xref: /freebsd/sbin/ifconfig/ifieee80211.c (revision a5ff72cb0e51a7675d4e2b5810a2b6dad5b91960)
1 /*
2  * Copyright 2001 The Aerospace Corporation.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of The Aerospace Corporation may not be used to endorse or
13  *    promote products derived from this software.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*-
31  * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc.
32  * All rights reserved.
33  *
34  * This code is derived from software contributed to The NetBSD Foundation
35  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
36  * NASA Ames Research Center.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
48  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
49  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
50  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
51  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
52  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
53  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
54  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
55  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57  * POSSIBILITY OF SUCH DAMAGE.
58  */
59 
60 #include <sys/param.h>
61 #include <sys/ioctl.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/time.h>
65 
66 #include <net/ethernet.h>
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/if_media.h>
71 #include <net/route.h>
72 
73 #include <net80211/ieee80211_ioctl.h>
74 #include <net80211/ieee80211_freebsd.h>
75 #include <net80211/ieee80211_superg.h>
76 #include <net80211/ieee80211_tdma.h>
77 #include <net80211/ieee80211_mesh.h>
78 
79 #include <assert.h>
80 #include <ctype.h>
81 #include <err.h>
82 #include <errno.h>
83 #include <fcntl.h>
84 #include <inttypes.h>
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88 #include <unistd.h>
89 #include <stdarg.h>
90 #include <stddef.h>		/* NB: for offsetof */
91 
92 #include "ifconfig.h"
93 
94 #include <lib80211/lib80211_regdomain.h>
95 #include <lib80211/lib80211_ioctl.h>
96 
97 #ifndef IEEE80211_FIXED_RATE_NONE
98 #define	IEEE80211_FIXED_RATE_NONE	0xff
99 #endif
100 
101 /* XXX need these publicly defined or similar */
102 #ifndef IEEE80211_NODE_AUTH
103 #define	IEEE80211_NODE_AUTH	0x000001	/* authorized for data */
104 #define	IEEE80211_NODE_QOS	0x000002	/* QoS enabled */
105 #define	IEEE80211_NODE_ERP	0x000004	/* ERP enabled */
106 #define	IEEE80211_NODE_PWR_MGT	0x000010	/* power save mode enabled */
107 #define	IEEE80211_NODE_AREF	0x000020	/* authentication ref held */
108 #define	IEEE80211_NODE_HT	0x000040	/* HT enabled */
109 #define	IEEE80211_NODE_HTCOMPAT	0x000080	/* HT setup w/ vendor OUI's */
110 #define	IEEE80211_NODE_WPS	0x000100	/* WPS association */
111 #define	IEEE80211_NODE_TSN	0x000200	/* TSN association */
112 #define	IEEE80211_NODE_AMPDU_RX	0x000400	/* AMPDU rx enabled */
113 #define	IEEE80211_NODE_AMPDU_TX	0x000800	/* AMPDU tx enabled */
114 #define	IEEE80211_NODE_MIMO_PS	0x001000	/* MIMO power save enabled */
115 #define	IEEE80211_NODE_MIMO_RTS	0x002000	/* send RTS in MIMO PS */
116 #define	IEEE80211_NODE_RIFS	0x004000	/* RIFS enabled */
117 #define	IEEE80211_NODE_SGI20	0x008000	/* Short GI in HT20 enabled */
118 #define	IEEE80211_NODE_SGI40	0x010000	/* Short GI in HT40 enabled */
119 #define	IEEE80211_NODE_ASSOCID	0x020000	/* xmit requires associd */
120 #define	IEEE80211_NODE_AMSDU_RX	0x040000	/* AMSDU rx enabled */
121 #define	IEEE80211_NODE_AMSDU_TX	0x080000	/* AMSDU tx enabled */
122 #endif
123 
124 #define	MAXCHAN	1536		/* max 1.5K channels */
125 
126 #define	MAXCOL	78
127 static	int col;
128 static	char spacer;
129 
130 static void LINE_INIT(char c);
131 static void LINE_BREAK(void);
132 static void LINE_CHECK(const char *fmt, ...);
133 
134 static const char *modename[IEEE80211_MODE_MAX] = {
135 	[IEEE80211_MODE_AUTO]	  = "auto",
136 	[IEEE80211_MODE_11A]	  = "11a",
137 	[IEEE80211_MODE_11B]	  = "11b",
138 	[IEEE80211_MODE_11G]	  = "11g",
139 	[IEEE80211_MODE_FH]	  = "fh",
140 	[IEEE80211_MODE_TURBO_A]  = "turboA",
141 	[IEEE80211_MODE_TURBO_G]  = "turboG",
142 	[IEEE80211_MODE_STURBO_A] = "sturbo",
143 	[IEEE80211_MODE_11NA]	  = "11na",
144 	[IEEE80211_MODE_11NG]	  = "11ng",
145 	[IEEE80211_MODE_HALF]	  = "half",
146 	[IEEE80211_MODE_QUARTER]  = "quarter"
147 };
148 
149 static void set80211(int s, int type, int val, int len, void *data);
150 static int get80211(int s, int type, void *data, int len);
151 static int get80211len(int s, int type, void *data, int len, int *plen);
152 static int get80211val(int s, int type, int *val);
153 static const char *get_string(const char *val, const char *sep,
154     u_int8_t *buf, int *lenp);
155 static void print_string(const u_int8_t *buf, int len);
156 static void print_regdomain(const struct ieee80211_regdomain *, int);
157 static void print_channels(int, const struct ieee80211req_chaninfo *,
158     int allchans, int verbose);
159 static void regdomain_makechannels(struct ieee80211_regdomain_req *,
160     const struct ieee80211_devcaps_req *);
161 static const char *mesh_linkstate_string(uint8_t state);
162 
163 static struct ieee80211req_chaninfo *chaninfo;
164 static struct ieee80211_regdomain regdomain;
165 static int gotregdomain = 0;
166 static struct ieee80211_roamparams_req roamparams;
167 static int gotroam = 0;
168 static struct ieee80211_txparams_req txparams;
169 static int gottxparams = 0;
170 static struct ieee80211_channel curchan;
171 static int gotcurchan = 0;
172 static struct ifmediareq *ifmr;
173 static int htconf = 0;
174 static	int gothtconf = 0;
175 
176 static void
177 gethtconf(int s)
178 {
179 	if (gothtconf)
180 		return;
181 	if (get80211val(s, IEEE80211_IOC_HTCONF, &htconf) < 0)
182 		warn("unable to get HT configuration information");
183 	gothtconf = 1;
184 }
185 
186 /*
187  * Collect channel info from the kernel.  We use this (mostly)
188  * to handle mapping between frequency and IEEE channel number.
189  */
190 static void
191 getchaninfo(int s)
192 {
193 	if (chaninfo != NULL)
194 		return;
195 	chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN));
196 	if (chaninfo == NULL)
197 		errx(1, "no space for channel list");
198 	if (get80211(s, IEEE80211_IOC_CHANINFO, chaninfo,
199 	    IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0)
200 		err(1, "unable to get channel information");
201 	ifmr = ifmedia_getstate(s);
202 	gethtconf(s);
203 }
204 
205 static struct regdata *
206 getregdata(void)
207 {
208 	static struct regdata *rdp = NULL;
209 	if (rdp == NULL) {
210 		rdp = lib80211_alloc_regdata();
211 		if (rdp == NULL)
212 			errx(-1, "missing or corrupted regdomain database");
213 	}
214 	return rdp;
215 }
216 
217 /*
218  * Given the channel at index i with attributes from,
219  * check if there is a channel with attributes to in
220  * the channel table.  With suitable attributes this
221  * allows the caller to look for promotion; e.g. from
222  * 11b > 11g.
223  */
224 static int
225 canpromote(int i, int from, int to)
226 {
227 	const struct ieee80211_channel *fc = &chaninfo->ic_chans[i];
228 	int j;
229 
230 	if ((fc->ic_flags & from) != from)
231 		return i;
232 	/* NB: quick check exploiting ordering of chans w/ same frequency */
233 	if (i+1 < chaninfo->ic_nchans &&
234 	    chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq &&
235 	    (chaninfo->ic_chans[i+1].ic_flags & to) == to)
236 		return i+1;
237 	/* brute force search in case channel list is not ordered */
238 	for (j = 0; j < chaninfo->ic_nchans; j++) {
239 		const struct ieee80211_channel *tc = &chaninfo->ic_chans[j];
240 		if (j != i &&
241 		    tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to)
242 		return j;
243 	}
244 	return i;
245 }
246 
247 /*
248  * Handle channel promotion.  When a channel is specified with
249  * only a frequency we want to promote it to the ``best'' channel
250  * available.  The channel list has separate entries for 11b, 11g,
251  * 11a, and 11n[ga] channels so specifying a frequency w/o any
252  * attributes requires we upgrade, e.g. from 11b -> 11g.  This
253  * gets complicated when the channel is specified on the same
254  * command line with a media request that constrains the available
255  * channe list (e.g. mode 11a); we want to honor that to avoid
256  * confusing behaviour.
257  */
258 static int
259 promote(int i)
260 {
261 	/*
262 	 * Query the current mode of the interface in case it's
263 	 * constrained (e.g. to 11a).  We must do this carefully
264 	 * as there may be a pending ifmedia request in which case
265 	 * asking the kernel will give us the wrong answer.  This
266 	 * is an unfortunate side-effect of the way ifconfig is
267 	 * structure for modularity (yech).
268 	 *
269 	 * NB: ifmr is actually setup in getchaninfo (above); we
270 	 *     assume it's called coincident with to this call so
271 	 *     we have a ``current setting''; otherwise we must pass
272 	 *     the socket descriptor down to here so we can make
273 	 *     the ifmedia_getstate call ourselves.
274 	 */
275 	int chanmode = ifmr != NULL ? IFM_MODE(ifmr->ifm_current) : IFM_AUTO;
276 
277 	/* when ambiguous promote to ``best'' */
278 	/* NB: we abitrarily pick HT40+ over HT40- */
279 	if (chanmode != IFM_IEEE80211_11B)
280 		i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G);
281 	if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) {
282 		i = canpromote(i, IEEE80211_CHAN_G,
283 			IEEE80211_CHAN_G | IEEE80211_CHAN_HT20);
284 		if (htconf & 2) {
285 			i = canpromote(i, IEEE80211_CHAN_G,
286 				IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D);
287 			i = canpromote(i, IEEE80211_CHAN_G,
288 				IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U);
289 		}
290 	}
291 	if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) {
292 		i = canpromote(i, IEEE80211_CHAN_A,
293 			IEEE80211_CHAN_A | IEEE80211_CHAN_HT20);
294 		if (htconf & 2) {
295 			i = canpromote(i, IEEE80211_CHAN_A,
296 				IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D);
297 			i = canpromote(i, IEEE80211_CHAN_A,
298 				IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U);
299 		}
300 	}
301 	return i;
302 }
303 
304 static void
305 mapfreq(struct ieee80211_channel *chan, int freq, int flags)
306 {
307 	int i;
308 
309 	for (i = 0; i < chaninfo->ic_nchans; i++) {
310 		const struct ieee80211_channel *c = &chaninfo->ic_chans[i];
311 
312 		if (c->ic_freq == freq && (c->ic_flags & flags) == flags) {
313 			if (flags == 0) {
314 				/* when ambiguous promote to ``best'' */
315 				c = &chaninfo->ic_chans[promote(i)];
316 			}
317 			*chan = *c;
318 			return;
319 		}
320 	}
321 	errx(1, "unknown/undefined frequency %u/0x%x", freq, flags);
322 }
323 
324 static void
325 mapchan(struct ieee80211_channel *chan, int ieee, int flags)
326 {
327 	int i;
328 
329 	for (i = 0; i < chaninfo->ic_nchans; i++) {
330 		const struct ieee80211_channel *c = &chaninfo->ic_chans[i];
331 
332 		if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) {
333 			if (flags == 0) {
334 				/* when ambiguous promote to ``best'' */
335 				c = &chaninfo->ic_chans[promote(i)];
336 			}
337 			*chan = *c;
338 			return;
339 		}
340 	}
341 	errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags);
342 }
343 
344 static const struct ieee80211_channel *
345 getcurchan(int s)
346 {
347 	if (gotcurchan)
348 		return &curchan;
349 	if (get80211(s, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) {
350 		int val;
351 		/* fall back to legacy ioctl */
352 		if (get80211val(s, IEEE80211_IOC_CHANNEL, &val) < 0)
353 			err(-1, "cannot figure out current channel");
354 		getchaninfo(s);
355 		mapchan(&curchan, val, 0);
356 	}
357 	gotcurchan = 1;
358 	return &curchan;
359 }
360 
361 static enum ieee80211_phymode
362 chan2mode(const struct ieee80211_channel *c)
363 {
364 	if (IEEE80211_IS_CHAN_HTA(c))
365 		return IEEE80211_MODE_11NA;
366 	if (IEEE80211_IS_CHAN_HTG(c))
367 		return IEEE80211_MODE_11NG;
368 	if (IEEE80211_IS_CHAN_108A(c))
369 		return IEEE80211_MODE_TURBO_A;
370 	if (IEEE80211_IS_CHAN_108G(c))
371 		return IEEE80211_MODE_TURBO_G;
372 	if (IEEE80211_IS_CHAN_ST(c))
373 		return IEEE80211_MODE_STURBO_A;
374 	if (IEEE80211_IS_CHAN_FHSS(c))
375 		return IEEE80211_MODE_FH;
376 	if (IEEE80211_IS_CHAN_HALF(c))
377 		return IEEE80211_MODE_HALF;
378 	if (IEEE80211_IS_CHAN_QUARTER(c))
379 		return IEEE80211_MODE_QUARTER;
380 	if (IEEE80211_IS_CHAN_A(c))
381 		return IEEE80211_MODE_11A;
382 	if (IEEE80211_IS_CHAN_ANYG(c))
383 		return IEEE80211_MODE_11G;
384 	if (IEEE80211_IS_CHAN_B(c))
385 		return IEEE80211_MODE_11B;
386 	return IEEE80211_MODE_AUTO;
387 }
388 
389 static void
390 getroam(int s)
391 {
392 	if (gotroam)
393 		return;
394 	if (get80211(s, IEEE80211_IOC_ROAM,
395 	    &roamparams, sizeof(roamparams)) < 0)
396 		err(1, "unable to get roaming parameters");
397 	gotroam = 1;
398 }
399 
400 static void
401 setroam_cb(int s, void *arg)
402 {
403 	struct ieee80211_roamparams_req *roam = arg;
404 	set80211(s, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam);
405 }
406 
407 static void
408 gettxparams(int s)
409 {
410 	if (gottxparams)
411 		return;
412 	if (get80211(s, IEEE80211_IOC_TXPARAMS,
413 	    &txparams, sizeof(txparams)) < 0)
414 		err(1, "unable to get transmit parameters");
415 	gottxparams = 1;
416 }
417 
418 static void
419 settxparams_cb(int s, void *arg)
420 {
421 	struct ieee80211_txparams_req *txp = arg;
422 	set80211(s, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp);
423 }
424 
425 static void
426 getregdomain(int s)
427 {
428 	if (gotregdomain)
429 		return;
430 	if (get80211(s, IEEE80211_IOC_REGDOMAIN,
431 	    &regdomain, sizeof(regdomain)) < 0)
432 		err(1, "unable to get regulatory domain info");
433 	gotregdomain = 1;
434 }
435 
436 static void
437 getdevcaps(int s, struct ieee80211_devcaps_req *dc)
438 {
439 	if (get80211(s, IEEE80211_IOC_DEVCAPS, dc,
440 	    IEEE80211_DEVCAPS_SPACE(dc)) < 0)
441 		err(1, "unable to get device capabilities");
442 }
443 
444 static void
445 setregdomain_cb(int s, void *arg)
446 {
447 	struct ieee80211_regdomain_req *req;
448 	struct ieee80211_regdomain *rd = arg;
449 	struct ieee80211_devcaps_req *dc;
450 	struct regdata *rdp = getregdata();
451 
452 	if (rd->country != NO_COUNTRY) {
453 		const struct country *cc;
454 		/*
455 		 * Check current country seting to make sure it's
456 		 * compatible with the new regdomain.  If not, then
457 		 * override it with any default country for this
458 		 * SKU.  If we cannot arrange a match, then abort.
459 		 */
460 		cc = lib80211_country_findbycc(rdp, rd->country);
461 		if (cc == NULL)
462 			errx(1, "unknown ISO country code %d", rd->country);
463 		if (cc->rd->sku != rd->regdomain) {
464 			const struct regdomain *rp;
465 			/*
466 			 * Check if country is incompatible with regdomain.
467 			 * To enable multiple regdomains for a country code
468 			 * we permit a mismatch between the regdomain and
469 			 * the country's associated regdomain when the
470 			 * regdomain is setup w/o a default country.  For
471 			 * example, US is bound to the FCC regdomain but
472 			 * we allow US to be combined with FCC3 because FCC3
473 			 * has not default country.  This allows bogus
474 			 * combinations like FCC3+DK which are resolved when
475 			 * constructing the channel list by deferring to the
476 			 * regdomain to construct the channel list.
477 			 */
478 			rp = lib80211_regdomain_findbysku(rdp, rd->regdomain);
479 			if (rp == NULL)
480 				errx(1, "country %s (%s) is not usable with "
481 				    "regdomain %d", cc->isoname, cc->name,
482 				    rd->regdomain);
483 			else if (rp->cc != NULL && rp->cc != cc)
484 				errx(1, "country %s (%s) is not usable with "
485 				   "regdomain %s", cc->isoname, cc->name,
486 				   rp->name);
487 		}
488 	}
489 	/*
490 	 * Fetch the device capabilities and calculate the
491 	 * full set of netbands for which we request a new
492 	 * channel list be constructed.  Once that's done we
493 	 * push the regdomain info + channel list to the kernel.
494 	 */
495 	dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN));
496 	if (dc == NULL)
497 		errx(1, "no space for device capabilities");
498 	dc->dc_chaninfo.ic_nchans = MAXCHAN;
499 	getdevcaps(s, dc);
500 #if 0
501 	if (verbose) {
502 		printf("drivercaps: 0x%x\n", dc->dc_drivercaps);
503 		printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps);
504 		printf("htcaps    : 0x%x\n", dc->dc_htcaps);
505 		memcpy(chaninfo, &dc->dc_chaninfo,
506 		    IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo));
507 		print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/);
508 	}
509 #endif
510 	req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans));
511 	if (req == NULL)
512 		errx(1, "no space for regdomain request");
513 	req->rd = *rd;
514 	regdomain_makechannels(req, dc);
515 	if (verbose) {
516 		LINE_INIT(':');
517 		print_regdomain(rd, 1/*verbose*/);
518 		LINE_BREAK();
519 		/* blech, reallocate channel list for new data */
520 		if (chaninfo != NULL)
521 			free(chaninfo);
522 		chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo));
523 		if (chaninfo == NULL)
524 			errx(1, "no space for channel list");
525 		memcpy(chaninfo, &req->chaninfo,
526 		    IEEE80211_CHANINFO_SPACE(&req->chaninfo));
527 		print_channels(s, &req->chaninfo, 1/*allchans*/, 1/*verbose*/);
528 	}
529 	if (req->chaninfo.ic_nchans == 0)
530 		errx(1, "no channels calculated");
531 	set80211(s, IEEE80211_IOC_REGDOMAIN, 0,
532 	    IEEE80211_REGDOMAIN_SPACE(req), req);
533 	free(req);
534 	free(dc);
535 }
536 
537 static int
538 ieee80211_mhz2ieee(int freq, int flags)
539 {
540 	struct ieee80211_channel chan;
541 	mapfreq(&chan, freq, flags);
542 	return chan.ic_ieee;
543 }
544 
545 static int
546 isanyarg(const char *arg)
547 {
548 	return (strncmp(arg, "-", 1) == 0 ||
549 	    strncasecmp(arg, "any", 3) == 0 || strncasecmp(arg, "off", 3) == 0);
550 }
551 
552 static void
553 set80211ssid(const char *val, int d, int s, const struct afswtch *rafp)
554 {
555 	int		ssid;
556 	int		len;
557 	u_int8_t	data[IEEE80211_NWID_LEN];
558 
559 	ssid = 0;
560 	len = strlen(val);
561 	if (len > 2 && isdigit((int)val[0]) && val[1] == ':') {
562 		ssid = atoi(val)-1;
563 		val += 2;
564 	}
565 
566 	bzero(data, sizeof(data));
567 	len = sizeof(data);
568 	if (get_string(val, NULL, data, &len) == NULL)
569 		exit(1);
570 
571 	set80211(s, IEEE80211_IOC_SSID, ssid, len, data);
572 }
573 
574 static void
575 set80211meshid(const char *val, int d, int s, const struct afswtch *rafp)
576 {
577 	int		len;
578 	u_int8_t	data[IEEE80211_NWID_LEN];
579 
580 	memset(data, 0, sizeof(data));
581 	len = sizeof(data);
582 	if (get_string(val, NULL, data, &len) == NULL)
583 		exit(1);
584 
585 	set80211(s, IEEE80211_IOC_MESH_ID, 0, len, data);
586 }
587 
588 static void
589 set80211stationname(const char *val, int d, int s, const struct afswtch *rafp)
590 {
591 	int			len;
592 	u_int8_t		data[33];
593 
594 	bzero(data, sizeof(data));
595 	len = sizeof(data);
596 	get_string(val, NULL, data, &len);
597 
598 	set80211(s, IEEE80211_IOC_STATIONNAME, 0, len, data);
599 }
600 
601 /*
602  * Parse a channel specification for attributes/flags.
603  * The syntax is:
604  *	freq/xx		channel width (5,10,20,40,40+,40-)
605  *	freq:mode	channel mode (a,b,g,h,n,t,s,d)
606  *
607  * These can be combined in either order; e.g. 2437:ng/40.
608  * Modes are case insensitive.
609  *
610  * The result is not validated here; it's assumed to be
611  * checked against the channel table fetched from the kernel.
612  */
613 static int
614 getchannelflags(const char *val, int freq)
615 {
616 #define	_CHAN_HT	0x80000000
617 	const char *cp;
618 	int flags;
619 
620 	flags = 0;
621 
622 	cp = strchr(val, ':');
623 	if (cp != NULL) {
624 		for (cp++; isalpha((int) *cp); cp++) {
625 			/* accept mixed case */
626 			int c = *cp;
627 			if (isupper(c))
628 				c = tolower(c);
629 			switch (c) {
630 			case 'a':		/* 802.11a */
631 				flags |= IEEE80211_CHAN_A;
632 				break;
633 			case 'b':		/* 802.11b */
634 				flags |= IEEE80211_CHAN_B;
635 				break;
636 			case 'g':		/* 802.11g */
637 				flags |= IEEE80211_CHAN_G;
638 				break;
639 			case 'h':		/* ht = 802.11n */
640 			case 'n':		/* 802.11n */
641 				flags |= _CHAN_HT;	/* NB: private */
642 				break;
643 			case 'd':		/* dt = Atheros Dynamic Turbo */
644 				flags |= IEEE80211_CHAN_TURBO;
645 				break;
646 			case 't':		/* ht, dt, st, t */
647 				/* dt and unadorned t specify Dynamic Turbo */
648 				if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0)
649 					flags |= IEEE80211_CHAN_TURBO;
650 				break;
651 			case 's':		/* st = Atheros Static Turbo */
652 				flags |= IEEE80211_CHAN_STURBO;
653 				break;
654 			default:
655 				errx(-1, "%s: Invalid channel attribute %c\n",
656 				    val, *cp);
657 			}
658 		}
659 	}
660 	cp = strchr(val, '/');
661 	if (cp != NULL) {
662 		char *ep;
663 		u_long cw = strtoul(cp+1, &ep, 10);
664 
665 		switch (cw) {
666 		case 5:
667 			flags |= IEEE80211_CHAN_QUARTER;
668 			break;
669 		case 10:
670 			flags |= IEEE80211_CHAN_HALF;
671 			break;
672 		case 20:
673 			/* NB: this may be removed below */
674 			flags |= IEEE80211_CHAN_HT20;
675 			break;
676 		case 40:
677 			if (ep != NULL && *ep == '+')
678 				flags |= IEEE80211_CHAN_HT40U;
679 			else if (ep != NULL && *ep == '-')
680 				flags |= IEEE80211_CHAN_HT40D;
681 			break;
682 		default:
683 			errx(-1, "%s: Invalid channel width\n", val);
684 		}
685 	}
686 	/*
687 	 * Cleanup specifications.
688 	 */
689 	if ((flags & _CHAN_HT) == 0) {
690 		/*
691 		 * If user specified freq/20 or freq/40 quietly remove
692 		 * HT cw attributes depending on channel use.  To give
693 		 * an explicit 20/40 width for an HT channel you must
694 		 * indicate it is an HT channel since all HT channels
695 		 * are also usable for legacy operation; e.g. freq:n/40.
696 		 */
697 		flags &= ~IEEE80211_CHAN_HT;
698 	} else {
699 		/*
700 		 * Remove private indicator that this is an HT channel
701 		 * and if no explicit channel width has been given
702 		 * provide the default settings.
703 		 */
704 		flags &= ~_CHAN_HT;
705 		if ((flags & IEEE80211_CHAN_HT) == 0) {
706 			struct ieee80211_channel chan;
707 			/*
708 			 * Consult the channel list to see if we can use
709 			 * HT40+ or HT40- (if both the map routines choose).
