1 /*- 2 * Copyright (c) 2014 Alexander V. Chernikov. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #ifndef lint 27 static const char rcsid[] = 28 "$FreeBSD$"; 29 #endif /* not lint */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/ioctl.h> 34 #include <sys/socket.h> 35 36 #include <net/if.h> 37 #include <net/sff8436.h> 38 #include <net/sff8472.h> 39 40 #include <math.h> 41 #include <err.h> 42 #include <errno.h> 43 #include <fcntl.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <unistd.h> 48 49 #include "ifconfig.h" 50 51 struct i2c_info { 52 int fd; /* fd to issue SIOCGI2C */ 53 int error; /* Store first error */ 54 int qsfp; /* True if transceiver is QSFP */ 55 int do_diag; /* True if we need to request DDM */ 56 struct ifreq *ifr; /* Pointer to pre-filled ifreq */ 57 }; 58 59 static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, 60 uint8_t len, uint8_t *buf); 61 static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, 62 uint8_t len); 63 64 struct _nv { 65 int v; 66 const char *n; 67 }; 68 69 const char *find_value(struct _nv *x, int value); 70 const char *find_zero_bit(struct _nv *x, int value, int sz); 71 72 /* SFF-8024 Rev. 4.6 Table 4-3: Connector Types */ 73 static struct _nv conn[] = { 74 { 0x00, "Unknown" }, 75 { 0x01, "SC" }, 76 { 0x02, "Fibre Channel Style 1 copper" }, 77 { 0x03, "Fibre Channel Style 2 copper" }, 78 { 0x04, "BNC/TNC" }, 79 { 0x05, "Fibre Channel coaxial" }, 80 { 0x06, "Fiber Jack" }, 81 { 0x07, "LC" }, 82 { 0x08, "MT-RJ" }, 83 { 0x09, "MU" }, 84 { 0x0A, "SG" }, 85 { 0x0B, "Optical pigtail" }, 86 { 0x0C, "MPO 1x12 Parallel Optic" }, 87 { 0x0D, "MPO 2x16 Parallel Optic" }, 88 { 0x20, "HSSDC II" }, 89 { 0x21, "Copper pigtail" }, 90 { 0x22, "RJ45" }, 91 { 0x23, "No separable connector" }, 92 { 0x24, "MXC 2x16" }, 93 { 0x25, "CS optical connector" }, 94 { 0x26, "Mini CS optical connector" }, 95 { 0x27, "MPO 2x12 Parallel Optic" }, 96 { 0x28, "MPO 1x16 Parallel Optic" }, 97 { 0, NULL } 98 }; 99 100 /* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */ 101 /* 10G Ethernet/IB compliance codes, byte 3 */ 102 static struct _nv eth_10g[] = { 103 { 0x80, "10G Base-ER" }, 104 { 0x40, "10G Base-LRM" }, 105 { 0x20, "10G Base-LR" }, 106 { 0x10, "10G Base-SR" }, 107 { 0x08, "1X SX" }, 108 { 0x04, "1X LX" }, 109 { 0x02, "1X Copper Active" }, 110 { 0x01, "1X Copper Passive" }, 111 { 0, NULL } 112 }; 113 114 /* Ethernet compliance codes, byte 6 */ 115 static struct _nv eth_compat[] = { 116 { 0x80, "BASE-PX" }, 117 { 0x40, "BASE-BX10" }, 118 { 0x20, "100BASE-FX" }, 119 { 0x10, "100BASE-LX/LX10" }, 120 { 0x08, "1000BASE-T" }, 121 { 0x04, "1000BASE-CX" }, 122 { 0x02, "1000BASE-LX" }, 123 { 0x01, "1000BASE-SX" }, 124 { 0, NULL } 125 }; 126 127 /* FC link length, byte 7 */ 128 static struct _nv fc_len[] = { 129 { 0x80, "very long distance" }, 130 { 0x40, "short distance" }, 131 { 0x20, "intermediate distance" }, 132 { 0x10, "long distance" }, 133 { 0x08, "medium distance" }, 134 { 0, NULL } 135 }; 136 137 /* Channel/Cable technology, byte 7-8 */ 138 static struct _nv cab_tech[] = { 139 { 0x0400, "Shortwave laser (SA)" }, 140 { 0x0200, "Longwave laser (LC)" }, 141 { 0x0100, "Electrical inter-enclosure (EL)" }, 142 { 0x80, "Electrical intra-enclosure (EL)" }, 143 { 0x40, "Shortwave