1 /* 2 * Copyright 2001 The Aerospace Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of The Aerospace Corporation may not be used to endorse or 13 * promote products derived from this software. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD$ 28 */ 29 30 /*- 31 * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc. 32 * All rights reserved. 33 * 34 * This code is derived from software contributed to The NetBSD Foundation 35 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 36 * NASA Ames Research Center. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 48 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 49 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 50 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 51 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 57 * POSSIBILITY OF SUCH DAMAGE. 58 */ 59 60 #include <sys/param.h> 61 #include <sys/ioctl.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/time.h> 65 66 #include <net/ethernet.h> 67 #include <net/if.h> 68 #include <net/if_dl.h> 69 #include <net/if_types.h> 70 #include <net/if_media.h> 71 #include <net/route.h> 72 73 #include <net80211/ieee80211_ioctl.h> 74 #include <net80211/ieee80211_freebsd.h> 75 #include <net80211/ieee80211_superg.h> 76 #include <net80211/ieee80211_tdma.h> 77 #include <net80211/ieee80211_mesh.h> 78 79 #include <assert.h> 80 #include <ctype.h> 81 #include <err.h> 82 #include <errno.h> 83 #include <fcntl.h> 84 #include <inttypes.h> 85 #include <stdio.h> 86 #include <stdlib.h> 87 #include <string.h> 88 #include <unistd.h> 89 #include <stdarg.h> 90 #include <stddef.h> /* NB: for offsetof */ 91 92 #include "ifconfig.h" 93 #include "regdomain.h" 94 95 #ifndef IEEE80211_FIXED_RATE_NONE 96 #define IEEE80211_FIXED_RATE_NONE 0xff 97 #endif 98 99 /* XXX need these publicly defined or similar */ 100 #ifndef IEEE80211_NODE_AUTH 101 #define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */ 102 #define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */ 103 #define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */ 104 #define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */ 105 #define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */ 106 #define IEEE80211_NODE_HT 0x000040 /* HT enabled */ 107 #define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */ 108 #define IEEE80211_NODE_WPS 0x000100 /* WPS association */ 109 #define IEEE80211_NODE_TSN 0x000200 /* TSN association */ 110 #define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */ 111 #define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */ 112 #define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */ 113 #define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */ 114 #define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */ 115 #define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */ 116 #define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */ 117 #define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */ 118 #define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */ 119 #define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */ 120 #endif 121 122 #define MAXCHAN 1536 /* max 1.5K channels */ 123 124 #define MAXCOL 78 125 static int col; 126 static char spacer; 127 128 static void LINE_INIT(char c); 129 static void LINE_BREAK(void); 130 static void LINE_CHECK(const char *fmt, ...); 131 132 static const char *modename[IEEE80211_MODE_MAX] = { 133 [IEEE80211_MODE_AUTO] = "auto", 134 [IEEE80211_MODE_11A] = "11a", 135 [IEEE80211_MODE_11B] = "11b", 136 [IEEE80211_MODE_11G] = "11g", 137 [IEEE80211_MODE_FH] = "fh", 138 [IEEE80211_MODE_TURBO_A] = "turboA", 139 [IEEE80211_MODE_TURBO_G] = "turboG", 140 [IEEE80211_MODE_STURBO_A] = "sturbo", 141 [IEEE80211_MODE_11NA] = "11na", 142 [IEEE80211_MODE_11NG] = "11ng", 143 [IEEE80211_MODE_HALF] = "half", 144 [IEEE80211_MODE_QUARTER] = "quarter" 145 }; 146 147 static void set80211(int s, int type, int val, int len, void *data); 148 static int get80211(int s, int type, void *data, int len); 149 static int get80211len(int s, int type, void *data, int len, int *plen); 150 static int get80211val(int s, int type, int *val); 151 static const char *get_string(const char *val, const char *sep, 152 u_int8_t *buf, int *lenp); 153 static void print_string(const u_int8_t *buf, int len); 154 static void print_regdomain(const struct ieee80211_regdomain *, int); 155 static void print_channels(int, const struct ieee80211req_chaninfo *, 156 int allchans, int verbose); 157 static void regdomain_makechannels(struct ieee80211_regdomain_req *, 158 const struct ieee80211_devcaps_req *); 159 static const char *mesh_linkstate_string(uint8_t state); 160 161 static struct ieee80211req_chaninfo *chaninfo; 162 static struct ieee80211_regdomain regdomain; 163 static int gotregdomain = 0; 164 static struct ieee80211_roamparams_req roamparams; 165 static int gotroam = 0; 166 static struct ieee80211_txparams_req txparams; 167 static int gottxparams = 0; 168 static struct ieee80211_channel curchan; 169 static int gotcurchan = 0; 170 static struct ifmediareq *ifmr; 171 static int htconf = 0; 172 static int gothtconf = 0; 173 174 static void 175 gethtconf(int s) 176 { 177 if (gothtconf) 178 return; 179 if (get80211val(s, IEEE80211_IOC_HTCONF, &htconf) < 0) 180 warn("unable to get HT configuration information"); 181 gothtconf = 1; 182 } 183 184 /* 185 * Collect channel info from the kernel. We use this (mostly) 186 * to handle mapping between frequency and IEEE channel number. 187 */ 188 static void 189 getchaninfo(int s) 190 { 191 if (chaninfo != NULL) 192 return; 193 chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN)); 194 if (chaninfo == NULL) 195 errx(1, "no space for channel list"); 196 if (get80211(s, IEEE80211_IOC_CHANINFO, chaninfo, 197 IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0) 198 err(1, "unable to get channel information"); 199 ifmr = ifmedia_getstate(s); 200 gethtconf(s); 201 } 202 203 static struct regdata * 204 getregdata(void) 205 { 206 static struct regdata *rdp = NULL; 207 if (rdp == NULL) { 208 rdp = lib80211_alloc_regdata(); 209 if (rdp == NULL) 210 errx(-1, "missing or corrupted regdomain database"); 211 } 212 return rdp; 213 } 214 215 /* 216 * Given the channel at index i with attributes from, 217 * check if there is a channel with attributes to in 218 * the channel table. With suitable attributes this 219 * allows the caller to look for promotion; e.g. from 220 * 11b > 11g. 221 */ 222 static int 223 canpromote(int i, int from, int to) 224 { 225 const struct ieee80211_channel *fc = &chaninfo->ic_chans[i]; 226 int j; 227 228 if ((fc->ic_flags & from) != from) 229 return i; 230 /* NB: quick check exploiting ordering of chans w/ same frequency */ 231 if (i+1 < chaninfo->ic_nchans && 232 chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq && 233 (chaninfo->ic_chans[i+1].ic_flags & to) == to) 234 return i+1; 235 /* brute force search in case channel list is not ordered */ 236 for (j = 0; j < chaninfo->ic_nchans; j++) { 237 const struct ieee80211_channel *tc = &chaninfo->ic_chans[j]; 238 if (j != i && 239 tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to) 240 return j; 241 } 242 return i; 243 } 244 245 /* 246 * Handle channel promotion. When a channel is specified with 247 * only a frequency we want to promote it to the ``best'' channel 248 * available. The channel list has separate entries for 11b, 11g, 249 * 11a, and 11n[ga] channels so specifying a frequency w/o any 250 * attributes requires we upgrade, e.g. from 11b -> 11g. This 251 * gets complicated when the channel is specified on the same 252 * command line with a media request that constrains the available 253 * channe list (e.g. mode 11a); we want to honor that to avoid 254 * confusing behaviour. 255 */ 256 static int 257 promote(int i) 258 { 259 /* 260 * Query the current mode of the interface in case it's 261 * constrained (e.g. to 11a). We must do this carefully 262 * as there may be a pending ifmedia request in which case 263 * asking the kernel will give us the wrong answer. This 264 * is an unfortunate side-effect of the way ifconfig is 265 * structure for modularity (yech). 266 * 267 * NB: ifmr is actually setup in getchaninfo (above); we 268 * assume it's called coincident with to this call so 269 * we have a ``current setting''; otherwise we must pass 270 * the socket descriptor down to here so we can make 271 * the ifmedia_getstate call ourselves. 