert_sff_name(buf, size, xbuf); 402 } 403 404 static void 405 get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) 406 { 407 char xbuf[17]; 408 409 memset(xbuf, 0, sizeof(xbuf)); 410 ii->f(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, xbuf); 411 convert_sff_name(buf, size, xbuf); 412 } 413 414 static void 415 get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) 416 { 417 char xbuf[6]; 418 419 memset(xbuf, 0, sizeof(xbuf)); 420 /* Date code, see Table 3.8 for description */ 421 ii->f(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, xbuf); 422 convert_sff_date(buf, size, xbuf); 423 } 424 425 static void 426 get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) 427 { 428 char xbuf[17]; 429 430 memset(xbuf, 0, sizeof(xbuf)); 431 ii->f(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, xbuf); 432 convert_sff_name(buf, size, xbuf); 433 } 434 435 static void 436 get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) 437 { 438 char xbuf[17]; 439 440 memset(xbuf, 0, sizeof(xbuf)); 441 ii->f(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, xbuf); 442 convert_sff_name(buf, size, xbuf); 443 } 444 445 static void 446 get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) 447 { 448 char xbuf[17]; 449 450 memset(xbuf, 0, sizeof(xbuf)); 451 ii->f(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, xbuf); 452 convert_sff_name(buf, size, xbuf); 453 } 454 455 static void 456 get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) 457 { 458 char xbuf[6]; 459 460 memset(xbuf, 0, sizeof(xbuf)); 461 ii->f(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, xbuf); 462 convert_sff_date(buf, size, xbuf); 463 } 464 465 static void 466 print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size) 467 { 468 char xbuf[80]; 469 470 memset(xbuf, 0, sizeof(xbuf)); 471 if (ii->qsfp != 0) { 472 get_qsfp_vendor_name(ii, xbuf, 20); 473 get_qsfp_vendor_pn(ii, &xbuf[20], 20); 474 get_qsfp_vendor_sn(ii, &xbuf[40], 20); 475 get_qsfp_vendor_date(ii, &xbuf[60], 20); 476 } else { 477 get_sfp_vendor_name(ii, xbuf, 20); 478 get_sfp_vendor_pn(ii, &xbuf[20], 20); 479 get_sfp_vendor_sn(ii, &xbuf[40], 20); 480 get_sfp_vendor_date(ii, &xbuf[60], 20); 481 } 482 483 snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s", 484 xbuf, &xbuf[20], &xbuf[40], &xbuf[60]); 485 } 486 487 /* 488 * Converts internal templerature (SFF-8472, SFF-8436) 489 * 16-bit unsigned value to human-readable representation: 490 * 491 * Internally measured Module temperature are represented 492 * as a 16-bit signed twos complement value in increments of 493 * 1/256 degrees Celsius, yielding a total range of –128C to +128C 494 * that is considered valid between –40 and +125C. 495 * 496 */ 497 static void 498 convert_sff_temp(char *buf, size_t size, char *xbuf) 499 { 500 double d; 501 502 d = (double)(int8_t)xbuf[0]; 503 d += (double)(uint8_t)xbuf[1] / 256; 504 505 snprintf(buf, size, "%.2f C", d); 506 } 507 508 /* 509 * Retrieves supplied voltage (SFF-8472, SFF-8436). 510 * 16-bit usigned value, treated as range 0..+6.55 Volts 511 */ 512 static void 513 convert_sff_voltage(char *buf, size_t size, char *xbuf) 514 { 515 double d; 516 517 d = (double)(((uint8_t)xbuf[0] << 8) | (uint8_t)xbuf[1]); 518 snprintf(buf, size, "%.2f Volts", d / 10000); 519 } 520 521 /* 522 * Converts value in @xbuf to both milliwats and dBm 523 * human representation. 