xref: /freebsd/sbin/ifconfig/sfp.c (revision 38d120bc13ac1de5b739b67b87016b9122149374)
1 /*-
2  * Copyright (c) 2014 Alexander V. Chernikov. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 #ifndef lint
27 static const char rcsid[] =
28   "$FreeBSD$";
29 #endif /* not lint */
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/ioctl.h>
34 #include <sys/socket.h>
35 
36 #include <net/if.h>
37 #include <net/sff8436.h>
38 #include <net/sff8472.h>
39 
40 #include <math.h>
41 #include <err.h>
42 #include <errno.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 
49 #include "ifconfig.h"
50 
51 struct i2c_info;
52 typedef int (read_i2c)(struct i2c_info *ii, uint8_t addr, uint8_t off,
53     uint8_t len, caddr_t buf);
54 
55 struct i2c_info {
56 	int s;
57 	int error;
58 	int bshift;
59 	int qsfp;
60 	int do_diag;
61 	struct ifreq *ifr;
62 	read_i2c *f;
63 	char *textbuf;
64 	size_t bufsize;
65 	int cfd;
66 	int port_id;
67 	int chip_id;
68 };
69 
70 static void dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off,
71     uint8_t len);
72 
73 struct _nv {
74 	int v;
75 	const char *n;
76 };
77 
78 const char *find_value(struct _nv *x, int value);
79 const char *find_zero_bit(struct _nv *x, int value, int sz);
80 
81 /* SFF-8472 Rev. 11.4 table 3.4: Connector values */
82 static struct _nv conn[] = {
83 	{ 0x00, "Unknown" },
84 	{ 0x01, "SC" },
85 	{ 0x02, "Fibre Channel Style 1 copper" },
86 	{ 0x03, "Fibre Channel Style 2 copper" },
87 	{ 0x04, "BNC/TNC" },
88 	{ 0x05, "Fibre Channel coaxial" },
89 	{ 0x06, "FiberJack" },
90 	{ 0x07, "LC" },
91 	{ 0x08, "MT-RJ" },
92 	{ 0x09, "MU" },
93 	{ 0x0A, "SG" },
94 	{ 0x0B, "Optical pigtail" },
95 	{ 0x0C, "MPO Parallel Optic" },
96 	{ 0x20, "HSSDC II" },
97 	{ 0x21, "Copper pigtail" },
98 	{ 0x22, "RJ45" },
99 	{ 0x23, "No separate connector" }, /* SFF-8436 */
100 	{ 0, NULL }
101 };
102 
103 /* SFF-8472 Rev. 11.4 table 3.5: Transceiver codes */
104 /* 10G Ethernet/IB compliance codes, byte 3 */
105 static struct _nv eth_10g[] = {
106 	{ 0x80, "10G Base-ER" },
107 	{ 0x40, "10G Base-LRM" },
108 	{ 0x20, "10G Base-LR" },
109 	{ 0x10, "10G Base-SR" },
110 	{ 0x08, "1X SX" },
111 	{ 0x04, "1X LX" },
112 	{ 0x02, "1X Copper Active" },
113 	{ 0x01, "1X Copper Passive" },
114 	{ 0, NULL }
115 };
116 
117 /* Ethernet compliance codes, byte 6 */
118 static struct _nv eth_compat[] = {
119 	{ 0x80, "BASE-PX" },
120 	{ 0x40, "BASE-BX10" },
121 	{ 0x20, "100BASE-FX" },
122 	{ 0x10, "100BASE-LX/LX10" },
123 	{ 0x08, "1000BASE-T" },
124 	{ 0x04, "1000BASE-CX" },
125 	{ 0x02, "1000BASE-LX" },
126 	{ 0x01, "1000BASE-SX" },
127 	{ 0, NULL }
128 };
129 
130 /* FC link length, byte 7 */
131 static struct _nv fc_len[] = {
132 	{ 0x80, "very long distance" },
133 	{ 0x40, "short distance" },
134 	{ 0x20, "intermediate distance" },
135 	{ 0x10, "long distance" },
136 	{ 0x08, "medium distance" },
137 	{ 0, NULL }
138 };
139 
140 /* Channel/Cable technology, byte 7-8 */
141 static struct _nv cab_tech[] = {
142 	{ 0x0400, "Shortwave laser (SA)" },
143 	{ 0x0200, "Longwave laser (LC)" },