710 			 */
711 			if (freq > 255)
712 				mapfreq(&chan, freq, 0);
713 			else
714 				mapchan(&chan, freq, 0);
715 			flags |= (chan.ic_flags & IEEE80211_CHAN_HT);
716 		}
717 	}
718 	return flags;
719 #undef _CHAN_HT
720 }
721 
722 static void
723 getchannel(int s, struct ieee80211_channel *chan, const char *val)
724 {
725 	int v, flags;
726 	char *eptr;
727 
728 	memset(chan, 0, sizeof(*chan));
729 	if (isanyarg(val)) {
730 		chan->ic_freq = IEEE80211_CHAN_ANY;
731 		return;
732 	}
733 	getchaninfo(s);
734 	errno = 0;
735 	v = strtol(val, &eptr, 10);
736 	if (val[0] == '\0' || val == eptr || errno == ERANGE ||
737 	    /* channel may be suffixed with nothing, :flag, or /width */
738 	    (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/'))
739 		errx(1, "invalid channel specification%s",
740 		    errno == ERANGE ? " (out of range)" : "");
741 	flags = getchannelflags(val, v);
742 	if (v > 255) {		/* treat as frequency */
743 		mapfreq(chan, v, flags);
744 	} else {
745 		mapchan(chan, v, flags);
746 	}
747 }
748 
749 static void
750 set80211channel(const char *val, int d, int s, const struct afswtch *rafp)
751 {
752 	struct ieee80211_channel chan;
753 
754 	getchannel(s, &chan, val);
755 	set80211(s, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan);
756 }
757 
758 static void
759 set80211chanswitch(const char *val, int d, int s, const struct afswtch *rafp)
760 {
761 	struct ieee80211_chanswitch_req csr;
762 
763 	getchannel(s, &csr.csa_chan, val);
764 	csr.csa_mode = 1;
765 	csr.csa_count = 5;
766 	set80211(s, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr);
767 }
768 
769 static void
770 set80211authmode(const char *val, int d, int s, const struct afswtch *rafp)
771 {
772 	int	mode;
773 
774 	if (strcasecmp(val, "none") == 0) {
775 		mode = IEEE80211_AUTH_NONE;
776 	} else if (strcasecmp(val, "open") == 0) {
777 		mode = IEEE80211_AUTH_OPEN;
778 	} else if (strcasecmp(val, "shared") == 0) {
779 		mode = IEEE80211_AUTH_SHARED;
780 	} else if (strcasecmp(val, "8021x") == 0) {
781 		mode = IEEE80211_AUTH_8021X;
782 	} else if (strcasecmp(val, "wpa") == 0) {
783 		mode = IEEE80211_AUTH_WPA;
784 	} else {
785 		errx(1, "unknown authmode");
786 	}
787 
788 	set80211(s, IEEE80211_IOC_AUTHMODE, mode, 0, NULL);
789 }
790 
791 static void
792 set80211powersavemode(const char *val, int d, int s, const struct afswtch *rafp)
793 {
794 	int	mode;
795 
796 	if (strcasecmp(val, "off") == 0) {
797 		mode = IEEE80211_POWERSAVE_OFF;
798 	} else if (strcasecmp(val, "on") == 0) {
799 		mode = IEEE80211_POWERSAVE_ON;
800 	} else if (strcasecmp(val, "cam") == 0) {
801 		mode = IEEE80211_POWERSAVE_CAM;
802 	} else if (strcasecmp(val, "psp") == 0) {
803 		mode = IEEE80211_POWERSAVE_PSP;
804 	} else if (strcasecmp(val, "psp-cam") == 0) {
805 		mode = IEEE80211_POWERSAVE_PSP_CAM;
806 	} else {
807 		errx(1, "unknown powersavemode");
808 	}
809 
810 	set80211(s, IEEE80211_IOC_POWERSAVE, mode, 0, NULL);
811 }
812 
813 static void
814 set80211powersave(const char *val, int d, int s, const struct afswtch *rafp)
815 {
816 	if (d == 0)
817 		set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF,
818 		    0, NULL);
819 	else
820 		set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON,
821 		    0, NULL);
822 }
823 
824 static void
825 set80211powersavesleep(const char *val, int d, int s, const struct afswtch *rafp)
826 {
827 	set80211(s, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL);
828 }
829 
830 static void
831 set80211wepmode(const char *val, int d, int s, const struct afswtch *rafp)
832 {
833 	int	mode;
834 
835 	if (strcasecmp(val, "off") == 0) {
836 		mode = IEEE80211_WEP_OFF;
837 	} else if (strcasecmp(val, "on") == 0) {
838 		mode = IEEE80211_WEP_ON;
839 	} else if (strcasecmp(val, "mixed") == 0) {
840 		mode = IEEE80211_WEP_MIXED;
841 	} else {
842 		errx(1, "unknown wep mode");
843 	}
844 
845 	set80211(s, IEEE80211_IOC_WEP, mode, 0, NULL);
846 }
847 
848 static void
849 set80211wep(const char *val, int d, int s, const struct afswtch *rafp)
850 {
851 	set80211(s, IEEE80211_IOC_WEP, d, 0, NULL);
852 }
853 
854 static int
855 isundefarg(const char *arg)
856 {
857 	return (strcmp(arg, "-") == 0 || strncasecmp(arg, "undef", 5) == 0);
858 }
859 
860 static void
861 set80211weptxkey(const char *val, int d, int s, const struct afswtch *rafp)
862 {
863 	if (isundefarg(val))
864 		set80211(s, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL);
865 	else
866 		set80211(s, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL);
867 }
868 
869 static void
870 set80211wepkey(const char *val, int d, int s, const struct afswtch *rafp)
871 {
872 	int		key = 0;
873 	int		len;
874 	u_int8_t	data[IEEE80211_KEYBUF_SIZE];
875 
876 	if (isdigit((int)val[0]) && val[1] == ':') {
877 		key = atoi(val)-1;
878 		val += 2;
879 	}
880 
881 	bzero(data, sizeof(data));
882 	len = sizeof(data);
883 	get_string(val, NULL, data, &len);
884 
885 	set80211(s, IEEE80211_IOC_WEPKEY, key, len, data);
886 }
887 
888 /*
889  * This function is purely a NetBSD compatibility interface.  The NetBSD
890  * interface is too inflexible, but it's there so we'll support it since
891  * it's not all that hard.
892  */
893 static void
894 set80211nwkey(const char *val, int d, int s, const struct afswtch *rafp)
895 {
896 	int		txkey;
897 	int		i, len;
898 	u_int8_t	data[IEEE80211_KEYBUF_SIZE];
899 
900 	set80211(s, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL);
901 
902 	if (isdigit((int)val[0]) && val[1] == ':') {
903 		txkey = val[0]-'0'-1;
904 		val += 2;
905 
906 		for (i = 0; i < 4; i++) {
907 			bzero(data, sizeof(data));
908 			len = sizeof(data);
909 			val = get_string(val, ",", data, &len);
910 			if (val == NULL)
911 				exit(1);
912 
913 			set80211(s, IEEE80211_IOC_WEPKEY, i, len, data);
914 		}
915 	} else {
916 		bzero(data, sizeof(data));
917 		len = sizeof(data);
918 		get_string(val, NULL, data, &len);
919 		txkey = 0;
920 
921 		set80211(s, IEEE80211_IOC_WEPKEY, 0, len, data);
922 
923 		bzero(data, sizeof(data));
924 		for (i = 1; i < 4; i++)
925 			set80211(s, IEEE80211_IOC_WEPKEY, i, 0, data);
926 	}
927 
928 	set80211(s, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL);
929 }
930 
931 static void
932 set80211rtsthreshold(const char *val, int d, int s, const struct afswtch *rafp)
933 {
934 	set80211(s, IEEE80211_IOC_RTSTHRESHOLD,
935 		isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL);
936 }
937 
938 static void
939 set80211protmode(const char *val, int d, int s, const struct afswtch *rafp)
940 {
941 	int	mode;
942 
943 	if (strcasecmp(val, "off") == 0) {
944 		mode = IEEE80211_PROTMODE_OFF;
945 	} else if (strcasecmp(val, "cts") == 0) {
946 		mode = IEEE80211_PROTMODE_CTS;
947 	} else if (strncasecmp(val, "rtscts", 3) == 0) {
948 		mode = IEEE80211_PROTMODE_RTSCTS;
949 	} else {
950 		errx(1, "unknown protection mode");
951 	}
952 
953 	set80211(s, IEEE80211_IOC_PROTMODE, mode, 0, NULL);
954 }
955 
956 static void
957 set80211htprotmode(const char *val, int d, int s, const struct afswtch *rafp)
958 {
959 	int	mode;
960 
961 	if (strcasecmp(val, "off") == 0) {
962 		mode = IEEE80211_PROTMODE_OFF;
963 	} else if (strncasecmp(val, "rts", 3) == 0) {
964 		mode = IEEE80211_PROTMODE_RTSCTS;
965 	} else {
966 		errx(1, "unknown protection mode");
967 	}
968 
969 	set80211(s, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL);
970 }
971 
972 static void
973 set80211txpower(const char *val, int d, int s, const struct afswtch *rafp)
974 {
975 	double v = atof(val);
976 	int txpow;
977 
978 	txpow = (int) (2*v);
979 	if (txpow != 2*v)
980 		errx(-1, "invalid tx power (must be .5 dBm units)");
981 	set80211(s, IEEE80211_IOC_TXPOWER, txpow, 0, NULL);
982 }
983 
984 #define	IEEE80211_ROAMING_DEVICE	0
985 #define	IEEE80211_ROAMING_AUTO		1
986 #define	IEEE80211_ROAMING_MANUAL	2
987 
988 static void
989 set80211roaming(const char *val, int d, int s, const struct afswtch *rafp)
990 {
991 	int mode;
992 
993 	if (strcasecmp(val, "device") == 0) {
994 		mode = IEEE80211_ROAMING_DEVICE;
995 	} else if (strcasecmp(val, "auto") == 0) {
996 		mode = IEEE80211_ROAMING_AUTO;
997 	} else if (strcasecmp(val, "manual") == 0) {
998 		mode = IEEE80211_ROAMING_MANUAL;
999 	} else {
1000 		errx(1, "unknown roaming mode");
1001 	}
1002 	set80211(s, IEEE80211_IOC_ROAMING, mode, 0, NULL);
1003 }
1004 
1005 static void
1006 set80211wme(const char *val, int d, int s, const struct afswtch *rafp)
1007 {
1008 	set80211(s, IEEE80211_IOC_WME, d, 0, NULL);
1009 }
1010 
1011 static void
1012 set80211hidessid(const char *val, int d, int s, const struct afswtch *rafp)
1013 {
1014 	set80211(s, IEEE80211_IOC_HIDESSID, d, 0, NULL);
1015 }
1016 
1017 static void
1018 set80211apbridge(const char *val, int d, int s, const struct afswtch *rafp)
1019 {
1020 	set80211(s, IEEE80211_IOC_APBRIDGE, d, 0, NULL);
1021 }
1022 
1023 static void
1024 set80211fastframes(const char *val, int d, int s, const struct afswtch *rafp)
1025 {
1026 	set80211(s, IEEE80211_IOC_FF, d, 0, NULL);
1027 }
1028 
1029 static void
1030 set80211dturbo(const char *val, int d, int s, const struct afswtch *rafp)
1031 {
1032 	set80211(s, IEEE80211_IOC_TURBOP, d, 0, NULL);
1033 }
1034 
1035 static void
1036 set80211chanlist(const char *val, int d, int s, const struct afswtch *rafp)
1037 {
1038 	struct ieee80211req_chanlist chanlist;
1039 	char *temp, *cp, *tp;
1040 
1041 	temp = malloc(strlen(val) + 1);
1042 	if (temp == NULL)
1043 		errx(1, "malloc failed");
1044 	strcpy(temp, val);
1045 	memset(&chanlist, 0, sizeof(chanlist));
1046 	cp = temp;
1047 	for (;;) {
1048 		int first, last, f, c;
1049 
1050 		tp = strchr(cp, ',');
1051 		if (tp != NULL)
1052 			*tp++ = '\0';
1053 		switch (sscanf(cp, "%u-%u", &first, &last)) {
1054 		case 1:
1055 			if (first > IEEE80211_CHAN_MAX)
1056 				errx(-1, "channel %u out of range, max %u",
1057 					first, IEEE80211_CHAN_MAX);
1058 			setbit(chanlist.ic_channels, first);
1059 			break;
1060 		case 2:
1061 			if (first > IEEE80211_CHAN_MAX)
1062 				errx(-1, "channel %u out of range, max %u",
1063 					first, IEEE80211_CHAN_MAX);
1064 			if (last > IEEE80211_CHAN_MAX)
1065 				errx(-1, "channel %u out of range, max %u",
1066 					last, IEEE80211_CHAN_MAX);
1067 			if (first > last)
1068 				errx(-1, "void channel range, %u > %u",
1069 					first, last);
1070 			for (f = first; f <= last; f++)
1071 				setbit(chanlist.ic_channels, f);
1072 			break;
1073 		}
1074 		if (tp == NULL)
1075 			break;
1076 		c = *tp;
1077 		while (isspace(c))
1078 			tp++;
1079 		if (!isdigit(c))
1080 			break;
1081 		cp = tp;
1082 	}
1083 	set80211(s, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist);
1084 }
1085 
1086 static void
1087 set80211bssid(const char *val, int d, int s, const struct afswtch *rafp)
1088 {
1089 
1090 	if (!isanyarg(val)) {
1091 		char *temp;
1092 		struct sockaddr_dl sdl;
1093 
1094 		temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1095 		if (temp == NULL)
1096 			errx(1, "malloc failed");
1097 		temp[0] = ':';
1098 		strcpy(temp + 1, val);
1099 		sdl.sdl_len = sizeof(sdl);
1100 		link_addr(temp, &sdl);
1101 		free(temp);
1102 		if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1103 			errx(1, "malformed link-level address");
1104 		set80211(s, IEEE80211_IOC_BSSID, 0,
1105 			IEEE80211_ADDR_LEN, LLADDR(&sdl));
1106 	} else {
1107 		uint8_t zerobssid[IEEE80211_ADDR_LEN];
1108 		memset(zerobssid, 0, sizeof(zerobssid));
1109 		set80211(s, IEEE80211_IOC_BSSID, 0,
1110 			IEEE80211_ADDR_LEN, zerobssid);
1111 	}
1112 }
1113 
1114 static int
1115 getac(const char *ac)
1116 {
1117 	if (strcasecmp(ac, "ac_be") == 0 || strcasecmp(ac, "be") == 0)
1118 		return WME_AC_BE;
1119 	if (strcasecmp(ac, "ac_bk") == 0 || strcasecmp(ac, "bk") == 0)
1120 		return WME_AC_BK;
1121 	if (strcasecmp(ac, "ac_vi") == 0 || strcasecmp(ac, "vi") == 0)
1122 		return WME_AC_VI;
1123 	if (strcasecmp(ac, "ac_vo") == 0 || strcasecmp(ac, "vo") == 0)
1124 		return WME_AC_VO;
1125 	errx(1, "unknown wme access class %s", ac);
1126 }
1127 
1128 static
1129 DECL_CMD_FUNC2(set80211cwmin, ac, val)
1130 {
1131 	set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL);
1132 }
1133 
1134 static
1135 DECL_CMD_FUNC2(set80211cwmax, ac, val)
1136 {
1137 	set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL);
1138 }
1139 
1140 static
1141 DECL_CMD_FUNC2(set80211aifs, ac, val)
1142 {
1143 	set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL);
1144 }
1145 
1146 static
1147 DECL_CMD_FUNC2(set80211txoplimit, ac, val)
1148 {
1149 	set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL);
1150 }
1151 
1152 static
1153 DECL_CMD_FUNC(set80211acm, ac, d)
1154 {
1155 	set80211(s, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL);
1156 }
1157 static
1158 DECL_CMD_FUNC(set80211noacm, ac, d)
1159 {
1160 	set80211(s, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL);
1161 }
1162 
1163 static
1164 DECL_CMD_FUNC(set80211ackpolicy, ac, d)
1165 {
1166 	set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL);
1167 }
1168 static
1169 DECL_CMD_FUNC(set80211noackpolicy, ac, d)
1170 {
1171 	set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL);
1172 }
1173 
1174 static
1175 DECL_CMD_FUNC2(set80211bsscwmin, ac, val)
1176 {
1177 	set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val),
1178 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1179 }
1180 
1181 static
1182 DECL_CMD_FUNC2(set80211bsscwmax, ac, val)
1183 {
1184 	set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val),
1185 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1186 }
1187 
1188 static
1189 DECL_CMD_FUNC2(set80211bssaifs, ac, val)
1190 {
1191 	set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val),
1192 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1193 }
1194 
1195 static
1196 DECL_CMD_FUNC2(set80211bsstxoplimit, ac, val)
1197 {
1198 	set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val),
1199 		getac(ac)|IEEE80211_WMEPARAM_BSS, NULL);
1200 }
1201 
1202 static
1203 DECL_CMD_FUNC(set80211dtimperiod, val, d)
1204 {
1205 	set80211(s, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL);
1206 }
1207 
1208 static
1209 DECL_CMD_FUNC(set80211bintval, val, d)
1210 {
1211 	set80211(s, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL);
1212 }
1213 
1214 static void
1215 set80211macmac(int s, int op, const char *val)
1216 {
1217 	char *temp;
1218 	struct sockaddr_dl sdl;
1219 
1220 	temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1221 	if (temp == NULL)
1222 		errx(1, "malloc failed");
1223 	temp[0] = ':';
1224 	strcpy(temp + 1, val);
1225 	sdl.sdl_len = sizeof(sdl);
1226 	link_addr(temp, &sdl);
1227 	free(temp);
1228 	if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1229 		errx(1, "malformed link-level address");
1230 	set80211(s, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl));
1231 }
1232 
1233 static
1234 DECL_CMD_FUNC(set80211addmac, val, d)
1235 {
1236 	set80211macmac(s, IEEE80211_IOC_ADDMAC, val);
1237 }
1238 
1239 static
1240 DECL_CMD_FUNC(set80211delmac, val, d)
1241 {
1242 	set80211macmac(s, IEEE80211_IOC_DELMAC, val);
1243 }
1244 
1245 static
1246 DECL_CMD_FUNC(set80211kickmac, val, d)
1247 {
1248 	char *temp;
1249 	struct sockaddr_dl sdl;
1250 	struct ieee80211req_mlme mlme;
1251 
1252 	temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1253 	if (temp == NULL)
1254 		errx(1, "malloc failed");
1255 	temp[0] = ':';
1256 	strcpy(temp + 1, val);
1257 	sdl.sdl_len = sizeof(sdl);
1258 	link_addr(temp, &sdl);
1259 	free(temp);
1260 	if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1261 		errx(1, "malformed link-level address");
1262 	memset(&mlme, 0, sizeof(mlme));
1263 	mlme.im_op = IEEE80211_MLME_DEAUTH;
1264 	mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE;
1265 	memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN);
1266 	set80211(s, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme);
1267 }
1268 
1269 static
1270 DECL_CMD_FUNC(set80211maccmd, val, d)
1271 {
1272 	set80211(s, IEEE80211_IOC_MACCMD, d, 0, NULL);
1273 }
1274 
1275 static void
1276 set80211meshrtmac(int s, int req, const char *val)
1277 {
1278 	char *temp;
1279 	struct sockaddr_dl sdl;
1280 
1281 	temp = malloc(strlen(val) + 2); /* ':' and '\0' */
1282 	if (temp == NULL)
1283 		errx(1, "malloc failed");
1284 	temp[0] = ':';
1285 	strcpy(temp + 1, val);
1286 	sdl.sdl_len = sizeof(sdl);
1287 	link_addr(temp, &sdl);
1288 	free(temp);
1289 	if (sdl.sdl_alen != IEEE80211_ADDR_LEN)
1290 		errx(1, "malformed link-level address");
1291 	set80211(s, IEEE80211_IOC_MESH_RTCMD, req,
1292 	    IEEE80211_ADDR_LEN, LLADDR(&sdl));
1293 }
1294 
1295 static
1296 DECL_CMD_FUNC(set80211addmeshrt, val, d)
1297 {
1298 	set80211meshrtmac(s, IEEE80211_MESH_RTCMD_ADD, val);
1299 }
1300 
1301 static
1302 DECL_CMD_FUNC(set80211delmeshrt, val, d)
1303 {
1304 	set80211meshrtmac(s, IEEE80211_MESH_RTCMD_DELETE, val);
1305 }
1306 
1307 static
1308 DECL_CMD_FUNC(set80211meshrtcmd, val, d)
1309 {
1310 	set80211(s, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL);
1311 }
1312 
1313 static
1314 DECL_CMD_FUNC(set80211hwmprootmode, val, d)
1315 {
1316 	int mode;
1317 
1318 	if (strcasecmp(val, "normal") == 0)
1319 		mode = IEEE80211_HWMP_ROOTMODE_NORMAL;
1320 	else if (strcasecmp(val, "proactive") == 0)
1321 		mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE;
1322 	else if (strcasecmp(val, "rann") == 0)
1323 		mode = IEEE80211_HWMP_ROOTMODE_RANN;
1324 	else
1325 		mode = IEEE80211_HWMP_ROOTMODE_DISABLED;
1326 	set80211(s, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL);
1327 }
1328 
1329 static
1330 DECL_CMD_FUNC(set80211hwmpmaxhops, val, d)
1331 {
1332 	set80211(s, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL);
1333 }
1334 
1335 static void
1336 set80211pureg(const char *val, int d, int s, const struct afswtch *rafp)
1337 {
1338 	set80211(s, IEEE80211_IOC_PUREG, d, 0, NULL);
1339 }
1340 
1341 static void
1342 set80211quiet(const char *val, int d, int s, const struct afswtch *rafp)
1343 {
1344 	set80211(s, IEEE80211_IOC_QUIET, d, 0, NULL);
1345 }
1346 
1347 static
1348 DECL_CMD_FUNC(set80211quietperiod, val, d)
1349 {
1350 	set80211(s, IEEE80211_IOC_QUIET_PERIOD, atoi(val), 0, NULL);
1351 }
1352 
1353 static
1354 DECL_CMD_FUNC(set80211quietcount, val, d)
1355 {
1356 	set80211(s, IEEE80211_IOC_QUIET_COUNT, atoi(val), 0, NULL);
1357 }
1358 
1359 static
1360 DECL_CMD_FUNC(set80211quietduration, val, d)
1361 {
1362 	set80211(s, IEEE80211_IOC_QUIET_DUR, atoi(val), 0, NULL);
1363 }
1364 
1365 static
1366 DECL_CMD_FUNC(set80211quietoffset, val, d)
1367 {
1368 	set80211(s, IEEE80211_IOC_QUIET_OFFSET, atoi(val), 0, NULL);
1369 }
1370 
1371 static void
1372 set80211bgscan(const char *val, int d, int s, const struct afswtch *rafp)
1373 {
1374 	set80211(s, IEEE80211_IOC_BGSCAN, d, 0, NULL);
1375 }
1376 
1377 static
1378 DECL_CMD_FUNC(set80211bgscanidle, val, d)
1379 {
1380 	set80211(s, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL);
1381 }
1382 
1383 static
1384 DECL_CMD_FUNC(set80211bgscanintvl, val, d)
1385 {
1386 	set80211(s, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL);
1387 }
1388 
1389 static
1390 DECL_CMD_FUNC(set80211scanvalid, val, d)
1391 {
1392 	set80211(s, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL);
1393 }
1394 
1395 /*
1396  * Parse an optional trailing specification of which netbands
1397  * to apply a parameter to.  This is basically the same syntax
1398  * as used for channels but you can concatenate to specify
1399  * multiple.  For example:
1400  *	14:abg		apply to 11a, 11b, and 11g
1401  *	6:ht		apply to 11na and 11ng
1402  * We don't make a big effort to catch silly things; this is
1403  * really a convenience mechanism.