laser (SN)" }, 144 { 0x20, "Shortwave laser (SL)" }, 145 { 0x10, "Longwave laser (LL)" }, 146 { 0x08, "Active Cable" }, 147 { 0x04, "Passive Cable" }, 148 { 0, NULL } 149 }; 150 151 /* FC Transmission media, byte 9 */ 152 static struct _nv fc_media[] = { 153 { 0x80, "Twin Axial Pair" }, 154 { 0x40, "Twisted Pair" }, 155 { 0x20, "Miniature Coax" }, 156 { 0x10, "Viao Coax" }, 157 { 0x08, "Miltimode, 62.5um" }, 158 { 0x04, "Multimode, 50um" }, 159 { 0x02, "" }, 160 { 0x01, "Single Mode" }, 161 { 0, NULL } 162 }; 163 164 /* FC Speed, byte 10 */ 165 static struct _nv fc_speed[] = { 166 { 0x80, "1200 MBytes/sec" }, 167 { 0x40, "800 MBytes/sec" }, 168 { 0x20, "1600 MBytes/sec" }, 169 { 0x10, "400 MBytes/sec" }, 170 { 0x08, "3200 MBytes/sec" }, 171 { 0x04, "200 MBytes/sec" }, 172 { 0x01, "100 MBytes/sec" }, 173 { 0, NULL } 174 }; 175 176 /* SFF-8436 Rev. 4.8 table 33: Specification compliance */ 177 178 /* 10/40G Ethernet compliance codes, byte 128 + 3 */ 179 static struct _nv eth_1040g[] = { 180 { 0x80, "Extended" }, 181 { 0x40, "10GBASE-LRM" }, 182 { 0x20, "10GBASE-LR" }, 183 { 0x10, "10GBASE-SR" }, 184 { 0x08, "40GBASE-CR4" }, 185 { 0x04, "40GBASE-SR4" }, 186 { 0x02, "40GBASE-LR4" }, 187 { 0x01, "40G Active Cable" }, 188 { 0, NULL } 189 }; 190 #define SFF_8636_EXT_COMPLIANCE 0x80 191 192 /* SFF-8024 Rev. 4.6 table 4-4: Extended Specification Compliance */ 193 static struct _nv eth_extended_comp[] = { 194 { 0xFF, "Reserved" }, 195 { 0x55, "128GFC LW" }, 196 { 0x54, "128GFC SW" }, 197 { 0x53, "128GFC EA" }, 198 { 0x52, "64GFC LW" }, 199 { 0x51, "64GFC SW" }, 200 { 0x50, "64GFC EA" }, 201 { 0x4F, "Reserved" }, 202 { 0x4E, "Reserved" }, 203 { 0x4D, "Reserved" }, 204 { 0x4C, "Reserved" }, 205 { 0x4B, "Reserved" }, 206 { 0x4A, "Reserved" }, 207 { 0x49, "Reserved" }, 208 { 0x48, "Reserved" }, 209 { 0x47, "Reserved" }, 210 { 0x46, "200GBASE-LR4" }, 211 { 0x45, "50GBASE-LR" }, 212 { 0x44, "200G 1550nm PSM4" }, 213 { 0x43, "200GBASE-FR4" }, 214 { 0x42, "50GBASE-FR or 200GBASE-DR4" }, 215 { 0x41, "50GBASE-SR/100GBASE-SR2/200GBASE-SR4" }, 216 { 0x40, "50GBASE-CR/100GBASE-CR2/200GBASE-CR4" }, 217 { 0x3F, "Reserved" }, 218 { 0x3E, "Reserved" }, 219 { 0x3D, "Reserved" }, 220 { 0x3C, "Reserved" }, 221 { 0x3B, "Reserved" }, 222 { 0x3A, "Reserved" }, 223 { 0x39, "Reserved" }, 224 { 0x38, "Reserved" }, 225 { 0x37, "Reserved" }, 226 { 0x36, "Reserved" }, 227 { 0x35, "Reserved" }, 228 { 0x34, "Reserved" }, 229 { 0x33, "50GAUI/100GAUI-2/200GAUI-4 AOC (BER <2.6e-4)" }, 230 { 0x32, "50GAUI/100GAUI-2/200GAUI-4 ACC (BER <2.6e-4)" }, 231 { 0x31, "50GAUI/100GAUI-2/200GAUI-4 AOC (BER <1e-6)" }, 232 { 0x30, "50GAUI/100GAUI-2/200GAUI-4 ACC (BER <1e-6)" }, 233 { 0x2F, "Reserved" }, 234 { 0x2E, "Reserved" }, 235 { 0x2D, "Reserved" }, 236 { 0x2C, "Reserved" }, 237 { 0x2B, "Reserved" }, 238 { 0x2A, "Reserved" }, 239 { 0x29, "Reserved" }, 240 { 0x28, "Reserved" }, 241 { 0x27, "100G-LR" }, 242 { 0x26, "100G-FR" }, 243 { 0x25, "100GBASE-DR" }, 244 { 0x24, "4WDM-40 MSA" }, 245 { 0x23, "4WDM-20 MSA" }, 246 { 0x22, "4WDM-10 MSA" }, 247 { 0x21, "100G PAM4 BiDi" }, 248 { 0x20, "100G SWDM4" }, 249 { 0x1F, "40G SWDM4" }, 250 { 0x1E, "2.5GBASE-T" }, 251 { 0x1D, "5GBASE-T" }, 252 { 0x1C, "10GBASE-T Short Reach" }, 253 { 0x1B, "100G 1550nm WDM" }, 254 { 