1 /*- 2 * Copyright (c) 2014 Alexander V. Chernikov. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #ifndef lint 27 static const char rcsid[] = 28 "$FreeBSD$"; 29 #endif /* not lint */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/ioctl.h> 34 #include <sys/socket.h> 35 36 #include <net/if.h> 37 #include <net/sff8436.h> 38 #include <net/sff8472.h> 39 40 #include <math.h> 41 #include <err.h> 42 #include <errno.h> 43 #include <fcntl.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <unistd.h> 48 49 #include "ifconfig.h" 50 51 struct i2c_info { 52 int fd; /* fd to issue SIOCGI2C */ 53 int error; /* Store first error */ 54 int qsfp; /* True if transceiver is QSFP */ 55 int do_diag; /* True if we need to request DDM */ 56 struct ifreq *ifr; /* Pointer to pre-filled ifreq */ 57 }; 58 59 static int read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, 60 uint8_t len, uint8_t *buf); 61 static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, 62 uint8_t len); 63 64 struct _nv { 65 int v; 66 const char *n; 67 }; 68 69 const char *find_value(struct _nv *x, int value); 70 const char *find_zero_bit(struct _nv *x, int value, int sz); 71 72 /* SFF-8472 Rev. 11.4 table 3.4: Connector values */ 73 static struct _nv conn[] = { 74 { 0x00, "Unknown" }, 75 { 0x01, "SC" }, 76 { 0x02, "Fibre Channel Style 1 copper" }, 77 { 0x03, "Fibre Channel Style 2 copper" }, 78 { 0x04, "BNC/TNC" }, 79 { 0x05, "Fibre Channel coaxial" }, 80 { 0x06, "FiberJack" }, 81 { 0x07, "LC" }, 82 { 0x08, "MT-RJ" }, 83 { 0x09, "MU" }, 84 { 0x0A, "SG" }, 85 { 0x0B, "Optical pigtail" }, 86 { 0x0C, "MPO Parallel Optic" }, 87 { 0x20, "HSSDC II" }, 88 { 0x21, "Copper pigtail" }, 89 { 0x22, "RJ45" }, 90 { 0x23, "No separate connector" }, /* SFF-8436 */ 91 { 0, NULL } 92 }; 93 94 /* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */ 95 /* 10G Ethernet/IB compliance codes, byte 3 */ 96 static struct _nv eth_10g[] = { 97 { 0x80, "10G Base-ER" }, 98 { 0x40, "10G Base-LRM" }, 99 { 0x20, "10G Base-LR" }, 100 { 0x10, "10G Base-SR" }, 101 { 0x08, "1X SX" }, 102 { 0x04, "1X LX" }, 103 { 0x02, "1X Copper Active" }, 104 { 0x01, "1X Copper Passive" }, 105 { 0, NULL } 106 }; 107 108 /* Ethernet compliance codes, byte 6 */ 109 static struct _nv eth_compat[] = { 110 { 0x80, "BASE-PX" }, 111 { 0x40, "BASE-BX10" }, 112 { 0x20, "100BASE-FX" }, 113 { 0x10, "100BASE-LX/LX10" }, 114 { 0x08, "1000BASE-T" }, 115 { 0x04, "1000BASE-CX" }, 116 { 0x02, "1000BASE-LX" }, 117 { 0x01, "1000BASE-SX" }, 118 { 0, NULL } 119 }; 120 121 /* FC link length, byte 7 */ 122 static struct _nv fc_len[] = { 123 { 0x80, "very long distance" }, 124 { 0x40, "short distance" }, 125 { 0x20, "intermediate distance" }, 126 { 0x10, "long distance" }, 127 { 0x08, "medium distance" }, 128 { 0, NULL } 129 }; 130 131 /* Channel/Cable technology, byte 7-8 */ 132 static struct _nv cab_tech[] = { 133 { 0x0400, "Shortwave laser (SA)" }, 134 { 0x0200, "Longwave laser (LC)" }, 135 { 0x0100, "Electrical inter-enclosure (EL)" }, 136 { 0x80, "Electrical intra-enclosure (EL)" }, 137 { 0x40, "Shortwave laser (SN)" }, 138 { 0x20, "Shortwave laser (SL)" }, 139 { 0x10, "Longwave laser (LL)" }, 140 { 0x08, "Active Cable" }, 141 { 0x04, "Passive Cable" }, 142 { 0, NULL } 143 }; 