1404  */
1405 static int
1406 getmodeflags(const char *val)
1407 {
1408 	const char *cp;
1409 	int flags;
1410 
1411 	flags = 0;
1412 
1413 	cp = strchr(val, ':');
1414 	if (cp != NULL) {
1415 		for (cp++; isalpha((int) *cp); cp++) {
1416 			/* accept mixed case */
1417 			int c = *cp;
1418 			if (isupper(c))
1419 				c = tolower(c);
1420 			switch (c) {
1421 			case 'a':		/* 802.11a */
1422 				flags |= IEEE80211_CHAN_A;
1423 				break;
1424 			case 'b':		/* 802.11b */
1425 				flags |= IEEE80211_CHAN_B;
1426 				break;
1427 			case 'g':		/* 802.11g */
1428 				flags |= IEEE80211_CHAN_G;
1429 				break;
1430 			case 'n':		/* 802.11n */
1431 				flags |= IEEE80211_CHAN_HT;
1432 				break;
1433 			case 'd':		/* dt = Atheros Dynamic Turbo */
1434 				flags |= IEEE80211_CHAN_TURBO;
1435 				break;
1436 			case 't':		/* ht, dt, st, t */
1437 				/* dt and unadorned t specify Dynamic Turbo */
1438 				if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0)
1439 					flags |= IEEE80211_CHAN_TURBO;
1440 				break;
1441 			case 's':		/* st = Atheros Static Turbo */
1442 				flags |= IEEE80211_CHAN_STURBO;
1443 				break;
1444 			case 'h':		/* 1/2-width channels */
1445 				flags |= IEEE80211_CHAN_HALF;
1446 				break;
1447 			case 'q':		/* 1/4-width channels */
1448 				flags |= IEEE80211_CHAN_QUARTER;
1449 				break;
1450 			default:
1451 				errx(-1, "%s: Invalid mode attribute %c\n",
1452 				    val, *cp);
1453 			}
1454 		}
1455 	}
1456 	return flags;
1457 }
1458 
1459 #define	IEEE80211_CHAN_HTA	(IEEE80211_CHAN_HT|IEEE80211_CHAN_5GHZ)
1460 #define	IEEE80211_CHAN_HTG	(IEEE80211_CHAN_HT|IEEE80211_CHAN_2GHZ)
1461 
1462 #define	_APPLY(_flags, _base, _param, _v) do {				\
1463     if (_flags & IEEE80211_CHAN_HT) {					\
1464 	    if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\
1465 		    _base.params[IEEE80211_MODE_11NA]._param = _v;	\
1466 		    _base.params[IEEE80211_MODE_11NG]._param = _v;	\
1467 	    } else if (_flags & IEEE80211_CHAN_5GHZ)			\
1468 		    _base.params[IEEE80211_MODE_11NA]._param = _v;	\
1469 	    else							\
1470 		    _base.params[IEEE80211_MODE_11NG]._param = _v;	\
1471     }									\
1472     if (_flags & IEEE80211_CHAN_TURBO) {				\
1473 	    if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\
1474 		    _base.params[IEEE80211_MODE_TURBO_A]._param = _v;	\
1475 		    _base.params[IEEE80211_MODE_TURBO_G]._param = _v;	\
1476 	    } else if (_flags & IEEE80211_CHAN_5GHZ)			\
1477 		    _base.params[IEEE80211_MODE_TURBO_A]._param = _v;	\
1478 	    else							\
1479 		    _base.params[IEEE80211_MODE_TURBO_G]._param = _v;	\
1480     }									\
1481     if (_flags & IEEE80211_CHAN_STURBO)					\
1482 	    _base.params[IEEE80211_MODE_STURBO_A]._param = _v;		\
1483     if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)		\
1484 	    _base.params[IEEE80211_MODE_11A]._param = _v;		\
1485     if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)		\
1486 	    _base.params[IEEE80211_MODE_11G]._param = _v;		\
1487     if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)		\
1488 	    _base.params[IEEE80211_MODE_11B]._param = _v;		\
1489     if (_flags & IEEE80211_CHAN_HALF)					\
1490 	    _base.params[IEEE80211_MODE_HALF]._param = _v;		\
1491     if (_flags & IEEE80211_CHAN_QUARTER)				\
1492 	    _base.params[IEEE80211_MODE_QUARTER]._param = _v;		\
1493 } while (0)
1494 #define	_APPLY1(_flags, _base, _param, _v) do {				\
1495     if (_flags & IEEE80211_CHAN_HT) {					\
1496 	    if (_flags & IEEE80211_CHAN_5GHZ)				\
1497 		    _base.params[IEEE80211_MODE_11NA]._param = _v;	\
1498 	    else							\
1499 		    _base.params[IEEE80211_MODE_11NG]._param = _v;	\
1500     } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A)	\
1501 	    _base.params[IEEE80211_MODE_TURBO_A]._param = _v;		\
1502     else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G)	\
1503 	    _base.params[IEEE80211_MODE_TURBO_G]._param = _v;		\
1504     else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST)		\
1505 	    _base.params[IEEE80211_MODE_STURBO_A]._param = _v;		\
1506     else if (_flags & IEEE80211_CHAN_HALF)				\
1507 	    _base.params[IEEE80211_MODE_HALF]._param = _v;		\
1508     else if (_flags & IEEE80211_CHAN_QUARTER)				\
1509 	    _base.params[IEEE80211_MODE_QUARTER]._param = _v;		\
1510     else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A)		\
1511 	    _base.params[IEEE80211_MODE_11A]._param = _v;		\
1512     else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G)		\
1513 	    _base.params[IEEE80211_MODE_11G]._param = _v;		\
1514     else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B)		\
1515 	    _base.params[IEEE80211_MODE_11B]._param = _v;		\
1516 } while (0)
1517 #define	_APPLY_RATE(_flags, _base, _param, _v) do {			\
1518     if (_flags & IEEE80211_CHAN_HT) {					\
1519 	(_v) = (_v / 2) | IEEE80211_RATE_MCS;				\
1520     }									\
1521     _APPLY(_flags, _base, _param, _v);					\
1522 } while (0)
1523 #define	_APPLY_RATE1(_flags, _base, _param, _v) do {			\
1524     if (_flags & IEEE80211_CHAN_HT) {					\
1525 	(_v) = (_v / 2) | IEEE80211_RATE_MCS;				\
1526     }									\
1527     _APPLY1(_flags, _base, _param, _v);					\
1528 } while (0)
1529 
1530 static
1531 DECL_CMD_FUNC(set80211roamrssi, val, d)
1532 {
1533 	double v = atof(val);
1534 	int rssi, flags;
1535 
1536 	rssi = (int) (2*v);
1537 	if (rssi != 2*v)
1538 		errx(-1, "invalid rssi (must be .5 dBm units)");
1539 	flags = getmodeflags(val);
1540 	getroam(s);
1541 	if (flags == 0) {		/* NB: no flags => current channel */
1542 		flags = getcurchan(s)->ic_flags;
1543 		_APPLY1(flags, roamparams, rssi, rssi);
1544 	} else
1545 		_APPLY(flags, roamparams, rssi, rssi);
1546 	callback_register(setroam_cb, &roamparams);
1547 }
1548 
1549 static int
1550 getrate(const char *val, const char *tag)
1551 {
1552 	double v = atof(val);
1553 	int rate;
1554 
1555 	rate = (int) (2*v);
1556 	if (rate != 2*v)
1557 		errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag);
1558 	return rate;		/* NB: returns 2x the specified value */
1559 }
1560 
1561 static
1562 DECL_CMD_FUNC(set80211roamrate, val, d)
1563 {
1564 	int rate, flags;
1565 
1566 	rate = getrate(val, "roam");
1567 	flags = getmodeflags(val);
1568 	getroam(s);
1569 	if (flags == 0) {		/* NB: no flags => current channel */
1570 		flags = getcurchan(s)->ic_flags;
1571 		_APPLY_RATE1(flags, roamparams, rate, rate);
1572 	} else
1573 		_APPLY_RATE(flags, roamparams, rate, rate);
1574 	callback_register(setroam_cb, &roamparams);
1575 }
1576 
1577 static
1578 DECL_CMD_FUNC(set80211mcastrate, val, d)
1579 {
1580 	int rate, flags;
1581 
1582 	rate = getrate(val, "mcast");
1583 	flags = getmodeflags(val);
1584 	gettxparams(s);
1585 	if (flags == 0) {		/* NB: no flags => current channel */
1586 		flags = getcurchan(s)->ic_flags;
1587 		_APPLY_RATE1(flags, txparams, mcastrate, rate);
1588 	} else
1589 		_APPLY_RATE(flags, txparams, mcastrate, rate);
1590 	callback_register(settxparams_cb, &txparams);
1591 }
1592 
1593 static
1594 DECL_CMD_FUNC(set80211mgtrate, val, d)
1595 {
1596 	int rate, flags;
1597 
1598 	rate = getrate(val, "mgmt");
1599 	flags = getmodeflags(val);
1600 	gettxparams(s);
1601 	if (flags == 0) {		/* NB: no flags => current channel */
1602 		flags = getcurchan(s)->ic_flags;
1603 		_APPLY_RATE1(flags, txparams, mgmtrate, rate);
1604 	} else
1605 		_APPLY_RATE(flags, txparams, mgmtrate, rate);
1606 	callback_register(settxparams_cb, &txparams);
1607 }
1608 
1609 static
1610 DECL_CMD_FUNC(set80211ucastrate, val, d)
1611 {
1612 	int flags;
1613 
1614 	gettxparams(s);
1615 	flags = getmodeflags(val);
1616 	if (isanyarg(val)) {
1617 		if (flags == 0) {	/* NB: no flags => current channel */
1618 			flags = getcurchan(s)->ic_flags;
1619 			_APPLY1(flags, txparams, ucastrate,
1620 			    IEEE80211_FIXED_RATE_NONE);
1621 		} else
1622 			_APPLY(flags, txparams, ucastrate,
1623 			    IEEE80211_FIXED_RATE_NONE);
1624 	} else {
1625 		int rate = getrate(val, "ucast");
1626 		if (flags == 0) {	/* NB: no flags => current channel */
1627 			flags = getcurchan(s)->ic_flags;
1628 			_APPLY_RATE1(flags, txparams, ucastrate, rate);
1629 		} else
1630 			_APPLY_RATE(flags, txparams, ucastrate, rate);
1631 	}
1632 	callback_register(settxparams_cb, &txparams);
1633 }
1634 
1635 static
1636 DECL_CMD_FUNC(set80211maxretry, val, d)
1637 {
1638 	int v = atoi(val), flags;
1639 
1640 	flags = getmodeflags(val);
1641 	gettxparams(s);
1642 	if (flags == 0) {		/* NB: no flags => current channel */
1643 		flags = getcurchan(s)->ic_flags;
1644 		_APPLY1(flags, txparams, maxretry, v);
1645 	} else
1646 		_APPLY(flags, txparams, maxretry, v);
1647 	callback_register(settxparams_cb, &txparams);
1648 }
1649 #undef _APPLY_RATE
1650 #undef _APPLY
1651 #undef IEEE80211_CHAN_HTA
1652 #undef IEEE80211_CHAN_HTG
1653 
1654 static
1655 DECL_CMD_FUNC(set80211fragthreshold, val, d)
1656 {
1657 	set80211(s, IEEE80211_IOC_FRAGTHRESHOLD,
1658 		isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL);
1659 }
1660 
1661 static
1662 DECL_CMD_FUNC(set80211bmissthreshold, val, d)
1663 {
1664 	set80211(s, IEEE80211_IOC_BMISSTHRESHOLD,
1665 		isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL);
1666 }
1667 
1668 static void
1669 set80211burst(const char *val, int d, int s, const struct afswtch *rafp)
1670 {
1671 	set80211(s, IEEE80211_IOC_BURST, d, 0, NULL);
1672 }
1673 
1674 static void
1675 set80211doth(const char *val, int d, int s, const struct afswtch *rafp)
1676 {
1677 	set80211(s, IEEE80211_IOC_DOTH, d, 0, NULL);
1678 }
1679 
1680 static void
1681 set80211dfs(const char *val, int d, int s, const struct afswtch *rafp)
1682 {
1683 	set80211(s, IEEE80211_IOC_DFS, d, 0, NULL);
1684 }
1685 
1686 static void
1687 set80211shortgi(const char *val, int d, int s, const struct afswtch *rafp)
1688 {
1689 	set80211(s, IEEE80211_IOC_SHORTGI,
1690 		d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0,
1691 		0, NULL);
1692 }
1693 
1694 static void
1695 set80211ampdu(const char *val, int d, int s, const struct afswtch *rafp)
1696 {
1697 	int ampdu;
1698 
1699 	if (get80211val(s, IEEE80211_IOC_AMPDU, &ampdu) < 0)
1700 		errx(-1, "cannot get AMPDU setting");
1701 	if (d < 0) {
1702 		d = -d;
1703 		ampdu &= ~d;
1704 	} else
1705 		ampdu |= d;
1706 	set80211(s, IEEE80211_IOC_AMPDU, ampdu, 0, NULL);
1707 }
1708 
1709 static
1710 DECL_CMD_FUNC(set80211ampdulimit, val, d)
1711 {
1712 	int v;
1713 
1714 	switch (atoi(val)) {
1715 	case 8:
1716 	case 8*1024:
1717 		v = IEEE80211_HTCAP_MAXRXAMPDU_8K;
1718 		break;
1719 	case 16:
1720 	case 16*1024:
1721 		v = IEEE80211_HTCAP_MAXRXAMPDU_16K;
1722 		break;
1723 	case 32:
1724 	case 32*1024:
1725 		v = IEEE80211_HTCAP_MAXRXAMPDU_32K;
1726 		break;
1727 	case 64:
1728 	case 64*1024:
1729 		v = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1730 		break;
1731 	default:
1732 		errx(-1, "invalid A-MPDU limit %s", val);
1733 	}
1734 	set80211(s, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL);
1735 }
1736 
1737 static
1738 DECL_CMD_FUNC(set80211ampdudensity, val, d)
1739 {
1740 	int v;
1741 
1742 	if (isanyarg(val) || strcasecmp(val, "na") == 0)
1743 		v = IEEE80211_HTCAP_MPDUDENSITY_NA;
1744 	else switch ((int)(atof(val)*4)) {
1745 	case 0:
1746 		v = IEEE80211_HTCAP_MPDUDENSITY_NA;
1747 		break;
1748 	case 1:
1749 		v = IEEE80211_HTCAP_MPDUDENSITY_025;
1750 		break;
1751 	case 2:
1752 		v = IEEE80211_HTCAP_MPDUDENSITY_05;
1753 		break;
1754 	case 4:
1755 		v = IEEE80211_HTCAP_MPDUDENSITY_1;
1756 		break;
1757 	case 8:
1758 		v = IEEE80211_HTCAP_MPDUDENSITY_2;
1759 		break;
1760 	case 16:
1761 		v = IEEE80211_HTCAP_MPDUDENSITY_4;
1762 		break;
1763 	case 32:
1764 		v = IEEE80211_HTCAP_MPDUDENSITY_8;
1765 		break;
1766 	case 64:
1767 		v = IEEE80211_HTCAP_MPDUDENSITY_16;
1768 		break;
1769 	default:
1770 		errx(-1, "invalid A-MPDU density %s", val);
1771 	}
1772 	set80211(s, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL);
1773 }
1774 
1775 static void
1776 set80211amsdu(const char *val, int d, int s, const struct afswtch *rafp)
1777 {
1778 	int amsdu;
1779 
1780 	if (get80211val(s, IEEE80211_IOC_AMSDU, &amsdu) < 0)
1781 		err(-1, "cannot get AMSDU setting");
1782 	if (d < 0) {
1783 		d = -d;
1784 		amsdu &= ~d;
1785 	} else
1786 		amsdu |= d;
1787 	set80211(s, IEEE80211_IOC_AMSDU, amsdu, 0, NULL);
1788 }
1789 
1790 static
1791 DECL_CMD_FUNC(set80211amsdulimit, val, d)
1792 {
1793 	set80211(s, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL);
1794 }
1795 
1796 static void
1797 set80211puren(const char *val, int d, int s, const struct afswtch *rafp)
1798 {
1799 	set80211(s, IEEE80211_IOC_PUREN, d, 0, NULL);
1800 }
1801 
1802 static void
1803 set80211htcompat(const char *val, int d, int s, const struct afswtch *rafp)
1804 {
1805 	set80211(s, IEEE80211_IOC_HTCOMPAT, d, 0, NULL);
1806 }
1807 
1808 static void
1809 set80211htconf(const char *val, int d, int s, const struct afswtch *rafp)
1810 {
1811 	set80211(s, IEEE80211_IOC_HTCONF, d, 0, NULL);
1812 	htconf = d;
1813 }
1814 
1815 static void
1816 set80211dwds(const char *val, int d, int s, const struct afswtch *rafp)
1817 {
1818 	set80211(s, IEEE80211_IOC_DWDS, d, 0, NULL);
1819 }
1820 
1821 static void
1822 set80211inact(const char *val, int d, int s, const struct afswtch *rafp)
1823 {
1824 	set80211(s, IEEE80211_IOC_INACTIVITY, d, 0, NULL);
1825 }
1826 
1827 static void
1828 set80211tsn(const char *val, int d, int s, const struct afswtch *rafp)
1829 {
1830 	set80211(s, IEEE80211_IOC_TSN, d, 0, NULL);
1831 }
1832 
1833 static void
1834 set80211dotd(const char *val, int d, int s, const struct afswtch *rafp)
1835 {
1836 	set80211(s, IEEE80211_IOC_DOTD, d, 0, NULL);
1837 }
1838 
1839 static void
1840 set80211smps(const char *val, int d, int s, const struct afswtch *rafp)
1841 {
1842 	set80211(s, IEEE80211_IOC_SMPS, d, 0, NULL);
1843 }
1844 
1845 static void
1846 set80211rifs(const char *val, int d, int s, const struct afswtch *rafp)
1847 {
1848 	set80211(s, IEEE80211_IOC_RIFS, d, 0, NULL);
1849 }
1850 
1851 static
1852 DECL_CMD_FUNC(set80211tdmaslot, val, d)
1853 {
1854 	set80211(s, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL);
1855 }
1856 
1857 static
1858 DECL_CMD_FUNC(set80211tdmaslotcnt, val, d)
1859 {
1860 	set80211(s, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL);
1861 }
1862 
1863 static
1864 DECL_CMD_FUNC(set80211tdmaslotlen, val, d)
1865 {
1866 	set80211(s, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL);
1867 }
1868 
1869 static
1870 DECL_CMD_FUNC(set80211tdmabintval, val, d)
1871 {
1872 	set80211(s, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL);
1873 }
1874 
1875 static
1876 DECL_CMD_FUNC(set80211meshttl, val, d)
1877 {
1878 	set80211(s, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL);
1879 }
1880 
1881 static
1882 DECL_CMD_FUNC(set80211meshforward, val, d)
1883 {
1884 	set80211(s, IEEE80211_IOC_MESH_FWRD, d, 0, NULL);
1885 }
1886 
1887 static
1888 DECL_CMD_FUNC(set80211meshgate, val, d)
1889 {
1890 	set80211(s, IEEE80211_IOC_MESH_GATE, d, 0, NULL);
1891 }
1892 
1893 static
1894 DECL_CMD_FUNC(set80211meshpeering, val, d)
1895 {
1896 	set80211(s, IEEE80211_IOC_MESH_AP, d, 0, NULL);
1897 }
1898 
1899 static
1900 DECL_CMD_FUNC(set80211meshmetric, val, d)
1901 {
1902 	char v[12];
1903 
1904 	memcpy(v, val, sizeof(v));
1905 	set80211(s, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v);
1906 }
1907 
1908 static
1909 DECL_CMD_FUNC(set80211meshpath, val, d)
1910 {
1911 	char v[12];
1912 
1913 	memcpy(v, val, sizeof(v));
1914 	set80211(s, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v);
1915 }
1916 
1917 static int
1918 regdomain_sort(const void *a, const void *b)
1919 {
1920 #define	CHAN_ALL \
1921 	(IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)
1922 	const struct ieee80211_channel *ca = a;
1923 	const struct ieee80211_channel *cb = b;
1924 
1925 	return ca->ic_freq == cb->ic_freq ?
1926 	    (ca->ic_flags & CHAN_ALL) - (cb->ic_flags & CHAN_ALL) :
1927 	    ca->ic_freq - cb->ic_freq;
1928 #undef CHAN_ALL
1929 }
1930 
1931 static const struct ieee80211_channel *
1932 chanlookup(const struct ieee80211_channel chans[], int nchans,
1933 	int freq, int flags)
1934 {
1935 	int i;
1936 
1937 	flags &= IEEE80211_CHAN_ALLTURBO;
1938 	for (i = 0; i < nchans; i++) {
1939 		const struct ieee80211_channel *c = &chans[i];
1940 		if (c->ic_freq == freq &&
1941 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1942 			return c;
1943 	}
1944 	return NULL;
1945 }
1946 
1947 static int
1948 chanfind(const struct ieee80211_channel chans[], int nchans, int flags)
1949 {
1950 	int i;
1951 
1952 	for (i = 0; i < nchans; i++) {
1953 		const struct ieee80211_channel *c = &chans[i];
1954 		if ((c->ic_flags & flags) == flags)
1955 			return 1;
1956 	}
1957 	return 0;
1958 }
1959 
1960 /*
1961  * Check channel compatibility.
1962  */
1963 static int
1964 checkchan(const struct ieee80211req_chaninfo *avail, int freq, int flags)
1965 {
1966 	flags &= ~REQ_FLAGS;
1967 	/*
1968 	 * Check if exact channel is in the calibration table;
1969 	 * everything below is to deal with channels that we
1970 	 * want to include but that are not explicitly listed.
1971 	 */
1972 	if (flags & IEEE80211_CHAN_HT40) {
1973 		/* NB: we use an HT40 channel center that matches HT20 */
1974 		flags = (flags &~ IEEE80211_CHAN_HT40) | IEEE80211_CHAN_HT20;
1975 	}
1976 	if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL)
1977 		return 1;
1978 	if (flags & IEEE80211_CHAN_GSM) {
1979 		/*
1980 		 * XXX GSM frequency mapping is handled in the kernel
1981 		 * so we cannot find them in the calibration table;
1982 		 * just accept the channel and the kernel will reject
1983 		 * the channel list if it's wrong.
1984 		 */
1985 		return 1;
1986 	}
1987 	/*
1988 	 * If this is a 1/2 or 1/4 width channel allow it if a full
1989 	 * width channel is present for this frequency, and the device
1990 	 * supports fractional channels on this band.  This is a hack
1991 	 * that avoids bloating the calibration table; it may be better
1992 	 * by per-band attributes though (we are effectively calculating
1993 	 * this attribute by scanning the channel list ourself).
1994 	 */
1995 	if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0)
1996 		return 0;
1997 	if (chanlookup(avail->ic_chans, avail->ic_nchans, freq,
1998 	    flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL)
1999 		return 0;
2000 	if (flags & IEEE80211_CHAN_HALF) {
2001 		return chanfind(avail->ic_chans, avail->ic_nchans,
2002 		    IEEE80211_CHAN_HALF |
2003 		       (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ)));
2004 	} else {
2005 		return chanfind(avail->ic_chans, avail->ic_nchans,
2006 		    IEEE80211_CHAN_QUARTER |
2007 			(flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ)));
2008 	}
2009 }
2010 
2011 static void
2012 regdomain_addchans(struct ieee80211req_chaninfo *ci,
2013 	const netband_head *bands,
2014 	const struct ieee80211_regdomain *reg,
2015 	uint32_t chanFlags,
2016 	const struct ieee80211req_chaninfo *avail)
2017 {
2018 	const struct netband *nb;
2019 	const struct freqband *b;
2020 	struct ieee80211_channel *c, *prev;
2021 	int freq, hi_adj, lo_adj, channelSep;
2022 	uint32_t flags;
2023 
2024 	hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0;
2025 	lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0;
2026 	channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40;
2027 	LIST_FOREACH(nb, bands, next) {
2028 		b = nb->band;
2029 		if (verbose) {
2030 			printf("%s:", __func__);
2031 			printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS);
2032 			printb(" bandFlags", nb->flags | b->flags,
2033 			    IEEE80211_CHAN_BITS);
2034 			putchar('\n');
2035 		}
2036 		prev = NULL;
2037 		for (freq = b->freqStart + lo_adj;
2038 		     freq <= b->freqEnd + hi_adj; freq += b->chanSep) {
2039 			/*
2040 			 * Construct flags for the new channel.  We take
2041 			 * the attributes from the band descriptions except
2042 			 * for HT40 which is enabled generically (i.e. +/-
2043 			 * extension channel) in the band description and
2044 			 * then constrained according by channel separation.
2045 			 */
2046 			flags = nb->flags | b->flags;
2047 			if (flags & IEEE80211_CHAN_HT) {
2048 				/*
2049 				 * HT channels are generated specially; we're
2050 				 * called to add HT20, HT40+, and HT40- chan's
2051 				 * so we need to expand only band specs for
2052 				 * the HT channel type being added.
2053 				 */
2054 				if ((chanFlags & IEEE80211_CHAN_HT20) &&
2055 				    (flags & IEEE80211_CHAN_HT20) == 0) {
2056 					if (verbose)
2057 						printf("%u: skip, not an "
2058 						    "HT20 channel\n", freq);
2059 					continue;
2060 				}
2061 				if ((chanFlags & IEEE80211_CHAN_HT40) &&
2062 				    (flags & IEEE80211_CHAN_HT40) == 0) {
2063 					if (verbose)
2064 						printf("%u: skip, not an "
2065 						    "HT40 channel\n", freq);
2066 					continue;
2067 				}
2068 				/* NB: HT attribute comes from caller */
2069 				flags &= ~IEEE80211_CHAN_HT;
2070 				flags |= chanFlags & IEEE80211_CHAN_HT;
2071 			}
2072 			/*
2073 			 * Check if device can operate on this frequency.
2074 			 */
2075 			if (!checkchan(avail, freq, flags)) {
2076 				if (verbose) {
2077 					printf("%u: skip, ", freq);
2078 					printb("flags", flags,
2079 					    IEEE80211_CHAN_BITS);
2080 					printf(" not available\n");
2081 				}
2082 				continue;
2083 			}
2084 			if ((flags & REQ_ECM) && !reg->ecm) {
2085 				if (verbose)
2086 					printf("%u: skip, ECM channel\n", freq);
2087 				continue;
2088 			}
2089 			if ((flags & REQ_INDOOR) && reg->location == 'O') {
2090 				if (verbose)
2091 					printf("%u: skip, indoor channel\n",
2092 					    freq);
2093 				continue;
2094 			}
2095 			if ((flags & REQ_OUTDOOR) && reg->location == 'I') {
2096 				if (verbose)
2097 					printf("%u: skip, outdoor channel\n",
2098 					    freq);
2099 				continue;
2100 			}
2101 			if ((flags & IEEE80211_CHAN_HT40) &&
2102 			    prev != NULL && (freq - prev->ic_freq) < channelSep) {
2103 				if (verbose)
2104 					printf("%u: skip, only %u channel "
2105 					    "separation, need %d\n", freq,
2106 					    freq - prev->ic_freq, channelSep);
2107 				continue;
2108 			}
2109 			if (ci->ic_nchans == IEEE80211_CHAN_MAX) {
2110 				if (verbose)
2111 					printf("%u: skip, channel table full\n",
2112 					    freq);
2113 				break;
2114 			}
2115 			c = &ci->ic_chans[ci->ic_nchans++];
2116 			memset(c, 0, sizeof(*c));
2117 			c->ic_freq = freq;
2118 			c->ic_flags = flags;
2119 			if (c->ic_flags & IEEE80211_CHAN_DFS)
2120 				c->ic_maxregpower = nb->maxPowerDFS;
2121 			else
2122 				c->ic_maxregpower = nb->maxPower;
2123 			if (verbose) {
2124 				printf("[%3d] add freq %u ",
2125 				    ci->ic_nchans-1, c->ic_freq);
2126 				printb("flags", c->ic_flags, IEEE80211_CHAN_BITS);
2127 				printf(" power %u\n", c->ic_maxregpower);
2128 			}
2129 			/* NB: kernel fills in other fields */
2130 			prev = c;
2131 		}
2132 	}
2133 }
2134 
2135 static void
2136 regdomain_makechannels(
2137 	struct ieee80211_regdomain_req *req,
2138 	const struct ieee80211_devcaps_req *dc)
2139 {
2140 	struct regdata *rdp = getregdata();
2141 	const struct country *cc;
2142 	const struct ieee80211_regdomain *reg = &req->rd;
2143 	struct ieee80211req_chaninfo *ci = &req->chaninfo;
2144 	const struct regdomain *rd;
2145 
2146 	/*
2147 	 * Locate construction table for new channel list.  We treat
2148 	 * the regdomain/SKU as definitive so a country can be in
2149 	 * multiple with different properties (e.g. US in FCC+FCC3).
2150 	 * If no regdomain is specified then we fallback on the country
2151 	 * code to find the associated regdomain since countries always
2152 	 * belong to at least one regdomain.
2153 	 */
2154 	if (reg->regdomain == 0) {
2155 		cc = lib80211_country_findbycc(rdp, reg->country);
2156 		if (cc == NULL)
2157 			errx(1, "internal error, country %d not found",
2158 			    reg->country);
2159 		rd = cc->rd;
2160 	} else
2161 		rd = lib80211_regdomain_findbysku(rdp, reg->regdomain);
2162 	if (rd == NULL)
2163 		errx(1, "internal error, regdomain %d not found",
2164 			    reg->regdomain);
2165 	if (rd->sku != SKU_DEBUG) {
2166 		/*
2167 		 * regdomain_addchans incrememnts the channel count for
2168 		 * each channel it adds so initialize ic_nchans to zero.
2169 		 * Note that we know we have enough space to hold all possible
2170 		 * channels because the devcaps list size was used to
2171 		 * allocate our request.