144 	{ 0x0100, "Electrical inter-enclosure (EL)" },
145 	{ 0x80, "Electrical intra-enclosure (EL)" },
146 	{ 0x40, "Shortwave laser (SN)" },
147 	{ 0x20, "Shortwave laser (SL)" },
148 	{ 0x10, "Longwave laser (LL)" },
149 	{ 0x08, "Active Cable" },
150 	{ 0x04, "Passive Cable" },
151 	{ 0, NULL }
152 };
153 
154 /* FC Transmission media, byte 9 */
155 static struct _nv fc_media[] = {
156 	{ 0x80, "Twin Axial Pair" },
157 	{ 0x40, "Twisted Pair" },
158 	{ 0x20, "Miniature Coax" },
159 	{ 0x10, "Viao Coax" },
160 	{ 0x08, "Miltimode, 62.5um" },
161 	{ 0x04, "Multimode, 50um" },
162 	{ 0x02, "" },
163 	{ 0x01, "Single Mode" },
164 	{ 0, NULL }
165 };
166 
167 /* FC Speed, byte 10 */
168 static struct _nv fc_speed[] = {
169 	{ 0x80, "1200 MBytes/sec" },
170 	{ 0x40, "800 MBytes/sec" },
171 	{ 0x20, "1600 MBytes/sec" },
172 	{ 0x10, "400 MBytes/sec" },
173 	{ 0x08, "3200 MBytes/sec" },
174 	{ 0x04, "200 MBytes/sec" },
175 	{ 0x01, "100 MBytes/sec" },
176 	{ 0, NULL }
177 };
178 
179 /* SFF-8436 Rev. 4.8 table 33: Specification compliance  */
180 
181 /* 10/40G Ethernet compliance codes, byte 128 + 3 */
182 static struct _nv eth_1040g[] = {
183 	{ 0x80, "Reserved" },
184 	{ 0x40, "10GBASE-LRM" },
185 	{ 0x20, "10GBASE-LR" },
186 	{ 0x10, "10GBASE-SR" },
187 	{ 0x08, "40GBASE-CR4" },
188 	{ 0x04, "40GBASE-SR4" },
189 	{ 0x02, "40GBASE-LR4" },
190 	{ 0x01, "40G Active Cable" },
191 	{ 0, NULL }
192 };
193 
194 const char *
195 find_value(struct _nv *x, int value)
196 {
197 	for (; x->n != NULL; x++)
198 		if (x->v == value)
199 			return (x->n);
200 	return (NULL);
201 }
202 
203 const char *
204 find_zero_bit(struct _nv *x, int value, int sz)
205 {
206 	int v, m;
207 	const char *s;
208 
209 	v = 1;
210 	for (v = 1, m = 1 << (8 * sz); v < m; v *= 2) {
211 		if ((value & v) == 0)
212 			continue;
213 		if ((s = find_value(x, value & v)) != NULL) {
214 			value &= ~v;
215 			return (s);
216 		}
217 	}
218 
219 	return (NULL);
220 }
221 
222 static void
223 convert_sff_identifier(char *buf, size_t size, uint8_t value)
224 {
225 	const char *x;
226 
227 	x = NULL;
228 	if (value <= SFF_8024_ID_LAST)
229 		x = sff_8024_id[value];
230 	else {
231 		if (value > 0x80)
232 			x = "Vendor specific";
233 		else
234 			x = "Reserved";
235 	}
236 
237 	snprintf(buf, size, "%s", x);
238 }
239 
240 static void
241 convert_sff_connector(char *buf, size_t size, uint8_t value)
242 {
243 	const char *x;
244 
245 	if ((x = find_value(conn, value)) == NULL) {
246 		if (value >= 0x0D && value <= 0x1F)
247 			x = "Unallocated";
248 		else if (value >= 0x24 && value <= 0x7F)
249 			x = "Unallocated";
250 		else
251 			x = "Vendor specific";
252 	}
253 
254 	snprintf(buf, size, "%s", x);
255 }
256 
257 static void
258 get_sfp_identifier(struct i2c_info *ii, char *buf, size_t size)
259 {
260 	uint8_t data;
261 
262 	ii->f(ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&data);
263 	convert_sff_identifier(buf, size, data);
264 }
265 
266 static void
267 get_sfp_connector(struct i2c_info *ii, char *buf, size_t size)
268 {