144 145 /* FC Transmission media, byte 9 */ 146 static struct _nv fc_media[] = { 147 { 0x80, "Twin Axial Pair" }, 148 { 0x40, "Twisted Pair" }, 149 { 0x20, "Miniature Coax" }, 150 { 0x10, "Viao Coax" }, 151 { 0x08, "Miltimode, 62.5um" }, 152 { 0x04, "Multimode, 50um" }, 153 { 0x02, "" }, 154 { 0x01, "Single Mode" }, 155 { 0, NULL } 156 }; 157 158 /* FC Speed, byte 10 */ 159 static struct _nv fc_speed[] = { 160 { 0x80, "1200 MBytes/sec" }, 161 { 0x40, "800 MBytes/sec" }, 162 { 0x20, "1600 MBytes/sec" }, 163 { 0x10, "400 MBytes/sec" }, 164 { 0x08, "3200 MBytes/sec" }, 165 { 0x04, "200 MBytes/sec" }, 166 { 0x01, "100 MBytes/sec" }, 167 { 0, NULL } 168 }; 169 170 /* SFF-8436 Rev. 4.8 table 33: Specification compliance */ 171 172 /* 10/40G Ethernet compliance codes, byte 128 + 3 */ 173 static struct _nv eth_1040g[] = { 174 { 0x80, "Reserved" }, 175 { 0x40, "10GBASE-LRM" }, 176 { 0x20, "10GBASE-LR" }, 177 { 0x10, "10GBASE-SR" }, 178 { 0x08, "40GBASE-CR4" }, 179 { 0x04, "40GBASE-SR4" }, 180 { 0x02, "40GBASE-LR4" }, 181 { 0x01, "40G Active Cable" }, 182 { 0, NULL } 183 }; 184 185 /* SFF-8636 Rev. 2.5 table 6.3: Revision compliance */ 186 static struct _nv rev_compl[] = { 187 { 0x1, "SFF-8436 rev <=4.8" }, 188 { 0x2, "SFF-8436 rev <=4.8" }, 189 { 0x3, "SFF-8636 rev <=1.3" }, 190 { 0x4, "SFF-8636 rev <=1.4" }, 191 { 0x5, "SFF-8636 rev <=1.5" }, 192 { 0x6, "SFF-8636 rev <=2.0" }, 193 { 0x7, "SFF-8636 rev <=2.5" }, 194 { 0x0, "Unspecified" } 195 }; 196 197 const char * 198 find_value(struct _nv *x, int value) 199 { 200 for (; x->n != NULL; x++) 201 if (x->v == value) 202 return (x->n); 203 return (NULL); 204 } 205 206 const char * 207 find_zero_bit(struct _nv *x, int value, int sz) 208 { 209 int v, m; 210 const char *s; 211 212 v = 1; 213 for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) { 214 if ((value & v) == 0) 215 continue; 216 if ((s = find_value(x, value & v)) != NULL) { 217 value &= ~v; 218 return (s); 219 } 220 } 221 222 return (NULL); 223 } 224 225 static void 226 convert_sff_identifier(char *buf, size_t size, uint8_t value) 227 { 228 const char *x; 229 230 x = NULL; 231 if (value <= SFF_8024_ID_LAST) 232 x = sff_8024_id[value]; 233 else { 234 if (value > 0x80) 235 x = "Vendor specific"; 236 else 237 x = "Reserved"; 238 } 239 240 snprintf(buf, size, "%s", x); 241 } 242 243 static void 244 convert_sff_connector(char *buf, size_t size, uint8_t value) 245 { 246 const char *x; 247 248 if ((x = find_value(conn, value)) == NULL) { 249 if (value >= 0x0D && value <= 0x1F) 250 x = "Unallocated"; 251 else if (value >= 0x24 && value <= 0x7F) 252 x = "Unallocated"; 253 else 254 x = "Vendor specific"; 255 } 256 257 snprintf(buf, size, "%s", x); 258 } 259 260 static void 261 convert_sff_rev_compliance(char *buf, size_t size, uint8_t value) 262 { 263 const char *x; 264 265 if (value > 0x07) 266 x = "Unallocated"; 267 else 268 x = find_value(rev_compl, value); 269 270 snprintf(buf, size, "%s", x); 271 } 272 273 static void 274 get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size) 275 { 276 uint8_t data; 277 278 read_i2c(ii, SFF_8472_BASE, SFF_8472_ID, 1, &data); 279 convert_sff_identifier(buf, size, data); 280 } 281 282 static void 283 get_sfp_connector(struct i2c_info *ii, char *buf, size_t size) 284 { 285 uint8_t data; 286 287 read_i2c(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, &data); 288 convert_sff_connector(buf, size, data); 289 } 290 291 static void 292 get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size) 293 { 294 uint8_t data; 295 296 read_i2c(ii, SFF_8436_BASE, SFF_8436_ID, 1, &data); 297 convert_sff_identifier(buf, size, data); 298 } 299 300 static void 301 get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size) 302 { 303 uint8_t data; 304 305 read_i2c(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, &data); 306 convert_sff_connector(buf, size, data); 307 } 308 309 static void 310 printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size) 311 { 312 char xbuf[12]; 313 const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed; 314 315 tech_class = NULL; 316 tech_len = NULL; 317 tech_tech = NULL; 318 tech_media = NULL; 319 tech_speed = NULL; 320 321 /* Read bytes 3-10 at once */ 322 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]); 323 324 /* Check 10G ethernet first */ 325 tech_class = find_zero_bit(eth_10g, xbuf[3], 1); 326 if (tech_class == NULL) { 327 /* No match. Try 1G */ 328 tech_class = find_zero_bit(eth_compat, xbuf[6], 1); 329 } 330 331 tech_len = find_zero_bit(fc_len, xbuf[7], 1); 332 tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2); 333 tech_media = find_zero_bit(fc_media, xbuf[9], 1); 334 tech_speed = find_zero_bit(fc_speed, xbuf[10], 1); 335 336 printf("Class: %s\n", tech_class); 337 printf("Length: %s\n", tech_len); 338 printf("Tech: %s\n", tech_tech); 339 printf("Media: %s\n", tech_media); 340 printf("Speed: %s\n", tech_speed); 341 } 342 343 static void 344 get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) 345 { 346 const char *tech_class; 347 uint8_t code; 348 349 unsigned char qbuf[8]; 350 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, (uint8_t *)qbuf); 351 352 /* Check 10G Ethernet/IB first */ 353 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, &code); 354 tech_class = find_zero_bit(eth_10g, code, 1); 355 if (tech_class == NULL) { 356 /* No match. Try Ethernet 1G */ 357 read_i2c(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3, 358 1, (caddr_t)&code); 359 tech_class = find_zero_bit(eth_compat, code, 1); 360 } 361 362 if (tech_class == NULL) 363 tech_class = "Unknown"; 364 365 snprintf(buf, size, "%s", tech_class); 366 } 367 368 static void 369 get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size) 370 { 371 const char *tech_class; 372 uint8_t code; 373 374 /* Check 10/40G Ethernet class only */ 375 read_i2c(ii, SFF_8436_BASE, SFF_8436_CODE_E1040G, 1, &code); 376 tech_class = find_zero_bit(eth_1040g, code, 1); 377 if (tech_class == NULL) 378 tech_class = "Unknown"; 379 380 snprintf(buf, size, "%s", tech_class); 381 } 382 383 /* 384 * Print SFF-8472/SFF-8436 string to supplied buffer. 385 * All (vendor-specific) strings are padded right with '0x20'. 