2172 		 */
2173 		ci->ic_nchans = 0;
2174 		if (!LIST_EMPTY(&rd->bands_11b))
2175 			regdomain_addchans(ci, &rd->bands_11b, reg,
2176 			    IEEE80211_CHAN_B, &dc->dc_chaninfo);
2177 		if (!LIST_EMPTY(&rd->bands_11g))
2178 			regdomain_addchans(ci, &rd->bands_11g, reg,
2179 			    IEEE80211_CHAN_G, &dc->dc_chaninfo);
2180 		if (!LIST_EMPTY(&rd->bands_11a))
2181 			regdomain_addchans(ci, &rd->bands_11a, reg,
2182 			    IEEE80211_CHAN_A, &dc->dc_chaninfo);
2183 		if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) {
2184 			regdomain_addchans(ci, &rd->bands_11na, reg,
2185 			    IEEE80211_CHAN_A | IEEE80211_CHAN_HT20,
2186 			    &dc->dc_chaninfo);
2187 			if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
2188 				regdomain_addchans(ci, &rd->bands_11na, reg,
2189 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U,
2190 				    &dc->dc_chaninfo);
2191 				regdomain_addchans(ci, &rd->bands_11na, reg,
2192 				    IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D,
2193 				    &dc->dc_chaninfo);
2194 			}
2195 		}
2196 		if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) {
2197 			regdomain_addchans(ci, &rd->bands_11ng, reg,
2198 			    IEEE80211_CHAN_G | IEEE80211_CHAN_HT20,
2199 			    &dc->dc_chaninfo);
2200 			if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) {
2201 				regdomain_addchans(ci, &rd->bands_11ng, reg,
2202 				    IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U,
2203 				    &dc->dc_chaninfo);
2204 				regdomain_addchans(ci, &rd->bands_11ng, reg,
2205 				    IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D,
2206 				    &dc->dc_chaninfo);
2207 			}
2208 		}
2209 		qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]),
2210 		    regdomain_sort);
2211 	} else
2212 		memcpy(ci, &dc->dc_chaninfo,
2213 		    IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo));
2214 }
2215 
2216 static void
2217 list_countries(void)
2218 {
2219 	struct regdata *rdp = getregdata();
2220 	const struct country *cp;
2221 	const struct regdomain *dp;
2222 	int i;
2223 
2224 	i = 0;
2225 	printf("\nCountry codes:\n");
2226 	LIST_FOREACH(cp, &rdp->countries, next) {
2227 		printf("%2s %-15.15s%s", cp->isoname,
2228 		    cp->name, ((i+1)%4) == 0 ? "\n" : " ");
2229 		i++;
2230 	}
2231 	i = 0;
2232 	printf("\nRegulatory domains:\n");
2233 	LIST_FOREACH(dp, &rdp->domains, next) {
2234 		printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " ");
2235 		i++;
2236 	}
2237 	printf("\n");
2238 }
2239 
2240 static void
2241 defaultcountry(const struct regdomain *rd)
2242 {
2243 	struct regdata *rdp = getregdata();
2244 	const struct country *cc;
2245 
2246 	cc = lib80211_country_findbycc(rdp, rd->cc->code);
2247 	if (cc == NULL)
2248 		errx(1, "internal error, ISO country code %d not "
2249 		    "defined for regdomain %s", rd->cc->code, rd->name);
2250 	regdomain.country = cc->code;
2251 	regdomain.isocc[0] = cc->isoname[0];
2252 	regdomain.isocc[1] = cc->isoname[1];
2253 }
2254 
2255 static
2256 DECL_CMD_FUNC(set80211regdomain, val, d)
2257 {
2258 	struct regdata *rdp = getregdata();
2259 	const struct regdomain *rd;
2260 
2261 	rd = lib80211_regdomain_findbyname(rdp, val);
2262 	if (rd == NULL) {
2263 		char *eptr;
2264 		long sku = strtol(val, &eptr, 0);
2265 
2266 		if (eptr != val)
2267 			rd = lib80211_regdomain_findbysku(rdp, sku);
2268 		if (eptr == val || rd == NULL)
2269 			errx(1, "unknown regdomain %s", val);
2270 	}
2271 	getregdomain(s);
2272 	regdomain.regdomain = rd->sku;
2273 	if (regdomain.country == 0 && rd->cc != NULL) {
2274 		/*
2275 		 * No country code setup and there's a default
2276 		 * one for this regdomain fill it in.
2277 		 */
2278 		defaultcountry(rd);
2279 	}
2280 	callback_register(setregdomain_cb, &regdomain);
2281 }
2282 
2283 static
2284 DECL_CMD_FUNC(set80211country, val, d)
2285 {
2286 	struct regdata *rdp = getregdata();
2287 	const struct country *cc;
2288 
2289 	cc = lib80211_country_findbyname(rdp, val);
2290 	if (cc == NULL) {
2291 		char *eptr;
2292 		long code = strtol(val, &eptr, 0);
2293 
2294 		if (eptr != val)
2295 			cc = lib80211_country_findbycc(rdp, code);
2296 		if (eptr == val || cc == NULL)
2297 			errx(1, "unknown ISO country code %s", val);
2298 	}
2299 	getregdomain(s);
2300 	regdomain.regdomain = cc->rd->sku;
2301 	regdomain.country = cc->code;
2302 	regdomain.isocc[0] = cc->isoname[0];
2303 	regdomain.isocc[1] = cc->isoname[1];
2304 	callback_register(setregdomain_cb, &regdomain);
2305 }
2306 
2307 static void
2308 set80211location(const char *val, int d, int s, const struct afswtch *rafp)
2309 {
2310 	getregdomain(s);
2311 	regdomain.location = d;
2312 	callback_register(setregdomain_cb, &regdomain);
2313 }
2314 
2315 static void
2316 set80211ecm(const char *val, int d, int s, const struct afswtch *rafp)
2317 {
2318 	getregdomain(s);
2319 	regdomain.ecm = d;
2320 	callback_register(setregdomain_cb, &regdomain);
2321 }
2322 
2323 static void
2324 LINE_INIT(char c)
2325 {
2326 	spacer = c;
2327 	if (c == '\t')
2328 		col = 8;
2329 	else
2330 		col = 1;
2331 }
2332 
2333 static void
2334 LINE_BREAK(void)
2335 {
2336 	if (spacer != '\t') {
2337 		printf("\n");
2338 		spacer = '\t';
2339 	}
2340 	col = 8;		/* 8-col tab */
2341 }
2342 
2343 static void
2344 LINE_CHECK(const char *fmt, ...)
2345 {
2346 	char buf[80];
2347 	va_list ap;
2348 	int n;
2349 
2350 	va_start(ap, fmt);
2351 	n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap);
2352 	va_end(ap);
2353 	col += 1+n;
2354 	if (col > MAXCOL) {
2355 		LINE_BREAK();
2356 		col += n;
2357 	}
2358 	buf[0] = spacer;
2359 	printf("%s", buf);
2360 	spacer = ' ';
2361 }
2362 
2363 static int
2364 getmaxrate(const uint8_t rates[15], uint8_t nrates)
2365 {
2366 	int i, maxrate = -1;
2367 
2368 	for (i = 0; i < nrates; i++) {
2369 		int rate = rates[i] & IEEE80211_RATE_VAL;
2370 		if (rate > maxrate)
2371 			maxrate = rate;
2372 	}
2373 	return maxrate / 2;
2374 }
2375 
2376 static const char *
2377 getcaps(int capinfo)
2378 {
2379 	static char capstring[32];
2380 	char *cp = capstring;
2381 
2382 	if (capinfo & IEEE80211_CAPINFO_ESS)
2383 		*cp++ = 'E';
2384 	if (capinfo & IEEE80211_CAPINFO_IBSS)
2385 		*cp++ = 'I';
2386 	if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE)
2387 		*cp++ = 'c';
2388 	if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ)
2389 		*cp++ = 'C';
2390 	if (capinfo & IEEE80211_CAPINFO_PRIVACY)
2391 		*cp++ = 'P';
2392 	if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)
2393 		*cp++ = 'S';
2394 	if (capinfo & IEEE80211_CAPINFO_PBCC)
2395 		*cp++ = 'B';
2396 	if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY)
2397 		*cp++ = 'A';
2398 	if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2399 		*cp++ = 's';
2400 	if (capinfo & IEEE80211_CAPINFO_RSN)
2401 		*cp++ = 'R';
2402 	if (capinfo & IEEE80211_CAPINFO_DSSSOFDM)
2403 		*cp++ = 'D';
2404 	*cp = '\0';
2405 	return capstring;
2406 }
2407 
2408 static const char *
2409 getflags(int flags)
2410 {
2411 	static char flagstring[32];
2412 	char *cp = flagstring;
2413 
2414 	if (flags & IEEE80211_NODE_AUTH)
2415 		*cp++ = 'A';
2416 	if (flags & IEEE80211_NODE_QOS)
2417 		*cp++ = 'Q';
2418 	if (flags & IEEE80211_NODE_ERP)
2419 		*cp++ = 'E';
2420 	if (flags & IEEE80211_NODE_PWR_MGT)
2421 		*cp++ = 'P';
2422 	if (flags & IEEE80211_NODE_HT) {
2423 		*cp++ = 'H';
2424 		if (flags & IEEE80211_NODE_HTCOMPAT)
2425 			*cp++ = '+';
2426 	}
2427 	if (flags & IEEE80211_NODE_WPS)
2428 		*cp++ = 'W';
2429 	if (flags & IEEE80211_NODE_TSN)
2430 		*cp++ = 'N';
2431 	if (flags & IEEE80211_NODE_AMPDU_TX)
2432 		*cp++ = 'T';
2433 	if (flags & IEEE80211_NODE_AMPDU_RX)
2434 		*cp++ = 'R';
2435 	if (flags & IEEE80211_NODE_MIMO_PS) {
2436 		*cp++ = 'M';
2437 		if (flags & IEEE80211_NODE_MIMO_RTS)
2438 			*cp++ = '+';
2439 	}
2440 	if (flags & IEEE80211_NODE_RIFS)
2441 		*cp++ = 'I';
2442 	if (flags & IEEE80211_NODE_SGI40) {
2443 		*cp++ = 'S';
2444 		if (flags & IEEE80211_NODE_SGI20)
2445 			*cp++ = '+';
2446 	} else if (flags & IEEE80211_NODE_SGI20)
2447 		*cp++ = 's';
2448 	if (flags & IEEE80211_NODE_AMSDU_TX)
2449 		*cp++ = 't';
2450 	if (flags & IEEE80211_NODE_AMSDU_RX)
2451 		*cp++ = 'r';
2452 	*cp = '\0';
2453 	return flagstring;
2454 }
2455 
2456 static void
2457 printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen)
2458 {
2459 	printf("%s", tag);
2460 	if (verbose) {
2461 		maxlen -= strlen(tag)+2;
2462 		if (2*ielen > maxlen)
2463 			maxlen--;
2464 		printf("<");
2465 		for (; ielen > 0; ie++, ielen--) {
2466 			if (maxlen-- <= 0)
2467 				break;
2468 			printf("%02x", *ie);
2469 		}
2470 		if (ielen != 0)
2471 			printf("-");
2472 		printf(">");
2473 	}
2474 }
2475 
2476 #define LE_READ_2(p)					\
2477 	((u_int16_t)					\
2478 	 ((((const u_int8_t *)(p))[0]      ) |		\
2479 	  (((const u_int8_t *)(p))[1] <<  8)))
2480 #define LE_READ_4(p)					\
2481 	((u_int32_t)					\
2482 	 ((((const u_int8_t *)(p))[0]      ) |		\
2483 	  (((const u_int8_t *)(p))[1] <<  8) |		\
2484 	  (((const u_int8_t *)(p))[2] << 16) |		\
2485 	  (((const u_int8_t *)(p))[3] << 24)))
2486 
2487 /*
2488  * NB: The decoding routines assume a properly formatted ie
2489  *     which should be safe as the kernel only retains them
2490  *     if they parse ok.
2491  */
2492 
2493 static void
2494 printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2495 {
2496 #define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
2497 	static const char *acnames[] = { "BE", "BK", "VO", "VI" };
2498 	const struct ieee80211_wme_param *wme =
2499 	    (const struct ieee80211_wme_param *) ie;
2500 	int i;
2501 
2502 	printf("%s", tag);
2503 	if (!verbose)
2504 		return;
2505 	printf("<qosinfo 0x%x", wme->param_qosInfo);
2506 	ie += offsetof(struct ieee80211_wme_param, params_acParams);
2507 	for (i = 0; i < WME_NUM_AC; i++) {
2508 		const struct ieee80211_wme_acparams *ac =
2509 		    &wme->params_acParams[i];
2510 
2511 		printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]"
2512 			, acnames[i]
2513 			, MS(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : ""
2514 			, MS(ac->acp_aci_aifsn, WME_PARAM_AIFSN)
2515 			, MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN)
2516 			, MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX)
2517 			, LE_READ_2(&ac->acp_txop)
2518 		);
2519 	}
2520 	printf(">");
2521 #undef MS
2522 }
2523 
2524 static void
2525 printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2526 {
2527 	printf("%s", tag);
2528 	if (verbose) {
2529 		const struct ieee80211_wme_info *wme =
2530 		    (const struct ieee80211_wme_info *) ie;
2531 		printf("<version 0x%x info 0x%x>",
2532 		    wme->wme_version, wme->wme_info);
2533 	}
2534 }
2535 
2536 static void
2537 printvhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2538 {
2539 	printf("%s", tag);
2540 	if (verbose) {
2541 		const struct ieee80211_ie_vhtcap *vhtcap =
2542 		    (const struct ieee80211_ie_vhtcap *) ie;
2543 		uint32_t vhtcap_info = LE_READ_4(&vhtcap->vht_cap_info);
2544 
2545 		printf("<cap 0x%08x", vhtcap_info);
2546 		printf(" rx_mcs_map 0x%x",
2547 		    LE_READ_2(&vhtcap->supp_mcs.rx_mcs_map));
2548 		printf(" rx_highest %d",
2549 		    LE_READ_2(&vhtcap->supp_mcs.rx_highest) & 0x1fff);
2550 		printf(" tx_mcs_map 0x%x",
2551 		    LE_READ_2(&vhtcap->supp_mcs.tx_mcs_map));
2552 		printf(" tx_highest %d",
2553 		    LE_READ_2(&vhtcap->supp_mcs.tx_highest) & 0x1fff);
2554 
2555 		printf(">");
2556 	}
2557 }
2558 
2559 static void
2560 printvhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2561 {
2562 	printf("%s", tag);
2563 	if (verbose) {
2564 		const struct ieee80211_ie_vht_operation *vhtinfo =
2565 		    (const struct ieee80211_ie_vht_operation *) ie;
2566 
2567 		printf("<chw %d freq1_idx %d freq2_idx %d basic_mcs_set 0x%04x>",
2568 		    vhtinfo->chan_width,
2569 		    vhtinfo->center_freq_seg1_idx,
2570 		    vhtinfo->center_freq_seg2_idx,
2571 		    LE_READ_2(&vhtinfo->basic_mcs_set));
2572 	}
2573 }
2574 
2575 static void
2576 printvhtpwrenv(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2577 {
2578 	printf("%s", tag);
2579 	static const char *txpwrmap[] = {
2580 		"20",
2581 		"40",
2582 		"80",
2583 		"160",
2584 	};
2585 	if (verbose) {
2586 		const struct ieee80211_ie_vht_txpwrenv *vhtpwr =
2587 		    (const struct ieee80211_ie_vht_txpwrenv *) ie;
2588 		int i, n;
2589 		const char *sep = "";
2590 
2591 		/* Get count; trim at ielen */
2592 		n = (vhtpwr->tx_info &
2593 		    IEEE80211_VHT_TXPWRENV_INFO_COUNT_MASK) + 1;
2594 		/* Trim at ielen */
2595 		if (n > ielen - 3)
2596 			n = ielen - 3;
2597 		printf("<tx_info 0x%02x pwr:[", vhtpwr->tx_info);
2598 		for (i = 0; i < n; i++) {
2599 			printf("%s%s:%.2f", sep, txpwrmap[i],
2600 			    ((float) ((int8_t) ie[i+3])) / 2.0);
2601 			sep = " ";
2602 		}
2603 
2604 		printf("]>");
2605 	}
2606 }
2607 
2608 static void
2609 printhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2610 {
2611 	printf("%s", tag);
2612 	if (verbose) {
2613 		const struct ieee80211_ie_htcap *htcap =
2614 		    (const struct ieee80211_ie_htcap *) ie;
2615 		const char *sep;
2616 		int i, j;
2617 
2618 		printf("<cap 0x%x param 0x%x",
2619 		    LE_READ_2(&htcap->hc_cap), htcap->hc_param);
2620 		printf(" mcsset[");
2621 		sep = "";
2622 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++)
2623 			if (isset(htcap->hc_mcsset, i)) {
2624 				for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++)
2625 					if (isclr(htcap->hc_mcsset, j))
2626 						break;
2627 				j--;
2628 				if (i == j)
2629 					printf("%s%u", sep, i);
2630 				else
2631 					printf("%s%u-%u", sep, i, j);
2632 				i += j-i;
2633 				sep = ",";
2634 			}
2635 		printf("] extcap 0x%x txbf 0x%x antenna 0x%x>",
2636 		    LE_READ_2(&htcap->hc_extcap),
2637 		    LE_READ_4(&htcap->hc_txbf),
2638 		    htcap->hc_antenna);
2639 	}
2640 }
2641 
2642 static void
2643 printhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2644 {
2645 	printf("%s", tag);
2646 	if (verbose) {
2647 		const struct ieee80211_ie_htinfo *htinfo =
2648 		    (const struct ieee80211_ie_htinfo *) ie;
2649 		const char *sep;
2650 		int i, j;
2651 
2652 		printf("<ctl %u, %x,%x,%x,%x", htinfo->hi_ctrlchannel,
2653 		    htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3,
2654 		    LE_READ_2(&htinfo->hi_byte45));
2655 		printf(" basicmcs[");
2656 		sep = "";
2657 		for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++)
2658 			if (isset(htinfo->hi_basicmcsset, i)) {
2659 				for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++)
2660 					if (isclr(htinfo->hi_basicmcsset, j))
2661 						break;
2662 				j--;
2663 				if (i == j)
2664 					printf("%s%u", sep, i);
2665 				else
2666 					printf("%s%u-%u", sep, i, j);
2667 				i += j-i;
2668 				sep = ",";
2669 			}
2670 		printf("]>");
2671 	}
2672 }
2673 
2674 static void
2675 printathie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2676 {
2677 
2678 	printf("%s", tag);
2679 	if (verbose) {
2680 		const struct ieee80211_ath_ie *ath =
2681 			(const struct ieee80211_ath_ie *)ie;
2682 
2683 		printf("<");
2684 		if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME)
2685 			printf("DTURBO,");
2686 		if (ath->ath_capability & ATHEROS_CAP_COMPRESSION)
2687 			printf("COMP,");
2688 		if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME)
2689 			printf("FF,");
2690 		if (ath->ath_capability & ATHEROS_CAP_XR)
2691 			printf("XR,");
2692 		if (ath->ath_capability & ATHEROS_CAP_AR)
2693 			printf("AR,");
2694 		if (ath->ath_capability & ATHEROS_CAP_BURST)
2695 			printf("BURST,");
2696 		if (ath->ath_capability & ATHEROS_CAP_WME)
2697 			printf("WME,");
2698 		if (ath->ath_capability & ATHEROS_CAP_BOOST)
2699 			printf("BOOST,");
2700 		printf("0x%x>", LE_READ_2(ath->ath_defkeyix));
2701 	}
2702 }
2703 
2704 
2705 static void
2706 printmeshconf(const char *tag, const uint8_t *ie, size_t ielen, int maxlen)
2707 {
2708 #define MATCHOUI(field, oui, string)					\
2709 do {									\
2710 	if (memcmp(field, oui, 4) == 0)					\
2711 		printf("%s", string);					\
2712 } while (0)
2713 
2714 	printf("%s", tag);
2715 	if (verbose) {
2716 		const struct ieee80211_meshconf_ie *mconf =
2717 			(const struct ieee80211_meshconf_ie *)ie;
2718 		printf("<PATH:");
2719 		if (mconf->conf_pselid == IEEE80211_MESHCONF_PATH_HWMP)
2720 			printf("HWMP");
2721 		else
2722 			printf("UNKNOWN");
2723 		printf(" LINK:");
2724 		if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME)
2725 			printf("AIRTIME");
2726 		else
2727 			printf("UNKNOWN");
2728 		printf(" CONGESTION:");
2729 		if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED)
2730 			printf("DISABLED");
2731 		else
2732 			printf("UNKNOWN");
2733 		printf(" SYNC:");
2734 		if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF)
2735 			printf("NEIGHOFF");
2736 		else
2737 			printf("UNKNOWN");
2738 		printf(" AUTH:");
2739 		if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED)
2740 			printf("DISABLED");
2741 		else
2742 			printf("UNKNOWN");
2743 		printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form,
2744 		    mconf->conf_cap);
2745 	}
2746 #undef MATCHOUI
2747 }
2748 
2749 static void
2750 printbssload(const char *tag, const uint8_t *ie, size_t ielen, int maxlen)
2751 {
2752 	printf("%s", tag);
2753 	if (verbose) {
2754 		const struct ieee80211_bss_load_ie *bssload =
2755 		    (const struct ieee80211_bss_load_ie *) ie;
2756 		printf("<sta count %d, chan load %d, aac %d>",
2757 		    LE_READ_2(&bssload->sta_count),
2758 		    bssload->chan_load,
2759 		    bssload->aac);
2760 	}
2761 }
2762 
2763 static void
2764 printapchanrep(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2765 {
2766 	printf("%s", tag);
2767 	if (verbose) {
2768 		const struct ieee80211_ap_chan_report_ie *ap =
2769 		    (const struct ieee80211_ap_chan_report_ie *) ie;
2770 		const char *sep = "";
2771 		int i;
2772 
2773 		printf("<class %u, chan:[", ap->i_class);
2774 
2775 		for (i = 3; i < ielen; i++) {
2776 			printf("%s%u", sep, ie[i]);
2777 			sep = ",";
2778 		}
2779 		printf("]>");
2780 	}
2781 }
2782 
2783 static const char *
2784 wpa_cipher(const u_int8_t *sel)
2785 {
2786 #define	WPA_SEL(x)	(((x)<<24)|WPA_OUI)
2787 	u_int32_t w = LE_READ_4(sel);
2788 
2789 	switch (w) {
2790 	case WPA_SEL(WPA_CSE_NULL):
2791 		return "NONE";
2792 	case WPA_SEL(WPA_CSE_WEP40):
2793 		return "WEP40";
2794 	case WPA_SEL(WPA_CSE_WEP104):
2795 		return "WEP104";
2796 	case WPA_SEL(WPA_CSE_TKIP):
2797 		return "TKIP";
2798 	case WPA_SEL(WPA_CSE_CCMP):
2799 		return "AES-CCMP";
2800 	}
2801 	return "?";		/* NB: so 1<< is discarded */
2802 #undef WPA_SEL
2803 }
2804 
2805 static const char *
2806 wpa_keymgmt(const u_int8_t *sel)
2807 {
2808 #define	WPA_SEL(x)	(((x)<<24)|WPA_OUI)
2809 	u_int32_t w = LE_READ_4(sel);
2810 
2811 	switch (w) {
2812 	case WPA_SEL(WPA_ASE_8021X_UNSPEC):
2813 		return "8021X-UNSPEC";
2814 	case WPA_SEL(WPA_ASE_8021X_PSK):
2815 		return "8021X-PSK";
2816 	case WPA_SEL(WPA_ASE_NONE):
2817 		return "NONE";
2818 	}
2819 	return "?";
2820 #undef WPA_SEL
2821 }
2822 
2823 static void
2824 printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2825 {
2826 	u_int8_t len = ie[1];
2827 
2828 	printf("%s", tag);
2829 	if (verbose) {
2830 		const char *sep;
2831 		int n;
2832 
2833 		ie += 6, len -= 4;		/* NB: len is payload only */
2834 
2835 		printf("<v%u", LE_READ_2(ie));
2836 		ie += 2, len -= 2;
2837 
2838 		printf(" mc:%s", wpa_cipher(ie));
2839 		ie += 4, len -= 4;
2840 
2841 		/* unicast ciphers */
2842 		n = LE_READ_2(ie);
2843 		ie += 2, len -= 2;
2844 		sep = " uc:";
2845 		for (; n > 0; n--) {
2846 			printf("%s%s", sep, wpa_cipher(ie));
2847 			ie += 4, len -= 4;
2848 			sep = "+";
2849 		}
2850 
2851 		/* key management algorithms */
2852 		n = LE_READ_2(ie);
2853 		ie += 2, len -= 2;
2854 		sep = " km:";
2855 		for (; n > 0; n--) {
2856 			printf("%s%s", sep, wpa_keymgmt(ie));
2857 			ie += 4, len -= 4;
2858 			sep = "+";
2859 		}
2860 
2861 		if (len > 2)		/* optional capabilities */
2862 			printf(", caps 0x%x", LE_READ_2(ie));
2863 		printf(">");
2864 	}
2865 }
2866 
2867 static const char *
2868 rsn_cipher(const u_int8_t *sel)
2869 {
2870 #define	RSN_SEL(x)	(((x)<<24)|RSN_OUI)
2871 	u_int32_t w = LE_READ_4(sel);
2872 
2873 	switch (w) {
2874 	case RSN_SEL(RSN_CSE_NULL):
2875 		return "NONE";
2876 	case RSN_SEL(RSN_CSE_WEP40):
2877 		return "WEP40";
2878 	case RSN_SEL(RSN_CSE_WEP104):
2879 		return "WEP104";
2880 	case RSN_SEL(RSN_CSE_TKIP):
2881 		return "TKIP";
2882 	case RSN_SEL(RSN_CSE_CCMP):
2883 		return "AES-CCMP";
2884 	case RSN_SEL(RSN_CSE_WRAP):
2885 		return "AES-OCB";
2886 	}
2887 	return "?";
2888 #undef WPA_SEL
2889 }
2890 
2891 static const char *
2892 rsn_keymgmt(const u_int8_t *sel)
2893 {
2894 #define	RSN_SEL(x)	(((x)<<24)|RSN_OUI)
2895 	u_int32_t w = LE_READ_4(sel);
2896 
2897 	switch (w) {
2898 	case RSN_SEL(RSN_ASE_8021X_UNSPEC):
2899 		return "8021X-UNSPEC";
2900 	case RSN_SEL(RSN_ASE_8021X_PSK):
2901 		return "8021X-PSK";
2902 	case RSN_SEL(RSN_ASE_NONE):
2903 		return "NONE";
2904 	}
2905 	return "?";
2906 #undef RSN_SEL
2907 }
2908 
2909 static void
2910 printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2911 {
2912 	printf("%s", tag);
2913 	if (verbose) {
2914 		const char *sep;
2915 		int n;
2916 
2917 		ie += 2, ielen -= 2;
2918 
2919 		printf("<v%u", LE_READ_2(ie));
2920 		ie += 2, ielen -= 2;
2921 
2922 		printf(" mc:%s", rsn_cipher(ie));
2923 		ie += 4, ielen -= 4;
2924 
2925 		/* unicast ciphers */
2926 		n = LE_READ_2(ie);
2927 		ie += 2, ielen -= 2;
2928 		sep = " uc:";
2929 		for (; n > 0; n--) {
2930 			printf("%s%s", sep, rsn_cipher(ie));
2931 			ie += 4, ielen -= 4;
2932 			sep = "+";
2933 		}
2934 
2935 		/* key management algorithms */
2936 		n = LE_READ_2(ie);
2937 		ie += 2, ielen -= 2;
2938 		sep = " km:";
2939 		for (; n > 0; n--) {
2940 			printf("%s%s", sep, rsn_keymgmt(ie));
2941 			ie += 4, ielen -= 4;
2942 			sep = "+";
2943 		}
2944 
2945 		if (ielen > 2)		/* optional capabilities */
2946 			printf(", caps 0x%x", LE_READ_2(ie));
2947 		/* XXXPMKID */
2948 		printf(">");
2949 	}
2950 }
2951 
2952 /* XXX move to a public include file */
2953 #define IEEE80211_WPS_DEV_PASS_ID	0x1012
2954 #define IEEE80211_WPS_SELECTED_REG	0x1041
2955 #define IEEE80211_WPS_SETUP_STATE	0x1044
2956 #define IEEE80211_WPS_UUID_E		0x1047
2957 #define IEEE80211_WPS_VERSION		0x104a
2958 
2959 #define BE_READ_2(p)					\
2960 	((u_int16_t)					\
2961 	 ((((const u_int8_t *)(p))[1]      ) |		\
2962 	  (((const u_int8_t *)(p))[0] <<  8)))
2963 
2964 static void
2965 printwpsie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
2966 {
2967 	u_int8_t len = ie[1];
2968 
2969 	printf("%s", tag);
2970 	if (verbose) {
2971 		static const char *dev_pass_id[] = {
2972 			"D",	/* Default (PIN) */
2973 			"U",	/* User-specified */
2974 			"M",	/* Machine-specified */
2975 			"K",	/* Rekey */
2976 			"P",	/* PushButton */
2977 			"R"	/* Registrar-specified */
2978 		};
2979 		int n;
2980 
2981 		ie +=6, len -= 4;		/* NB: len is payload only */
2982 
2983 		/* WPS IE in Beacon and Probe Resp frames have different fields */
2984 		printf("<");
2985 		while (len) {
2986 			uint16_t tlv_type = BE_READ_2(ie);
2987 			uint16_t tlv_len  = BE_READ_2(ie + 2);
2988 
2989 			ie += 4, len -= 4;
2990 
2991 			switch (tlv_type) {
2992 			case IEEE80211_WPS_VERSION:
2993 				printf("v:%d.%d", *ie >> 4, *ie & 0xf);
2994 				break;
2995 			case IEEE80211_WPS_SETUP_STATE:
2996 				/* Only 1 and 2 are valid */
2997 				if (*ie == 0 || *ie >= 3)
2998 					printf(" state:B");
2999 				else
3000 					printf(" st:%s", *ie == 1 ? "N" : "C");
3001 				break;
3002 			case IEEE80211_WPS_SELECTED_REG:
3003 				printf(" sel:%s", *ie ? "T" : "F");
3004 				break;
3005 			case IEEE80211_WPS_DEV_PASS_ID:
3006 				n = LE_READ_2(ie);
3007 				if (n < nitems(dev_pass_id))
3008 					printf(" dpi:%s", dev_pass_id[n]);
3009 				break;
3010 			case IEEE80211_WPS_UUID_E:
3011 				printf(" uuid-e:");
3012 				for (n = 0; n < (tlv_len - 1); n++)
3013 					printf("%02x-", ie[n]);
3014 				printf("%02x", ie[n]);
3015 				break;
3016 			}
3017 			ie += tlv_len, len -= tlv_len;
3018 		}
3019 		printf(">");
3020 	}
3021 }
3022 
3023 static void
3024 printtdmaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
3025 {
3026 	printf("%s", tag);
3027 	if (verbose && ielen >= sizeof(struct ieee80211_tdma_param)) {
3028 		const struct ieee80211_tdma_param *tdma =
3029 		   (const struct ieee80211_tdma_param *) ie;
3030 
3031 		/* XXX tstamp */
3032 		printf("<v%u slot:%u slotcnt:%u slotlen:%u bintval:%u inuse:0x%x>",
3033 		    tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt,
3034 		    LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval,
3035 		    tdma->tdma_inuse[0]);
3036 	}
3037 }
3038 
3039 /*
3040  * Copy the ssid string contents into buf, truncating to fit.  If the
3041  * ssid is entirely printable then just copy intact.  Otherwise convert
3042  * to hexadecimal.  If the result is truncated then replace the last
3043  * three characters with "...".