524 */ 525 static void 526 convert_sff_power(struct i2c_info *ii, char *buf, size_t size, char *xbuf) 527 { 528 uint16_t mW; 529 double dbm; 530 531 mW = ((uint8_t)xbuf[0] << 8) + (uint8_t)xbuf[1]; 532 533 /* Convert mw to dbm */ 534 dbm = 10.0 * log10(1.0 * mW / 10000); 535 536 /* 537 * Assume internally-calibrated data. 538 * This is always true for SFF-8346, and explicitly 539 * checked for SFF-8472. 540 */ 541 542 /* Table 3.9, bit 5 is set, internally calibrated */ 543 snprintf(buf, size, "%d.%02d mW (%.2f dBm)", 544 mW / 10000, (mW % 10000) / 100, dbm); 545 } 546 547 static void 548 get_sfp_temp(struct i2c_info *ii, char *buf, size_t size) 549 { 550 char xbuf[2]; 551 552 memset(xbuf, 0, sizeof(xbuf)); 553 ii->f(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf); 554 convert_sff_temp(buf, size, xbuf); 555 } 556 557 static void 558 get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size) 559 { 560 char xbuf[2]; 561 562 memset(xbuf, 0, sizeof(xbuf)); 563 ii->f(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf); 564 convert_sff_voltage(buf, size, xbuf); 565 } 566 567 static void 568 get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size) 569 { 570 char xbuf[2]; 571 572 memset(xbuf, 0, sizeof(xbuf)); 573 ii->f(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf); 574 convert_sff_temp(buf, size, xbuf); 575 } 576 577 static void 578 get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size) 579 { 580 char xbuf[2]; 581 582 memset(xbuf, 0, sizeof(xbuf)); 583 ii->f(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf); 584 convert_sff_voltage(buf, size, xbuf); 585 } 586 587 static void 588 get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size) 589 { 590 char xbuf[2]; 591 592 memset(xbuf, 0, sizeof(xbuf)); 593 ii->f(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf); 594 convert_sff_power(ii, buf, size, xbuf); 595 } 596 597 static void 598 get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size) 599 { 600 char xbuf[2]; 601 602 memset(xbuf, 0, sizeof(xbuf)); 603 ii->f(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf); 604 convert_sff_power(ii, buf, size, xbuf); 605 } 606 607 static void 608 get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan) 609 { 610 char xbuf[2]; 611 612 memset(xbuf, 0, sizeof(xbuf)); 613 ii->f(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan - 1) * 2, 2, xbuf); 614 convert_sff_power(ii, buf, size, xbuf); 615 } 616 617 static void 618 get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan) 619 { 620 char xbuf[2]; 621 622 memset(xbuf, 0, sizeof(xbuf)); 623 ii->f(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan -1) * 2, 2, xbuf); 624 convert_sff_power(ii, buf, size, xbuf); 625 } 626 627 /* Generic handler */ 628 static int 629 read_i2c_generic(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, 630 caddr_t buf) 631 { 632 struct ifi2creq req; 633 int i, l; 634 635 if (ii->error != 0) 636 return (ii->error); 637 638 ii->ifr->ifr_data = (caddr_t)&req; 639 640 i = 0; 641 l = 0; 642 memset(&req, 0, sizeof(req)); 643 req.dev_addr = addr; 644 req.offset = off; 645 req.len = len; 646 647 while (len > 0) { 648 l = (len > sizeof(req.data)) ? sizeof(req.data) : len; 649 req.len = l; 650 if (ioctl(ii->s, SIOCGI2C, ii->ifr) != 0) { 651 ii->error = errno; 652 return (errno); 653 } 654 655 memcpy(&buf[i], req.data, l); 656 len -= l; 657 i += l; 658 req.offset += l; 659 } 660 661 return (0); 662 } 663 664 static void 665 print_qsfp_status(struct i2c_info *ii, int verbose) 666 { 667 char buf[80], buf2[40], buf3[40]; 668 uint8_t diag_type; 669 int i; 670 671 /* Read diagnostic monitoring type */ 672 ii->f(ii, SFF_8436_BASE, SFF_8436_DIAG_TYPE, 1, (caddr_t)&diag_type); 673 if (ii->error != 0) 674 return; 675 676 /* 677 * Read monitoring data it is supplied. 