0x1A, "100GE-DWDM2" }, 255 { 0x19, "100G ACC or 25GAUI C2M ACC" }, 256 { 0x18, "100G AOC or 25GAUI C2M AOC" }, 257 { 0x17, "100G CLR4" }, 258 { 0x16, "10GBASE-T with SFI electrical interface" }, 259 { 0x15, "G959.1 profile P1L1-2D2" }, 260 { 0x14, "G959.1 profile P1S1-2D2" }, 261 { 0x13, "G959.1 profile P1I1-2D1" }, 262 { 0x12, "40G PSM4 Parallel SMF" }, 263 { 0x11, "4 x 10GBASE-SR" }, 264 { 0x10, "40GBASE-ER4" }, 265 { 0x0F, "Reserved" }, 266 { 0x0E, "Reserved" }, 267 { 0x0D, "25GBASE-CR CA-25G-N" }, 268 { 0x0C, "25GBASE-CR CA-25G-S" }, 269 { 0x0B, "100GBASE-CR4 or 25GBASE-CR CA-L" }, 270 { 0x0A, "Reserved" }, 271 { 0x09, "Obsolete" }, 272 { 0x08, "100G ACC (Active Copper Cable) or 25GAUI C2M ACC" }, 273 { 0x07, "100G PSM4 Parallel SMF" }, 274 { 0x06, "100G CWDM4" }, 275 { 0x05, "100GBASE-SR10" }, 276 { 0x04, "100GBASE-ER4 or 25GBASE-ER" }, 277 { 0x03, "100GBASE-LR4 or 25GBASE-LR" }, 278 { 0x02, "100GBASE-SR4 or 25GBASE-SR" }, 279 { 0x01, "100G AOC (Active Optical Cable) or 25GAUI C2M AOC" }, 280 { 0x00, "Unspecified" } 281 }; 282 283 /* SFF-8636 Rev. 2.9 table 6.3: Revision compliance */ 284 static struct _nv rev_compl[] = { 285 { 0x1, "SFF-8436 rev <=4.8" }, 286 { 0x2, "SFF-8436 rev <=4.8" }, 287 { 0x3, "SFF-8636 rev <=1.3" }, 288 { 0x4, "SFF-8636 rev <=1.4" }, 289 { 0x5, "SFF-8636 rev <=1.5" }, 290 { 0x6, "SFF-8636 rev <=2.0" }, 291 { 0x7, "SFF-8636 rev <=2.7" }, 292 { 0x8, "SFF-8636 rev >=2.8" }, 293 { 0x0, "Unspecified" } 294 }; 295 296 const char * 297 find_value(struct _nv *x, int value) 298 { 299 for (; x->n != NULL; x++) 300 if (x->v == value) 301 return (x->n); 302 return (NULL); 303 } 304 305 const char * 306 find_zero_bit(struct _nv *x, int value, int sz) 307 { 308 int v, m; 309 const char *s; 310 311 v = 1; 312 for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) { 313 if ((value & v) == 0) 314 continue; 315 if ((s = find_value(x, value & v)) != NULL) { 316 value &= ~v; 317 return (s); 318 } 319 } 320 321 return (NULL); 322 } 323 324 static void 325 convert_sff_identifier(char *buf, size_t size, uint8_t value) 326 { 327 const char *x; 328 329 x = NULL; 330 if (value <= SFF_8024_ID_LAST) 331 x = sff_8024_id[value]; 332 else { 333 if (value > 0x80) 334 x = "Vendor specific"; 335 else 336 x = "Reserved"; 337 } 338 339 snprintf(buf, size, "%s", x); 340 } 341 342 static void 343 convert_sff_connector(char *buf, size_t size, uint8_t value) 344 { 345 const char *x; 346 347 if ((x = find_value(conn, value)) == NULL) { 348 if (value >= 0x0D && value <= 0x1F) 349 x = "Unallocated"; 350 else if (value >= 0x24 && value <= 0x7F) 351 x = "Unallocated"; 352 else 353 x = "Vendor specific"; 354 } 355 356 snprintf(buf, size, "%s", x); 357 } 358 359 static void 360 convert_sff_rev_compliance(char *buf, size_t size, uint8_t value) 361 { 362 const char *x; 363 364 if (value > 0x07) 365 x = "Unallocated"; 366 else 367 x = find_value(rev_compl, value); 368 369 snprintf(buf, size, "%s", x); 370 } 371 372 static void 373 get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size) 374 { 375 uint8_t data; 376 377 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &data); 378 convert_sff_identifier(buf, size, data); 379 } 380 381 static void 382 get_sfp_connector(struct i2c_info *ii, char *buf, size_t size) 383 { 384 uint8_t