386 */ 387 static void 388 convert_sff_name(char *buf, size_t size, char *xbuf) 389 { 390 char *p; 391 392 for (p = &xbuf[16]; *(p - 1) == 0x20; p--) 393 ; 394 *p = '\0'; 395 snprintf(buf, size, "%s", xbuf); 396 } 397 398 static void 399 convert_sff_date(char *buf, size_t size, char *xbuf) 400 { 401 402 snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1], 403 xbuf[2], xbuf[3], xbuf[4], xbuf[5]); 404 } 405 406 static void 407 get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) 408 { 409 char xbuf[17]; 410 411 memset(xbuf, 0, sizeof(xbuf)); 412 read_i2c(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, (uint8_t *)xbuf); 413 convert_sff_name(buf, size, xbuf); 414 } 415 416 static void 417 get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) 418 { 419 char xbuf[17]; 420 421 memset(xbuf, 0, sizeof(xbuf)); 422 read_i2c(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, (uint8_t *)xbuf); 423 convert_sff_name(buf, size, xbuf); 424 } 425 426 static void 427 get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) 428 { 429 char xbuf[17]; 430 431 memset(xbuf, 0, sizeof(xbuf)); 432 read_i2c(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, (uint8_t *)xbuf); 433 convert_sff_name(buf, size, xbuf); 434 } 435 436 static void 437 get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) 438 { 439 char xbuf[6]; 440 441 memset(xbuf, 0, sizeof(xbuf)); 442 /* Date code, see Table 3.8 for description */ 443 read_i2c(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, (uint8_t *)xbuf); 444 convert_sff_date(buf, size, xbuf); 445 } 446 447 static void 448 get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size) 449 { 450 char xbuf[17]; 451 452 memset(xbuf, 0, sizeof(xbuf)); 453 read_i2c(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, (uint8_t *)xbuf); 454 convert_sff_name(buf, size, xbuf); 455 } 456 457 static void 458 get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size) 459 { 460 char xbuf[17]; 461 462 memset(xbuf, 0, sizeof(xbuf)); 463 read_i2c(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, (uint8_t *)xbuf); 464 convert_sff_name(buf, size, xbuf); 465 } 466 467 static void 468 get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size) 469 { 470 char xbuf[17]; 471 472 memset(xbuf, 0, sizeof(xbuf)); 473 read_i2c(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, (uint8_t *)xbuf); 474 convert_sff_name(buf, size, xbuf); 475 } 476 477 static void 478 get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size) 479 { 480 char xbuf[6]; 481 482 memset(xbuf, 0, sizeof(xbuf)); 483 read_i2c(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, (uint8_t *)xbuf); 484 convert_sff_date(buf, size, xbuf); 485 } 486 487 static void 488 print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size) 489 { 490 char xbuf[80]; 491 492 memset(xbuf, 0, sizeof(xbuf)); 493 if (ii->qsfp != 0) { 494 get_qsfp_vendor_name(ii, xbuf, 20); 495 get_qsfp_vendor_pn(ii, &xbuf[20], 20); 496 get_qsfp_vendor_sn(ii, &xbuf[40], 20); 497 get_qsfp_vendor_date(ii, &xbuf[60], 20); 498 } else { 499 get_sfp_vendor_name(ii, xbuf, 20); 500 get_sfp_vendor_pn(ii, &xbuf[20], 20); 501 get_sfp_vendor_sn(ii, &xbuf[40], 20); 502 get_sfp_vendor_date(ii, &xbuf[60], 20); 503 } 504 505 snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s", 506 xbuf, &xbuf[20], &xbuf[40], &xbuf[60]); 507 } 508 509 /* 510 * Converts internal templerature (SFF-8472, SFF-8436) 511 * 16-bit unsigned value to human-readable representation: 512 * 513 * Internally measured Module temperature are represented 514 * as a 16-bit signed twos complement value in increments of 515 * 1/256 degrees Celsius, yielding a total range of –128C to +128C 516 * that is considered valid between –40 and +125C. 517 * 518 */ 519 static void 520 convert_sff_temp(char *buf, size_t size, uint8_t *xbuf) 521 { 522 double d; 523 524 d = (double)xbuf[0]; 525 d += (double)xbuf[1] / 256; 526 527 snprintf(buf, size, "%.2f C", d); 528 } 529 530 /* 531 * Retrieves supplied voltage (SFF-8472, SFF-8436). 