269 	uint8_t data;
270 
271 	ii->f(ii, SFF_8472_BASE, SFF_8472_CONNECTOR, 1, (caddr_t)&data);
272 	convert_sff_connector(buf, size, data);
273 }
274 
275 static void
276 get_qsfp_identifier(struct i2c_info *ii, char *buf, size_t size)
277 {
278 	uint8_t data;
279 
280 	ii->f(ii, SFF_8436_BASE, SFF_8436_ID, 1, (caddr_t)&data);
281 	convert_sff_identifier(buf, size, data);
282 }
283 
284 static void
285 get_qsfp_connector(struct i2c_info *ii, char *buf, size_t size)
286 {
287 	uint8_t data;
288 
289 	ii->f(ii, SFF_8436_BASE, SFF_8436_CONNECTOR, 1, (caddr_t)&data);
290 	convert_sff_connector(buf, size, data);
291 }
292 
293 static void
294 printf_sfp_transceiver_descr(struct i2c_info *ii, char *buf, size_t size)
295 {
296 	char xbuf[12];
297 	const char *tech_class, *tech_len, *tech_tech, *tech_media, *tech_speed;
298 
299 	tech_class = NULL;
300 	tech_len = NULL;
301 	tech_tech = NULL;
302 	tech_media = NULL;
303 	tech_speed = NULL;
304 
305 	/* Read bytes 3-10 at once */
306 	ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, &xbuf[3]);
307 
308 	/* Check 10G ethernet first */
309 	tech_class = find_zero_bit(eth_10g, xbuf[3], 1);
310 	if (tech_class == NULL) {
311 		/* No match. Try 1G */
312 		tech_class = find_zero_bit(eth_compat, xbuf[6], 1);
313 	}
314 
315 	tech_len = find_zero_bit(fc_len, xbuf[7], 1);
316 	tech_tech = find_zero_bit(cab_tech, xbuf[7] << 8 | xbuf[8], 2);
317 	tech_media = find_zero_bit(fc_media, xbuf[9], 1);
318 	tech_speed = find_zero_bit(fc_speed, xbuf[10], 1);
319 
320 	printf("Class: %s\n", tech_class);
321 	printf("Length: %s\n", tech_len);
322 	printf("Tech: %s\n", tech_tech);
323 	printf("Media: %s\n", tech_media);
324 	printf("Speed: %s\n", tech_speed);
325 }
326 
327 static void
328 get_sfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
329 {
330 	const char *tech_class;
331 	uint8_t code;
332 
333 	unsigned char qbuf[8];
334 	ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 8, (caddr_t)qbuf);
335 
336 	/* Check 10G Ethernet/IB first */
337 	ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START, 1, (caddr_t)&code);
338 	tech_class = find_zero_bit(eth_10g, code, 1);
339 	if (tech_class == NULL) {
340 		/* No match. Try Ethernet 1G */
341 		ii->f(ii, SFF_8472_BASE, SFF_8472_TRANS_START + 3,
342 		    1, (caddr_t)&code);
343 		tech_class = find_zero_bit(eth_compat, code, 1);
344 	}
345 
346 	if (tech_class == NULL)
347 		tech_class = "Unknown";
348 
349 	snprintf(buf, size, "%s", tech_class);
350 }
351 
352 static void
353 get_qsfp_transceiver_class(struct i2c_info *ii, char *buf, size_t size)
354 {
355 	const char *tech_class;
356 	uint8_t code;
357 
358 	/* Check 10/40G Ethernet class only */
359 	ii->f(ii, SFF_8436_BASE, SFF_8436_CODE_E1040G, 1, (caddr_t)&code);
360 	tech_class = find_zero_bit(eth_1040g, code, 1);
361 	if (tech_class == NULL)
362 		tech_class = "Unknown";
363 
364 	snprintf(buf, size, "%s", tech_class);
365 }
366 
367 /*
368  * Print SFF-8472/SFF-8436 string to supplied buffer.
369  * All (vendor-specific) strings are padded right with '0x20'.