data; 385 386 read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &data); 387 convert_sff_connector(buf, size, data); 388 } 389 390 static void 391 get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size) 392 { 393 uint8_t data; 394 395 read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &data); 396 convert_sff_identifier(buf, size, data); 397 } 398 399 static void 400 get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size) 401 { 402 uint8_t data; 403 404 read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &data); 405 convert_sff_connector(buf, size, data); 406 } 407 408 static void 409 printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size) 410 { 411 char xbuf[12]; 412 const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed; 413 414 tech_class = NULL; 415 tech_len = NULL; 416 tech_tech = NULL; 417 tech_media = NULL; 418 tech_speed = NULL; 419 420 /* Read bytes 3-10 at once */ 421 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]); 422 423 /* Check 10G ethernet first */ 424 tech_class = find_zero_bit(eth_10g, xbuf[3], 1); 425 if (tech_class == NULL) { 426 /* No match. Try 1G */ 427 tech_class = find_zero_bit(eth_compat, xbuf[6], 1); 428 } 429 430 tech_len = find_zero_bit(fc_len, xbuf[7], 1); 431 tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2); 432 tech_media = find_zero_bit(fc_media, xbuf[9], 1); 433 tech_speed = find_zero_bit(fc_speed, xbuf[10], 1); 434 435 printf("Class: %s\n", tech_class); 436 printf("Length: %s\n", tech_len); 437 printf("Tech: %s\n", tech_tech); 438 printf("Media: %s\n", tech_media); 439 printf("Speed: %s\n", tech_speed); 440 } 441 442 static void 443 get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) 444 { 445 const char *tech_class; 446 uint8_t code; 447 448 /* Use extended compliance code if it's valid */ 449 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS, 1, &code); 450 if (code != 0) 451 tech_class = find_value(eth_extended_comp, code); 452 else { 453 /* Next, check 10G Ethernet/IB CCs */ 454 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code); 455 tech_class = find_zero_bit(eth_10g, code, 1); 456 if (tech_class == NULL) { 457 /* No match. Try Ethernet 1G */ 458 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 459 1, (caddr_t)&code); 460 tech_class = find_zero_bit(eth_compat, code, 1); 461 } 462 } 463 464 if (tech_class == NULL) 465 tech_class = "Unknown"; 466 467 snprintf(buf, size, "%s", tech_class); 468 } 469 470 static void 471 get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) 472 { 473 const char *tech_class; 474 uint8_t code; 475 476 read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040100G, 1, &code); 477 478 /* Check for extended specification compliance */ 479 if (code & SFF_8636_EXT_COMPLIANCE) { 480 read_i2c(ii, SFF_8436_BASE, SFF_8436_OPTIONS_START, 1, &code); 481 tech_class = find_value(eth_extended_comp, code); 482 } else 483 /* Check 10/40G Ethernet class only */ 484 tech_class = find_zero_bit(eth_1040g, code, 1); 485 486 if (tech_class == NULL) 487 tech_class = "Unknown"; 488 489 snprintf(buf, size, "%s", tech_class); 490 } 491 492 /* 493 * Print SFF-8472/SFF-8436 string to supplied buffer. 494 * All (vendor-specific) strings are padded right with '0x20'. 