272 */ 273 int chanmode = ifmr != NULL ? IFM_MODE(ifmr->ifm_current) : IFM_AUTO; 274 275 /* when ambiguous promote to ``best'' */ 276 /* NB: we abitrarily pick HT40+ over HT40- */ 277 if (chanmode != IFM_IEEE80211_11B) 278 i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G); 279 if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) { 280 i = canpromote(i, IEEE80211_CHAN_G, 281 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20); 282 if (htconf & 2) { 283 i = canpromote(i, IEEE80211_CHAN_G, 284 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D); 285 i = canpromote(i, IEEE80211_CHAN_G, 286 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U); 287 } 288 } 289 if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) { 290 i = canpromote(i, IEEE80211_CHAN_A, 291 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20); 292 if (htconf & 2) { 293 i = canpromote(i, IEEE80211_CHAN_A, 294 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D); 295 i = canpromote(i, IEEE80211_CHAN_A, 296 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U); 297 } 298 } 299 return i; 300 } 301 302 static void 303 mapfreq(struct ieee80211_channel *chan, int freq, int flags) 304 { 305 int i; 306 307 for (i = 0; i < chaninfo->ic_nchans; i++) { 308 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 309 310 if (c->ic_freq == freq && (c->ic_flags & flags) == flags) { 311 if (flags == 0) { 312 /* when ambiguous promote to ``best'' */ 313 c = &chaninfo->ic_chans[promote(i)]; 314 } 315 *chan = *c; 316 return; 317 } 318 } 319 errx(1, "unknown/undefined frequency %u/0x%x", freq, flags); 320 } 321 322 static void 323 mapchan(struct ieee80211_channel *chan, int ieee, int flags) 324 { 325 int i; 326 327 for (i = 0; i < chaninfo->ic_nchans; i++) { 328 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 329 330 if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) { 331 if (flags == 0) { 332 /* when ambiguous promote to ``best'' */ 333 c = &chaninfo->ic_chans[promote(i)]; 334 } 335 *chan = *c; 336 return; 337 } 338 } 339 errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags); 340 } 341 342 static const struct ieee80211_channel * 343 getcurchan(int s) 344 { 345 if (gotcurchan) 346 return &curchan; 347 if (get80211(s, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) { 348 int val; 349 /* fall back to legacy ioctl */ 350 if (get80211val(s, IEEE80211_IOC_CHANNEL, &val) < 0) 351 err(-1, "cannot figure out current channel"); 352 getchaninfo(s); 353 mapchan(&curchan, val, 0); 354 } 355 gotcurchan = 1; 356 return &curchan; 357 } 358 359 static enum ieee80211_phymode 360 chan2mode(const struct ieee80211_channel *c) 361 { 362 if (IEEE80211_IS_CHAN_HTA(c)) 363 return IEEE80211_MODE_11NA; 364 if (IEEE80211_IS_CHAN_HTG(c)) 365 return IEEE80211_MODE_11NG; 366 if (IEEE80211_IS_CHAN_108A(c)) 367 return IEEE80211_MODE_TURBO_A; 368 if (IEEE80211_IS_CHAN_108G(c)) 369 return IEEE80211_MODE_TURBO_G; 370 if (IEEE80211_IS_CHAN_ST(c)) 371 return IEEE80211_MODE_STURBO_A; 372 if (IEEE80211_IS_CHAN_FHSS(c)) 373 return IEEE80211_MODE_FH; 374 if (IEEE80211_IS_CHAN_HALF(c)) 375 return IEEE80211_MODE_HALF; 376 if (IEEE80211_IS_CHAN_QUARTER(c)) 377 return IEEE80211_MODE_QUARTER; 378 if (IEEE80211_IS_CHAN_A(c)) 379 return IEEE80211_MODE_11A; 380 if (IEEE80211_IS_CHAN_ANYG(c)) 381 return IEEE80211_MODE_11G; 382 if (IEEE80211_IS_CHAN_B(c)) 383 return IEEE80211_MODE_11B; 384 return IEEE80211_MODE_AUTO; 385 } 386 387 static void 388 getroam(int s) 389 { 390 if (gotroam) 391 return; 392 if (get80211(s, IEEE80211_IOC_ROAM, 393 &roamparams, sizeof(roamparams)) < 0) 394 err(1, "unable to get roaming parameters"); 395 gotroam = 1; 396 } 397 398 static void 399 setroam_cb(int s, void *arg) 400 { 401 struct ieee80211_roamparams_req *roam = arg; 402 set80211(s, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam); 403 } 404 405 static void 406 gettxparams(int s) 407 { 408 if (gottxparams) 409 return; 410 if (get80211(s, IEEE80211_IOC_TXPARAMS, 411 &txparams, sizeof(txparams)) < 0) 412 err(1, "unable to get transmit parameters"); 413 gottxparams = 1; 414 } 415 416 static void 417 settxparams_cb(int s, void *arg) 418 { 419 struct ieee80211_txparams_req *txp = arg; 420 set80211(s, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp); 421 } 422 423 static void 424 getregdomain(int s) 425 { 426 if (gotregdomain) 427 return; 428 if (get80211(s, IEEE80211_IOC_REGDOMAIN, 429 ®domain, sizeof(regdomain)) < 0) 430 err(1, "unable to get regulatory domain info"); 431 gotregdomain = 1; 432 } 433 434 static void 435 getdevcaps(int s, struct ieee80211_devcaps_req *dc) 436 { 437 if (get80211(s, IEEE80211_IOC_DEVCAPS, dc, 438 IEEE80211_DEVCAPS_SPACE(dc)) < 0) 439 err(1, "unable to get device capabilities"); 440 } 441 442 static void 443 setregdomain_cb(int s, void *arg) 444 { 445 struct ieee80211_regdomain_req *req; 446 struct ieee80211_regdomain *rd = arg; 447 struct ieee80211_devcaps_req *dc; 448 struct regdata *rdp = getregdata(); 449 450 if (rd->country != NO_COUNTRY) { 451 const struct country *cc; 452 /* 453 * Check current country seting to make sure it's 454 * compatible with the new regdomain. If not, then 455 * override it with any default country for this 456 * SKU. If we cannot arrange a match, then abort. 457 */ 458 cc = lib80211_country_findbycc(rdp, rd->country); 459 if (cc == NULL) 460 errx(1, "unknown ISO country code %d", rd->country); 461 if (cc->rd->sku != rd->regdomain) { 462 const struct regdomain *rp; 463 /* 464 * Check if country is incompatible with regdomain. 465 * To enable multiple regdomains for a country code 466 * we permit a mismatch between the regdomain and 467 * the country's associated regdomain when the 468 * regdomain is setup w/o a default country. For 469 * example, US is bound to the FCC regdomain but 470 * we allow US to be combined with FCC3 because FCC3 471 * has not default country. This allows bogus 472 * combinations like FCC3+DK which are resolved when 473 * constructing the channel list by deferring to the 474 * regdomain to construct the channel list. 475 */ 476 rp = lib80211_regdomain_findbysku(rdp, rd->regdomain); 477 if (rp == NULL) 478 errx(1, "country %s (%s) is not usable with " 479 "regdomain %d", cc->isoname, cc->name, 480 rd->regdomain); 481 else if (rp->cc != NULL && rp->cc != cc) 482 errx(1, "country %s (%s) is not usable with " 483 "regdomain %s", cc->isoname, cc->name, 484 rp->name); 485 } 486 } 487 /* 488 * Fetch the device capabilities and calculate the 489 * full set of netbands for which we request a new 490 * channel list be constructed. Once that's done we 491 * push the regdomain info + channel list to the kernel. 492 */ 493 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 494 if (dc == NULL) 495 errx(1, "no space for device capabilities"); 496 dc->dc_chaninfo.ic_nchans = MAXCHAN; 497 getdevcaps(s, dc); 498 #if 0 499 if (verbose) { 500 printf("drivercaps: 0x%x\n", dc->dc_drivercaps); 501 printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps); 502 printf("htcaps : 0x%x\n", dc->dc_htcaps); 503 memcpy(chaninfo, &dc->dc_chaninfo, 504 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 505 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/); 506 } 507 #endif 508 req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans)); 509 if (req == NULL) 510 errx(1, "no space for regdomain request"); 511 req->rd = *rd; 512 regdomain_makechannels(req, dc); 513 if (verbose) { 514 LINE_INIT(':'); 515 print_regdomain(rd, 1/*verbose*/); 516 LINE_BREAK(); 517 /* blech, reallocate channel list for new data */ 518 if (chaninfo != NULL) 519 free(chaninfo); 520 chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 521 if (chaninfo == NULL) 522 errx(1, "no space for channel list"); 523 memcpy(chaninfo, &req->chaninfo, 524 IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 525 print_channels(s, &req->chaninfo, 1/*allchans*/, 1/*verbose*/); 526 } 527 if (req->chaninfo.ic_nchans == 0) 528 errx(1, "no channels calculated"); 529 set80211(s, IEEE80211_IOC_REGDOMAIN, 0, 530 IEEE80211_REGDOMAIN_SPACE(req), req); 531 free(req); 532 free(dc); 533 } 534 535 static int 536 ieee80211_mhz2ieee(int freq, int flags) 537 { 538 struct ieee80211_channel chan; 539 mapfreq(&chan, freq, flags); 540 return chan.ic_ieee; 541 } 542 543 static int 544 isanyarg(const char *arg) 545 { 546 return (strncmp(arg, "-", 1) == 0 || 547 strncasecmp(arg, "any", 3) == 0 || strncasecmp(arg, "off", 3) == 0); 548 } 549 550 static void 551 set80211ssid(const char *val, int d, int s, const struct afswtch *rafp) 552 { 553 int ssid; 554 int len; 555 u_int8_t data[IEEE80211_NWID_LEN]; 556 557 ssid = 0; 558 len = strlen(val); 559 if (len > 2 && isdigit((int)val[0]) && val[1] == ':') { 560 ssid = atoi(val)-1; 561 val += 2; 562 } 563 564 bzero(data, sizeof(data)); 565 len = sizeof(data); 566 if (get_string(val, NULL, data, &len) == NULL) 567 exit(1); 568 569 set80211(s, IEEE80211_IOC_SSID, ssid, len, data); 570 } 571 572 static void 573 set80211meshid(const char *val, int d, int s, const struct afswtch *rafp) 574 { 575 int len; 576 u_int8_t data[IEEE80211_NWID_LEN]; 577 578 memset(data, 0, sizeof(data)); 579 len = sizeof(data); 580 if (get_string(val, NULL, data, &len) == NULL) 581 exit(1); 582 583 set80211(s, IEEE80211_IOC_MESH_ID, 0, len, data); 584 } 585 586 static void 587 set80211stationname(const char *val, int d, int s, const struct afswtch *rafp) 588 { 589 int len; 590 u_int8_t data[33]; 591 592 bzero(data, sizeof(data)); 593 len = sizeof(data); 594 get_string(val, NULL, data, &len); 595 596 set80211(s, IEEE80211_IOC_STATIONNAME, 0, len, data); 597 } 598 599 /* 600 * Parse a channel specification for attributes/flags. 