532 * 16-bit usigned value, treated as range 0..+6.55 Volts 533 */ 534 static void 535 convert_sff_voltage(char *buf, size_t size, uint8_t *xbuf) 536 { 537 double d; 538 539 d = (double)((xbuf[0] << 8) | xbuf[1]); 540 snprintf(buf, size, "%.2f Volts", d / 10000); 541 } 542 543 /* 544 * Converts value in @xbuf to both milliwats and dBm 545 * human representation. 546 */ 547 static void 548 convert_sff_power(struct i2c_info *ii, char *buf, size_t size, uint8_t *xbuf) 549 { 550 uint16_t mW; 551 double dbm; 552 553 mW = (xbuf[0] << 8) + xbuf[1]; 554 555 /* Convert mw to dbm */ 556 dbm = 10.0 * log10(1.0 * mW / 10000); 557 558 /* 559 * Assume internally-calibrated data. 560 * This is always true for SFF-8346, and explicitly 561 * checked for SFF-8472. 562 */ 563 564 /* Table 3.9, bit 5 is set, internally calibrated */ 565 snprintf(buf, size, "%d.%02d mW (%.2f dBm)", 566 mW / 10000, (mW % 10000) / 100, dbm); 567 } 568 569 static void 570 get_sfp_temp(struct i2c_info *ii, char *buf, size_t size) 571 { 572 uint8_t xbuf[2]; 573 574 memset(xbuf, 0, sizeof(xbuf)); 575 read_i2c(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf); 576 convert_sff_temp(buf, size, xbuf); 577 } 578 579 static void 580 get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size) 581 { 582 uint8_t xbuf[2]; 583 584 memset(xbuf, 0, sizeof(xbuf)); 585 read_i2c(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf); 586 convert_sff_voltage(buf, size, xbuf); 587 } 588 589 static void 590 get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size) 591 { 592 uint8_t xbuf[2]; 593 594 memset(xbuf, 0, sizeof(xbuf)); 595 read_i2c(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf); 596 convert_sff_temp(buf, size, xbuf); 597 } 598 599 static void 600 get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size) 601 { 602 uint8_t xbuf[2]; 603 604 memset(xbuf, 0, sizeof(xbuf)); 605 read_i2c(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf); 606 convert_sff_voltage(buf, size, xbuf); 607 } 608 609 static void 610 get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size) 611 { 612 uint8_t xbuf[2]; 613 614 memset(xbuf, 0, sizeof(xbuf)); 615 read_i2c(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf); 616 convert_sff_power(ii, buf, size, xbuf); 617 } 618 619 static void 620 get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size) 621 { 622 uint8_t xbuf[2]; 623 624 memset(xbuf, 0, sizeof(xbuf)); 625 read_i2c(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf); 626 convert_sff_power(ii, buf, size, xbuf); 627 } 628 629 static void 630 get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan) 631 { 632 uint8_t xbuf[2]; 633 634 memset(xbuf, 0, sizeof(xbuf)); 635 read_i2c(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan-1)*2, 