495 */ 496 static void 497 convert_sff_name(char *buf, size_t size, char *xbuf) 498 { 499 char *p; 500 501 for (p = &xbuf[16]; *(p - 1) == 0x20; p--) 502 ; 503 *p = '\0'; 504 snprintf(buf, size, "%s", xbuf); 505 } 506 507 static void 508 convert_sff_date(char *buf, size_t size, char *xbuf) 509 { 510 511 snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1], 512 xbuf[2], xbuf[3], xbuf[4], xbuf[5]); 513 } 514 515 static void 516 get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) 517 { 518 char xbuf[17]; 519 520 memset(xbuf, 0, sizeof(xbuf)); 521 read_i2c(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, (uint8_t *)xbuf); 522 convert_sff_name(buf, size, xbuf); 523 } 524 525 static void 526 get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) 527 { 528 char xbuf[17]; 529 530 memset(xbuf, 0, sizeof(xbuf)); 531 read_i2c(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, (uint8_t *)xbuf); 532 convert_sff_name(buf, size, xbuf); 533 } 534 535 static void 536 get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) 537 { 538 char xbuf[17]; 539 540 memset(xbuf, 0, sizeof(xbuf)); 541 read_i2c(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, (uint8_t *)xbuf); 542 convert_sff_name(buf, size, xbuf); 543 } 544 545 static void 546 get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) 547 { 548 char xbuf[6]; 549 550 memset(xbuf, 0, sizeof(xbuf)); 551 /* Date code, see Table 3.8 for description */ 552 read_i2c(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, (uint8_t *)xbuf); 553 convert_sff_date(buf, size, xbuf); 554 } 555 556 static void 557 get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) 558 { 559 char xbuf[17]; 560 561 memset(xbuf, 0, sizeof(xbuf)); 562 read_i2c(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, (uint8_t *)xbuf); 563 convert_sff_name(buf, size, xbuf); 564 } 565 566 static void 567 get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) 568 { 569 char xbuf[17]; 570 571 memset(xbuf, 0, sizeof(xbuf)); 572 read_i2c(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, (uint8_t *)xbuf); 573 convert_sff_name(buf, size, xbuf); 574 } 575 576 static void 577 get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) 578 { 579 char xbuf[17]; 580 581 memset(xbuf, 0, sizeof(xbuf)); 582 read_i2c(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, (uint8_t *)xbuf); 583 convert_sff_name(buf, size, xbuf); 584 } 585 586 static void 587 get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) 588 { 589 char xbuf[6]; 590 591 memset(xbuf, 0, sizeof(xbuf)); 592 read_i2c(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, (uint8_t *)xbuf); 593 convert_sff_date(buf, size, xbuf); 594 } 595 596 static void 597 print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size) 598 { 599 char xbuf[80]; 600 601 memset(xbuf, 0, sizeof(xbuf)); 602 if (ii->qsfp != 0) { 603 get_qsfp_vendor_name(ii, xbuf, 20); 604 get_qsfp_vendor_pn(ii, &xbuf[20], 20); 605 get_qsfp_vendor_sn(ii, &xbuf[40], 20); 606 get_qsfp_vendor_date(ii, &xbuf[60], 20); 607 } else { 608 get_sfp_vendor_name(ii, xbuf, 20); 609 get_sfp_vendor_pn(ii, &xbuf[20], 20); 610 get_sfp_vendor_sn(ii, &xbuf[40], 20); 611 get_sfp_vendor_date(ii, &xbuf[60], 20); 612 } 613 614 snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s", 615 