370  */
371 static void
372 convert_sff_name(char *buf, size_t size, char *xbuf)
373 {
374 	char *p;
375 
376 	for (p = &xbuf[16]; *(p - 1) == 0x20; p--)
377 		;
378 	*p = '\0';
379 	snprintf(buf, size, "%s", xbuf);
380 }
381 
382 static void
383 convert_sff_date(char *buf, size_t size, char *xbuf)
384 {
385 
386 	snprintf(buf, size, "20%c%c-%c%c-%c%c", xbuf[0], xbuf[1],
387 	    xbuf[2], xbuf[3], xbuf[4], xbuf[5]);
388 }
389 
390 static void
391 get_sfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
392 {
393 	char xbuf[17];
394 
395 	memset(xbuf, 0, sizeof(xbuf));
396 	ii->f(ii, SFF_8472_BASE, SFF_8472_VENDOR_START, 16, xbuf);
397 	convert_sff_name(buf, size, xbuf);
398 }
399 
400 static void
401 get_sfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
402 {
403 	char xbuf[17];
404 
405 	memset(xbuf, 0, sizeof(xbuf));
406 	ii->f(ii, SFF_8472_BASE, SFF_8472_PN_START, 16, xbuf);
407 	convert_sff_name(buf, size, xbuf);
408 }
409 
410 static void
411 get_sfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
412 {
413 	char xbuf[17];
414 
415 	memset(xbuf, 0, sizeof(xbuf));
416 	ii->f(ii, SFF_8472_BASE, SFF_8472_SN_START, 16, xbuf);
417 	convert_sff_name(buf, size, xbuf);
418 }
419 
420 static void
421 get_sfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
422 {
423 	char xbuf[6];
424 
425 	memset(xbuf, 0, sizeof(xbuf));
426 	/* Date code, see Table 3.8 for description */
427 	ii->f(ii, SFF_8472_BASE, SFF_8472_DATE_START, 6, xbuf);
428 	convert_sff_date(buf, size, xbuf);
429 }
430 
431 static void
432 get_qsfp_vendor_name(struct i2c_info *ii, char *buf, size_t size)
433 {
434 	char xbuf[17];
435 
436 	memset(xbuf, 0, sizeof(xbuf));
437 	ii->f(ii, SFF_8436_BASE, SFF_8436_VENDOR_START, 16, xbuf);
438 	convert_sff_name(buf, size, xbuf);
439 }
440 
441 static void
442 get_qsfp_vendor_pn(struct i2c_info *ii, char *buf, size_t size)
443 {
444 	char xbuf[17];
445 
446 	memset(xbuf, 0, sizeof(xbuf));
447 	ii->f(ii, SFF_8436_BASE, SFF_8436_PN_START, 16, xbuf);
448 	convert_sff_name(buf, size, xbuf);
449 }
450 
451 static void
452 get_qsfp_vendor_sn(struct i2c_info *ii, char *buf, size_t size)
453 {
454 	char xbuf[17];
455 
456 	memset(xbuf, 0, sizeof(xbuf));
457 	ii->f(ii, SFF_8436_BASE, SFF_8436_SN_START, 16, xbuf);
458 	convert_sff_name(buf, size, xbuf);
459 }
460 
461 static void
462 get_qsfp_vendor_date(struct i2c_info *ii, char *buf, size_t size)
463 {
464 	char xbuf[6];
465 
466 	memset(xbuf, 0, sizeof(xbuf));
467 	ii->f(ii, SFF_8436_BASE, SFF_8436_DATE_START, 6, xbuf);
468 	convert_sff_date(buf, size, xbuf);
469 }
470 
471 static void
472 print_sfp_vendor(struct i2c_info *ii, char *buf, size_t size)
473 {
474 	char xbuf[80];
475 
476 	memset(xbuf, 0, sizeof(xbuf));
477 	if (ii->qsfp != 0) {
478 		get_qsfp_vendor_name(ii, xbuf, 20);
479 		get_qsfp_vendor_pn(ii, &xbuf[20], 20);
480 		get_qsfp_vendor_sn(ii, &xbuf[40], 20);
481 		get_qsfp_vendor_date(ii, &xbuf[60], 20);
482 	} else {
483 		get_sfp_vendor_name(ii, xbuf, 20);
484 		get_sfp_vendor_pn(ii, &xbuf[20], 20);
485 		get_sfp_vendor_sn(ii, &xbuf[40], 20);
486 		get_sfp_vendor_date(ii, &xbuf[60], 20);
487 	}
488 
489 	snprintf(buf, size, "vendor: %s PN: %s SN: %s DATE: %s",
490 	    xbuf, &xbuf[20],  &xbuf[40], &xbuf[60]);
491 }
492 
493 /*
494  * Converts internal templerature (SFF-8472, SFF-8436)
495  * 16-bit unsigned value to human-readable representation:
496  *
497  * Internally measured Module temperature are represented
498  * as a 16-bit signed twos complement value in increments of
499  * 1/256 degrees Celsius, yielding a total range of –128C to +128C
500  * that is considered valid between –40 and +125C.