601 * The syntax is: 602 * freq/xx channel width (5,10,20,40,40+,40-) 603 * freq:mode channel mode (a,b,g,h,n,t,s,d) 604 * 605 * These can be combined in either order; e.g. 2437:ng/40. 606 * Modes are case insensitive. 607 * 608 * The result is not validated here; it's assumed to be 609 * checked against the channel table fetched from the kernel. 610 */ 611 static int 612 getchannelflags(const char *val, int freq) 613 { 614 #define _CHAN_HT 0x80000000 615 const char *cp; 616 int flags; 617 618 flags = 0; 619 620 cp = strchr(val, ':'); 621 if (cp != NULL) { 622 for (cp++; isalpha((int) *cp); cp++) { 623 /* accept mixed case */ 624 int c = *cp; 625 if (isupper(c)) 626 c = tolower(c); 627 switch (c) { 628 case 'a': /* 802.11a */ 629 flags |= IEEE80211_CHAN_A; 630 break; 631 case 'b': /* 802.11b */ 632 flags |= IEEE80211_CHAN_B; 633 break; 634 case 'g': /* 802.11g */ 635 flags |= IEEE80211_CHAN_G; 636 break; 637 case 'h': /* ht = 802.11n */ 638 case 'n': /* 802.11n */ 639 flags |= _CHAN_HT; /* NB: private */ 640 break; 641 case 'd': /* dt = Atheros Dynamic Turbo */ 642 flags |= IEEE80211_CHAN_TURBO; 643 break; 644 case 't': /* ht, dt, st, t */ 645 /* dt and unadorned t specify Dynamic Turbo */ 646 if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0) 647 flags |= IEEE80211_CHAN_TURBO; 648 break; 649 case 's': /* st = Atheros Static Turbo */ 650 flags |= IEEE80211_CHAN_STURBO; 651 break; 652 default: 653 errx(-1, "%s: Invalid channel attribute %c\n", 654 val, *cp); 655 } 656 } 657 } 658 cp = strchr(val, '/'); 659 if (cp != NULL) { 660 char *ep; 661 u_long cw = strtoul(cp+1, &ep, 10); 662 663 switch (cw) { 664 case 5: 665 flags |= IEEE80211_CHAN_QUARTER; 666 break; 667 case 10: 668 flags |= IEEE80211_CHAN_HALF; 669 break; 670 case 20: 671 /* NB: this may be removed below */ 672 flags |= IEEE80211_CHAN_HT20; 673 break; 674 case 40: 675 if (ep != NULL && *ep == '+') 676 flags |= IEEE80211_CHAN_HT40U; 677 else if (ep != NULL && *ep == '-') 678 flags |= IEEE80211_CHAN_HT40D; 679 break; 680 default: 681 errx(-1, "%s: Invalid channel width\n", val); 682 } 683 } 684 /* 685 * Cleanup specifications. 686 */ 687 if ((flags & _CHAN_HT) == 0) { 688 /* 689 * If user specified freq/20 or freq/40 quietly remove 690 * HT cw attributes depending on channel use. To give 691 * an explicit 20/40 width for an HT channel you must 692 * indicate it is an HT channel since all HT channels 693 * are also usable for legacy operation; e.g. freq:n/40. 694 */ 695 flags &= ~IEEE80211_CHAN_HT; 696 } else { 697 /* 698 * Remove private indicator that this is an HT channel 699 * and if no explicit channel width has been given 700 * provide the default settings. 701 */ 702 flags &= ~_CHAN_HT; 703 if ((flags & IEEE80211_CHAN_HT) == 0) { 704 struct ieee80211_channel chan; 705 /* 706 * Consult the channel list to see if we can use 707 * HT40+ or HT40- (if both the map routines choose). 708 */ 709 if (freq > 255) 710 mapfreq(&chan, freq, 0); 711 else 712 mapchan(&chan, freq, 0); 713 flags |= (chan.ic_flags & IEEE80211_CHAN_HT); 714 } 715 } 716 return flags; 717 #undef _CHAN_HT 718 } 719 720 static void 721 getchannel(int s, struct ieee80211_channel *chan, const char *val) 722 { 723 int v, flags; 724 char *eptr; 725 726 memset(chan, 0, sizeof(*chan)); 727 if (isanyarg(val)) { 728 chan->ic_freq = IEEE80211_CHAN_ANY; 729 return; 730 } 731 getchaninfo(s); 732 errno = 0; 733 v = strtol(val, &eptr, 10); 734 if (val[0] == '\0' || val == eptr || errno == ERANGE || 735 /* channel may be suffixed with nothing, :flag, or /width */ 736 (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/')) 737 errx(1, "invalid channel specification%s", 738 errno == ERANGE ? " (out of range)" : ""); 739 flags = getchannelflags(val, v); 740 if (v > 255) { /* treat as frequency */ 741 mapfreq(chan, v, flags); 742 } else { 743 mapchan(chan, v, flags); 744 } 745 } 746 747 static void 748 set80211channel(const char *val, int d, int s, const struct afswtch *rafp) 749 { 750 struct ieee80211_channel chan; 751 752 getchannel(s, &chan, val); 753 set80211(s, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan); 754 } 755 756 static void 757 set80211chanswitch(const char *val, int d, int s, const struct afswtch *rafp) 758 { 759 struct ieee80211_chanswitch_req csr; 760 761 getchannel(s, &csr.csa_chan, val); 762 csr.csa_mode = 1; 763 csr.csa_count = 5; 764 set80211(s, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr); 765 } 766 767 static void 768 set80211authmode(const char *val, int d, int s, const struct afswtch *rafp) 769 { 770 int mode; 771 772 if (strcasecmp(val, "none") == 0) { 773 mode = IEEE80211_AUTH_NONE; 774 } else if (strcasecmp(val, "open") == 0) { 775 mode = IEEE80211_AUTH_OPEN; 776 } else if (strcasecmp(val, "shared") == 0) { 777 mode = IEEE80211_AUTH_SHARED; 778 } else if (strcasecmp(val, "8021x") == 0) { 779 mode = IEEE80211_AUTH_8021X; 780 } else if (strcasecmp(val, "wpa") == 0) { 781 mode = IEEE80211_AUTH_WPA; 782 } else { 783 errx(1, "unknown authmode"); 784 } 785 786 set80211(s, IEEE80211_IOC_AUTHMODE, mode, 0, NULL); 787 } 788 789 static void 790 set80211powersavemode(const char *val, int d, int s, const struct afswtch *rafp) 791 { 792 int mode; 793 794 if (strcasecmp(val, "off") == 0) { 795 mode = IEEE80211_POWERSAVE_OFF; 796 } else if (strcasecmp(val, "on") == 0) { 797 mode = IEEE80211_POWERSAVE_ON; 798 } else if (strcasecmp(val, "cam") == 0) { 799 mode = IEEE80211_POWERSAVE_CAM; 800 } else if (strcasecmp(val, "psp") == 0) { 801 mode = IEEE80211_POWERSAVE_PSP; 802 } else if (strcasecmp(val, "psp-cam") == 0) { 803 mode = IEEE80211_POWERSAVE_PSP_CAM; 804 } else { 805 errx(1, "unknown powersavemode"); 806 } 807 808 set80211(s, IEEE80211_IOC_POWERSAVE, mode, 0, NULL); 809 } 810 811 static void 812 set80211powersave(const char *val, int d, int s, const struct afswtch *rafp) 813 { 814 if (d == 0) 815 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF, 816 0, NULL); 817 else 818 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON, 819 0, NULL); 820 } 821 822 static void 823 set80211powersavesleep(const char *val, int d, int s, const struct afswtch *rafp) 824 { 825 set80211(s, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL); 826 } 827 828 static void 829 set80211wepmode(const char *val, int d, int s, const struct afswtch *rafp) 830 { 831 int mode; 832 833 if (strcasecmp(val, "off") == 0) { 834 mode = IEEE80211_WEP_OFF; 835 } else if (strcasecmp(val, "on") == 0) { 836 mode = IEEE80211_WEP_ON; 837 } else if (strcasecmp(val, "mixed") == 0) { 838 mode = IEEE80211_WEP_MIXED; 839 } else { 840 errx(1, "unknown wep mode"); 841 } 842 843 set80211(s, IEEE80211_IOC_WEP, mode, 0, NULL); 844 } 845 846 static void 847 set80211wep(const char *val, int d, int s, const struct afswtch *rafp) 848 { 849 set80211(s, IEEE80211_IOC_WEP, d, 0, NULL); 850 } 851 852 static int 853 isundefarg(const char *arg) 854 { 855 return (strcmp(arg, "-") == 0 || strncasecmp(arg, "undef", 5) == 0); 856 } 857 858 static void 859 set80211weptxkey(const char *val, int d, int s, const struct afswtch *rafp) 860 { 861 if (isundefarg(val)) 862 set80211(s, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL); 863 else 864 set80211(s, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL); 865 } 866 867 static void 868 set80211wepkey(const char *val, int d, int s, const struct afswtch *rafp) 869 { 870 int key = 0; 871 int len; 872 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 873 874 if (isdigit((int)val[0]) && val[1] == ':') { 875 key = atoi(val)-1; 876 val += 2; 877 } 878 879 bzero(data, sizeof(data)); 880 len = sizeof(data); 881 get_string(val, NULL, data, &len); 882 883 set80211(s, IEEE80211_IOC_WEPKEY, key, len, data); 884 } 885 886 /* 887 * This function is purely a NetBSD compatibility interface. The NetBSD 888 * interface is too inflexible, but it's there so we'll support it since 889 * it's not all that hard. 890 */ 891 static void 892 set80211nwkey(const char *val, int d, int s, const struct afswtch *rafp) 893 { 894 int txkey; 895 int i, len; 896 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 897 898 set80211(s, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL); 