xbuf, &xbuf[20], &xbuf[40], &xbuf[60]); 616 } 617 618 /* 619 * Converts internal templerature (SFF-8472, SFF-8436) 620 * 16-bit unsigned value to human-readable representation: 621 * 622 * Internally measured Module temperature are represented 623 * as a 16-bit signed twos complement value in increments of 624 * 1/256 degrees Celsius, yielding a total range of –128C to +128C 625 * that is considered valid between –40 and +125C. 626 * 627 */ 628 static void 629 convert_sff_temp(char *buf, size_t size, uint8_t *xbuf) 630 { 631 double d; 632 633 d = (double)xbuf[0]; 634 d += (double)xbuf[1] / 256; 635 636 snprintf(buf, size, "%.2f C", d); 637 } 638 639 /* 640 * Retrieves supplied voltage (SFF-8472, SFF-8436). 641 * 16-bit usigned value, treated as range 0..+6.55 Volts 642 */ 643 static void 644 convert_sff_voltage(char *buf, size_t size, uint8_t *xbuf) 645 { 646 double d; 647 648 d = (double)((xbuf[0] << 8) | xbuf[1]); 649 snprintf(buf, size, "%.2f Volts", d / 10000); 650 } 651 652 /* 653 * Converts value in @xbuf to both milliwats and dBm 654 * human representation. 655 */ 656 static void 657 convert_sff_power(struct i2c_info *ii, char *buf, size_t size, uint8_t *xbuf) 658 { 659 uint16_t mW; 660 double dbm; 661 662 mW = (xbuf[0] << 8) + xbuf[1]; 663 664 /* Convert mw to dbm */ 665 dbm = 10.0 * log10(1.0 * mW / 10000); 666 667 /* 668 * Assume internally-calibrated data. 669 * This is always true for SFF-8346, and explicitly 670 * checked for SFF-8472. 671 */ 672 673 /* Table 3.9, bit 5 is set, internally calibrated */ 674 snprintf(buf, size, "%d.%02d mW (%.2f dBm)", 675 mW / 10000, (mW % 10000) / 100, dbm); 676 } 677 678 static void 679 get_sfp_temp(struct i2c_info *ii, char *buf, size_t size) 680 { 681 uint8_t xbuf[2]; 682 683 memset(xbuf, 0, sizeof(xbuf)); 684 read_i2c(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf); 685 convert_sff_temp(buf, size, xbuf); 686 } 687 688 static void 689 get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size) 690 { 691 uint8_t xbuf[2]; 692 693 memset(xbuf, 0, sizeof(xbuf)); 694 read_i2c(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf); 695 convert_sff_voltage(buf, size, xbuf); 696 } 697 698 static int 699 get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size) 700 { 701 uint8_t xbuf[2]; 702 703 memset(xbuf, 0, sizeof(xbuf)); 704 read_i2c(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf); 705 if ((xbuf[0] == 0xFF && xbuf[1] == 0xFF) || (xbuf[0] == 0 && xbuf[1] == 0)) 706 return (-1); 707 convert_sff_temp(buf, size, xbuf); 708 return (0); 709 } 710 711 static void 712 get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size) 713 { 714 uint8_t xbuf[2]; 715 716 memset(xbuf, 0, sizeof(xbuf)); 717 read_i2c(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf); 718 convert_sff_voltage(buf, size, xbuf); 719 } 720 721 static void 722 get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size) 723 { 724 uint8_t xbuf[2]; 725 726 memset(xbuf, 0, sizeof(xbuf)); 727 read_i2c(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf); 728 convert_sff_power(ii, buf, size, xbuf); 729 } 730 731 static void 732 get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size) 733 { 734 uint8_t xbuf[2]; 735 736 memset(xbuf, 0, sizeof(xbuf)); 737 read_i2c(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf); 