501  *
502  */
503 static void
504 convert_sff_temp(char *buf, size_t size, char *xbuf)
505 {
506 	double d;
507 
508 	d = (double)(int8_t)xbuf[0];
509 	d += (double)(uint8_t)xbuf[1] / 256;
510 
511 	snprintf(buf, size, "%.2f C", d);
512 }
513 
514 /*
515  * Retrieves supplied voltage (SFF-8472, SFF-8436).
516  * 16-bit usigned value, treated as range 0..+6.55 Volts
517  */
518 static void
519 convert_sff_voltage(char *buf, size_t size, char *xbuf)
520 {
521 	double d;
522 
523 	d = (double)(((uint8_t)xbuf[0] << 8) | (uint8_t)xbuf[1]);
524 	snprintf(buf, size, "%.2f Volts", d / 10000);
525 }
526 
527 /*
528  * Converts value in @xbuf to both milliwats and dBm
529  * human representation.
530  */
531 static void
532 convert_sff_power(struct i2c_info *ii, char *buf, size_t size, char *xbuf)
533 {
534 	uint16_t mW;
535 	double dbm;
536 
537 	mW = ((uint8_t)xbuf[0] << 8) + (uint8_t)xbuf[1];
538 
539 	/* Convert mw to dbm */
540 	dbm = 10.0 * log10(1.0 * mW / 10000);
541 
542 	/*
543 	 * Assume internally-calibrated data.
544 	 * This is always true for SFF-8346, and explicitly
545 	 * checked for SFF-8472.
546 	 */
547 
548 	/* Table 3.9, bit 5 is set, internally calibrated */
549 	snprintf(buf, size, "%d.%02d mW (%.2f dBm)",
550     	    mW / 10000, (mW % 10000) / 100, dbm);
551 }
552 
553 static void
554 get_sfp_temp(struct i2c_info *ii, char *buf, size_t size)
555 {
556 	char xbuf[2];
557 
558 	memset(xbuf, 0, sizeof(xbuf));
559 	ii->f(ii, SFF_8472_DIAG, SFF_8472_TEMP, 2, xbuf);
560 	convert_sff_temp(buf, size, xbuf);
561 }
562 
563 static void
564 get_sfp_voltage(struct i2c_info *ii, char *buf, size_t size)
565 {
566 	char xbuf[2];
567 
568 	memset(xbuf, 0, sizeof(xbuf));
569 	ii->f(ii, SFF_8472_DIAG, SFF_8472_VCC, 2, xbuf);
570 	convert_sff_voltage(buf, size, xbuf);
571 }
572 
573 static void
574 get_qsfp_temp(struct i2c_info *ii, char *buf, size_t size)
575 {
576 	char xbuf[2];
577 
578 	memset(xbuf, 0, sizeof(xbuf));
579 	ii->f(ii, SFF_8436_BASE, SFF_8436_TEMP, 2, xbuf);
580 	convert_sff_temp(buf, size, xbuf);
581 }
582 
583 static void
584 get_qsfp_voltage(struct i2c_info *ii, char *buf, size_t size)
585 {
586 	char xbuf[2];
587 
588 	memset(xbuf, 0, sizeof(xbuf));
589 	ii->f(ii, SFF_8436_BASE, SFF_8436_VCC, 2, xbuf);
590 	convert_sff_voltage(buf, size, xbuf);
591 }
592 
593 static void
594 get_sfp_rx_power(struct i2c_info *ii, char *buf, size_t size)
595 {
596 	char xbuf[2];
597 
598 	memset(xbuf, 0, sizeof(xbuf));
599 	ii->f(ii, SFF_8472_DIAG, SFF_8472_RX_POWER, 2, xbuf);
600 	convert_sff_power(ii, buf, size, xbuf);
601 }
602 
603 static void
604 get_sfp_tx_power(struct i2c_info *ii, char *buf, size_t size)