899 900 if (isdigit((int)val[0]) && val[1] == ':') { 901 txkey = val[0]-'0'-1; 902 val += 2; 903 904 for (i = 0; i < 4; i++) { 905 bzero(data, sizeof(data)); 906 len = sizeof(data); 907 val = get_string(val, ",", data, &len); 908 if (val == NULL) 909 exit(1); 910 911 set80211(s, IEEE80211_IOC_WEPKEY, i, len, data); 912 } 913 } else { 914 bzero(data, sizeof(data)); 915 len = sizeof(data); 916 get_string(val, NULL, data, &len); 917 txkey = 0; 918 919 set80211(s, IEEE80211_IOC_WEPKEY, 0, len, data); 920 921 bzero(data, sizeof(data)); 922 for (i = 1; i < 4; i++) 923 set80211(s, IEEE80211_IOC_WEPKEY, i, 0, data); 924 } 925 926 set80211(s, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL); 927 } 928 929 static void 930 set80211rtsthreshold(const char *val, int d, int s, const struct afswtch *rafp) 931 { 932 set80211(s, IEEE80211_IOC_RTSTHRESHOLD, 933 isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL); 934 } 935 936 static void 937 set80211protmode(const char *val, int d, int s, const struct afswtch *rafp) 938 { 939 int mode; 940 941 if (strcasecmp(val, "off") == 0) { 942 mode = IEEE80211_PROTMODE_OFF; 943 } else if (strcasecmp(val, "cts") == 0) { 944 mode = IEEE80211_PROTMODE_CTS; 945 } else if (strncasecmp(val, "rtscts", 3) == 0) { 946 mode = IEEE80211_PROTMODE_RTSCTS; 947 } else { 948 errx(1, "unknown protection mode"); 949 } 950 951 set80211(s, IEEE80211_IOC_PROTMODE, mode, 0, NULL); 952 } 953 954 static void 955 set80211htprotmode(const char *val, int d, int s, const struct afswtch *rafp) 956 { 957 int mode; 958 959 if (strcasecmp(val, "off") == 0) { 960 mode = IEEE80211_PROTMODE_OFF; 961 } else if (strncasecmp(val, "rts", 3) == 0) { 962 mode = IEEE80211_PROTMODE_RTSCTS; 963 } else { 964 errx(1, "unknown protection mode"); 965 } 966 967 set80211(s, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL); 968 } 969 970 static void 971 set80211txpower(const char *val, int d, int s, const struct afswtch *rafp) 972 { 973 double v = atof(val); 974 int txpow; 975 976 txpow = (int) (2*v); 977 if (txpow != 2*v) 978 errx(-1, "invalid tx power (must be .5 dBm units)"); 979 set80211(s, IEEE80211_IOC_TXPOWER, txpow, 0, NULL); 980 } 981 982 #define IEEE80211_ROAMING_DEVICE 0 983 #define IEEE80211_ROAMING_AUTO 1 984 #define IEEE80211_ROAMING_MANUAL 2 985 986 static void 987 set80211roaming(const char *val, int d, int s, const struct afswtch *rafp) 988 { 989 int mode; 990 991 if (strcasecmp(val, "device") == 0) { 992 mode = IEEE80211_ROAMING_DEVICE; 993 } else if (strcasecmp(val, "auto") == 0) { 994 mode = IEEE80211_ROAMING_AUTO; 995 } else if (strcasecmp(val, "manual") == 0) { 996 mode = IEEE80211_ROAMING_MANUAL; 997 } else { 998 errx(1, "unknown roaming mode"); 999 } 1000 set80211(s, IEEE80211_IOC_ROAMING, mode, 0, NULL); 1001 } 1002 1003 static void 1004 set80211wme(const char *val, int d, int s, const struct afswtch *rafp) 1005 { 1006 set80211(s, IEEE80211_IOC_WME, d, 0, NULL); 1007 } 1008 1009 static void 1010 set80211hidessid(const char *val, int d, int s, const struct afswtch *rafp) 1011 { 1012 set80211(s, IEEE80211_IOC_HIDESSID, d, 0, NULL); 1013 } 1014 1015 static void 1016 set80211apbridge(const char *val, int d, int s, const struct afswtch *rafp) 1017 { 1018 set80211(s, IEEE80211_IOC_APBRIDGE, d, 0, NULL); 1019 } 1020 1021 static void 1022 set80211fastframes(const char *val, int d, int s, const struct afswtch *rafp) 1023 { 1024 set80211(s, IEEE80211_IOC_FF, d, 0, NULL); 1025 } 1026 1027 static void 1028 set80211dturbo(const char *val, int d, int s, const struct afswtch *rafp) 1029 { 1030 set80211(s, IEEE80211_IOC_TURBOP, d, 0, NULL); 1031 } 1032 1033 static void 1034 set80211chanlist(const char *val, int d, int s, const struct afswtch *rafp) 1035 { 1036 struct ieee80211req_chanlist chanlist; 1037 char *temp, *cp, *tp; 1038 1039 temp = malloc(strlen(val) + 1); 1040 if (temp == NULL) 1041 errx(1, "malloc failed"); 1042 strcpy(temp, val); 1043 memset(&chanlist, 0, sizeof(chanlist)); 1044 cp = temp; 1045 for (;;) { 1046 int first, last, f, c; 1047 1048 tp = strchr(cp, ','); 1049 if (tp != NULL) 1050 *tp++ = '\0'; 1051 switch (sscanf(cp, "%u-%u", &first, &last)) { 1052 case 1: 1053 if (first > IEEE80211_CHAN_MAX) 1054 errx(-1, "channel %u out of range, max %u", 1055 first, IEEE80211_CHAN_MAX); 1056 setbit(chanlist.ic_channels, first); 1057 break; 1058 case 2: 1059 if (first > IEEE80211_CHAN_MAX) 1060 errx(-1, "channel %u out of range, max %u", 1061 first, IEEE80211_CHAN_MAX); 1062 if (last > IEEE80211_CHAN_MAX) 1063 errx(-1, "channel %u out of range, max %u", 1064 last, IEEE80211_CHAN_MAX); 1065 if (first > last) 1066 errx(-1, "void channel range, %u > %u", 1067 first, last); 1068 for (f = first; f <= last; f++) 1069 setbit(chanlist.ic_channels, f); 1070 break; 1071 } 1072 if (tp == NULL) 1073 break; 1074 c = *tp; 1075 while (isspace(c)) 1076 tp++; 1077 if (!isdigit(c)) 1078 break; 1079 cp = tp; 1080 } 1081 set80211(s, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist); 1082 } 1083 1084 static void 1085 set80211bssid(const char *val, int d, int s, const struct afswtch *rafp) 1086 { 1087 1088 if (!isanyarg(val)) { 1089 char *temp; 1090 struct sockaddr_dl sdl; 1091 1092 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1093 if (temp == NULL) 1094 errx(1, "malloc failed"); 1095 temp[0] = ':'; 1096 strcpy(temp + 1, val); 1097 sdl.sdl_len = sizeof(sdl); 1098 link_addr(temp, &sdl); 1099 free(temp); 1100 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1101 errx(1, "malformed link-level address"); 1102 set80211(s, IEEE80211_IOC_BSSID, 0, 1103 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1104 } else { 1105 uint8_t zerobssid[IEEE80211_ADDR_LEN]; 1106 memset(zerobssid, 0, sizeof(zerobssid)); 1107 set80211(s, IEEE80211_IOC_BSSID, 0, 1108 IEEE80211_ADDR_LEN, zerobssid); 1109 } 1110 } 1111 1112 static int 1113 getac(const char *ac) 1114 { 1115 if (strcasecmp(ac, "ac_be") == 0 || strcasecmp(ac, "be") == 0) 1116 return WME_AC_BE; 1117 if (strcasecmp(ac, "ac_bk") == 0 || strcasecmp(ac, "bk") == 0) 1118 return WME_AC_BK; 1119 if (strcasecmp(ac, "ac_vi") == 0 || strcasecmp(ac, "vi") == 0) 1120 return WME_AC_VI; 1121 if (strcasecmp(ac, "ac_vo") == 0 || strcasecmp(ac, "vo") == 0) 1122 return WME_AC_VO; 1123 errx(1, "unknown wme access class %s", ac); 1124 } 1125 1126 static 1127 DECL_CMD_FUNC2(set80211cwmin, ac, val) 1128 { 1129 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL); 1130 } 1131 1132 static 1133 DECL_CMD_FUNC2(set80211cwmax, ac, val) 1134 { 1135 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL); 1136 } 1137 1138 static 1139 DECL_CMD_FUNC2(set80211aifs, ac, val) 1140 { 1141 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL); 1142 } 1143 1144 static 1145 DECL_CMD_FUNC2(set80211txoplimit, ac, val) 1146 { 1147 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL); 1148 } 1149 1150 static 1151 DECL_CMD_FUNC(set80211acm, ac, d) 1152 { 1153 set80211(s, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL); 1154 } 1155 static 1156 DECL_CMD_FUNC(set80211noacm, ac, d) 1157 { 1158 set80211(s, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL); 1159 } 1160 1161 static 1162 DECL_CMD_FUNC(set80211ackpolicy, ac, d) 1163 { 1164 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL); 1165 } 1166 static 1167 DECL_CMD_FUNC(set80211noackpolicy, ac, d) 1168 { 1169 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL); 1170 } 1171 1172 static 1173 DECL_CMD_FUNC2(set80211bsscwmin, ac, val) 1174 { 1175 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), 1176 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1177 } 1178 1179 static 1180 DECL_CMD_FUNC2(set80211bsscwmax, ac, val) 1181 { 1182 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), 1183 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1184 } 1185 1186 static 1187 DECL_CMD_FUNC2(set80211bssaifs, ac, val) 1188 { 1189 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), 1190 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1191 } 1192 1193 static 1194 DECL_CMD_FUNC2(set80211bsstxoplimit, ac, val) 1195 { 1196 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), 1197 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1198 } 1199 1200 static 1201 DECL_CMD_FUNC(set80211dtimperiod, val, d) 1202 { 1203 set80211(s, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL); 1204 } 1205 1206 static 1207 DECL_CMD_FUNC(set80211bintval, val, d) 1208 { 1209 set80211(s, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL); 1210 } 1211 1212 static void 1213 set80211macmac(int s, int op, const char *val) 1214 { 1215 char *temp; 1216 struct sockaddr_dl sdl; 1217 1218 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1219 if (temp == NULL) 1220 errx(1, "malloc failed"); 1221 temp[0] = ':'; 1222 strcpy(temp + 