738 convert_sff_power(ii, buf, size, xbuf); 739 } 740 741 static void 742 get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan) 743 { 744 uint8_t xbuf[2]; 745 746 memset(xbuf, 0, sizeof(xbuf)); 747 read_i2c(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan-1)*2, 2, xbuf); 748 convert_sff_power(ii, buf, size, xbuf); 749 } 750 751 static void 752 get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan) 753 { 754 uint8_t xbuf[2]; 755 756 memset(xbuf, 0, sizeof(xbuf)); 757 read_i2c(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan-1)*2, 2, xbuf); 758 convert_sff_power(ii, buf, size, xbuf); 759 } 760 761 static void 762 get_qsfp_rev_compliance(struct i2c_info *ii, char *buf, size_t size) 763 { 764 uint8_t xbuf; 765 766 xbuf = 0; 767 read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &xbuf); 768 convert_sff_rev_compliance(buf, size, xbuf); 769 } 770 771 static uint32_t 772 get_qsfp_br(struct i2c_info *ii) 773 { 774 uint8_t xbuf; 775 uint32_t rate; 776 777 xbuf = 0; 778 read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &xbuf); 779 rate = xbuf * 100; 780 if (xbuf == 0xFF) { 781 read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &xbuf); 782 rate = xbuf * 250; 783 } 784 785 return (rate); 786 } 787 788 /* 789 * Reads i2c data from opened kernel socket. 790 */ 791 static int 792 read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, 793 uint8_t *buf) 794 { 795 struct ifi2creq req; 796 int i, l; 797 798 if (ii->error != 0) 799 return (ii->error); 800 801 ii->ifr->ifr_data = (caddr_t)&req; 802 803 i = 0; 804 l = 0; 805 memset(&req, 0, sizeof(req)); 806 req.dev_addr = addr; 807 req.offset = off; 808 req.len = len; 809 810 while (len > 0) { 811 l = MIN(sizeof(req.data), len); 812 req.len = l; 813 if (ioctl(ii->fd, SIOCGI2C, ii->ifr) != 0) { 814 ii->error = errno; 815 return (errno); 816 } 817 818 memcpy(&buf[i], req.data, l); 819 len -= l; 820 i += l; 821 req.offset += l; 822 } 823 824 return (0); 825 } 826 827 static void 828 dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len) 829 { 830 unsigned char buf[16]; 831 int i, read; 832 833 while (len > 0) { 834 memset(buf, 0, sizeof(buf)); 835 read = MIN(sizeof(buf), len); 836 read_i2c(ii, addr, off, read, buf); 837 if (ii->error != 0) { 838 fprintf(stderr, "Error reading i2c info\n"); 839 return; 840 } 841 842 printf("\t"); 843 for (i = 0; i < read; i++) 844 printf("%02X ", buf[i]); 845 printf("\n"); 846 len -= read; 847 off += read; 848 } 849 } 850 851 static void 852 print_qsfp_status(struct i2c_info *ii, int verbose) 853 { 854 char buf[80], buf2[40], buf3[40]; 855 uint32_t bitrate; 856 int i; 857 858 ii->qsfp = 1; 859 860 /* Transceiver type */ 861 get_qsfp_identifier(ii, buf, sizeof(buf)); 862 get_qsfp_transceiver_class(ii, buf2, sizeof(buf2)); 863 get_qsfp_connector(ii, buf3, sizeof(buf3)); 864 if (ii->error == 0) 865 printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); 866 print_sfp_vendor(ii, buf, sizeof(buf)); 867 if (ii->error == 0) 868 printf("\t%s\n", buf); 869 870 if (verbose > 1) { 871 get_qsfp_rev_compliance(ii, buf, sizeof(buf)); 872 if (ii->error == 0) 873 printf("\tcompliance level: %s\n", buf); 874 875 bitrate = get_qsfp_br(ii); 876 if (ii->error == 0 && bitrate > 0) 877 printf("\tnominal bitrate: %u Mbps\n", bitrate); 878 } 879 880 /* 881 * The standards in this area are not clear when the 882 * additional measurements are present or not. Use a valid 883 * temperature reading as an indicator for the presence of 884 * voltage and TX/RX power measurements. 