3044  */
3045 static int
3046 copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len)
3047 {
3048 	const u_int8_t *p;
3049 	size_t maxlen;
3050 	int i;
3051 
3052 	if (essid_len > bufsize)
3053 		maxlen = bufsize;
3054 	else
3055 		maxlen = essid_len;
3056 	/* determine printable or not */
3057 	for (i = 0, p = essid; i < maxlen; i++, p++) {
3058 		if (*p < ' ' || *p > 0x7e)
3059 			break;
3060 	}
3061 	if (i != maxlen) {		/* not printable, print as hex */
3062 		if (bufsize < 3)
3063 			return 0;
3064 		strlcpy(buf, "0x", bufsize);
3065 		bufsize -= 2;
3066 		p = essid;
3067 		for (i = 0; i < maxlen && bufsize >= 2; i++) {
3068 			sprintf(&buf[2+2*i], "%02x", p[i]);
3069 			bufsize -= 2;
3070 		}
3071 		if (i != essid_len)
3072 			memcpy(&buf[2+2*i-3], "...", 3);
3073 	} else {			/* printable, truncate as needed */
3074 		memcpy(buf, essid, maxlen);
3075 		if (maxlen != essid_len)
3076 			memcpy(&buf[maxlen-3], "...", 3);
3077 	}
3078 	return maxlen;
3079 }
3080 
3081 static void
3082 printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
3083 {
3084 	char ssid[2*IEEE80211_NWID_LEN+1];
3085 
3086 	printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid);
3087 }
3088 
3089 static void
3090 printrates(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
3091 {
3092 	const char *sep;
3093 	int i;
3094 
3095 	printf("%s", tag);
3096 	sep = "<";
3097 	for (i = 2; i < ielen; i++) {
3098 		printf("%s%s%d", sep,
3099 		    ie[i] & IEEE80211_RATE_BASIC ? "B" : "",
3100 		    ie[i] & IEEE80211_RATE_VAL);
3101 		sep = ",";
3102 	}
3103 	printf(">");
3104 }
3105 
3106 static void
3107 printcountry(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen)
3108 {
3109 	const struct ieee80211_country_ie *cie =
3110 	   (const struct ieee80211_country_ie *) ie;
3111 	int i, nbands, schan, nchan;
3112 
3113 	printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]);
3114 	nbands = (cie->len - 3) / sizeof(cie->band[0]);
3115 	for (i = 0; i < nbands; i++) {
3116 		schan = cie->band[i].schan;
3117 		nchan = cie->band[i].nchan;
3118 		if (nchan != 1)
3119 			printf(" %u-%u,%u", schan, schan + nchan-1,
3120 			    cie->band[i].maxtxpwr);
3121 		else
3122 			printf(" %u,%u", schan, cie->band[i].maxtxpwr);
3123 	}
3124 	printf(">");
3125 }
3126 
3127 static __inline int
3128 iswpaoui(const u_int8_t *frm)
3129 {
3130 	return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI);
3131 }
3132 
3133 static __inline int
3134 iswmeinfo(const u_int8_t *frm)
3135 {
3136 	return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
3137 		frm[6] == WME_INFO_OUI_SUBTYPE;
3138 }
3139 
3140 static __inline int
3141 iswmeparam(const u_int8_t *frm)
3142 {
3143 	return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) &&
3144 		frm[6] == WME_PARAM_OUI_SUBTYPE;
3145 }
3146 
3147 static __inline int
3148 isatherosoui(const u_int8_t *frm)
3149 {
3150 	return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI);
3151 }
3152 
3153 static __inline int
3154 istdmaoui(const uint8_t *frm)
3155 {
3156 	return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI);
3157 }
3158 
3159 static __inline int
3160 iswpsoui(const uint8_t *frm)
3161 {
3162 	return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI);
3163 }
3164 
3165 static const char *
3166 iename(int elemid)
3167 {
3168 	switch (elemid) {
3169 	case IEEE80211_ELEMID_FHPARMS:	return " FHPARMS";
3170 	case IEEE80211_ELEMID_CFPARMS:	return " CFPARMS";
3171 	case IEEE80211_ELEMID_TIM:	return " TIM";
3172 	case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS";
3173 	case IEEE80211_ELEMID_BSSLOAD:	return " BSSLOAD";
3174 	case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE";
3175 	case IEEE80211_ELEMID_PWRCNSTR:	return " PWRCNSTR";
3176 	case IEEE80211_ELEMID_PWRCAP:	return " PWRCAP";
3177 	case IEEE80211_ELEMID_TPCREQ:	return " TPCREQ";
3178 	case IEEE80211_ELEMID_TPCREP:	return " TPCREP";
3179 	case IEEE80211_ELEMID_SUPPCHAN:	return " SUPPCHAN";
3180 	case IEEE80211_ELEMID_CSA:	return " CSA";
3181 	case IEEE80211_ELEMID_MEASREQ:	return " MEASREQ";
3182 	case IEEE80211_ELEMID_MEASREP:	return " MEASREP";
3183 	case IEEE80211_ELEMID_QUIET:	return " QUIET";
3184 	case IEEE80211_ELEMID_IBSSDFS:	return " IBSSDFS";
3185 	case IEEE80211_ELEMID_TPC:	return " TPC";
3186 	case IEEE80211_ELEMID_CCKM:	return " CCKM";
3187 	}
3188 	return " ???";
3189 }
3190 
3191 static void
3192 printies(const u_int8_t *vp, int ielen, int maxcols)
3193 {
3194 	while (ielen > 0) {
3195 		switch (vp[0]) {
3196 		case IEEE80211_ELEMID_SSID:
3197 			if (verbose)
3198 				printssid(" SSID", vp, 2+vp[1], maxcols);
3199 			break;
3200 		case IEEE80211_ELEMID_RATES:
3201 		case IEEE80211_ELEMID_XRATES:
3202 			if (verbose)
3203 				printrates(vp[0] == IEEE80211_ELEMID_RATES ?
3204 				    " RATES" : " XRATES", vp, 2+vp[1], maxcols);
3205 			break;
3206 		case IEEE80211_ELEMID_DSPARMS:
3207 			if (verbose)
3208 				printf(" DSPARMS<%u>", vp[2]);
3209 			break;
3210 		case IEEE80211_ELEMID_COUNTRY:
3211 			if (verbose)
3212 				printcountry(" COUNTRY", vp, 2+vp[1], maxcols);
3213 			break;
3214 		case IEEE80211_ELEMID_ERP:
3215 			if (verbose)
3216 				printf(" ERP<0x%x>", vp[2]);
3217 			break;
3218 		case IEEE80211_ELEMID_VENDOR:
3219 			if (iswpaoui(vp))
3220 				printwpaie(" WPA", vp, 2+vp[1], maxcols);
3221 			else if (iswmeinfo(vp))
3222 				printwmeinfo(" WME", vp, 2+vp[1], maxcols);
3223 			else if (iswmeparam(vp))
3224 				printwmeparam(" WME", vp, 2+vp[1], maxcols);
3225 			else if (isatherosoui(vp))
3226 				printathie(" ATH", vp, 2+vp[1], maxcols);
3227 			else if (iswpsoui(vp))
3228 				printwpsie(" WPS", vp, 2+vp[1], maxcols);
3229 			else if (istdmaoui(vp))
3230 				printtdmaie(" TDMA", vp, 2+vp[1], maxcols);
3231 			else if (verbose)
3232 				printie(" VEN", vp, 2+vp[1], maxcols);
3233 			break;
3234 		case IEEE80211_ELEMID_RSN:
3235 			printrsnie(" RSN", vp, 2+vp[1], maxcols);
3236 			break;
3237 		case IEEE80211_ELEMID_HTCAP:
3238 			printhtcap(" HTCAP", vp, 2+vp[1], maxcols);
3239 			break;
3240 		case IEEE80211_ELEMID_HTINFO:
3241 			if (verbose)
3242 				printhtinfo(" HTINFO", vp, 2+vp[1], maxcols);
3243 			break;
3244 		case IEEE80211_ELEMID_MESHID:
3245 			if (verbose)
3246 				printssid(" MESHID", vp, 2+vp[1], maxcols);
3247 			break;
3248 		case IEEE80211_ELEMID_MESHCONF:
3249 			printmeshconf(" MESHCONF", vp, 2+vp[1], maxcols);
3250 			break;
3251 		case IEEE80211_ELEMID_VHT_CAP:
3252 			printvhtcap(" VHTCAP", vp, 2+vp[1], maxcols);
3253 			break;
3254 		case IEEE80211_ELEMID_VHT_OPMODE:
3255 			printvhtinfo(" VHTOPMODE", vp, 2+vp[1], maxcols);
3256 			break;
3257 		case IEEE80211_ELEMID_VHT_PWR_ENV:
3258 			printvhtpwrenv(" VHTPWRENV", vp, 2+vp[1], maxcols);
3259 			break;
3260 		case IEEE80211_ELEMID_BSSLOAD:
3261 			printbssload(" BSSLOAD", vp, 2+vp[1], maxcols);
3262 			break;
3263 		case IEEE80211_ELEMID_APCHANREP:
3264 			printapchanrep(" APCHANREP", vp, 2+vp[1], maxcols);
3265 			break;
3266 		default:
3267 			if (verbose)
3268 				printie(iename(vp[0]), vp, 2+vp[1], maxcols);
3269 			break;
3270 		}
3271 		ielen -= 2+vp[1];
3272 		vp += 2+vp[1];
3273 	}
3274 }
3275 
3276 static void
3277 printmimo(const struct ieee80211_mimo_info *mi)
3278 {
3279 	/* NB: don't muddy display unless there's something to show */
3280 	if (mi->rssi[0] != 0 || mi->rssi[1] != 0 || mi->rssi[2] != 0) {
3281 		/* XXX ignore EVM for now */
3282 		printf(" (rssi %d:%d:%d nf %d:%d:%d)",
3283 		    mi->rssi[0], mi->rssi[1], mi->rssi[2],
3284 		    mi->noise[0], mi->noise[1], mi->noise[2]);
3285 	}
3286 }
3287 
3288 static void
3289 list_scan(int s)
3290 {
3291 	uint8_t buf[24*1024];
3292 	char ssid[IEEE80211_NWID_LEN+1];
3293 	const uint8_t *cp;
3294 	int len, ssidmax, idlen;
3295 
3296 	if (get80211len(s, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0)
3297 		errx(1, "unable to get scan results");
3298 	if (len < sizeof(struct ieee80211req_scan_result))
3299 		return;
3300 
3301 	getchaninfo(s);
3302 
3303 	ssidmax = verbose ? IEEE80211_NWID_LEN - 1 : 14;
3304 	printf("%-*.*s  %-17.17s  %4s %4s   %-7s  %3s %4s\n"
3305 		, ssidmax, ssidmax, "SSID/MESH ID"
3306 		, "BSSID"
3307 		, "CHAN"
3308 		, "RATE"
3309 		, " S:N"
3310 		, "INT"
3311 		, "CAPS"
3312 	);
3313 	cp = buf;
3314 	do {
3315 		const struct ieee80211req_scan_result *sr;
3316 		const uint8_t *vp, *idp;
3317 
3318 		sr = (const struct ieee80211req_scan_result *) cp;
3319 		vp = cp + sr->isr_ie_off;
3320 		if (sr->isr_meshid_len) {
3321 			idp = vp + sr->isr_ssid_len;
3322 			idlen = sr->isr_meshid_len;
3323 		} else {
3324 			idp = vp;
3325 			idlen = sr->isr_ssid_len;
3326 		}
3327 		printf("%-*.*s  %s  %3d  %3dM %4d:%-4d %4d %-4.4s"
3328 			, ssidmax
3329 			  , copy_essid(ssid, ssidmax, idp, idlen)
3330 			  , ssid
3331 			, ether_ntoa((const struct ether_addr *) sr->isr_bssid)
3332 			, ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags)
3333 			, getmaxrate(sr->isr_rates, sr->isr_nrates)
3334 			, (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise
3335 			, sr->isr_intval
3336 			, getcaps(sr->isr_capinfo)
3337 		);
3338 		printies(vp + sr->isr_ssid_len + sr->isr_meshid_len,
3339 		    sr->isr_ie_len, 24);
3340 		printf("\n");
3341 		cp += sr->isr_len, len -= sr->isr_len;
3342 	} while (len >= sizeof(struct ieee80211req_scan_result));
3343 }
3344 
3345 static void
3346 scan_and_wait(int s)
3347 {
3348 	struct ieee80211_scan_req sr;
3349 	struct ieee80211req ireq;
3350 	int sroute;
3351 
3352 	sroute = socket(PF_ROUTE, SOCK_RAW, 0);
3353 	if (sroute < 0) {
3354 		perror("socket(PF_ROUTE,SOCK_RAW)");
3355 		return;
3356 	}
3357 	(void) memset(&ireq, 0, sizeof(ireq));
3358 	(void) strncpy(ireq.i_name, name, sizeof(ireq.i_name));
3359 	ireq.i_type = IEEE80211_IOC_SCAN_REQ;
3360 
3361 	memset(&sr, 0, sizeof(sr));
3362 	sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE
3363 		    | IEEE80211_IOC_SCAN_BGSCAN
3364 		    | IEEE80211_IOC_SCAN_NOPICK
3365 		    | IEEE80211_IOC_SCAN_ONCE;
3366 	sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER;
3367 	sr.sr_nssid = 0;
3368 
3369 	ireq.i_data = &sr;
3370 	ireq.i_len = sizeof(sr);
3371 	/*
3372 	 * NB: only root can trigger a scan so ignore errors. Also ignore
3373 	 * possible errors from net80211, even if no new scan could be
3374 	 * started there might still be a valid scan cache.
3375 	 */
3376 	if (ioctl(s, SIOCS80211, &ireq) == 0) {
3377 		char buf[2048];
3378 		struct if_announcemsghdr *ifan;
3379 		struct rt_msghdr *rtm;
3380 
3381 		do {
3382 			if (read(sroute, buf, sizeof(buf)) < 0) {
3383 				perror("read(PF_ROUTE)");
3384 				break;
3385 			}
3386 			rtm = (struct rt_msghdr *) buf;
3387 			if (rtm->rtm_version != RTM_VERSION)
3388 				break;
3389 			ifan = (struct if_announcemsghdr *) rtm;
3390 		} while (rtm->rtm_type != RTM_IEEE80211 ||
3391 		    ifan->ifan_what != RTM_IEEE80211_SCAN);
3392 	}
3393 	close(sroute);
3394 }
3395 
3396 static
3397 DECL_CMD_FUNC(set80211scan, val, d)
3398 {
3399 	scan_and_wait(s);
3400 	list_scan(s);
3401 }
3402 
3403 static enum ieee80211_opmode get80211opmode(int s);
3404 
3405 static int
3406 gettxseq(const struct ieee80211req_sta_info *si)
3407 {
3408 	int i, txseq;
3409 
3410 	if ((si->isi_state & IEEE80211_NODE_QOS) == 0)
3411 		return si->isi_txseqs[0];
3412 	/* XXX not right but usually what folks want */
3413 	txseq = 0;
3414 	for (i = 0; i < IEEE80211_TID_SIZE; i++)
3415 		if (si->isi_txseqs[i] > txseq)
3416 			txseq = si->isi_txseqs[i];
3417 	return txseq;
3418 }
3419 
3420 static int
3421 getrxseq(const struct ieee80211req_sta_info *si)
3422 {
3423 	int i, rxseq;
3424 
3425 	if ((si->isi_state & IEEE80211_NODE_QOS) == 0)
3426 		return si->isi_rxseqs[0];
3427 	/* XXX not right but usually what folks want */
3428 	rxseq = 0;
3429 	for (i = 0; i < IEEE80211_TID_SIZE; i++)
3430 		if (si->isi_rxseqs[i] > rxseq)
3431 			rxseq = si->isi_rxseqs[i];
3432 	return rxseq;
3433 }
3434 
3435 static void
3436 list_stations(int s)
3437 {
3438 	union {
3439 		struct ieee80211req_sta_req req;
3440 		uint8_t buf[24*1024];
3441 	} u;
3442 	enum ieee80211_opmode opmode = get80211opmode(s);
3443 	const uint8_t *cp;
3444 	int len;
3445 
3446 	/* broadcast address =>'s get all stations */
3447 	(void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN);
3448 	if (opmode == IEEE80211_M_STA) {
3449 		/*
3450 		 * Get information about the associated AP.
3451 		 */
3452 		(void) get80211(s, IEEE80211_IOC_BSSID,
3453 		    u.req.is_u.macaddr, IEEE80211_ADDR_LEN);
3454 	}
3455 	if (get80211len(s, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0)
3456 		errx(1, "unable to get station information");
3457 	if (len < sizeof(struct ieee80211req_sta_info))
3458 		return;
3459 
3460 	getchaninfo(s);
3461 
3462 	if (opmode == IEEE80211_M_MBSS)
3463 		printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n"
3464 			, "ADDR"
3465 			, "CHAN"
3466 			, "LOCAL"
3467 			, "PEER"
3468 			, "STATE"
3469 			, "RATE"
3470 			, "RSSI"
3471 			, "IDLE"
3472 			, "TXSEQ"
3473 			, "RXSEQ"
3474 		);
3475 	else
3476 		printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-7s\n"
3477 			, "ADDR"
3478 			, "AID"
3479 			, "CHAN"
3480 			, "RATE"
3481 			, "RSSI"
3482 			, "IDLE"
3483 			, "TXSEQ"
3484 			, "RXSEQ"
3485 			, "CAPS"
3486 			, "FLAG"
3487 		);
3488 	cp = (const uint8_t *) u.req.info;
3489 	do {
3490 		const struct ieee80211req_sta_info *si;
3491 
3492 		si = (const struct ieee80211req_sta_info *) cp;
3493 		if (si->isi_len < sizeof(*si))
3494 			break;
3495 		if (opmode == IEEE80211_M_MBSS)
3496 			printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d"
3497 				, ether_ntoa((const struct ether_addr*)
3498 				    si->isi_macaddr)
3499 				, ieee80211_mhz2ieee(si->isi_freq,
3500 				    si->isi_flags)
3501 				, si->isi_localid
3502 				, si->isi_peerid
3503 				, mesh_linkstate_string(si->isi_peerstate)
3504 				, si->isi_txmbps/2
3505 				, si->isi_rssi/2.
3506 				, si->isi_inact
3507 				, gettxseq(si)
3508 				, getrxseq(si)
3509 			);
3510 		else
3511 			printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-7.7s"
3512 				, ether_ntoa((const struct ether_addr*)
3513 				    si->isi_macaddr)
3514 				, IEEE80211_AID(si->isi_associd)
3515 				, ieee80211_mhz2ieee(si->isi_freq,
3516 				    si->isi_flags)
3517 				, si->isi_txmbps/2
3518 				, si->isi_rssi/2.
3519 				, si->isi_inact
3520 				, gettxseq(si)
3521 				, getrxseq(si)
3522 				, getcaps(si->isi_capinfo)
3523 				, getflags(si->isi_state)
3524 			);
3525 		printies(cp + si->isi_ie_off, si->isi_ie_len, 24);
3526 		printmimo(&si->isi_mimo);
3527 		printf("\n");
3528 		cp += si->isi_len, len -= si->isi_len;
3529 	} while (len >= sizeof(struct ieee80211req_sta_info));
3530 }
3531 
3532 static const char *
3533 mesh_linkstate_string(uint8_t state)
3534 {
3535 	static const char *state_names[] = {
3536 	    [0] = "IDLE",
3537 	    [1] = "OPEN-TX",
3538 	    [2] = "OPEN-RX",
3539 	    [3] = "CONF-RX",
3540 	    [4] = "ESTAB",
3541 	    [5] = "HOLDING",
3542 	};
3543 
3544 	if (state >= nitems(state_names)) {
3545 		static char buf[10];
3546 		snprintf(buf, sizeof(buf), "#%u", state);
3547 		return buf;
3548 	} else
3549 		return state_names[state];
3550 }
3551 
3552 static const char *
3553 get_chaninfo(const struct ieee80211_channel *c, int precise,
3554 	char buf[], size_t bsize)
3555 {
3556 	buf[0] = '\0';
3557 	if (IEEE80211_IS_CHAN_FHSS(c))
3558 		strlcat(buf, " FHSS", bsize);
3559 	if (IEEE80211_IS_CHAN_A(c))
3560 		strlcat(buf, " 11a", bsize);
3561 	else if (IEEE80211_IS_CHAN_ANYG(c))
3562 		strlcat(buf, " 11g", bsize);
3563 	else if (IEEE80211_IS_CHAN_B(c))
3564 		strlcat(buf, " 11b", bsize);
3565 	if (IEEE80211_IS_CHAN_HALF(c))
3566 		strlcat(buf, "/10MHz", bsize);
3567 	if (IEEE80211_IS_CHAN_QUARTER(c))
3568 		strlcat(buf, "/5MHz", bsize);
3569 	if (IEEE80211_IS_CHAN_TURBO(c))
3570 		strlcat(buf, " Turbo", bsize);
3571 	if (precise) {
3572 		if (IEEE80211_IS_CHAN_HT20(c))
3573 			strlcat(buf, " ht/20", bsize);
3574 		else if (IEEE80211_IS_CHAN_HT40D(c))
3575 			strlcat(buf, " ht/40-", bsize);
3576 		else if (IEEE80211_IS_CHAN_HT40U(c))
3577 			strlcat(buf, " ht/40+", bsize);
3578 	} else {
3579 		if (IEEE80211_IS_CHAN_HT(c))
3580 			strlcat(buf, " ht", bsize);
3581 	}
3582 	return buf;
3583 }
3584 
3585 static void
3586 print_chaninfo(const struct ieee80211_channel *c, int verb)
3587 {
3588 	char buf[14];
3589 
3590 	if (verb)
3591 		printf("Channel %3u : %u%c%c%c%c%c MHz%-14.14s",
3592 		    ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq,
3593 		    IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ',
3594 		    IEEE80211_IS_CHAN_DFS(c) ? 'D' : ' ',
3595 		    IEEE80211_IS_CHAN_RADAR(c) ? 'R' : ' ',
3596 		    IEEE80211_IS_CHAN_CWINT(c) ? 'I' : ' ',
3597 		    IEEE80211_IS_CHAN_CACDONE(c) ? 'C' : ' ',
3598 		    get_chaninfo(c, verb, buf, sizeof(buf)));
3599 	else
3600 	printf("Channel %3u : %u%c MHz%-14.14s",
3601 	    ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq,
3602 	    IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ',
3603 	    get_chaninfo(c, verb, buf, sizeof(buf)));
3604 
3605 }
3606 
3607 static int
3608 chanpref(const struct ieee80211_channel *c)
3609 {
3610 	if (IEEE80211_IS_CHAN_HT40(c))
3611 		return 40;
3612 	if (IEEE80211_IS_CHAN_HT20(c))
3613 		return 30;
3614 	if (IEEE80211_IS_CHAN_HALF(c))
3615 		return 10;
3616 	if (IEEE80211_IS_CHAN_QUARTER(c))
3617 		return 5;
3618 	if (IEEE80211_IS_CHAN_TURBO(c))
3619 		return 25;
3620 	if (IEEE80211_IS_CHAN_A(c))
3621 		return 20;
3622 	if (IEEE80211_IS_CHAN_G(c))
3623 		return 20;
3624 	if (IEEE80211_IS_CHAN_B(c))
3625 		return 15;
3626 	if (IEEE80211_IS_CHAN_PUREG(c))
3627 		return 15;
3628 	return 0;
3629 }
3630 
3631 static void
3632 print_channels(int s, const struct ieee80211req_chaninfo *chans,
3633 	int allchans, int verb)
3634 {
3635 	struct ieee80211req_chaninfo *achans;
3636 	uint8_t reported[IEEE80211_CHAN_BYTES];
3637 	const struct ieee80211_channel *c;
3638 	int i, half;
3639 
3640 	achans = malloc(IEEE80211_CHANINFO_SPACE(chans));
3641 	if (achans == NULL)
3642 		errx(1, "no space for active channel list");
3643 	achans->ic_nchans = 0;
3644 	memset(reported, 0, sizeof(reported));
3645 	if (!allchans) {
3646 		struct ieee80211req_chanlist active;
3647 
3648 		if (get80211(s, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0)
3649 			errx(1, "unable to get active channel list");
3650 		for (i = 0; i < chans->ic_nchans; i++) {
3651 			c = &chans->ic_chans[i];
3652 			if (!isset(active.ic_channels, c->ic_ieee))
3653 				continue;
3654 			/*
3655 			 * Suppress compatible duplicates unless
3656 			 * verbose.  The kernel gives us it's
3657 			 * complete channel list which has separate
3658 			 * entries for 11g/11b and 11a/turbo.