1, val); 1223 sdl.sdl_len = sizeof(sdl); 1224 link_addr(temp, &sdl); 1225 free(temp); 1226 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1227 errx(1, "malformed link-level address"); 1228 set80211(s, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1229 } 1230 1231 static 1232 DECL_CMD_FUNC(set80211addmac, val, d) 1233 { 1234 set80211macmac(s, IEEE80211_IOC_ADDMAC, val); 1235 } 1236 1237 static 1238 DECL_CMD_FUNC(set80211delmac, val, d) 1239 { 1240 set80211macmac(s, IEEE80211_IOC_DELMAC, val); 1241 } 1242 1243 static 1244 DECL_CMD_FUNC(set80211kickmac, val, d) 1245 { 1246 char *temp; 1247 struct sockaddr_dl sdl; 1248 struct ieee80211req_mlme mlme; 1249 1250 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1251 if (temp == NULL) 1252 errx(1, "malloc failed"); 1253 temp[0] = ':'; 1254 strcpy(temp + 1, val); 1255 sdl.sdl_len = sizeof(sdl); 1256 link_addr(temp, &sdl); 1257 free(temp); 1258 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1259 errx(1, "malformed link-level address"); 1260 memset(&mlme, 0, sizeof(mlme)); 1261 mlme.im_op = IEEE80211_MLME_DEAUTH; 1262 mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE; 1263 memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN); 1264 set80211(s, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme); 1265 } 1266 1267 static 1268 DECL_CMD_FUNC(set80211maccmd, val, d) 1269 { 1270 set80211(s, IEEE80211_IOC_MACCMD, d, 0, NULL); 1271 } 1272 1273 static void 1274 set80211meshrtmac(int s, int req, const char *val) 1275 { 1276 char *temp; 1277 struct sockaddr_dl sdl; 1278 1279 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1280 if (temp == NULL) 1281 errx(1, "malloc failed"); 1282 temp[0] = ':'; 1283 strcpy(temp + 1, val); 1284 sdl.sdl_len = sizeof(sdl); 1285 link_addr(temp, &sdl); 1286 free(temp); 1287 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1288 errx(1, "malformed link-level address"); 1289 set80211(s, IEEE80211_IOC_MESH_RTCMD, req, 1290 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1291 } 1292 1293 static 1294 DECL_CMD_FUNC(set80211addmeshrt, val, d) 1295 { 1296 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_ADD, val); 1297 } 1298 1299 static 1300 DECL_CMD_FUNC(set80211delmeshrt, val, d) 1301 { 1302 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_DELETE, val); 1303 } 1304 1305 static 1306 DECL_CMD_FUNC(set80211meshrtcmd, val, d) 1307 { 1308 set80211(s, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL); 1309 } 1310 1311 static 1312 DECL_CMD_FUNC(set80211hwmprootmode, val, d) 1313 { 1314 int mode; 1315 1316 if (strcasecmp(val, "normal") == 0) 1317 mode = IEEE80211_HWMP_ROOTMODE_NORMAL; 1318 else if (strcasecmp(val, "proactive") == 0) 1319 mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE; 1320 else if (strcasecmp(val, "rann") == 0) 1321 mode = IEEE80211_HWMP_ROOTMODE_RANN; 1322 else 1323 mode = IEEE80211_HWMP_ROOTMODE_DISABLED; 1324 set80211(s, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL); 1325 } 1326 1327 static 1328 DECL_CMD_FUNC(set80211hwmpmaxhops, val, d) 1329 { 1330 set80211(s, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL); 1331 } 1332 1333 static void 1334 set80211pureg(const char *val, int d, int s, const struct afswtch *rafp) 1335 { 1336 set80211(s, IEEE80211_IOC_PUREG, d, 0, NULL); 1337 } 1338 1339 static void 1340 set80211quiet(const char *val, int d, int s, const struct afswtch *rafp) 1341 { 1342 set80211(s, IEEE80211_IOC_QUIET, d, 0, NULL); 1343 } 1344 1345 static 1346 DECL_CMD_FUNC(set80211quietperiod, val, d) 1347 { 1348 set80211(s, IEEE80211_IOC_QUIET_PERIOD, atoi(val), 0, NULL); 1349 } 1350 1351 static 1352 DECL_CMD_FUNC(set80211quietcount, val, d) 1353 { 1354 set80211(s, IEEE80211_IOC_QUIET_COUNT, atoi(val), 0, NULL); 1355 } 1356 1357 static 1358 DECL_CMD_FUNC(set80211quietduration, val, d) 1359 { 1360 set80211(s, IEEE80211_IOC_QUIET_DUR, atoi(val), 0, NULL); 1361 } 1362 1363 static 1364 DECL_CMD_FUNC(set80211quietoffset, val, d) 1365 { 1366 set80211(s, IEEE80211_IOC_QUIET_OFFSET, atoi(val), 0, NULL); 1367 } 1368 1369 static void 1370 set80211bgscan(const char *val, int d, int s, const struct afswtch *rafp) 1371 { 1372 set80211(s, IEEE80211_IOC_BGSCAN, d, 0, NULL); 1373 } 1374 1375 static 1376 DECL_CMD_FUNC(set80211bgscanidle, val, d) 1377 { 1378 set80211(s, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL); 1379 } 1380 1381 static 1382 DECL_CMD_FUNC(set80211bgscanintvl, val, d) 1383 { 1384 set80211(s, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL); 1385 } 1386 1387 static 1388 DECL_CMD_FUNC(set80211scanvalid, val, d) 1389 { 1390 set80211(s, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL); 1391 } 1392 1393 /* 1394 * Parse an optional trailing specification of which netbands 1395 * to apply a parameter to. This is basically the same syntax 1396 * as used for channels but you can concatenate to specify 1397 * multiple. For example: 1398 * 14:abg apply to 11a, 11b, and 11g 1399 * 6:ht apply to 11na and 11ng 1400 * We don't make a big effort to catch silly things; this is 1401 * really a convenience mechanism. 1402 */ 1403 static int 1404 getmodeflags(const char *val) 1405 { 1406 const char *cp; 1407 int flags; 1408 1409 flags = 0; 1410 1411 cp = strchr(val, ':'); 1412 if (cp != NULL) { 1413 for (cp++; isalpha((int) *cp); cp++) { 1414 /* accept mixed case */ 1415 int c = *cp; 1416 if (isupper(c)) 1417 c = tolower(c); 1418 switch (c) { 1419 case 'a': /* 802.11a */ 1420 flags |= IEEE80211_CHAN_A; 1421 break; 1422 case 'b': /* 802.11b */ 1423 flags |= IEEE80211_CHAN_B; 1424 break; 1425 case 'g': /* 802.11g */ 1426 flags |= IEEE80211_CHAN_G; 1427 break; 1428 case 'n': /* 802.11n */ 1429 flags |= IEEE80211_CHAN_HT; 1430 break; 1431 case 'd': /* dt = Atheros Dynamic Turbo */ 1432 flags |= IEEE80211_CHAN_TURBO; 1433 break; 1434 case 't': /* ht, dt, st, t */ 1435 /* dt and unadorned t specify Dynamic Turbo */ 1436 if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0) 1437 flags |= IEEE80211_CHAN_TURBO; 1438 break; 1439 case 's': /* st = Atheros Static Turbo */ 1440 flags |= IEEE80211_CHAN_STURBO; 1441 break; 1442 case 'h': /* 1/2-width channels */ 1443 flags |= IEEE80211_CHAN_HALF; 1444 break; 1445 case 'q': /* 1/4-width channels */ 1446 flags |= IEEE80211_CHAN_QUARTER; 1447 break; 1448 default: 1449 errx(-1, "%s: Invalid mode attribute %c\n", 1450 val, *cp); 1451 } 1452 } 1453 } 1454 return flags; 1455 } 1456 1457 #define IEEE80211_CHAN_HTA (IEEE80211_CHAN_HT|IEEE80211_CHAN_5GHZ) 1458 #define IEEE80211_CHAN_HTG (IEEE80211_CHAN_HT|IEEE80211_CHAN_2GHZ) 1459 1460 #define _APPLY(_flags, _base, _param, _v) do { \ 1461 if (_flags & IEEE80211_CHAN_HT) { \ 1462 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1463 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1464 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1465 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1466 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1467 else \ 1468 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1469 } \ 1470 if (_flags & IEEE80211_CHAN_TURBO) { \ 1471 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1472 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1473 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1474 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1475 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1476 else \ 1477 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1478 } \ 1479 if (_flags & IEEE80211_CHAN_STURBO) \ 1480 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1481 if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1482 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1483 if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1484 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1485 if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1486 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1487 if (_flags & IEEE80211_CHAN_HALF) \ 1488 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1489 if (_flags & IEEE80211_CHAN_QUARTER) \ 1490 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1491 } while (0) 1492 #define _APPLY1(_flags, _base, _param, _v) do { \ 1493 if (_flags & IEEE80211_CHAN_HT) { \ 1494 if (_flags & IEEE80211_CHAN_5GHZ) \ 1495 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1496 else \ 1497 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1498 } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A) \ 1499 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1500 else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G) \ 1501 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1502 else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST) \ 1503 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1504 else if (_flags & IEEE80211_CHAN_HALF) \ 1505 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1506 else if (_flags & IEEE80211_CHAN_QUARTER) \ 1507 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1508 else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1509 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1510 else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1511 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1512 else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1513 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1514 } while (0) 1515 #define _APPLY_RATE(_flags, _base, _param, _v) do { \ 1516 if (_flags & IEEE80211_CHAN_HT) { \ 1517 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1518 } \ 1519 _APPLY(_flags, _base, _param, _v); \ 1520 } while (0) 1521 #define _APPLY_RATE1(_flags, _base, _param, _v) do { \ 1522 if (_flags & IEEE80211_CHAN_HT) { \ 1523 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1524 } \ 1525 _APPLY1(_flags, _base, _param, _v); \ 1526 } while (0) 1527 1528 static 1529 DECL_CMD_FUNC(set80211roamrssi, val, d) 1530 { 1531 double v = atof(val); 1532 int rssi, flags; 1533 1534 rssi = (int) (2*v); 1535 if (rssi != 2*v) 1536 errx(-1, "invalid rssi (must be .5 dBm units)"); 1537 flags = getmodeflags(val); 1538 getroam(s); 1539 if (flags == 0) { /* NB: no flags => current channel */ 1540 flags = getcurchan(s)->ic_flags; 1541 _APPLY1(flags, roamparams, rssi, rssi); 1542 } else 1543 _APPLY(flags, roamparams, rssi, rssi); 1544 callback_register(setroam_cb, &roamparams); 1545 } 1546 1547 static int 1548 getrate(const char *val, const char *tag) 1549 { 1550 double v = atof(val); 1551 int rate; 1552 1553 rate = (int) (2*v); 1554 if (rate != 2*v) 1555 errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag); 1556 return rate; /* NB: returns 2x the specified value */ 1557 } 1558 1559 static 1560 DECL_CMD_FUNC(set80211roamrate, val, d) 1561 { 1562 int rate, flags; 1563 1564 rate = getrate(val, "roam"); 1565 flags = getmodeflags(val); 1566 getroam(s); 1567 if (flags == 0) { /* NB: no flags => current channel */ 1568 flags = getcurchan(s)->ic_flags; 1569 _APPLY_RATE1(flags, roamparams, rate, rate); 1570 } else 1571 _APPLY_RATE(flags, roamparams, rate, rate); 1572 callback_register(setroam_cb, &roamparams); 1573 } 1574 1575 static 1576 DECL_CMD_FUNC(set80211mcastrate, val, d) 1577 { 1578 int rate, flags; 1579 1580 rate = getrate(val, "mcast"); 1581 flags = getmodeflags(val); 1582 gettxparams(s); 1583 if (flags == 0) { /* NB: no flags => current channel */ 1584 flags = getcurchan(s)->ic_flags; 1585 _APPLY_RATE1(flags, txparams, mcastrate, rate); 1586 } else 1587 _APPLY_RATE(flags, txparams, mcastrate, rate); 1588 callback_register(settxparams_cb, &txparams); 1589 } 1590 1591 static 1592 DECL_CMD_FUNC(set80211mgtrate, val, d) 1593 { 1594 int rate, flags; 1595 1596 rate = getrate(val, "mgmt"); 1597 flags = getmodeflags(val); 1598 gettxparams(s); 1599 if (flags == 0) { /* NB: no flags => current channel */ 1600 flags = getcurchan(s)->ic_flags; 1601 _APPLY_RATE1(flags, txparams, mgmtrate, rate); 1602 } else 1603 _APPLY_RATE(flags, txparams, mgmtrate, rate); 1604 callback_register(settxparams_cb, &txparams); 1605 } 1606 1607 static 1608 DECL_CMD_FUNC(set80211ucastrate, val, d) 1609 { 1610 int flags; 1611 1612 gettxparams(s); 1613 flags = getmodeflags(val); 1614 if (isanyarg(val)) { 1615 if (flags == 0) { /* NB: no flags => current channel */ 1616 flags = getcurchan(s)->ic_flags; 1617 _APPLY1(flags, txparams, ucastrate, 1618 IEEE80211_FIXED_RATE_NONE); 1619 } else 1620 _APPLY(flags, txparams, ucastrate, 1621 IEEE80211_FIXED_RATE_NONE); 1622 } else { 1623 int rate = getrate(val, "ucast"); 1624 if (flags == 0) { /* NB: no flags => current channel */ 1625 flags = getcurchan(s)->ic_flags; 1626 _APPLY_RATE1(flags, txparams, ucastrate, rate); 1627 } else 1628 _APPLY_RATE(flags, txparams, ucastrate, rate); 1629 } 1630 callback_register(settxparams_cb, &txparams); 1631 } 1632 1633 static 1634 DECL_CMD_FUNC(set80211maxretry, val, d) 1635 { 1636 int v = atoi(val), flags; 1637 1638 flags = getmodeflags(val); 1639 gettxparams(s); 1640 if (flags == 0) { /* NB: no flags => current channel */ 1641 flags = getcurchan(s)->ic_flags; 1642 _APPLY1(flags, txparams, maxretry, v); 1643 } else 1644 _APPLY(flags, txparams, maxretry, v); 1645 callback_register(settxparams_cb, &txparams); 1646 } 1647 #undef _APPLY_RATE 1648 #undef _APPLY 1649 #undef IEEE80211_CHAN_HTA 1650 #undef IEEE80211_CHAN_HTG 1651 1652 static 1653 DECL_CMD_FUNC(set80211fragthreshold, val, d) 1654 { 1655 set80211(s, IEEE80211_IOC_FRAGTHRESHOLD, 1656 isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL); 1657 } 1658 1659 static 1660 DECL_CMD_FUNC(set80211bmissthreshold, val, d) 1661 { 1662 set80211(s, IEEE80211_IOC_BMISSTHRESHOLD, 1663 isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL); 1664 } 1665 1666 static void 1667 set80211burst(const char *val, int d, int s, const struct afswtch *rafp) 1668 { 1669 set80211(s, IEEE80211_IOC_BURST, d, 0, NULL); 1670 } 1671 1672 static void 1673 set80211doth(const char *val, int d, int s, const struct afswtch *rafp) 1674 { 1675 set80211(s, IEEE80211_IOC_DOTH, d, 0, NULL); 1676 } 1677 1678 static void 1679 set80211dfs(const char *val, int d, int s, const struct afswtch *rafp) 1680 { 1681 set80211(s, IEEE80211_IOC_DFS, d, 0, NULL); 1682 } 1683 1684 static void 1685 set80211shortgi(const char *val, int d, int s, const struct afswtch *rafp) 1686 { 1687 set80211(s, IEEE80211_IOC_SHORTGI, 1688 d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0, 1689 0, NULL); 1690 } 1691 1692 static void 1693 set80211ampdu(const char *val, int d, int s, const struct afswtch *rafp) 1694 { 1695 int ampdu; 1696 1697 if (get80211val(s, IEEE80211_IOC_AMPDU, &du) < 0) 1698 errx(-1, "cannot get AMPDU setting"); 1699 if (d < 0) { 1700 d = -d; 1701 ampdu &= ~d; 1702 } else 1703 ampdu |= d; 1704 set80211(s, IEEE80211_IOC_AMPDU, ampdu, 0, NULL); 1705 } 1706 1707 static 1708 DECL_CMD_FUNC(set80211ampdulimit, val, d) 1709 { 1710 int v; 1711 1712 switch (atoi(val)) { 1713 case 8: 1714 case 8*1024: 1715 v = IEEE80211_HTCAP_MAXRXAMPDU_8K; 1716 break; 1717 case 16: 1718 case 16*1024: 1719 v = IEEE80211_HTCAP_MAXRXAMPDU_16K; 1720 break; 1721 case 32: 1722 case 32*1024: 1723 v = IEEE80211_HTCAP_MAXRXAMPDU_32K; 1724 break; 1725 case 64: 1726 case 64*1024: 1727 v = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1728 break; 1729 default: 1730 errx(-1, "invalid A-MPDU limit %s", val); 1731 } 1732 set80211(s, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL); 1733 } 1734 1735 static 1736 DECL_CMD_FUNC(set80211ampdudensity, val, d) 1737 { 1738 int v; 1739 1740 if (isanyarg(val) || strcasecmp(val, "na") == 0) 1741 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1742 else switch ((int)(atof(val)*4)) { 1743 case 0: 1744 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1745 break; 1746 case 1: 1747 v = IEEE80211_HTCAP_MPDUDENSITY_025; 1748 break; 1749 case 2: 1750 v = IEEE80211_HTCAP_MPDUDENSITY_05; 1751 break; 1752 case 4: 1753 v = IEEE80211_HTCAP_MPDUDENSITY_1; 1754 break; 1755 case 8: 1756 v = IEEE80211_HTCAP_MPDUDENSITY_2; 1757 break; 1758 case 16: 1759 v = IEEE80211_HTCAP_MPDUDENSITY_4; 1760 break; 1761 case 32: 1762 v = IEEE80211_HTCAP_MPDUDENSITY_8; 1763 break; 1764 case 64: 1765 v = IEEE80211_HTCAP_MPDUDENSITY_16; 1766 break; 1767 default: 1768 errx(-1, "invalid A-MPDU density %s", val); 1769 } 1770 set80211(s, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL); 1771 } 1772 1773 static void 1774 set80211amsdu(const char *val, int d, int s, const struct afswtch *rafp) 1775 { 1776 int amsdu; 1777 1778 if (get80211val(s, IEEE80211_IOC_AMSDU, &amsdu) < 0) 1779 err(-1, "cannot get AMSDU setting"); 1780 if (d < 0) { 1781 d = -d; 1782 amsdu &= ~d; 1783 } else 1784 amsdu |= d; 1785 set80211(s, IEEE80211_IOC_AMSDU, amsdu, 0, NULL); 1786 } 1787 1788 static 1789 DECL_CMD_FUNC(set80211amsdulimit, val, d) 1790 { 1791 set80211(s, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL); 1792 } 1793 1794 static void 1795 set80211puren(const char *val, int d, int s, const struct afswtch *rafp) 1796 { 1797 set80211(s, IEEE80211_IOC_PUREN, d, 0, NULL); 1798 } 1799 1800 static void 1801 set80211htcompat(const char *val, int d, int s, const struct afswtch *rafp) 1802 { 1803 set80211(s, IEEE80211_IOC_HTCOMPAT, d, 0, NULL); 1804 } 1805 1806 static void 1807 set80211htconf(const char *val, int d, int s, const struct afswtch *rafp) 1808 { 1809 set80211(s, IEEE80211_IOC_HTCONF, d, 0, NULL); 1810 htconf = d; 1811 } 1812 1813 static void 1814 set80211dwds(const char *val, int d, int s, const struct afswtch *rafp) 1815 { 1816 set80211(s, IEEE80211_IOC_DWDS, d, 0, NULL); 1817 } 1818 1819 static void 1820 set80211inact(const