605 {
606 	char xbuf[2];
607 
608 	memset(xbuf, 0, sizeof(xbuf));
609 	ii->f(ii, SFF_8472_DIAG, SFF_8472_TX_POWER, 2, xbuf);
610 	convert_sff_power(ii, buf, size, xbuf);
611 }
612 
613 static void
614 get_qsfp_rx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
615 {
616 	char xbuf[2];
617 
618 	memset(xbuf, 0, sizeof(xbuf));
619 	ii->f(ii, SFF_8436_BASE, SFF_8436_RX_CH1_MSB + (chan - 1) * 2, 2, xbuf);
620 	convert_sff_power(ii, buf, size, xbuf);
621 }
622 
623 static void
624 get_qsfp_tx_power(struct i2c_info *ii, char *buf, size_t size, int chan)
625 {
626 	char xbuf[2];
627 
628 	memset(xbuf, 0, sizeof(xbuf));
629 	ii->f(ii, SFF_8436_BASE, SFF_8436_TX_CH1_MSB + (chan -1) * 2, 2, xbuf);
630 	convert_sff_power(ii, buf, size, xbuf);
631 }
632 
633 /* Generic handler */
634 static int
635 read_i2c_generic(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len,
636     caddr_t buf)
637 {
638 	struct ifi2creq req;
639 	int i, l;
640 
641 	if (ii->error != 0)
642 		return (ii->error);
643 
644 	ii->ifr->ifr_data = (caddr_t)&req;
645 
646 	i = 0;
647 	l = 0;
648 	memset(&req, 0, sizeof(req));
649 	req.dev_addr = addr;
650 	req.offset = off;
651 	req.len = len;
652 
653 	while (len > 0) {
654 		l = (len > sizeof(req.data)) ? sizeof(req.data) : len;
655 		req.len = l;
656 		if (ioctl(ii->s, SIOCGI2C, ii->ifr) != 0) {
657 			ii->error = errno;
658 			return (errno);
659 		}
660 
661 		memcpy(&buf[i], req.data, l);
662 		len -= l;
663 		i += l;
664 		req.offset += l;
665 	}
666 
667 	return (0);
668 }
669 
670 static void
671 dump_i2c_data(struct i2c_info *ii, uint8_t addr, uint8_t off, uint8_t len)
672 {
673 	unsigned char buf[16];
674 	int i, read;
675 
676 	while (len > 0) {
677 		memset(buf, 0, sizeof(buf));
678 		read = (len > sizeof(buf)) ? sizeof(buf) : len;
679 		ii->f(ii, addr, off, read, buf);
680 		if (ii->error != 0) {
681 			fprintf(stderr, "Error reading i2c info\n");
682 			return;
683 		}
684 
685 		printf("\t");
686 		for (i = 0; i < read; i++)
687 			printf("%02X ", buf[i]);
688 		printf("\n");
689 		len -= read;
690 		off += read;
691 	}
692 }
693 
694 static void
695 print_qsfp_status(struct i2c_info *ii, int verbose)
696 {
697 	char buf[80], buf2[40], buf3[40];
698 	uint8_t diag_type;
699 	int i;
700 
701 	/* Read diagnostic monitoring type */
702 	ii->f(ii, SFF_8436_BASE, SFF_8436_DIAG_TYPE, 1, (caddr_t)&diag_type);
703 	if (ii->error != 0)
704 		return;
705 
706 	/*
707 	 * Read monitoring data it is supplied.
708 	 * XXX: It is not exactly clear from standard
709 	 * how one can specify lack of measurements (passive cables case).