2, xbuf); 636 convert_sff_power(ii, buf, size, xbuf); 637 } 638 639 static void 640 get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan) 641 { 642 uint8_t xbuf[2]; 643 644 memset(xbuf, 0, sizeof(xbuf)); 645 read_i2c(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan-1)*2, 2, xbuf); 646 convert_sff_power(ii, buf, size, xbuf); 647 } 648 649 static void 650 get_qsfp_rev_compliance(struct i2c_info *ii, char *buf, size_t size) 651 { 652 uint8_t xbuf; 653 654 xbuf = 0; 655 read_i2c(ii, SFF_8436_BASE, SFF_8436_STATUS, 1, &xbuf); 656 convert_sff_rev_compliance(buf, size, xbuf); 657 } 658 659 static uint32_t 660 get_qsfp_br(struct i2c_info *ii) 661 { 662 uint8_t xbuf; 663 uint32_t rate; 664 665 xbuf = 0; 666 read_i2c(ii, SFF_8436_BASE, SFF_8436_BITRATE, 1, &xbuf); 667 rate = xbuf * 100; 668 if (xbuf == 0xFF) { 669 read_i2c(ii, SFF_8436_BASE, SFF_8636_BITRATE, 1, &xbuf); 670 rate = xbuf * 250; 671 } 672 673 return (rate); 674 } 675 676 /* 677 * Reads i2c data from opened kernel socket. 678 */ 679 static int 680 read_i2c(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len, 681 uint8_t *buf) 682 { 683 struct ifi2creq req; 684 int i, l; 685 686 if (ii->error != 0) 687 return (ii->error); 688 689 ii->ifr->ifr_data = (caddr_t)&req; 690 691 i = 0; 692 l = 0; 693 memset(&req, 0, sizeof(req)); 694 req.dev_addr = addr; 695 req.offset = off; 696 req.len = len; 697 698 while (len > 0) { 699 l = (len > sizeof(req.data)) ? sizeof(req.data) : len; 700 req.len = l; 701 if (ioctl(ii->fd, SIOCGI2C, ii->ifr) != 0) { 702 ii->error = errno; 703 return (errno); 704 } 705 706 memcpy(&buf[i], req.data, l); 707 len -= l; 708 i += l; 709 req.offset += l; 710 } 711 712 return (0); 713 } 714 715 static void 716 dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len) 717 { 718 unsigned char buf[16]; 719 int i, read; 720 721 while (len > 0) { 722 memset(buf, 0, sizeof(buf)); 723 read = (len > sizeof(buf)) ? sizeof(buf) : len; 724 read_i2c(ii, addr, off, read, buf); 725 if (ii->error != 0) { 726 fprintf(stderr, "Error reading i2c info\n"); 727 return; 728 } 729 730 printf("\t"); 731 for (i = 0; i < read; i++) 732 printf("%02X ", buf[i]); 733 printf("\n"); 734 len -= read; 735 off += read; 736 } 737 } 738 739 static void 740 print_qsfp_status(struct i2c_info *ii, int verbose) 741 { 742 char buf[80], buf2[40], buf3[40]; 743 uint8_t diag_type; 744 uint32_t bitrate; 745 int i; 746 747 /* Read diagnostic monitoring type */ 748 read_i2c(ii, SFF_8436_BASE, SFF_8436_DIAG_TYPE, 1, (caddr_t)&diag_type); 749 if (ii->error != 0) 750 return; 751 752 /* 753 * Read monitoring data it is supplied. 754 * XXX: It is not exactly clear from standard 755 * how one can specify lack of measurements (passive cables case). 756 */ 757 if (diag_type != 0) 758 ii->do_diag = 1; 759 ii->qsfp = 1; 760 761 /* Transceiver type */ 762 get_qsfp_identifier(ii, buf, sizeof(buf)); 763 get_qsfp_transceiver_class(ii, buf2, sizeof(buf2)); 764 get_qsfp_connector(ii, buf3, sizeof(buf3)); 765 if (ii->error == 0) 766 printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); 767 print_sfp_vendor(ii, buf, sizeof(buf)); 768 if (ii->error == 0) 769 printf("\t%s\n", buf); 770 771 if (verbose > 1) { 772 get_qsfp_rev_compliance(ii, buf, sizeof(buf)); 