char *val, int d, int s, const struct afswtch *rafp) 1821 { 1822 set80211(s, IEEE80211_IOC_INACTIVITY, d, 0, NULL); 1823 } 1824 1825 static void 1826 set80211tsn(const char *val, int d, int s, const struct afswtch *rafp) 1827 { 1828 set80211(s, IEEE80211_IOC_TSN, d, 0, NULL); 1829 } 1830 1831 static void 1832 set80211dotd(const char *val, int d, int s, const struct afswtch *rafp) 1833 { 1834 set80211(s, IEEE80211_IOC_DOTD, d, 0, NULL); 1835 } 1836 1837 static void 1838 set80211smps(const char *val, int d, int s, const struct afswtch *rafp) 1839 { 1840 set80211(s, IEEE80211_IOC_SMPS, d, 0, NULL); 1841 } 1842 1843 static void 1844 set80211rifs(const char *val, int d, int s, const struct afswtch *rafp) 1845 { 1846 set80211(s, IEEE80211_IOC_RIFS, d, 0, NULL); 1847 } 1848 1849 static 1850 DECL_CMD_FUNC(set80211tdmaslot, val, d) 1851 { 1852 set80211(s, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL); 1853 } 1854 1855 static 1856 DECL_CMD_FUNC(set80211tdmaslotcnt, val, d) 1857 { 1858 set80211(s, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL); 1859 } 1860 1861 static 1862 DECL_CMD_FUNC(set80211tdmaslotlen, val, d) 1863 { 1864 set80211(s, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL); 1865 } 1866 1867 static 1868 DECL_CMD_FUNC(set80211tdmabintval, val, d) 1869 { 1870 set80211(s, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL); 1871 } 1872 1873 static 1874 DECL_CMD_FUNC(set80211meshttl, val, d) 1875 { 1876 set80211(s, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL); 1877 } 1878 1879 static 1880 DECL_CMD_FUNC(set80211meshforward, val, d) 1881 { 1882 set80211(s, IEEE80211_IOC_MESH_FWRD, d, 0, NULL); 1883 } 1884 1885 static 1886 DECL_CMD_FUNC(set80211meshgate, val, d) 1887 { 1888 set80211(s, IEEE80211_IOC_MESH_GATE, d, 0, NULL); 1889 } 1890 1891 static 1892 DECL_CMD_FUNC(set80211meshpeering, val, d) 1893 { 1894 set80211(s, IEEE80211_IOC_MESH_AP, d, 0, NULL); 1895 } 1896 1897 static 1898 DECL_CMD_FUNC(set80211meshmetric, val, d) 1899 { 1900 char v[12]; 1901 1902 memcpy(v, val, sizeof(v)); 1903 set80211(s, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v); 1904 } 1905 1906 static 1907 DECL_CMD_FUNC(set80211meshpath, val, d) 1908 { 1909 char v[12]; 1910 1911 memcpy(v, val, sizeof(v)); 1912 set80211(s, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v); 1913 } 1914 1915 static int 1916 regdomain_sort(const void *a, const void *b) 1917 { 1918 #define CHAN_ALL \ 1919 (IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER) 1920 const struct ieee80211_channel *ca = a; 1921 const struct ieee80211_channel *cb = b; 1922 1923 return ca->ic_freq == cb->ic_freq ? 1924 (ca->ic_flags & CHAN_ALL) - (cb->ic_flags & CHAN_ALL) : 1925 ca->ic_freq - cb->ic_freq; 1926 #undef CHAN_ALL 1927 } 1928 1929 static const struct ieee80211_channel * 1930 chanlookup(const struct ieee80211_channel chans[], int nchans, 1931 int freq, int flags) 1932 { 1933 int i; 1934 1935 flags &= IEEE80211_CHAN_ALLTURBO; 1936 for (i = 0; i < nchans; i++) { 1937 const struct ieee80211_channel *c = &chans[i]; 1938 if (c->ic_freq == freq && 1939 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1940 return c; 1941 } 1942 return NULL; 1943 } 1944 1945 static int 1946 chanfind(const struct ieee80211_channel chans[], int nchans, int flags) 1947 { 1948 int i; 1949 1950 for (i = 0; i < nchans; i++) { 1951 const struct ieee80211_channel *c = &chans[i]; 1952 if ((c->ic_flags & flags) == flags) 1953 return 1; 1954 } 1955 return 0; 1956 } 1957 1958 /* 1959 * Check channel compatibility. 1960 */ 1961 static int 1962 checkchan(const struct ieee80211req_chaninfo *avail, int freq, int flags) 1963 { 1964 flags &= ~REQ_FLAGS; 1965 /* 1966 * Check if exact channel is in the calibration table; 1967 * everything below is to deal with channels that we 1968 * want to include but that are not explicitly listed. 1969 */ 1970 if (flags & IEEE80211_CHAN_HT40) { 1971 /* NB: we use an HT40 channel center that matches HT20 */ 1972 flags = (flags &~ IEEE80211_CHAN_HT40) | IEEE80211_CHAN_HT20; 1973 } 1974 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL) 1975 return 1; 1976 if (flags & IEEE80211_CHAN_GSM) { 1977 /* 1978 * XXX GSM frequency mapping is handled in the kernel 1979 * so we cannot find them in the calibration table; 1980 * just accept the channel and the kernel will reject 1981 * the channel list if it's wrong. 1982 */ 1983 return 1; 1984 } 1985 /* 1986 * If this is a 1/2 or 1/4 width channel allow it if a full 1987 * width channel is present for this frequency, and the device 1988 * supports fractional channels on this band. This is a hack 1989 * that avoids bloating the calibration table; it may be better 1990 * by per-band attributes though (we are effectively calculating 1991 * this attribute by scanning the channel list ourself). 1992 */ 1993 if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0) 1994 return 0; 1995 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, 1996 flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL) 1997 return 0; 1998 if (flags & IEEE80211_CHAN_HALF) { 1999 return chanfind(avail->ic_chans, avail->ic_nchans, 2000 IEEE80211_CHAN_HALF | 2001 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 2002 } else { 2003 return chanfind(avail->ic_chans, avail->ic_nchans, 2004 IEEE80211_CHAN_QUARTER | 2005 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 2006 } 2007 } 2008 2009 static void 2010 regdomain_addchans(struct ieee80211req_chaninfo *ci, 2011 const netband_head *bands, 2012 const struct ieee80211_regdomain *reg, 2013 uint32_t chanFlags, 2014 const struct ieee80211req_chaninfo *avail) 2015 { 2016 const struct netband *nb; 2017 const struct freqband *b; 2018 struct ieee80211_channel *c, *prev; 2019 int freq, hi_adj, lo_adj, channelSep; 2020 uint32_t flags; 2021 2022 hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0; 2023 lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0; 2024 channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40; 2025 LIST_FOREACH(nb, bands, next) { 2026 b = nb->band; 2027 if (verbose) { 2028 printf("%s:", __func__); 2029 printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS); 2030 printb(" bandFlags", nb->flags | b->flags, 2031 IEEE80211_CHAN_BITS); 2032 putchar('\n'); 2033 } 2034 prev = NULL; 2035 for (freq = b->freqStart + lo_adj; 2036 freq <= b->freqEnd + hi_adj; freq += b->chanSep) { 2037 /* 2038 * Construct flags for the new channel. We take 2039 * the attributes from the band descriptions except 2040 * for HT40 which is enabled generically (i.e. +/- 2041 * extension channel) in the band description and 2042 * then constrained according by channel separation. 2043 */ 2044 flags = nb->flags | b->flags; 2045 if (flags & IEEE80211_CHAN_HT) { 2046 /* 2047 * HT channels are generated specially; we're 2048 * called to add HT20, HT40+, and HT40- chan's 2049 * so we need to expand only band specs for 2050 * the HT channel type being added. 2051 */ 2052 if ((chanFlags & IEEE80211_CHAN_HT20) && 2053 (flags & IEEE80211_CHAN_HT20) == 0) { 2054 if (verbose) 2055 printf("%u: skip, not an " 2056 "HT20 channel\n", freq); 2057 continue; 2058 } 2059 if ((chanFlags & IEEE80211_CHAN_HT40) && 2060 (flags & IEEE80211_CHAN_HT40) == 0) { 2061 if (verbose) 2062 printf("%u: skip, not an " 2063 "HT40 channel\n", freq); 2064 continue; 2065 } 2066 /* NB: HT attribute comes from caller */ 2067 flags &= ~IEEE80211_CHAN_HT; 2068 flags |= chanFlags & IEEE80211_CHAN_HT; 2069 } 2070 /* 2071 * Check if device can operate on this frequency. 2072 */ 2073 if (!checkchan(avail, freq, flags)) { 2074 if (verbose) { 2075 printf("%u: skip, ", freq); 2076 printb("flags", flags, 2077 IEEE80211_CHAN_BITS); 2078 printf(" not available\n"); 2079 } 2080 continue; 2081 } 2082 if ((flags & REQ_ECM) && !reg->ecm) { 2083 if (verbose) 2084 printf("%u: skip, ECM channel\n", freq); 2085 continue; 2086 } 2087 if ((flags & REQ_INDOOR) && reg->location == 'O') { 2088 if (verbose) 2089 printf("%u: skip, indoor channel\n", 2090 freq); 2091 continue; 2092 } 2093 if ((flags & REQ_OUTDOOR) && reg->location == 'I') { 2094 if (verbose) 2095 printf("%u: skip, outdoor channel\n", 2096 freq); 2097 continue; 2098 } 2099 if ((flags & IEEE80211_CHAN_HT40) && 2100 prev != NULL && (freq - prev->ic_freq) < channelSep) { 2101 if (verbose) 2102 printf("%u: skip, only %u channel " 2103 "separation, need %d\n", freq, 2104 freq - prev->ic_freq, channelSep); 2105 continue; 2106 } 2107 if (ci->ic_nchans == IEEE80211_CHAN_MAX) { 2108 if (verbose) 2109 printf("%u: skip, channel table full\n", 2110 freq); 2111 break; 2112 } 2113 c = &ci->ic_chans[ci->ic_nchans++]; 2114 memset(c, 0, sizeof(*c)); 2115 c->ic_freq = freq; 2116 c->ic_flags = flags; 2117 if (c->ic_flags & IEEE80211_CHAN_DFS) 2118 c->ic_maxregpower = nb->maxPowerDFS; 2119 else 2120 c->ic_maxregpower = nb->maxPower; 2121 if (verbose) { 2122 printf("[%3d] add freq %u ", 2123 ci->ic_nchans-1, c->ic_freq); 2124 printb("flags", c->ic_flags, IEEE80211_CHAN_BITS); 2125 printf(" power %u\n", c->ic_maxregpower); 2126 } 2127 /* NB: kernel fills in other fields */ 2128 prev = c; 2129 } 2130 } 2131 } 2132 2133 static void 2134 regdomain_makechannels( 2135 struct ieee80211_regdomain_req *req, 2136 const struct ieee80211_devcaps_req *dc) 2137 { 2138 struct regdata *rdp = getregdata(); 2139 const struct country *cc; 2140 const struct ieee80211_regdomain *reg = &req->rd; 2141 struct ieee80211req_chaninfo *ci = &req->chaninfo; 2142 const struct regdomain *rd; 2143 2144 /* 2145 * Locate construction table for new channel list. We treat 2146 * the regdomain/SKU as definitive so a country can be in 2147 * multiple with different properties (e.g. US in FCC+FCC3). 