3659 			 */
3660 			if (isset(reported, c->ic_ieee) && !verb) {
3661 				/* XXX we assume duplicates are adjacent */
3662 				achans->ic_chans[achans->ic_nchans-1] = *c;
3663 			} else {
3664 				achans->ic_chans[achans->ic_nchans++] = *c;
3665 				setbit(reported, c->ic_ieee);
3666 			}
3667 		}
3668 	} else {
3669 		for (i = 0; i < chans->ic_nchans; i++) {
3670 			c = &chans->ic_chans[i];
3671 			/* suppress duplicates as above */
3672 			if (isset(reported, c->ic_ieee) && !verb) {
3673 				/* XXX we assume duplicates are adjacent */
3674 				struct ieee80211_channel *a =
3675 				    &achans->ic_chans[achans->ic_nchans-1];
3676 				if (chanpref(c) > chanpref(a))
3677 					*a = *c;
3678 			} else {
3679 				achans->ic_chans[achans->ic_nchans++] = *c;
3680 				setbit(reported, c->ic_ieee);
3681 			}
3682 		}
3683 	}
3684 	half = achans->ic_nchans / 2;
3685 	if (achans->ic_nchans % 2)
3686 		half++;
3687 
3688 	for (i = 0; i < achans->ic_nchans / 2; i++) {
3689 		print_chaninfo(&achans->ic_chans[i], verb);
3690 		print_chaninfo(&achans->ic_chans[half+i], verb);
3691 		printf("\n");
3692 	}
3693 	if (achans->ic_nchans % 2) {
3694 		print_chaninfo(&achans->ic_chans[i], verb);
3695 		printf("\n");
3696 	}
3697 	free(achans);
3698 }
3699 
3700 static void
3701 list_channels(int s, int allchans)
3702 {
3703 	getchaninfo(s);
3704 	print_channels(s, chaninfo, allchans, verbose);
3705 }
3706 
3707 static void
3708 print_txpow(const struct ieee80211_channel *c)
3709 {
3710 	printf("Channel %3u : %u MHz %3.1f reg %2d  ",
3711 	    c->ic_ieee, c->ic_freq,
3712 	    c->ic_maxpower/2., c->ic_maxregpower);
3713 }
3714 
3715 static void
3716 print_txpow_verbose(const struct ieee80211_channel *c)
3717 {
3718 	print_chaninfo(c, 1);
3719 	printf("min %4.1f dBm  max %3.1f dBm  reg %2d dBm",
3720 	    c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower);
3721 	/* indicate where regulatory cap limits power use */
3722 	if (c->ic_maxpower > 2*c->ic_maxregpower)
3723 		printf(" <");
3724 }
3725 
3726 static void
3727 list_txpow(int s)
3728 {
3729 	struct ieee80211req_chaninfo *achans;
3730 	uint8_t reported[IEEE80211_CHAN_BYTES];
3731 	struct ieee80211_channel *c, *prev;
3732 	int i, half;
3733 
3734 	getchaninfo(s);
3735 	achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo));
3736 	if (achans == NULL)
3737 		errx(1, "no space for active channel list");
3738 	achans->ic_nchans = 0;
3739 	memset(reported, 0, sizeof(reported));
3740 	for (i = 0; i < chaninfo->ic_nchans; i++) {
3741 		c = &chaninfo->ic_chans[i];
3742 		/* suppress duplicates as above */
3743 		if (isset(reported, c->ic_ieee) && !verbose) {
3744 			/* XXX we assume duplicates are adjacent */
3745 			prev = &achans->ic_chans[achans->ic_nchans-1];
3746 			/* display highest power on channel */
3747 			if (c->ic_maxpower > prev->ic_maxpower)
3748 				*prev = *c;
3749 		} else {
3750 			achans->ic_chans[achans->ic_nchans++] = *c;
3751 			setbit(reported, c->ic_ieee);
3752 		}
3753 	}
3754 	if (!verbose) {
3755 		half = achans->ic_nchans / 2;
3756 		if (achans->ic_nchans % 2)
3757 			half++;
3758 
3759 		for (i = 0; i < achans->ic_nchans / 2; i++) {
3760 			print_txpow(&achans->ic_chans[i]);
3761 			print_txpow(&achans->ic_chans[half+i]);
3762 			printf("\n");
3763 		}
3764 		if (achans->ic_nchans % 2) {
3765 			print_txpow(&achans->ic_chans[i]);
3766 			printf("\n");
3767 		}
3768 	} else {
3769 		for (i = 0; i < achans->ic_nchans; i++) {
3770 			print_txpow_verbose(&achans->ic_chans[i]);
3771 			printf("\n");
3772 		}
3773 	}
3774 	free(achans);
3775 }
3776 
3777 static void
3778 list_keys(int s)
3779 {
3780 }
3781 
3782 #define	IEEE80211_C_BITS \
3783 	"\20\1STA\002803ENCAP\7FF\10TURBOP\11IBSS\12PMGT" \
3784 	"\13HOSTAP\14AHDEMO\15SWRETRY\16TXPMGT\17SHSLOT\20SHPREAMBLE" \
3785 	"\21MONITOR\22DFS\23MBSS\30WPA1\31WPA2\32BURST\33WME\34WDS\36BGSCAN" \
3786 	"\37TXFRAG\40TDMA"
3787 
3788 static void
3789 list_capabilities(int s)
3790 {
3791 	struct ieee80211_devcaps_req *dc;
3792 
3793 	if (verbose)
3794 		dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN));
3795 	else
3796 		dc = malloc(IEEE80211_DEVCAPS_SIZE(1));
3797 	if (dc == NULL)
3798 		errx(1, "no space for device capabilities");
3799 	dc->dc_chaninfo.ic_nchans = verbose ? MAXCHAN : 1;
3800 	getdevcaps(s, dc);
3801 	printb("drivercaps", dc->dc_drivercaps, IEEE80211_C_BITS);
3802 	if (dc->dc_cryptocaps != 0 || verbose) {
3803 		putchar('\n');
3804 		printb("cryptocaps", dc->dc_cryptocaps, IEEE80211_CRYPTO_BITS);
3805 	}
3806 	if (dc->dc_htcaps != 0 || verbose) {
3807 		putchar('\n');
3808 		printb("htcaps", dc->dc_htcaps, IEEE80211_HTCAP_BITS);
3809 	}
3810 	putchar('\n');
3811 	if (verbose) {
3812 		chaninfo = &dc->dc_chaninfo;	/* XXX */
3813 		print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, verbose);
3814 	}
3815 	free(dc);
3816 }
3817 
3818 static int
3819 get80211wme(int s, int param, int ac, int *val)
3820 {
3821 	struct ieee80211req ireq;
3822 
3823 	(void) memset(&ireq, 0, sizeof(ireq));
3824 	(void) strncpy(ireq.i_name, name, sizeof(ireq.i_name));
3825 	ireq.i_type = param;
3826 	ireq.i_len = ac;
3827 	if (ioctl(s, SIOCG80211, &ireq) < 0) {
3828 		warn("cannot get WME parameter %d, ac %d%s",
3829 		    param, ac & IEEE80211_WMEPARAM_VAL,
3830 		    ac & IEEE80211_WMEPARAM_BSS ? " (BSS)" : "");
3831 		return -1;
3832 	}
3833 	*val = ireq.i_val;
3834 	return 0;
3835 }
3836 
3837 static void
3838 list_wme_aci(int s, const char *tag, int ac)
3839 {
3840 	int val;
3841 
3842 	printf("\t%s", tag);
3843 
3844 	/* show WME BSS parameters */
3845 	if (get80211wme(s, IEEE80211_IOC_WME_CWMIN, ac, &val) != -1)
3846 		printf(" cwmin %2u", val);
3847 	if (get80211wme(s, IEEE80211_IOC_WME_CWMAX, ac, &val) != -1)
3848 		printf(" cwmax %2u", val);
3849 	if (get80211wme(s, IEEE80211_IOC_WME_AIFS, ac, &val) != -1)
3850 		printf(" aifs %2u", val);
3851 	if (get80211wme(s, IEEE80211_IOC_WME_TXOPLIMIT, ac, &val) != -1)
3852 		printf(" txopLimit %3u", val);
3853 	if (get80211wme(s, IEEE80211_IOC_WME_ACM, ac, &val) != -1) {
3854 		if (val)
3855 			printf(" acm");
3856 		else if (verbose)
3857 			printf(" -acm");
3858 	}
3859 	/* !BSS only */
3860 	if ((ac & IEEE80211_WMEPARAM_BSS) == 0) {
3861 		if (get80211wme(s, IEEE80211_IOC_WME_ACKPOLICY, ac, &val) != -1) {
3862 			if (!val)
3863 				printf(" -ack");
3864 			else if (verbose)
3865 				printf(" ack");
3866 		}
3867 	}
3868 	printf("\n");
3869 }
3870 
3871 static void
3872 list_wme(int s)
3873 {
3874 	static const char *acnames[] = { "AC_BE", "AC_BK", "AC_VI", "AC_VO" };
3875 	int ac;
3876 
3877 	if (verbose) {
3878 		/* display both BSS and local settings */
3879 		for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) {
3880 	again:
3881 			if (ac & IEEE80211_WMEPARAM_BSS)
3882 				list_wme_aci(s, "     ", ac);
3883 			else
3884 				list_wme_aci(s, acnames[ac], ac);
3885 			if ((ac & IEEE80211_WMEPARAM_BSS) == 0) {
3886 				ac |= IEEE80211_WMEPARAM_BSS;
3887 				goto again;
3888 			} else
3889 				ac &= ~IEEE80211_WMEPARAM_BSS;
3890 		}
3891 	} else {
3892 		/* display only channel settings */
3893 		for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++)
3894 			list_wme_aci(s, acnames[ac], ac);
3895 	}
3896 }
3897 
3898 static void
3899 list_roam(int s)
3900 {
3901 	const struct ieee80211_roamparam *rp;
3902 	int mode;
3903 
3904 	getroam(s);
3905 	for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
3906 		rp = &roamparams.params[mode];
3907 		if (rp->rssi == 0 && rp->rate == 0)
3908 			continue;
3909 		if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) {
3910 			if (rp->rssi & 1)
3911 				LINE_CHECK("roam:%-7.7s rssi %2u.5dBm  MCS %2u    ",
3912 				    modename[mode], rp->rssi/2,
3913 				    rp->rate &~ IEEE80211_RATE_MCS);
3914 			else
3915 				LINE_CHECK("roam:%-7.7s rssi %4udBm  MCS %2u    ",
3916 				    modename[mode], rp->rssi/2,
3917 				    rp->rate &~ IEEE80211_RATE_MCS);
3918 		} else {
3919 			if (rp->rssi & 1)
3920 				LINE_CHECK("roam:%-7.7s rssi %2u.5dBm rate %2u Mb/s",
3921 				    modename[mode], rp->rssi/2, rp->rate/2);
3922 			else
3923 				LINE_CHECK("roam:%-7.7s rssi %4udBm rate %2u Mb/s",
3924 				    modename[mode], rp->rssi/2, rp->rate/2);
3925 		}
3926 	}
3927 }
3928 
3929 static void
3930 list_txparams(int s)
3931 {
3932 	const struct ieee80211_txparam *tp;
3933 	int mode;
3934 
3935 	gettxparams(s);
3936 	for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
3937 		tp = &txparams.params[mode];
3938 		if (tp->mgmtrate == 0 && tp->mcastrate == 0)
3939 			continue;
3940 		if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) {
3941 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
3942 				LINE_CHECK("%-7.7s ucast NONE    mgmt %2u MCS  "
3943 				    "mcast %2u MCS  maxretry %u",
3944 				    modename[mode],
3945 				    tp->mgmtrate &~ IEEE80211_RATE_MCS,
3946 				    tp->mcastrate &~ IEEE80211_RATE_MCS,
3947 				    tp->maxretry);
3948 			else
3949 				LINE_CHECK("%-7.7s ucast %2u MCS  mgmt %2u MCS  "
3950 				    "mcast %2u MCS  maxretry %u",
3951 				    modename[mode],
3952 				    tp->ucastrate &~ IEEE80211_RATE_MCS,
3953 				    tp->mgmtrate &~ IEEE80211_RATE_MCS,
3954 				    tp->mcastrate &~ IEEE80211_RATE_MCS,
3955 				    tp->maxretry);
3956 		} else {
3957 			if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
3958 				LINE_CHECK("%-7.7s ucast NONE    mgmt %2u Mb/s "
3959 				    "mcast %2u Mb/s maxretry %u",
3960 				    modename[mode],
3961 				    tp->mgmtrate/2,
3962 				    tp->mcastrate/2, tp->maxretry);
3963 			else
3964 				LINE_CHECK("%-7.7s ucast %2u Mb/s mgmt %2u Mb/s "
3965 				    "mcast %2u Mb/s maxretry %u",
3966 				    modename[mode],
3967 				    tp->ucastrate/2, tp->mgmtrate/2,
3968 				    tp->mcastrate/2, tp->maxretry);
3969 		}
3970 	}
3971 }
3972 
3973 static void
3974 printpolicy(int policy)
3975 {
3976 	switch (policy) {
3977 	case IEEE80211_MACCMD_POLICY_OPEN:
3978 		printf("policy: open\n");
3979 		break;
3980 	case IEEE80211_MACCMD_POLICY_ALLOW:
3981 		printf("policy: allow\n");
3982 		break;
3983 	case IEEE80211_MACCMD_POLICY_DENY:
3984 		printf("policy: deny\n");
3985 		break;
3986 	case IEEE80211_MACCMD_POLICY_RADIUS:
3987 		printf("policy: radius\n");
3988 		break;
3989 	default:
3990 		printf("policy: unknown (%u)\n", policy);
3991 		break;
3992 	}
3993 }
3994 
3995 static void
3996 list_mac(int s)
3997 {
3998 	struct ieee80211req ireq;
3999 	struct ieee80211req_maclist *acllist;
4000 	int i, nacls, policy, len;
4001 	uint8_t *data;
4002 	char c;
4003 
4004 	(void) memset(&ireq, 0, sizeof(ireq));
4005 	(void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); /* XXX ?? */
4006 	ireq.i_type = IEEE80211_IOC_MACCMD;
4007 	ireq.i_val = IEEE80211_MACCMD_POLICY;
4008 	if (ioctl(s, SIOCG80211, &ireq) < 0) {
4009 		if (errno == EINVAL) {
4010 			printf("No acl policy loaded\n");
4011 			return;
4012 		}
4013 		err(1, "unable to get mac policy");
4014 	}
4015 	policy = ireq.i_val;
4016 	if (policy == IEEE80211_MACCMD_POLICY_OPEN) {
4017 		c = '*';
4018 	} else if (policy == IEEE80211_MACCMD_POLICY_ALLOW) {
4019 		c = '+';
4020 	} else if (policy == IEEE80211_MACCMD_POLICY_DENY) {
4021 		c = '-';
4022 	} else if (policy == IEEE80211_MACCMD_POLICY_RADIUS) {
4023 		c = 'r';		/* NB: should never have entries */
4024 	} else {
4025 		printf("policy: unknown (%u)\n", policy);
4026 		c = '?';
4027 	}
4028 	if (verbose || c == '?')
4029 		printpolicy(policy);
4030 
4031 	ireq.i_val = IEEE80211_MACCMD_LIST;
4032 	ireq.i_len = 0;
4033 	if (ioctl(s, SIOCG80211, &ireq) < 0)
4034 		err(1, "unable to get mac acl list size");
4035 	if (ireq.i_len == 0) {		/* NB: no acls */
4036 		if (!(verbose || c == '?'))
4037 			printpolicy(policy);
4038 		return;
4039 	}
4040 	len = ireq.i_len;
4041 
4042 	data = malloc(len);
4043 	if (data == NULL)
4044 		err(1, "out of memory for acl list");
4045 
4046 	ireq.i_data = data;
4047 	if (ioctl(s, SIOCG80211, &ireq) < 0)
4048 		err(1, "unable to get mac acl list");
4049 	nacls = len / sizeof(*acllist);
4050 	acllist = (struct ieee80211req_maclist *) data;
4051 	for (i = 0; i < nacls; i++)
4052 		printf("%c%s\n", c, ether_ntoa(
4053 			(const struct ether_addr *) acllist[i].ml_macaddr));
4054 	free(data);
4055 }
4056 
4057 static void
4058 print_regdomain(const struct ieee80211_regdomain *reg, int verb)
4059 {
4060 	if ((reg->regdomain != 0 &&
4061 	    reg->regdomain != reg->country) || verb) {
4062 		const struct regdomain *rd =
4063 		    lib80211_regdomain_findbysku(getregdata(), reg->regdomain);
4064 		if (rd == NULL)
4065 			LINE_CHECK("regdomain %d", reg->regdomain);
4066 		else
4067 			LINE_CHECK("regdomain %s", rd->name);
4068 	}
4069 	if (reg->country != 0 || verb) {
4070 		const struct country *cc =
4071 		    lib80211_country_findbycc(getregdata(), reg->country);
4072 		if (cc == NULL)
4073 			LINE_CHECK("country %d", reg->country);
4074 		else
4075 			LINE_CHECK("country %s", cc->isoname);
4076 	}
4077 	if (reg->location == 'I')
4078 		LINE_CHECK("indoor");
4079 	else if (reg->location == 'O')
4080 		LINE_CHECK("outdoor");
4081 	else if (verb)
4082 		LINE_CHECK("anywhere");
4083 	if (reg->ecm)
4084 		LINE_CHECK("ecm");
4085 	else if (verb)
4086 		LINE_CHECK("-ecm");
4087 }
4088 
4089 static void
4090 list_regdomain(int s, int channelsalso)
4091 {
4092 	getregdomain(s);
4093 	if (channelsalso) {
4094 		getchaninfo(s);
4095 		spacer = ':';
4096 		print_regdomain(&regdomain, 1);
4097 		LINE_BREAK();
4098 		print_channels(s, chaninfo, 1/*allchans*/, 1/*verbose*/);
4099 	} else
4100 		print_regdomain(&regdomain, verbose);
4101 }
4102 
4103 static void
4104 list_mesh(int s)
4105 {
4106 	struct ieee80211req ireq;
4107 	struct ieee80211req_mesh_route routes[128];
4108 	struct ieee80211req_mesh_route *rt;
4109 
4110 	(void) memset(&ireq, 0, sizeof(ireq));
4111 	(void) strncpy(ireq.i_name, name, sizeof(ireq.i_name));
4112 	ireq.i_type = IEEE80211_IOC_MESH_RTCMD;
4113 	ireq.i_val = IEEE80211_MESH_RTCMD_LIST;
4114 	ireq.i_data = &routes;
4115 	ireq.i_len = sizeof(routes);
4116 	if (ioctl(s, SIOCG80211, &ireq) < 0)
4117 	 	err(1, "unable to get the Mesh routing table");
4118 
4119 	printf("%-17.17s %-17.17s %4s %4s %4s %6s %s\n"
4120 		, "DEST"
4121 		, "NEXT HOP"
4122 		, "HOPS"
4123 		, "METRIC"
4124 		, "LIFETIME"
4125 		, "MSEQ"
4126 		, "FLAGS");
4127 
4128 	for (rt = &routes[0]; rt - &routes[0] < ireq.i_len / sizeof(*rt); rt++){
4129 		printf("%s ",
4130 		    ether_ntoa((const struct ether_addr *)rt->imr_dest));
4131 		printf("%s %4u   %4u   %6u %6u    %c%c\n",
4132 			ether_ntoa((const struct ether_addr *)rt->imr_nexthop),
4133 			rt->imr_nhops, rt->imr_metric, rt->imr_lifetime,
4134 			rt->imr_lastmseq,
4135 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_DISCOVER) ?
4136 			    'D' :
4137 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_VALID) ?
4138 			    'V' : '!',
4139 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_PROXY) ?
4140 			    'P' :
4141 			(rt->imr_flags & IEEE80211_MESHRT_FLAGS_GATE) ?
4142 			    'G' :' ');
4143 	}
4144 }
4145 
4146 static
4147 DECL_CMD_FUNC(set80211list, arg, d)
4148 {
4149 #define	iseq(a,b)	(strncasecmp(a,b,sizeof(b)-1) == 0)
4150 
4151 	LINE_INIT('\t');
4152 
4153 	if (iseq(arg, "sta"))
4154 		list_stations(s);
4155 	else if (iseq(arg, "scan") || iseq(arg, "ap"))
4156 		list_scan(s);
4157 	else if (iseq(arg, "chan") || iseq(arg, "freq"))
4158 		list_channels(s, 1);
4159 	else if (iseq(arg, "active"))
4160 		list_channels(s, 0);
4161 	else if (iseq(arg, "keys"))
4162 		list_keys(s);
4163 	else if (iseq(arg, "caps"))
4164 		list_capabilities(s);
4165 	else if (iseq(arg, "wme") || iseq(arg, "wmm"))
4166 		list_wme(s);
4167 	else if (iseq(arg, "mac"))
4168 		list_mac(s);
4169 	else if (iseq(arg, "txpow"))
4170 		list_txpow(s);
4171 	else if (iseq(arg, "roam"))
4172 		list_roam(s);
4173 	else if (iseq(arg, "txparam") || iseq(arg, "txparm"))
4174 		list_txparams(s);
4175 	else if (iseq(arg, "regdomain"))
4176 		list_regdomain(s, 1);
4177 	else if (iseq(arg, "countries"))
4178 		list_countries();
4179 	else if (iseq(arg, "mesh"))
4180 		list_mesh(s);
4181 	else
4182 		errx(1, "Don't know how to list %s for %s", arg, name);
4183 	LINE_BREAK();
4184 #undef iseq
4185 }
4186 
4187 static enum ieee80211_opmode
4188 get80211opmode(int s)
4189 {
4190 	struct ifmediareq ifmr;
4191 
4192 	(void) memset(&ifmr, 0, sizeof(ifmr));
4193 	(void) strncpy(ifmr.ifm_name, name, sizeof(ifmr.ifm_name));
4194 
4195 	if (ioctl(s, SIOCGIFMEDIA, (caddr_t)&ifmr) >= 0) {
4196 		if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) {
4197 			if (ifmr.ifm_current & IFM_FLAG0)
4198 				return IEEE80211_M_AHDEMO;
4199 			else
4200 				return IEEE80211_M_IBSS;
4201 		}
4202 		if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP)
4203 			return IEEE80211_M_HOSTAP;
4204 		if (ifmr.ifm_current & IFM_IEEE80211_IBSS)
4205 			return IEEE80211_M_IBSS;
4206 		if (ifmr.ifm_current & IFM_IEEE80211_MONITOR)
4207 			return IEEE80211_M_MONITOR;
4208 		if (ifmr.ifm_current & IFM_IEEE80211_MBSS)
4209 			return IEEE80211_M_MBSS;
4210 	}
4211 	return IEEE80211_M_STA;
4212 }
4213 
4214 #if 0
4215 static void
4216 printcipher(int s, struct ieee80211req *ireq, int keylenop)
4217 {
4218 	switch (ireq->i_val) {
4219 	case IEEE80211_CIPHER_WEP:
4220 		ireq->i_type = keylenop;
4221 		if (ioctl(s, SIOCG80211, ireq) != -1)
4222 			printf("WEP-%s",
4223 			    ireq->i_len <= 5 ? "40" :
4224 			    ireq->i_len <= 13 ? "104" : "128");
4225 		else
4226 			printf("WEP");
4227 		break;
4228 	case IEEE80211_CIPHER_TKIP:
4229 		printf("TKIP");
4230 		break;
4231 	case IEEE80211_CIPHER_AES_OCB:
4232 		printf("AES-OCB");
4233 		break;
4234 	case IEEE80211_CIPHER_AES_CCM:
4235 		printf("AES-CCM");
4236 		break;
4237 	case IEEE80211_CIPHER_CKIP:
4238 		printf("CKIP");
4239 		break;
4240 	case IEEE80211_CIPHER_NONE:
4241 		printf("NONE");
4242 		break;
4243 	default:
4244 		printf("UNKNOWN (0x%x)", ireq->i_val);
4245 		break;
4246 	}
4247 }
4248 #endif
4249 
4250 static void
4251 printkey(const struct ieee80211req_key *ik)
4252 {
4253 	static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE];
4254 	int keylen = ik->ik_keylen;
4255 	int printcontents;
4256 
4257 	printcontents = printkeys &&
4258 		(memcmp(ik->ik_keydata, zerodata, keylen) != 0 || verbose);
4259 	if (printcontents)
4260 		LINE_BREAK();
4261 	switch (ik->ik_type) {
4262 	case IEEE80211_CIPHER_WEP:
4263 		/* compatibility */
4264 		LINE_CHECK("wepkey %u:%s", ik->ik_keyix+1,
4265 		    keylen <= 5 ? "40-bit" :
4266 		    keylen <= 13 ? "104-bit" : "128-bit");
4267 		break;
4268 	case IEEE80211_CIPHER_TKIP:
4269 		if (keylen > 128/8)
4270 			keylen -= 128/8;	/* ignore MIC for now */
4271 		LINE_CHECK("TKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4272 		break;
4273 	case IEEE80211_CIPHER_AES_OCB:
4274 		LINE_CHECK("AES-OCB %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4275 		break;
4276 	case IEEE80211_CIPHER_AES_CCM:
4277 		LINE_CHECK("AES-CCM %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4278 		break;
4279 	case IEEE80211_CIPHER_CKIP:
4280 		LINE_CHECK("CKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4281 		break;
4282 	case IEEE80211_CIPHER_NONE:
4283 		LINE_CHECK("NULL %u:%u-bit", ik->ik_keyix+1, 8*keylen);
4284 		break;
4285 	default:
4286 		LINE_CHECK("UNKNOWN (0x%x) %u:%u-bit",
4287 			ik->ik_type, ik->ik_keyix+1, 8*keylen);
4288 		break;
4289 	}
4290 	if (printcontents) {
4291 		int i;
4292 
4293 		printf(" <");
4294 		for (i = 0; i < keylen; i++)
4295 			printf("%02x", ik->ik_keydata[i]);
4296 		printf(">");
4297 		if (ik->ik_type != IEEE80211_CIPHER_WEP &&
4298 		    (ik->ik_keyrsc != 0 || verbose))
4299 			printf(" rsc %ju", (uintmax_t)ik->ik_keyrsc);
4300 		if (ik->ik_type != IEEE80211_CIPHER_WEP &&
4301 		    (ik->ik_keytsc != 0 || verbose))
4302 			printf(" tsc %ju", (uintmax_t)ik->ik_keytsc);
4303 		if (ik->ik_flags != 0 && verbose) {
4304 			const char *sep = " ";
4305 
4306 			if (ik->ik_flags & IEEE80211_KEY_XMIT)
4307 				printf("%stx", sep), sep = "+";
4308 			if (ik->ik_flags & IEEE80211_KEY_RECV)
4309 				printf("%srx", sep), sep = "+";
4310 			if (ik->ik_flags & IEEE80211_KEY_DEFAULT)
4311 				printf("%sdef", sep), sep = "+";
4312 		}
4313 		LINE_BREAK();
4314 	}
4315 }
4316 
4317 static void
4318 printrate(const char *tag, int v, int defrate, int defmcs)
4319 {
4320 	if ((v & IEEE80211_RATE_MCS) == 0) {
4321 		if (v != defrate) {
4322 			if (v & 1)
4323 				LINE_CHECK("%s %d.5", tag, v/2);
4324 			else
4325 				LINE_CHECK("%s %d", tag, v/2);
4326 		}
4327 	} else {
4328 		if (v != defmcs)
4329 			LINE_CHECK("%s %d", tag, v &~ 0x80);
4330 	}
4331 }
4332 
4333 static int
4334 getid(int s, int ix, void *data, size_t len, int *plen, int mesh)
4335 {
4336 	struct ieee80211req ireq;
4337 
4338 	(void) memset(&ireq, 0, sizeof(ireq));
4339 	(void) strncpy(ireq.i_name, name, sizeof(ireq.i_name));
4340 	ireq.i_type = (!mesh) ? IEEE80211_IOC_SSID : IEEE80211_IOC_MESH_ID;
4341 	ireq.i_val = ix;
4342 	ireq.i_data = data;
4343 	ireq.i_len = len;
4344 	if (ioctl(s, SIOCG80211, &ireq) < 0)
4345 		return -1;
4346 	*plen = ireq.i_len;
4347 	return 0;
4348 }
4349 
4350 static void
4351 ieee80211_status(int s)
4352 {
4353 	static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
4354 	enum ieee80211_opmode opmode = get80211opmode(s);
4355 	int i, num, wpa, wme, bgscan, bgscaninterval, val, len, wepmode;
4356 	uint8_t data[32];
4357 	const struct ieee80211_channel *c;
4358 	const struct ieee80211_roamparam *rp;
4359 	const struct ieee80211_txparam *tp;
4360 
4361 	if (getid(s, -1, data, sizeof(data), &len, 0) < 0) {
4362 		/* If we can't get the SSID, this isn't an 802.11 device. */
4363 		return;
4364 	}
4365 
4366 	/*
4367 	 * Invalidate cached state so printing status for multiple
4368 	 * if's doesn't reuse the first interfaces' cached state.