710 	 */
711 	if (diag_type != 0)
712 		ii->do_diag = 1;
713 	ii->qsfp = 1;
714 
715 	/* Transceiver type */
716 	get_qsfp_identifier(ii, buf, sizeof(buf));
717 	get_qsfp_transceiver_class(ii, buf2, sizeof(buf2));
718 	get_qsfp_connector(ii, buf3, sizeof(buf3));
719 	if (ii->error == 0)
720 		printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
721 	print_sfp_vendor(ii, buf, sizeof(buf));
722 	if (ii->error == 0)
723 		printf("\t%s\n", buf);
724 
725 	/* Request current measurements if they are provided: */
726 	if (ii->do_diag != 0) {
727 		get_qsfp_temp(ii, buf, sizeof(buf));
728 		get_qsfp_voltage(ii, buf2, sizeof(buf2));
729 		printf("\tmodule temperature: %s voltage: %s\n", buf, buf2);
730 		for (i = 1; i <= 4; i++) {
731 			get_qsfp_rx_power(ii, buf, sizeof(buf), i);
732 			get_qsfp_tx_power(ii, buf2, sizeof(buf2), i);
733 			printf("\tlane %d: RX: %s TX: %s\n", i, buf, buf2);
734 		}
735 	}
736 
737 	if (verbose > 2) {
738 		printf("\n\tSFF8436 DUMP (0xA0 128..255 range):\n");
739 		dump_i2c_data(ii, SFF_8436_BASE, 128, 128);
740 		printf("\n\tSFF8436 DUMP (0xA0 0..81 range):\n");
741 		dump_i2c_data(ii, SFF_8436_BASE, 0, 82);
742 	}
743 }
744 
745 static void
746 print_sfp_status(struct i2c_info *ii, int verbose)
747 {
748 	char buf[80], buf2[40], buf3[40];
749 	uint8_t diag_type, flags;
750 
751 	/* Read diagnostic monitoring type */
752 	ii->f(ii, SFF_8472_BASE, SFF_8472_DIAG_TYPE, 1, (caddr_t)&diag_type);
753 	if (ii->error != 0)
754 		return;
755 
756 	/*
757 	 * Read monitoring data IFF it is supplied AND is
758 	 * internally calibrated
759 	 */
760 	flags = SFF_8472_DDM_DONE | SFF_8472_DDM_INTERNAL;
761 	if ((diag_type & flags) == flags)
762 		ii->do_diag = 1;
763 
764 	/* Transceiver type */
765 	get_sfp_identifier(ii, buf, sizeof(buf));
766 	get_sfp_transceiver_class(ii, buf2, sizeof(buf2));
767 	get_sfp_connector(ii, buf3, sizeof(buf3));
768 	if (ii->error == 0)
769 		printf("\tplugged: %s %s (%s)\n", buf, buf2, buf3);
770 	print_sfp_vendor(ii, buf, sizeof(buf));
771 	if (ii->error == 0)
772 		printf("\t%s\n", buf);
773 
774 	if (verbose > 5)
775 		printf_sfp_transceiver_descr(ii, buf, sizeof(buf));
776 	/*
777 	 * Request current measurements iff they are provided:
778 	 */
779 	if (ii->do_diag != 0) {
780 		get_sfp_temp(ii, buf, sizeof(buf));
781 		get_sfp_voltage(ii, buf2, sizeof(buf2));
782 		printf("\tmodule temperature: %s Voltage: %s\n", buf, buf2);
783 		get_sfp_rx_power(ii, buf, sizeof(buf));
784 		get_sfp_tx_power(ii, buf2, sizeof(buf2));
785 		printf("\tRX: %s TX: %s\n", buf, buf2);
786 	}
787 
788 	if (verbose > 2) {
789 		printf("\n\tSFF8472 DUMP (0xA0 0..127 range):\n");
790 		dump_i2c_data(ii, SFF_8472_BASE, 0, 128);
791 	}
792 }
793 
794 void
795 sfp_status(int s, struct ifreq *ifr, int verbose)
796 {
797 	struct i2c_info ii;
798 	uint8_t id_byte;
799 
800 	memset(&ii, 0, sizeof(ii));
801 	/* Prepare necessary into to pass to NIC handler */
802 	ii.s = s;
803 	ii.ifr = ifr;
804 	ii.f = read_i2c_generic;
805 
806 	/*
807 	 * Try to read byte 0 from i2c:
808 	 * Both SFF-8472 and SFF-8436 use it as
809 	 * 'identification byte'.
810 	 * Stop reading status on zero as value -
811 	 * this might happen in case of empty transceiver slot.
812 	 */
813 	id_byte = 0;
814 	ii.f(&ii, SFF_8472_BASE, SFF_8472_ID, 1, (caddr_t)&id_byte);
815 	if (ii.error != 0 || id_byte == 0)
816 		return;
817 
818 	switch (id_byte) {
819 	case SFF_8024_ID_QSFP:
820 	case SFF_8024_ID_QSFPPLUS:
821 		print_qsfp_status(&ii, verbose);
822 		break;
823 	default:
824 		print_sfp_status(&ii, verbose);
825 	};
826 }
827 
828