678 * XXX: It is not exactly clear from standard 679 * how one can specify lack of measurements (passive cables case). 680 */ 681 if (diag_type != 0) 682 ii->do_diag = 1; 683 ii->qsfp = 1; 684 685 /* Transceiver type */ 686 get_qsfp_identifier(ii, buf, sizeof(buf)); 687 get_qsfp_transceiver_class(ii, buf2, sizeof(buf2)); 688 get_qsfp_connector(ii, buf3, sizeof(buf3)); 689 if (ii->error == 0) 690 printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); 691 print_sfp_vendor(ii, buf, sizeof(buf)); 692 if (ii->error == 0) 693 printf("\t%s\n", buf); 694 695 /* Request current measurements if they are provided: */ 696 if (ii->do_diag != 0) { 697 get_qsfp_temp(ii, buf, sizeof(buf)); 698 get_qsfp_voltage(ii, buf2, sizeof(buf2)); 699 printf("\tmodule temperature: %s voltage: %s\n", buf, buf2); 700 for (i = 1; i <= 4; i++) { 701 get_qsfp_rx_power(ii, buf, sizeof(buf), i); 702 get_qsfp_tx_power(ii, buf2, sizeof(buf2), i); 703 printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2); 704 } 705 } 706 } 707 708 static void 709 print_sfp_status(struct i2c_info *ii, int verbose) 710 { 711 char buf[80], buf2[40], buf3[40]; 712 uint8_t diag_type, flags; 713 714 /* Read diagnostic monitoring type */ 715 ii->f(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type); 716 if (ii->error != 0) 717 return; 718 719 /* 720 * Read monitoring data IFF it is supplied AND is 721 * internally calibrated 722 */ 723 flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL; 724 if ((diag_type & flags) == flags) 725 ii->do_diag = 1; 726 727 /* Transceiver type */ 728 get_sfp_identifier(ii, buf, sizeof(buf)); 729 get_sfp_transceiver_class(ii, buf2, sizeof(buf2)); 730 get_sfp_connector(ii, buf3, sizeof(buf3)); 731 if (ii->error == 0) 732 printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); 733 if (verbose > 2) 734 printf_sfp_transceiver_descr(ii, buf, sizeof(buf)); 735 print_sfp_vendor(ii, buf, sizeof(buf)); 736 if (ii->error == 0) 737 printf("\t%s\n", buf); 738 739 /* 740 * Request current measurements iff they are provided: 741 */ 742 if (ii->do_diag != 0) { 743 get_sfp_temp(ii, buf, sizeof(buf)); 744 get_sfp_voltage(ii, buf2, sizeof(buf2)); 745 printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2); 746 get_sfp_rx_power(ii, buf, sizeof(buf)); 747 get_sfp_tx_power(ii, buf2, sizeof(buf2)); 748 printf("\tRX: %s TX: %s\n", buf, buf2); 749 } 750 } 751 752 void 753 sfp_status(int s, struct ifreq *ifr, int verbose) 754 { 755 struct i2c_info ii; 756 uint8_t id_byte; 757 758 memset(&ii, 0, sizeof(ii)); 759 /* Prepare necessary into to pass to NIC handler */ 760 ii.s = s; 761 ii.ifr = ifr; 762 ii.f = read_i2c_generic; 763 764 /* 765 * Try to read byte 0 from i2c: 766 * Both SFF-8472 and SFF-8436 use it as 767 * 'identification byte'. 768 * Stop reading status on zero as value - 769 * this might happen in case of empty transceiver slot. 770 */ 771 id_byte = 0; 772 ii.f(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte); 773 if (ii.error != 0 || id_byte == 0) 774 return; 775 776 switch (id_byte) { 777 case SFF_8024_ID_QSFP: 778 case SFF_8024_ID_QSFPPLUS: 779 print_qsfp_status(&ii, verbose); 780 break; 781 default: 782 print_sfp_status(&ii, verbose); 783 }; 784 } 785 786