885 */ 886 if (get_qsfp_temp(ii, buf, sizeof(buf)) == 0) { 887 get_qsfp_voltage(ii, buf2, sizeof(buf2)); 888 printf("\tmodule temperature: %s voltage: %s\n", buf, buf2); 889 for (i = 1; i <= 4; i++) { 890 get_qsfp_rx_power(ii, buf, sizeof(buf), i); 891 get_qsfp_tx_power(ii, buf2, sizeof(buf2), i); 892 printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2); 893 } 894 } 895 896 if (verbose > 2) { 897 printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n"); 898 dump_i2c_data(ii, SFF_8436_BASE, 128, 128); 899 printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n"); 900 dump_i2c_data(ii, SFF_8436_BASE, 0, 82); 901 } 902 } 903 904 static void 905 print_sfp_status(struct i2c_info *ii, int verbose) 906 { 907 char buf[80], buf2[40], buf3[40]; 908 uint8_t diag_type, flags; 909 910 /* Read diagnostic monitoring type */ 911 read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type); 912 if (ii->error != 0) 913 return; 914 915 /* 916 * Read monitoring data IFF it is supplied AND is 917 * internally calibrated 918 */ 919 flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL; 920 if ((diag_type & flags) == flags) 921 ii->do_diag = 1; 922 923 /* Transceiver type */ 924 get_sfp_identifier(ii, buf, sizeof(buf)); 925 get_sfp_transceiver_class(ii, buf2, sizeof(buf2)); 926 get_sfp_connector(ii, buf3, sizeof(buf3)); 927 if (ii->error == 0) 928 printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); 929 print_sfp_vendor(ii, buf, sizeof(buf)); 930 if (ii->error == 0) 931 printf("\t%s\n", buf); 932 933 if (verbose > 5) 934 printf_sfp_transceiver_descr(ii, buf, sizeof(buf)); 935 /* 936 * Request current measurements iff they are provided: 937 */ 938 if (ii->do_diag != 0) { 939 get_sfp_temp(ii, buf, sizeof(buf)); 940 get_sfp_voltage(ii, buf2, sizeof(buf2)); 941 printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2); 942 get_sfp_rx_power(ii, buf, sizeof(buf)); 943 get_sfp_tx_power(ii, buf2, sizeof(buf2)); 944 printf("\tRX: %s TX: %s\n", buf, buf2); 945 } 946 947 if (verbose > 2) { 948 printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n"); 949 dump_i2c_data(ii, SFF_8472_BASE, 0, 128); 950 } 951 } 952 953 void 954 sfp_status(int s, struct ifreq *ifr, int verbose) 955 { 956 struct i2c_info ii; 957 uint8_t id_byte; 958 959 /* Prepare necessary into pass to i2c reader */ 960 memset(&ii, 0, sizeof(ii)); 961 ii.fd = s; 962 ii.ifr = ifr; 963 964 /* 965 * Try to read byte 0 from i2c: 966 * Both SFF-8472 and SFF-8436 use it as 967 * 'identification byte'. 968 * Stop reading status on zero as value - 969 * this might happen in case of empty transceiver slot. 970 */ 971 id_byte = 0; 972 read_i2c(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte); 973 if (ii.error != 0 || id_byte == 0) 974 return; 975 976 switch (id_byte) { 977 case SFF_8024_ID_QSFP: 978 case SFF_8024_ID_QSFPPLUS: 979 case SFF_8024_ID_QSFP28: 980 print_qsfp_status(&ii, verbose); 981 break; 982 default: 983 print_sfp_status(&ii, verbose); 984 } 985 } 986 987