4369 	 */
4370 	gotcurchan = 0;
4371 	gotroam = 0;
4372 	gottxparams = 0;
4373 	gothtconf = 0;
4374 	gotregdomain = 0;
4375 
4376 	printf("\t");
4377 	if (opmode == IEEE80211_M_MBSS) {
4378 		printf("meshid ");
4379 		getid(s, 0, data, sizeof(data), &len, 1);
4380 		print_string(data, len);
4381 	} else {
4382 		if (get80211val(s, IEEE80211_IOC_NUMSSIDS, &num) < 0)
4383 			num = 0;
4384 		printf("ssid ");
4385 		if (num > 1) {
4386 			for (i = 0; i < num; i++) {
4387 				if (getid(s, i, data, sizeof(data), &len, 0) >= 0 && len > 0) {
4388 					printf(" %d:", i + 1);
4389 					print_string(data, len);
4390 				}
4391 			}
4392 		} else
4393 			print_string(data, len);
4394 	}
4395 	c = getcurchan(s);
4396 	if (c->ic_freq != IEEE80211_CHAN_ANY) {
4397 		char buf[14];
4398 		printf(" channel %d (%u MHz%s)", c->ic_ieee, c->ic_freq,
4399 			get_chaninfo(c, 1, buf, sizeof(buf)));
4400 	} else if (verbose)
4401 		printf(" channel UNDEF");
4402 
4403 	if (get80211(s, IEEE80211_IOC_BSSID, data, IEEE80211_ADDR_LEN) >= 0 &&
4404 	    (memcmp(data, zerobssid, sizeof(zerobssid)) != 0 || verbose))
4405 		printf(" bssid %s", ether_ntoa((struct ether_addr *)data));
4406 
4407 	if (get80211len(s, IEEE80211_IOC_STATIONNAME, data, sizeof(data), &len) != -1) {
4408 		printf("\n\tstationname ");
4409 		print_string(data, len);
4410 	}
4411 
4412 	spacer = ' ';		/* force first break */
4413 	LINE_BREAK();
4414 
4415 	list_regdomain(s, 0);
4416 
4417 	wpa = 0;
4418 	if (get80211val(s, IEEE80211_IOC_AUTHMODE, &val) != -1) {
4419 		switch (val) {
4420 		case IEEE80211_AUTH_NONE:
4421 			LINE_CHECK("authmode NONE");
4422 			break;
4423 		case IEEE80211_AUTH_OPEN:
4424 			LINE_CHECK("authmode OPEN");
4425 			break;
4426 		case IEEE80211_AUTH_SHARED:
4427 			LINE_CHECK("authmode SHARED");
4428 			break;
4429 		case IEEE80211_AUTH_8021X:
4430 			LINE_CHECK("authmode 802.1x");
4431 			break;
4432 		case IEEE80211_AUTH_WPA:
4433 			if (get80211val(s, IEEE80211_IOC_WPA, &wpa) < 0)
4434 				wpa = 1;	/* default to WPA1 */
4435 			switch (wpa) {
4436 			case 2:
4437 				LINE_CHECK("authmode WPA2/802.11i");
4438 				break;
4439 			case 3:
4440 				LINE_CHECK("authmode WPA1+WPA2/802.11i");
4441 				break;
4442 			default:
4443 				LINE_CHECK("authmode WPA");
4444 				break;
4445 			}
4446 			break;
4447 		case IEEE80211_AUTH_AUTO:
4448 			LINE_CHECK("authmode AUTO");
4449 			break;
4450 		default:
4451 			LINE_CHECK("authmode UNKNOWN (0x%x)", val);
4452 			break;
4453 		}
4454 	}
4455 
4456 	if (wpa || verbose) {
4457 		if (get80211val(s, IEEE80211_IOC_WPS, &val) != -1) {
4458 			if (val)
4459 				LINE_CHECK("wps");
4460 			else if (verbose)
4461 				LINE_CHECK("-wps");
4462 		}
4463 		if (get80211val(s, IEEE80211_IOC_TSN, &val) != -1) {
4464 			if (val)
4465 				LINE_CHECK("tsn");
4466 			else if (verbose)
4467 				LINE_CHECK("-tsn");
4468 		}
4469 		if (ioctl(s, IEEE80211_IOC_COUNTERMEASURES, &val) != -1) {
4470 			if (val)
4471 				LINE_CHECK("countermeasures");
4472 			else if (verbose)
4473 				LINE_CHECK("-countermeasures");
4474 		}
4475 #if 0
4476 		/* XXX not interesting with WPA done in user space */
4477 		ireq.i_type = IEEE80211_IOC_KEYMGTALGS;
4478 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
4479 		}
4480 
4481 		ireq.i_type = IEEE80211_IOC_MCASTCIPHER;
4482 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
4483 			LINE_CHECK("mcastcipher ");
4484 			printcipher(s, &ireq, IEEE80211_IOC_MCASTKEYLEN);
4485 			spacer = ' ';
4486 		}
4487 
4488 		ireq.i_type = IEEE80211_IOC_UCASTCIPHER;
4489 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
4490 			LINE_CHECK("ucastcipher ");
4491 			printcipher(s, &ireq, IEEE80211_IOC_UCASTKEYLEN);
4492 		}
4493 
4494 		if (wpa & 2) {
4495 			ireq.i_type = IEEE80211_IOC_RSNCAPS;
4496 			if (ioctl(s, SIOCG80211, &ireq) != -1) {
4497 				LINE_CHECK("RSN caps 0x%x", ireq.i_val);
4498 				spacer = ' ';
4499 			}
4500 		}
4501 
4502 		ireq.i_type = IEEE80211_IOC_UCASTCIPHERS;
4503 		if (ioctl(s, SIOCG80211, &ireq) != -1) {
4504 		}
4505 #endif
4506 	}
4507 
4508 	if (get80211val(s, IEEE80211_IOC_WEP, &wepmode) != -1 &&
4509 	    wepmode != IEEE80211_WEP_NOSUP) {
4510 
4511 		switch (wepmode) {
4512 		case IEEE80211_WEP_OFF:
4513 			LINE_CHECK("privacy OFF");
4514 			break;
4515 		case IEEE80211_WEP_ON:
4516 			LINE_CHECK("privacy ON");
4517 			break;
4518 		case IEEE80211_WEP_MIXED:
4519 			LINE_CHECK("privacy MIXED");
4520 			break;
4521 		default:
4522 			LINE_CHECK("privacy UNKNOWN (0x%x)", wepmode);
4523 			break;
4524 		}
4525 
4526 		/*
4527 		 * If we get here then we've got WEP support so we need
4528 		 * to print WEP status.
4529 		 */
4530 
4531 		if (get80211val(s, IEEE80211_IOC_WEPTXKEY, &val) < 0) {
4532 			warn("WEP support, but no tx key!");
4533 			goto end;
4534 		}
4535 		if (val != -1)
4536 			LINE_CHECK("deftxkey %d", val+1);
4537 		else if (wepmode != IEEE80211_WEP_OFF || verbose)
4538 			LINE_CHECK("deftxkey UNDEF");
4539 
4540 		if (get80211val(s, IEEE80211_IOC_NUMWEPKEYS, &num) < 0) {
4541 			warn("WEP support, but no NUMWEPKEYS support!");
4542 			goto end;
4543 		}
4544 
4545 		for (i = 0; i < num; i++) {
4546 			struct ieee80211req_key ik;
4547 
4548 			memset(&ik, 0, sizeof(ik));
4549 			ik.ik_keyix = i;
4550 			if (get80211(s, IEEE80211_IOC_WPAKEY, &ik, sizeof(ik)) < 0) {
4551 				warn("WEP support, but can get keys!");
4552 				goto end;
4553 			}
4554 			if (ik.ik_keylen != 0) {
4555 				if (verbose)
4556 					LINE_BREAK();
4557 				printkey(&ik);
4558 			}
4559 		}
4560 end:
4561 		;
4562 	}
4563 
4564 	if (get80211val(s, IEEE80211_IOC_POWERSAVE, &val) != -1 &&
4565 	    val != IEEE80211_POWERSAVE_NOSUP ) {
4566 		if (val != IEEE80211_POWERSAVE_OFF || verbose) {
4567 			switch (val) {
4568 			case IEEE80211_POWERSAVE_OFF:
4569 				LINE_CHECK("powersavemode OFF");
4570 				break;
4571 			case IEEE80211_POWERSAVE_CAM:
4572 				LINE_CHECK("powersavemode CAM");
4573 				break;
4574 			case IEEE80211_POWERSAVE_PSP:
4575 				LINE_CHECK("powersavemode PSP");
4576 				break;
4577 			case IEEE80211_POWERSAVE_PSP_CAM:
4578 				LINE_CHECK("powersavemode PSP-CAM");
4579 				break;
4580 			}
4581 			if (get80211val(s, IEEE80211_IOC_POWERSAVESLEEP, &val) != -1)
4582 				LINE_CHECK("powersavesleep %d", val);
4583 		}
4584 	}
4585 
4586 	if (get80211val(s, IEEE80211_IOC_TXPOWER, &val) != -1) {
4587 		if (val & 1)
4588 			LINE_CHECK("txpower %d.5", val/2);
4589 		else
4590 			LINE_CHECK("txpower %d", val/2);
4591 	}
4592 	if (verbose) {
4593 		if (get80211val(s, IEEE80211_IOC_TXPOWMAX, &val) != -1)
4594 			LINE_CHECK("txpowmax %.1f", val/2.);
4595 	}
4596 
4597 	if (get80211val(s, IEEE80211_IOC_DOTD, &val) != -1) {
4598 		if (val)
4599 			LINE_CHECK("dotd");
4600 		else if (verbose)
4601 			LINE_CHECK("-dotd");
4602 	}
4603 
4604 	if (get80211val(s, IEEE80211_IOC_RTSTHRESHOLD, &val) != -1) {
4605 		if (val != IEEE80211_RTS_MAX || verbose)
4606 			LINE_CHECK("rtsthreshold %d", val);
4607 	}
4608 
4609 	if (get80211val(s, IEEE80211_IOC_FRAGTHRESHOLD, &val) != -1) {
4610 		if (val != IEEE80211_FRAG_MAX || verbose)
4611 			LINE_CHECK("fragthreshold %d", val);
4612 	}
4613 	if (opmode == IEEE80211_M_STA || verbose) {
4614 		if (get80211val(s, IEEE80211_IOC_BMISSTHRESHOLD, &val) != -1) {
4615 			if (val != IEEE80211_HWBMISS_MAX || verbose)
4616 				LINE_CHECK("bmiss %d", val);
4617 		}
4618 	}
4619 
4620 	if (!verbose) {
4621 		gettxparams(s);
4622 		tp = &txparams.params[chan2mode(c)];
4623 		printrate("ucastrate", tp->ucastrate,
4624 		    IEEE80211_FIXED_RATE_NONE, IEEE80211_FIXED_RATE_NONE);
4625 		printrate("mcastrate", tp->mcastrate, 2*1,
4626 		    IEEE80211_RATE_MCS|0);
4627 		printrate("mgmtrate", tp->mgmtrate, 2*1,
4628 		    IEEE80211_RATE_MCS|0);
4629 		if (tp->maxretry != 6)		/* XXX */
4630 			LINE_CHECK("maxretry %d", tp->maxretry);
4631 	} else {
4632 		LINE_BREAK();
4633 		list_txparams(s);
4634 	}
4635 
4636 	bgscaninterval = -1;
4637 	(void) get80211val(s, IEEE80211_IOC_BGSCAN_INTERVAL, &bgscaninterval);
4638 
4639 	if (get80211val(s, IEEE80211_IOC_SCANVALID, &val) != -1) {
4640 		if (val != bgscaninterval || verbose)
4641 			LINE_CHECK("scanvalid %u", val);
4642 	}
4643 
4644 	bgscan = 0;
4645 	if (get80211val(s, IEEE80211_IOC_BGSCAN, &bgscan) != -1) {
4646 		if (bgscan)
4647 			LINE_CHECK("bgscan");
4648 		else if (verbose)
4649 			LINE_CHECK("-bgscan");
4650 	}
4651 	if (bgscan || verbose) {
4652 		if (bgscaninterval != -1)
4653 			LINE_CHECK("bgscanintvl %u", bgscaninterval);
4654 		if (get80211val(s, IEEE80211_IOC_BGSCAN_IDLE, &val) != -1)
4655 			LINE_CHECK("bgscanidle %u", val);
4656 		if (!verbose) {
4657 			getroam(s);
4658 			rp = &roamparams.params[chan2mode(c)];
4659 			if (rp->rssi & 1)
4660 				LINE_CHECK("roam:rssi %u.5", rp->rssi/2);
4661 			else
4662 				LINE_CHECK("roam:rssi %u", rp->rssi/2);
4663 			LINE_CHECK("roam:rate %u", rp->rate/2);
4664 		} else {
4665 			LINE_BREAK();
4666 			list_roam(s);
4667 			LINE_BREAK();
4668 		}
4669 	}
4670 
4671 	if (IEEE80211_IS_CHAN_ANYG(c) || verbose) {
4672 		if (get80211val(s, IEEE80211_IOC_PUREG, &val) != -1) {
4673 			if (val)
4674 				LINE_CHECK("pureg");
4675 			else if (verbose)
4676 				LINE_CHECK("-pureg");
4677 		}
4678 		if (get80211val(s, IEEE80211_IOC_PROTMODE, &val) != -1) {
4679 			switch (val) {
4680 			case IEEE80211_PROTMODE_OFF:
4681 				LINE_CHECK("protmode OFF");
4682 				break;
4683 			case IEEE80211_PROTMODE_CTS:
4684 				LINE_CHECK("protmode CTS");
4685 				break;
4686 			case IEEE80211_PROTMODE_RTSCTS:
4687 				LINE_CHECK("protmode RTSCTS");
4688 				break;
4689 			default:
4690 				LINE_CHECK("protmode UNKNOWN (0x%x)", val);
4691 				break;
4692 			}
4693 		}
4694 	}
4695 
4696 	if (IEEE80211_IS_CHAN_HT(c) || verbose) {
4697 		gethtconf(s);
4698 		switch (htconf & 3) {
4699 		case 0:
4700 		case 2:
4701 			LINE_CHECK("-ht");
4702 			break;
4703 		case 1:
4704 			LINE_CHECK("ht20");
4705 			break;
4706 		case 3:
4707 			if (verbose)
4708 				LINE_CHECK("ht");
4709 			break;
4710 		}
4711 		if (get80211val(s, IEEE80211_IOC_HTCOMPAT, &val) != -1) {
4712 			if (!val)
4713 				LINE_CHECK("-htcompat");
4714 			else if (verbose)
4715 				LINE_CHECK("htcompat");
4716 		}
4717 		if (get80211val(s, IEEE80211_IOC_AMPDU, &val) != -1) {
4718 			switch (val) {
4719 			case 0:
4720 				LINE_CHECK("-ampdu");
4721 				break;
4722 			case 1:
4723 				LINE_CHECK("ampdutx -ampdurx");
4724 				break;
4725 			case 2:
4726 				LINE_CHECK("-ampdutx ampdurx");
4727 				break;
4728 			case 3:
4729 				if (verbose)
4730 					LINE_CHECK("ampdu");
4731 				break;
4732 			}
4733 		}
4734 		if (get80211val(s, IEEE80211_IOC_AMPDU_LIMIT, &val) != -1) {
4735 			switch (val) {
4736 			case IEEE80211_HTCAP_MAXRXAMPDU_8K:
4737 				LINE_CHECK("ampdulimit 8k");
4738 				break;
4739 			case IEEE80211_HTCAP_MAXRXAMPDU_16K:
4740 				LINE_CHECK("ampdulimit 16k");
4741 				break;
4742 			case IEEE80211_HTCAP_MAXRXAMPDU_32K:
4743 				LINE_CHECK("ampdulimit 32k");
4744 				break;
4745 			case IEEE80211_HTCAP_MAXRXAMPDU_64K:
4746 				LINE_CHECK("ampdulimit 64k");
4747 				break;
4748 			}
4749 		}
4750 		if (get80211val(s, IEEE80211_IOC_AMPDU_DENSITY, &val) != -1) {
4751 			switch (val) {
4752 			case IEEE80211_HTCAP_MPDUDENSITY_NA:
4753 				if (verbose)
4754 					LINE_CHECK("ampdudensity NA");
4755 				break;
4756 			case IEEE80211_HTCAP_MPDUDENSITY_025:
4757 				LINE_CHECK("ampdudensity .25");
4758 				break;
4759 			case IEEE80211_HTCAP_MPDUDENSITY_05:
4760 				LINE_CHECK("ampdudensity .5");
4761 				break;
4762 			case IEEE80211_HTCAP_MPDUDENSITY_1:
4763 				LINE_CHECK("ampdudensity 1");
4764 				break;
4765 			case IEEE80211_HTCAP_MPDUDENSITY_2:
4766 				LINE_CHECK("ampdudensity 2");
4767 				break;
4768 			case IEEE80211_HTCAP_MPDUDENSITY_4:
4769 				LINE_CHECK("ampdudensity 4");
4770 				break;
4771 			case IEEE80211_HTCAP_MPDUDENSITY_8:
4772 				LINE_CHECK("ampdudensity 8");
4773 				break;
4774 			case IEEE80211_HTCAP_MPDUDENSITY_16:
4775 				LINE_CHECK("ampdudensity 16");
4776 				break;
4777 			}
4778 		}
4779 		if (get80211val(s, IEEE80211_IOC_AMSDU, &val) != -1) {
4780 			switch (val) {
4781 			case 0:
4782 				LINE_CHECK("-amsdu");
4783 				break;
4784 			case 1:
4785 				LINE_CHECK("amsdutx -amsdurx");
4786 				break;
4787 			case 2:
4788 				LINE_CHECK("-amsdutx amsdurx");
4789 				break;
4790 			case 3:
4791 				if (verbose)
4792 					LINE_CHECK("amsdu");
4793 				break;
4794 			}
4795 		}
4796 		/* XXX amsdu limit */
4797 		if (get80211val(s, IEEE80211_IOC_SHORTGI, &val) != -1) {
4798 			if (val)
4799 				LINE_CHECK("shortgi");
4800 			else if (verbose)
4801 				LINE_CHECK("-shortgi");
4802 		}
4803 		if (get80211val(s, IEEE80211_IOC_HTPROTMODE, &val) != -1) {
4804 			if (val == IEEE80211_PROTMODE_OFF)
4805 				LINE_CHECK("htprotmode OFF");
4806 			else if (val != IEEE80211_PROTMODE_RTSCTS)
4807 				LINE_CHECK("htprotmode UNKNOWN (0x%x)", val);
4808 			else if (verbose)
4809 				LINE_CHECK("htprotmode RTSCTS");
4810 		}
4811 		if (get80211val(s, IEEE80211_IOC_PUREN, &val) != -1) {
4812 			if (val)
4813 				LINE_CHECK("puren");
4814 			else if (verbose)
4815 				LINE_CHECK("-puren");
4816 		}
4817 		if (get80211val(s, IEEE80211_IOC_SMPS, &val) != -1) {
4818 			if (val == IEEE80211_HTCAP_SMPS_DYNAMIC)
4819 				LINE_CHECK("smpsdyn");
4820 			else if (val == IEEE80211_HTCAP_SMPS_ENA)
4821 				LINE_CHECK("smps");
4822 			else if (verbose)
4823 				LINE_CHECK("-smps");
4824 		}
4825 		if (get80211val(s, IEEE80211_IOC_RIFS, &val) != -1) {
4826 			if (val)
4827 				LINE_CHECK("rifs");
4828 			else if (verbose)
4829 				LINE_CHECK("-rifs");
4830 		}
4831 	}
4832 
4833 	if (get80211val(s, IEEE80211_IOC_WME, &wme) != -1) {
4834 		if (wme)
4835 			LINE_CHECK("wme");
4836 		else if (verbose)
4837 			LINE_CHECK("-wme");
4838 	} else
4839 		wme = 0;
4840 
4841 	if (get80211val(s, IEEE80211_IOC_BURST, &val) != -1) {
4842 		if (val)
4843 			LINE_CHECK("burst");
4844 		else if (verbose)
4845 			LINE_CHECK("-burst");
4846 	}
4847 
4848 	if (get80211val(s, IEEE80211_IOC_FF, &val) != -1) {
4849 		if (val)
4850 			LINE_CHECK("ff");
4851 		else if (verbose)
4852 			LINE_CHECK("-ff");
4853 	}
4854 	if (get80211val(s, IEEE80211_IOC_TURBOP, &val) != -1) {
4855 		if (val)
4856 			LINE_CHECK("dturbo");
4857 		else if (verbose)
4858 			LINE_CHECK("-dturbo");
4859 	}
4860 	if (get80211val(s, IEEE80211_IOC_DWDS, &val) != -1) {
4861 		if (val)
4862 			LINE_CHECK("dwds");
4863 		else if (verbose)
4864 			LINE_CHECK("-dwds");
4865 	}
4866 
4867 	if (opmode == IEEE80211_M_HOSTAP) {
4868 		if (get80211val(s, IEEE80211_IOC_HIDESSID, &val) != -1) {
4869 			if (val)
4870 				LINE_CHECK("hidessid");
4871 			else if (verbose)
4872 				LINE_CHECK("-hidessid");
4873 		}
4874 		if (get80211val(s, IEEE80211_IOC_APBRIDGE, &val) != -1) {
4875 			if (!val)
4876 				LINE_CHECK("-apbridge");
4877 			else if (verbose)
4878 				LINE_CHECK("apbridge");
4879 		}
4880 		if (get80211val(s, IEEE80211_IOC_DTIM_PERIOD, &val) != -1)
4881 			LINE_CHECK("dtimperiod %u", val);
4882 
4883 		if (get80211val(s, IEEE80211_IOC_DOTH, &val) != -1) {
4884 			if (!val)
4885 				LINE_CHECK("-doth");
4886 			else if (verbose)
4887 				LINE_CHECK("doth");
4888 		}
4889 		if (get80211val(s, IEEE80211_IOC_DFS, &val) != -1) {
4890 			if (!val)
4891 				LINE_CHECK("-dfs");
4892 			else if (verbose)
4893 				LINE_CHECK("dfs");
4894 		}
4895 		if (get80211val(s, IEEE80211_IOC_INACTIVITY, &val) != -1) {
4896 			if (!val)
4897 				LINE_CHECK("-inact");
4898 			else if (verbose)
4899 				LINE_CHECK("inact");
4900 		}
4901 	} else {
4902 		if (get80211val(s, IEEE80211_IOC_ROAMING, &val) != -1) {
4903 			if (val != IEEE80211_ROAMING_AUTO || verbose) {
4904 				switch (val) {
4905 				case IEEE80211_ROAMING_DEVICE:
4906 					LINE_CHECK("roaming DEVICE");
4907 					break;
4908 				case IEEE80211_ROAMING_AUTO:
4909 					LINE_CHECK("roaming AUTO");
4910 					break;
4911 				case IEEE80211_ROAMING_MANUAL:
4912 					LINE_CHECK("roaming MANUAL");
4913 					break;
4914 				default:
4915 					LINE_CHECK("roaming UNKNOWN (0x%x)",
4916 						val);
4917 					break;
4918 				}
4919 			}
4920 		}
4921 	}
4922 
4923 	if (opmode == IEEE80211_M_AHDEMO) {
4924 		if (get80211val(s, IEEE80211_IOC_TDMA_SLOT, &val) != -1)
4925 			LINE_CHECK("tdmaslot %u", val);
4926 		if (get80211val(s, IEEE80211_IOC_TDMA_SLOTCNT, &val) != -1)
4927 			LINE_CHECK("tdmaslotcnt %u", val);
4928 		if (get80211val(s, IEEE80211_IOC_TDMA_SLOTLEN, &val) != -1)
4929 			LINE_CHECK("tdmaslotlen %u", val);
4930 		if (get80211val(s, IEEE80211_IOC_TDMA_BINTERVAL, &val) != -1)
4931 			LINE_CHECK("tdmabintval %u", val);
4932 	} else if (get80211val(s, IEEE80211_IOC_BEACON_INTERVAL, &val) != -1) {
4933 		/* XXX default define not visible */
4934 		if (val != 100 || verbose)
4935 			LINE_CHECK("bintval %u", val);
4936 	}
4937 
4938 	if (wme && verbose) {
4939 		LINE_BREAK();
4940 		list_wme(s);
4941 	}
4942 
4943 	if (opmode == IEEE80211_M_MBSS) {
4944 		if (get80211val(s, IEEE80211_IOC_MESH_TTL, &val) != -1) {
4945 			LINE_CHECK("meshttl %u", val);
4946 		}
4947 		if (get80211val(s, IEEE80211_IOC_MESH_AP, &val) != -1) {
4948 			if (val)
4949 				LINE_CHECK("meshpeering");
4950 			else
4951 				LINE_CHECK("-meshpeering");
4952 		}
4953 		if (get80211val(s, IEEE80211_IOC_MESH_FWRD, &val) != -1) {
4954 			if (val)
4955 				LINE_CHECK("meshforward");
4956 			else
4957 				LINE_CHECK("-meshforward");
4958 		}
4959 		if (get80211val(s, IEEE80211_IOC_MESH_GATE, &val) != -1) {
4960 			if (val)
4961 				LINE_CHECK("meshgate");
4962 			else
4963 				LINE_CHECK("-meshgate");
4964 		}
4965 		if (get80211len(s, IEEE80211_IOC_MESH_PR_METRIC, data, 12,
4966 		    &len) != -1) {
4967 			data[len] = '\0';
4968 			LINE_CHECK("meshmetric %s", data);
4969 		}
4970 		if (get80211len(s, IEEE80211_IOC_MESH_PR_PATH, data, 12,
4971 		    &len) != -1) {
4972 			data[len] = '\0';
4973 			LINE_CHECK("meshpath %s", data);
4974 		}
4975 		if (get80211val(s, IEEE80211_IOC_HWMP_ROOTMODE, &val) != -1) {
4976 			switch (val) {
4977 			case IEEE80211_HWMP_ROOTMODE_DISABLED:
4978 				LINE_CHECK("hwmprootmode DISABLED");
4979 				break;
4980 			case IEEE80211_HWMP_ROOTMODE_NORMAL:
4981 				LINE_CHECK("hwmprootmode NORMAL");
4982 				break;
4983 			case IEEE80211_HWMP_ROOTMODE_PROACTIVE:
4984 				LINE_CHECK("hwmprootmode PROACTIVE");
4985 				break;
4986 			case IEEE80211_HWMP_ROOTMODE_RANN:
4987 				LINE_CHECK("hwmprootmode RANN");
4988 				break;
4989 			default:
4990 				LINE_CHECK("hwmprootmode UNKNOWN(%d)", val);
4991 				break;
4992 			}
4993 		}
4994 		if (get80211val(s, IEEE80211_IOC_HWMP_MAXHOPS, &val) != -1) {
4995 			LINE_CHECK("hwmpmaxhops %u", val);
4996 		}
4997 	}
4998 
4999 	LINE_BREAK();
5000 }
5001 
5002 static int
5003 get80211(int s, int type, void *data, int len)
5004 {
5005 
5006 	return (lib80211_get80211(s, name, type, data, len));
5007 }
5008 
5009 static int
5010 get80211len(int s, int type, void *data, int len, int *plen)
5011 {
5012 
5013 	return (lib80211_get80211len(s, name, type, data, len, plen));
5014 }
5015 
5016 static int
5017 get80211val(int s, int type, int *val)
5018 {
5019 
5020 	return (lib80211_get80211val(s, name, type, val));
5021 }
5022 
5023 static void
5024 set80211(int s, int type, int val, int len, void *data)
5025 {
5026 	int ret;
5027 
5028 	ret = lib80211_set80211(s, name, type, val, len, data);
5029 	if (ret < 0)
5030 		err(1, "SIOCS80211");
5031 }
5032 
5033 static const char *
5034 get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp)
5035 {
5036 	int len;
5037 	int hexstr;
5038 	u_int8_t *p;
5039 
5040 	len = *lenp;
5041 	p = buf;
5042 	hexstr = (val[0] == '0' && tolower((u_char)val[1]) == 'x');
5043 	if (hexstr)
5044 		val += 2;
5045 	for (;;) {
5046 		if (*val == '\0')
5047 			break;
5048 		if (sep != NULL && strchr(sep, *val) != NULL) {
5049 			val++;
5050 			break;
5051 		}
5052 		if (hexstr) {
5053 			if (!isxdigit((u_char)val[0])) {
5054 				warnx("bad hexadecimal digits");
5055 				return NULL;
5056 			}
5057 			if (!isxdigit((u_char)val[1])) {
5058 				warnx("odd count hexadecimal digits");
5059 				return NULL;
5060 			}
5061 		}
5062 		if (p >= buf + len) {
5063 			if (hexstr)
5064 				warnx("hexadecimal digits too long");
5065 			else
5066 				warnx("string too long");
5067 			return NULL;
5068 		}
5069 		if (hexstr) {
5070 #define	tohex(x)	(isdigit(x) ? (x) - '0' : tolower(x) - 'a' + 10)
5071 			*p++ = (tohex((u_char)val[0]) << 4) |
5072 			    tohex((u_char)val[1]);
5073 #undef tohex
5074 			val += 2;
5075 		} else
5076 			*p++ = *val++;
5077 	}
5078 	len = p - buf;
5079 	/* The string "-" is treated as the empty string. */
5080 	if (!hexstr && len == 1 && buf[0] == '-') {
5081 		len = 0;
5082 		memset(buf, 0, *lenp);
5083 	} else if (len < *lenp)
5084 		memset(p, 0, *lenp - len);
5085 	*lenp = len;
5086 	return val;
5087 }
5088 
5089 static void
5090 print_string(const u_int8_t *buf, int len)
5091 {
5092 	int i;
5093 	int hasspc;
5094 
5095 	i = 0;
5096 	hasspc = 0;
5097 	for (; i < len; i++) {
5098 		if (!isprint(buf[i]) && buf[i] != '\0')
5099 			break;
5100 		if (isspace(buf[i]))
5101 			hasspc++;
5102 	}
5103 	if (i == len) {
5104 		if (hasspc || len == 0 || buf[0] == '\0')
5105 			printf("\"%.*s\"", len, buf);
5106 		else
5107 			printf("%.*s", len, buf);
5108 	} else {
5109 		printf("0x");
5110 		for (i = 0; i < len; i++)
5111 			printf("%02x", buf[i]);
5112 	}
5113 }
5114 
5115 /*
5116  * Virtual AP cloning support.