773 if (ii->error == 0) 774 printf("\tcompliance level: %s\n", buf); 775 776 bitrate = get_qsfp_br(ii); 777 if (ii->error == 0 && bitrate > 0) 778 printf("\tnominal bitrate: %u Mbps\n", bitrate); 779 } 780 781 /* Request current measurements if they are provided: */ 782 if (ii->do_diag != 0) { 783 get_qsfp_temp(ii, buf, sizeof(buf)); 784 get_qsfp_voltage(ii, buf2, sizeof(buf2)); 785 printf("\tmodule temperature: %s voltage: %s\n", buf, buf2); 786 for (i = 1; i <= 4; i++) { 787 get_qsfp_rx_power(ii, buf, sizeof(buf), i); 788 get_qsfp_tx_power(ii, buf2, sizeof(buf2), i); 789 printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2); 790 } 791 } 792 793 if (verbose > 2) { 794 printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n"); 795 dump_i2c_data(ii, SFF_8436_BASE, 128, 128); 796 printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n"); 797 dump_i2c_data(ii, SFF_8436_BASE, 0, 82); 798 } 799 } 800 801 static void 802 print_sfp_status(struct i2c_info *ii, int verbose) 803 { 804 char buf[80], buf2[40], buf3[40]; 805 uint8_t diag_type, flags; 806 807 /* Read diagnostic monitoring type */ 808 read_i2c(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type); 809 if (ii->error != 0) 810 return; 811 812 /* 813 * Read monitoring data IFF it is supplied AND is 814 * internally calibrated 815 */ 816 flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL; 817 if ((diag_type & flags) == flags) 818 ii->do_diag = 1; 819 820 /* Transceiver type */ 821 get_sfp_identifier(ii, buf, sizeof(buf)); 822 get_sfp_transceiver_class(ii, buf2, sizeof(buf2)); 823 get_sfp_connector(ii, buf3, sizeof(buf3)); 824 if (ii->error == 0) 825 printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3); 826 print_sfp_vendor(ii, buf, sizeof(buf)); 827 if (ii->error == 0) 828 printf("\t%s\n", buf); 829 830 if (verbose > 5) 831 printf_sfp_transceiver_descr(ii, buf, sizeof(buf)); 832 /* 833 * Request current measurements iff they are provided: 834 */ 835 if (ii->do_diag != 0) { 836 get_sfp_temp(ii, buf, sizeof(buf)); 837 get_sfp_voltage(ii, buf2, sizeof(buf2)); 838 printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2); 839 get_sfp_rx_power(ii, buf, sizeof(buf)); 840 get_sfp_tx_power(ii, buf2, sizeof(buf2)); 841 printf("\tRX: %s TX: %s\n", buf, buf2); 842 } 843 844 if (verbose > 2) { 845 printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n"); 846 dump_i2c_data(ii, SFF_8472_BASE, 0, 128); 847 } 848 } 849 850 void 851 sfp_status(int s, struct ifreq *ifr, int verbose) 852 { 853 struct i2c_info ii; 854 uint8_t id_byte; 855 856 /* Prepare necessary into pass to i2c reader */ 857 memset(&ii, 0, sizeof(ii)); 858 ii.fd = s; 859 ii.ifr = ifr; 860 861 /* 862 * Try to read byte 0 from i2c: 863 * Both SFF-8472 and SFF-8436 use it as 864 * 'identification byte'. 865 * Stop reading status on zero as value - 866 * this might happen in case of empty transceiver slot. 867 */ 868 id_byte = 0; 869 read_i2c(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte); 870 if (ii.error != 0 || id_byte == 0) 871 return; 872 873 switch (id_byte) { 874 case SFF_8024_ID_QSFP: 875 case SFF_8024_ID_QSFPPLUS: 876 print_qsfp_status(&ii, verbose); 877 break; 878 default: 879 print_sfp_status(&ii, verbose); 880 }; 881 } 882 883