5117  */
5118 static struct ieee80211_clone_params params = {
5119 	.icp_opmode	= IEEE80211_M_STA,	/* default to station mode */
5120 };
5121 
5122 static void
5123 wlan_create(int s, struct ifreq *ifr)
5124 {
5125 	static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
5126 
5127 	if (params.icp_parent[0] == '\0')
5128 		errx(1, "must specify a parent device (wlandev) when creating "
5129 		    "a wlan device");
5130 	if (params.icp_opmode == IEEE80211_M_WDS &&
5131 	    memcmp(params.icp_bssid, zerobssid, sizeof(zerobssid)) == 0)
5132 		errx(1, "no bssid specified for WDS (use wlanbssid)");
5133 	ifr->ifr_data = (caddr_t) &params;
5134 	if (ioctl(s, SIOCIFCREATE2, ifr) < 0)
5135 		err(1, "SIOCIFCREATE2");
5136 }
5137 
5138 static
5139 DECL_CMD_FUNC(set80211clone_wlandev, arg, d)
5140 {
5141 	strlcpy(params.icp_parent, arg, IFNAMSIZ);
5142 }
5143 
5144 static
5145 DECL_CMD_FUNC(set80211clone_wlanbssid, arg, d)
5146 {
5147 	const struct ether_addr *ea;
5148 
5149 	ea = ether_aton(arg);
5150 	if (ea == NULL)
5151 		errx(1, "%s: cannot parse bssid", arg);
5152 	memcpy(params.icp_bssid, ea->octet, IEEE80211_ADDR_LEN);
5153 }
5154 
5155 static
5156 DECL_CMD_FUNC(set80211clone_wlanaddr, arg, d)
5157 {
5158 	const struct ether_addr *ea;
5159 
5160 	ea = ether_aton(arg);
5161 	if (ea == NULL)
5162 		errx(1, "%s: cannot parse address", arg);
5163 	memcpy(params.icp_macaddr, ea->octet, IEEE80211_ADDR_LEN);
5164 	params.icp_flags |= IEEE80211_CLONE_MACADDR;
5165 }
5166 
5167 static
5168 DECL_CMD_FUNC(set80211clone_wlanmode, arg, d)
5169 {
5170 #define	iseq(a,b)	(strncasecmp(a,b,sizeof(b)-1) == 0)
5171 	if (iseq(arg, "sta"))
5172 		params.icp_opmode = IEEE80211_M_STA;
5173 	else if (iseq(arg, "ahdemo") || iseq(arg, "adhoc-demo"))
5174 		params.icp_opmode = IEEE80211_M_AHDEMO;
5175 	else if (iseq(arg, "ibss") || iseq(arg, "adhoc"))
5176 		params.icp_opmode = IEEE80211_M_IBSS;
5177 	else if (iseq(arg, "ap") || iseq(arg, "host"))
5178 		params.icp_opmode = IEEE80211_M_HOSTAP;
5179 	else if (iseq(arg, "wds"))
5180 		params.icp_opmode = IEEE80211_M_WDS;
5181 	else if (iseq(arg, "monitor"))
5182 		params.icp_opmode = IEEE80211_M_MONITOR;
5183 	else if (iseq(arg, "tdma")) {
5184 		params.icp_opmode = IEEE80211_M_AHDEMO;
5185 		params.icp_flags |= IEEE80211_CLONE_TDMA;
5186 	} else if (iseq(arg, "mesh") || iseq(arg, "mp")) /* mesh point */
5187 		params.icp_opmode = IEEE80211_M_MBSS;
5188 	else
5189 		errx(1, "Don't know to create %s for %s", arg, name);
5190 #undef iseq
5191 }
5192 
5193 static void
5194 set80211clone_beacons(const char *val, int d, int s, const struct afswtch *rafp)
5195 {
5196 	/* NB: inverted sense */
5197 	if (d)
5198 		params.icp_flags &= ~IEEE80211_CLONE_NOBEACONS;
5199 	else
5200 		params.icp_flags |= IEEE80211_CLONE_NOBEACONS;
5201 }
5202 
5203 static void
5204 set80211clone_bssid(const char *val, int d, int s, const struct afswtch *rafp)
5205 {
5206 	if (d)
5207 		params.icp_flags |= IEEE80211_CLONE_BSSID;
5208 	else
5209 		params.icp_flags &= ~IEEE80211_CLONE_BSSID;
5210 }
5211 
5212 static void
5213 set80211clone_wdslegacy(const char *val, int d, int s, const struct afswtch *rafp)
5214 {
5215 	if (d)
5216 		params.icp_flags |= IEEE80211_CLONE_WDSLEGACY;
5217 	else
5218 		params.icp_flags &= ~IEEE80211_CLONE_WDSLEGACY;
5219 }
5220 
5221 static struct cmd ieee80211_cmds[] = {
5222 	DEF_CMD_ARG("ssid",		set80211ssid),
5223 	DEF_CMD_ARG("nwid",		set80211ssid),
5224 	DEF_CMD_ARG("meshid",		set80211meshid),
5225 	DEF_CMD_ARG("stationname",	set80211stationname),
5226 	DEF_CMD_ARG("station",		set80211stationname),	/* BSD/OS */
5227 	DEF_CMD_ARG("channel",		set80211channel),
5228 	DEF_CMD_ARG("authmode",		set80211authmode),
5229 	DEF_CMD_ARG("powersavemode",	set80211powersavemode),
5230 	DEF_CMD("powersave",	1,	set80211powersave),
5231 	DEF_CMD("-powersave",	0,	set80211powersave),
5232 	DEF_CMD_ARG("powersavesleep", 	set80211powersavesleep),
5233 	DEF_CMD_ARG("wepmode",		set80211wepmode),
5234 	DEF_CMD("wep",		1,	set80211wep),
5235 	DEF_CMD("-wep",		0,	set80211wep),
5236 	DEF_CMD_ARG("deftxkey",		set80211weptxkey),
5237 	DEF_CMD_ARG("weptxkey",		set80211weptxkey),
5238 	DEF_CMD_ARG("wepkey",		set80211wepkey),
5239 	DEF_CMD_ARG("nwkey",		set80211nwkey),		/* NetBSD */
5240 	DEF_CMD("-nwkey",	0,	set80211wep),		/* NetBSD */
5241 	DEF_CMD_ARG("rtsthreshold",	set80211rtsthreshold),
5242 	DEF_CMD_ARG("protmode",		set80211protmode),
5243 	DEF_CMD_ARG("txpower",		set80211txpower),
5244 	DEF_CMD_ARG("roaming",		set80211roaming),
5245 	DEF_CMD("wme",		1,	set80211wme),
5246 	DEF_CMD("-wme",		0,	set80211wme),
5247 	DEF_CMD("wmm",		1,	set80211wme),
5248 	DEF_CMD("-wmm",		0,	set80211wme),
5249 	DEF_CMD("hidessid",	1,	set80211hidessid),
5250 	DEF_CMD("-hidessid",	0,	set80211hidessid),
5251 	DEF_CMD("apbridge",	1,	set80211apbridge),
5252 	DEF_CMD("-apbridge",	0,	set80211apbridge),
5253 	DEF_CMD_ARG("chanlist",		set80211chanlist),
5254 	DEF_CMD_ARG("bssid",		set80211bssid),
5255 	DEF_CMD_ARG("ap",		set80211bssid),
5256 	DEF_CMD("scan",	0,		set80211scan),
5257 	DEF_CMD_ARG("list",		set80211list),
5258 	DEF_CMD_ARG2("cwmin",		set80211cwmin),
5259 	DEF_CMD_ARG2("cwmax",		set80211cwmax),
5260 	DEF_CMD_ARG2("aifs",		set80211aifs),
5261 	DEF_CMD_ARG2("txoplimit",	set80211txoplimit),
5262 	DEF_CMD_ARG("acm",		set80211acm),
5263 	DEF_CMD_ARG("-acm",		set80211noacm),
5264 	DEF_CMD_ARG("ack",		set80211ackpolicy),
5265 	DEF_CMD_ARG("-ack",		set80211noackpolicy),
5266 	DEF_CMD_ARG2("bss:cwmin",	set80211bsscwmin),
5267 	DEF_CMD_ARG2("bss:cwmax",	set80211bsscwmax),
5268 	DEF_CMD_ARG2("bss:aifs",	set80211bssaifs),
5269 	DEF_CMD_ARG2("bss:txoplimit",	set80211bsstxoplimit),
5270 	DEF_CMD_ARG("dtimperiod",	set80211dtimperiod),
5271 	DEF_CMD_ARG("bintval",		set80211bintval),
5272 	DEF_CMD("mac:open",	IEEE80211_MACCMD_POLICY_OPEN,	set80211maccmd),
5273 	DEF_CMD("mac:allow",	IEEE80211_MACCMD_POLICY_ALLOW,	set80211maccmd),
5274 	DEF_CMD("mac:deny",	IEEE80211_MACCMD_POLICY_DENY,	set80211maccmd),
5275 	DEF_CMD("mac:radius",	IEEE80211_MACCMD_POLICY_RADIUS,	set80211maccmd),
5276 	DEF_CMD("mac:flush",	IEEE80211_MACCMD_FLUSH,		set80211maccmd),
5277 	DEF_CMD("mac:detach",	IEEE80211_MACCMD_DETACH,	set80211maccmd),
5278 	DEF_CMD_ARG("mac:add",		set80211addmac),
5279 	DEF_CMD_ARG("mac:del",		set80211delmac),
5280 	DEF_CMD_ARG("mac:kick",		set80211kickmac),
5281 	DEF_CMD("pureg",	1,	set80211pureg),
5282 	DEF_CMD("-pureg",	0,	set80211pureg),
5283 	DEF_CMD("ff",		1,	set80211fastframes),
5284 	DEF_CMD("-ff",		0,	set80211fastframes),
5285 	DEF_CMD("dturbo",	1,	set80211dturbo),
5286 	DEF_CMD("-dturbo",	0,	set80211dturbo),
5287 	DEF_CMD("bgscan",	1,	set80211bgscan),
5288 	DEF_CMD("-bgscan",	0,	set80211bgscan),
5289 	DEF_CMD_ARG("bgscanidle",	set80211bgscanidle),
5290 	DEF_CMD_ARG("bgscanintvl",	set80211bgscanintvl),
5291 	DEF_CMD_ARG("scanvalid",	set80211scanvalid),
5292 	DEF_CMD("quiet",        1,      set80211quiet),
5293 	DEF_CMD("-quiet",       0,      set80211quiet),
5294 	DEF_CMD_ARG("quiet_count",      set80211quietcount),
5295 	DEF_CMD_ARG("quiet_period",     set80211quietperiod),
5296 	DEF_CMD_ARG("quiet_dur",        set80211quietduration),
5297 	DEF_CMD_ARG("quiet_offset",     set80211quietoffset),
5298 	DEF_CMD_ARG("roam:rssi",	set80211roamrssi),
5299 	DEF_CMD_ARG("roam:rate",	set80211roamrate),
5300 	DEF_CMD_ARG("mcastrate",	set80211mcastrate),
5301 	DEF_CMD_ARG("ucastrate",	set80211ucastrate),
5302 	DEF_CMD_ARG("mgtrate",		set80211mgtrate),
5303 	DEF_CMD_ARG("mgmtrate",		set80211mgtrate),
5304 	DEF_CMD_ARG("maxretry",		set80211maxretry),
5305 	DEF_CMD_ARG("fragthreshold",	set80211fragthreshold),
5306 	DEF_CMD("burst",	1,	set80211burst),
5307 	DEF_CMD("-burst",	0,	set80211burst),
5308 	DEF_CMD_ARG("bmiss",		set80211bmissthreshold),
5309 	DEF_CMD_ARG("bmissthreshold",	set80211bmissthreshold),
5310 	DEF_CMD("shortgi",	1,	set80211shortgi),
5311 	DEF_CMD("-shortgi",	0,	set80211shortgi),
5312 	DEF_CMD("ampdurx",	2,	set80211ampdu),
5313 	DEF_CMD("-ampdurx",	-2,	set80211ampdu),
5314 	DEF_CMD("ampdutx",	1,	set80211ampdu),
5315 	DEF_CMD("-ampdutx",	-1,	set80211ampdu),
5316 	DEF_CMD("ampdu",	3,	set80211ampdu),		/* NB: tx+rx */
5317 	DEF_CMD("-ampdu",	-3,	set80211ampdu),
5318 	DEF_CMD_ARG("ampdulimit",	set80211ampdulimit),
5319 	DEF_CMD_ARG("ampdudensity",	set80211ampdudensity),
5320 	DEF_CMD("amsdurx",	2,	set80211amsdu),
5321 	DEF_CMD("-amsdurx",	-2,	set80211amsdu),
5322 	DEF_CMD("amsdutx",	1,	set80211amsdu),
5323 	DEF_CMD("-amsdutx",	-1,	set80211amsdu),
5324 	DEF_CMD("amsdu",	3,	set80211amsdu),		/* NB: tx+rx */
5325 	DEF_CMD("-amsdu",	-3,	set80211amsdu),
5326 	DEF_CMD_ARG("amsdulimit",	set80211amsdulimit),
5327 	DEF_CMD("puren",	1,	set80211puren),
5328 	DEF_CMD("-puren",	0,	set80211puren),
5329 	DEF_CMD("doth",		1,	set80211doth),
5330 	DEF_CMD("-doth",	0,	set80211doth),
5331 	DEF_CMD("dfs",		1,	set80211dfs),
5332 	DEF_CMD("-dfs",		0,	set80211dfs),
5333 	DEF_CMD("htcompat",	1,	set80211htcompat),
5334 	DEF_CMD("-htcompat",	0,	set80211htcompat),
5335 	DEF_CMD("dwds",		1,	set80211dwds),
5336 	DEF_CMD("-dwds",	0,	set80211dwds),
5337 	DEF_CMD("inact",	1,	set80211inact),
5338 	DEF_CMD("-inact",	0,	set80211inact),
5339 	DEF_CMD("tsn",		1,	set80211tsn),
5340 	DEF_CMD("-tsn",		0,	set80211tsn),
5341 	DEF_CMD_ARG("regdomain",	set80211regdomain),
5342 	DEF_CMD_ARG("country",		set80211country),
5343 	DEF_CMD("indoor",	'I',	set80211location),
5344 	DEF_CMD("-indoor",	'O',	set80211location),
5345 	DEF_CMD("outdoor",	'O',	set80211location),
5346 	DEF_CMD("-outdoor",	'I',	set80211location),
5347 	DEF_CMD("anywhere",	' ',	set80211location),
5348 	DEF_CMD("ecm",		1,	set80211ecm),
5349 	DEF_CMD("-ecm",		0,	set80211ecm),
5350 	DEF_CMD("dotd",		1,	set80211dotd),
5351 	DEF_CMD("-dotd",	0,	set80211dotd),
5352 	DEF_CMD_ARG("htprotmode",	set80211htprotmode),
5353 	DEF_CMD("ht20",		1,	set80211htconf),
5354 	DEF_CMD("-ht20",	0,	set80211htconf),
5355 	DEF_CMD("ht40",		3,	set80211htconf),	/* NB: 20+40 */
5356 	DEF_CMD("-ht40",	0,	set80211htconf),
5357 	DEF_CMD("ht",		3,	set80211htconf),	/* NB: 20+40 */
5358 	DEF_CMD("-ht",		0,	set80211htconf),
5359 	DEF_CMD("rifs",		1,	set80211rifs),
5360 	DEF_CMD("-rifs",	0,	set80211rifs),
5361 	DEF_CMD("smps",		IEEE80211_HTCAP_SMPS_ENA,	set80211smps),
5362 	DEF_CMD("smpsdyn",	IEEE80211_HTCAP_SMPS_DYNAMIC,	set80211smps),
5363 	DEF_CMD("-smps",	IEEE80211_HTCAP_SMPS_OFF,	set80211smps),
5364 	/* XXX for testing */
5365 	DEF_CMD_ARG("chanswitch",	set80211chanswitch),
5366 
5367 	DEF_CMD_ARG("tdmaslot",		set80211tdmaslot),
5368 	DEF_CMD_ARG("tdmaslotcnt",	set80211tdmaslotcnt),
5369 	DEF_CMD_ARG("tdmaslotlen",	set80211tdmaslotlen),
5370 	DEF_CMD_ARG("tdmabintval",	set80211tdmabintval),
5371 
5372 	DEF_CMD_ARG("meshttl",		set80211meshttl),
5373 	DEF_CMD("meshforward",	1,	set80211meshforward),
5374 	DEF_CMD("-meshforward",	0,	set80211meshforward),
5375 	DEF_CMD("meshgate",	1,	set80211meshgate),
5376 	DEF_CMD("-meshgate",	0,	set80211meshgate),
5377 	DEF_CMD("meshpeering",	1,	set80211meshpeering),
5378 	DEF_CMD("-meshpeering",	0,	set80211meshpeering),
5379 	DEF_CMD_ARG("meshmetric",	set80211meshmetric),
5380 	DEF_CMD_ARG("meshpath",		set80211meshpath),
5381 	DEF_CMD("meshrt:flush",	IEEE80211_MESH_RTCMD_FLUSH,	set80211meshrtcmd),
5382 	DEF_CMD_ARG("meshrt:add",	set80211addmeshrt),
5383 	DEF_CMD_ARG("meshrt:del",	set80211delmeshrt),
5384 	DEF_CMD_ARG("hwmprootmode",	set80211hwmprootmode),
5385 	DEF_CMD_ARG("hwmpmaxhops",	set80211hwmpmaxhops),
5386 
5387 	/* vap cloning support */
5388 	DEF_CLONE_CMD_ARG("wlanaddr",	set80211clone_wlanaddr),
5389 	DEF_CLONE_CMD_ARG("wlanbssid",	set80211clone_wlanbssid),
5390 	DEF_CLONE_CMD_ARG("wlandev",	set80211clone_wlandev),
5391 	DEF_CLONE_CMD_ARG("wlanmode",	set80211clone_wlanmode),
5392 	DEF_CLONE_CMD("beacons", 1,	set80211clone_beacons),
5393 	DEF_CLONE_CMD("-beacons", 0,	set80211clone_beacons),
5394 	DEF_CLONE_CMD("bssid",	1,	set80211clone_bssid),
5395 	DEF_CLONE_CMD("-bssid",	0,	set80211clone_bssid),
5396 	DEF_CLONE_CMD("wdslegacy", 1,	set80211clone_wdslegacy),
5397 	DEF_CLONE_CMD("-wdslegacy", 0,	set80211clone_wdslegacy),
5398 };
5399 static struct afswtch af_ieee80211 = {
5400 	.af_name	= "af_ieee80211",
5401 	.af_af		= AF_UNSPEC,
5402 	.af_other_status = ieee80211_status,
5403 };
5404 
5405 static __constructor void
5406 ieee80211_ctor(void)
5407 {
5408 	int i;
5409 
5410 	for (i = 0; i < nitems(ieee80211_cmds);  i++)
5411 		cmd_register(&ieee80211_cmds[i]);
5412 	af_register(&af_ieee80211);
5413 	clone_setdefcallback("wlan", wlan_create);
5414 }
5415