2148 * If no regdomain is specified then we fallback on the country 2149 * code to find the associated regdomain since countries always 2150 * belong to at least one regdomain. 2151 */ 2152 if (reg->regdomain == 0) { 2153 cc = lib80211_country_findbycc(rdp, reg->country); 2154 if (cc == NULL) 2155 errx(1, "internal error, country %d not found", 2156 reg->country); 2157 rd = cc->rd; 2158 } else 2159 rd = lib80211_regdomain_findbysku(rdp, reg->regdomain); 2160 if (rd == NULL) 2161 errx(1, "internal error, regdomain %d not found", 2162 reg->regdomain); 2163 if (rd->sku != SKU_DEBUG) { 2164 /* 2165 * regdomain_addchans incrememnts the channel count for 2166 * each channel it adds so initialize ic_nchans to zero. 2167 * Note that we know we have enough space to hold all possible 2168 * channels because the devcaps list size was used to 2169 * allocate our request. 2170 */ 2171 ci->ic_nchans = 0; 2172 if (!LIST_EMPTY(&rd->bands_11b)) 2173 regdomain_addchans(ci, &rd->bands_11b, reg, 2174 IEEE80211_CHAN_B, &dc->dc_chaninfo); 2175 if (!LIST_EMPTY(&rd->bands_11g)) 2176 regdomain_addchans(ci, &rd->bands_11g, reg, 2177 IEEE80211_CHAN_G, &dc->dc_chaninfo); 2178 if (!LIST_EMPTY(&rd->bands_11a)) 2179 regdomain_addchans(ci, &rd->bands_11a, reg, 2180 IEEE80211_CHAN_A, &dc->dc_chaninfo); 2181 if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) { 2182 regdomain_addchans(ci, &rd->bands_11na, reg, 2183 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20, 2184 &dc->dc_chaninfo); 2185 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2186 regdomain_addchans(ci, &rd->bands_11na, reg, 2187 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U, 2188 &dc->dc_chaninfo); 2189 regdomain_addchans(ci, &rd->bands_11na, reg, 2190 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D, 2191 &dc->dc_chaninfo); 2192 } 2193 } 2194 if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) { 2195 regdomain_addchans(ci, &rd->bands_11ng, reg, 2196 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20, 2197 &dc->dc_chaninfo); 2198 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2199 regdomain_addchans(ci, &rd->bands_11ng, reg, 2200 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U, 2201 &dc->dc_chaninfo); 2202 regdomain_addchans(ci, &rd->bands_11ng, reg, 2203 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D, 2204 &dc->dc_chaninfo); 2205 } 2206 } 2207 qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]), 2208 regdomain_sort); 2209 } else 2210 memcpy(ci, &dc->dc_chaninfo, 2211 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 2212 } 2213 2214 static void 2215 list_countries(void) 2216 { 2217 struct regdata *rdp = getregdata(); 2218 const struct country *cp; 2219 const struct regdomain *dp; 2220 int i; 2221 2222 i = 0; 2223 printf("\nCountry codes:\n"); 2224 LIST_FOREACH(cp, &rdp->countries, next) { 2225 printf("%2s %-15.15s%s", cp->isoname, 2226 cp->name, ((i+1)%4) == 0 ? "\n" : " "); 2227 i++; 2228 } 2229 i = 0; 2230 printf("\nRegulatory domains:\n"); 2231 LIST_FOREACH(dp, &rdp->domains, next) { 2232 printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " "); 2233 i++; 2234 } 2235 printf("\n"); 2236 } 2237 2238 static void 2239 defaultcountry(const struct regdomain *rd) 2240 { 2241 struct regdata *rdp = getregdata(); 2242 const struct country *cc; 2243 2244 cc = lib80211_country_findbycc(rdp, rd->cc->code); 2245 if (cc == NULL) 2246 errx(1, "internal error, ISO country code %d not " 2247 "defined for regdomain %s", rd->cc->code, rd->name); 2248 regdomain.country = cc->code; 2249 regdomain.isocc[0] = cc->isoname[0]; 2250 regdomain.isocc[1] = cc->isoname[1]; 2251 } 2252 2253 static 2254 DECL_CMD_FUNC(set80211regdomain, val, d) 2255 { 2256 struct regdata *rdp = getregdata(); 2257 const struct regdomain *rd; 2258 2259 rd = lib80211_regdomain_findbyname(rdp, val); 2260 if (rd == NULL) { 2261 char *eptr; 2262 long sku = strtol(val, &eptr, 0); 2263 2264 if (eptr != val) 2265 rd = lib80211_regdomain_findbysku(rdp, sku); 2266 if (eptr == val || rd == NULL) 2267 errx(1, "unknown regdomain %s", val); 2268 } 2269 getregdomain(s); 2270 regdomain.regdomain = rd->sku; 2271 if (regdomain.country == 0 && rd->cc != NULL) { 2272 /* 2273 * No country code setup and there's a default 2274 * one for this regdomain fill it in. 2275 */ 2276 defaultcountry(rd); 2277 } 2278 callback_register(setregdomain_cb, ®domain); 2279 } 2280 2281 static 2282 DECL_CMD_FUNC(set80211country, val, d) 2283 { 2284 struct regdata *rdp = getregdata(); 2285 const struct country *cc; 2286 2287 cc = lib80211_country_findbyname(rdp, val); 2288 if (cc == NULL) { 2289 char *eptr; 2290 long code = strtol(val, &eptr, 0); 2291 2292 if (eptr != val) 2293 cc = lib80211_country_findbycc(rdp, code); 2294 if (eptr == val || cc == NULL) 2295 errx(1, "unknown ISO country code %s", val); 2296 } 2297 getregdomain(s); 2298 regdomain.regdomain = cc->rd->sku; 2299 regdomain.country = cc->code; 2300 regdomain.isocc[0] = cc->isoname[0]; 2301 regdomain.isocc[1] = cc->isoname[1]; 2302 callback_register(setregdomain_cb, ®domain); 2303 } 2304 2305 static void 2306 set80211location(const char *val, int d, int s, const struct afswtch *rafp) 2307 { 2308 getregdomain(s); 2309 regdomain.location = d; 2310 callback_register(setregdomain_cb, ®domain); 2311 } 2312 2313 static void 2314 set80211ecm(const char *val, int d, int s, const struct afswtch *rafp) 2315 { 2316 getregdomain(s); 2317 regdomain.ecm = d; 2318 callback_register(setregdomain_cb, ®domain); 2319 } 2320 2321 static void 2322 LINE_INIT(char c) 2323 { 2324 spacer = c; 2325 if (c == '\t') 2326 col = 8; 2327 else 2328 col = 1; 2329 } 2330 2331 static void 2332 LINE_BREAK(void) 2333 { 2334 if (spacer != '\t') { 2335 printf("\n"); 2336 spacer = '\t'; 2337 } 2338 col = 8; /* 8-col tab */ 2339 } 2340 2341 static void 2342 LINE_CHECK(const char *fmt, ...) 2343 { 2344 char buf[80]; 2345 va_list ap; 2346 int n; 2347 2348 va_start(ap, fmt); 2349 n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap); 2350 va_end(ap); 2351 col += 1+n; 2352 if (col > MAXCOL) { 2353 LINE_BREAK(); 2354 col += n; 2355 } 2356 buf[0] = spacer; 2357 printf("%s", buf); 2358 spacer = ' '; 2359 } 2360 2361 static int 2362 getmaxrate(const uint8_t rates[15], uint8_t nrates) 2363 { 2364 int i, maxrate = -1; 2365 2366 for (i = 0; i < nrates; i++) { 2367 int rate = rates[i] & IEEE80211_RATE_VAL; 2368 if (rate > maxrate) 2369 maxrate = rate; 2370 } 2371 return maxrate / 2; 2372 } 2373 2374 static const char * 2375 getcaps(int capinfo) 2376 { 2377 static char capstring[32]; 2378 char *cp = capstring; 2379 2380 if (capinfo & IEEE80211_CAPINFO_ESS) 2381 *cp++ = 'E'; 2382 if (capinfo & IEEE80211_CAPINFO_IBSS) 2383 *cp++ = 'I'; 2384 if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE) 2385 *cp++ = 'c'; 2386 if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ) 2387 *cp++ = 'C'; 2388 if (capinfo & IEEE80211_CAPINFO_PRIVACY) 2389 *cp++ = 'P'; 2390 if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) 2391 *cp++ = 'S'; 2392 if (capinfo & IEEE80211_CAPINFO_PBCC) 2393 *cp++ = 'B'; 2394 if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY) 2395 *cp++ = 'A'; 2396 if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2397 *cp++ = 's'; 2398 if (capinfo & IEEE80211_CAPINFO_RSN) 2399 *cp++ = 'R'; 2400 if (capinfo & IEEE80211_CAPINFO_DSSSOFDM) 2401 *cp++ = 'D'; 2402 *cp = '\0'; 2403 return capstring; 2404 } 2405 2406 static const char * 2407 getflags(int flags) 2408 { 2409 static char flagstring[32]; 2410 char *cp = flagstring; 2411 2412 if (flags & IEEE80211_NODE_AUTH) 2413 *cp++ = 'A'; 2414 if (flags & IEEE80211_NODE_QOS) 2415 *cp++ = 'Q'; 2416 if (flags & IEEE80211_NODE_ERP) 2417 *cp++ = 'E'; 2418 if (flags & IEEE80211_NODE_PWR_MGT) 2419 *cp++ = 'P'; 2420 if (flags & IEEE80211_NODE_HT) { 2421 *cp++ = 'H'; 2422 if (flags & IEEE80211_NODE_HTCOMPAT) 2423 *cp++ = '+'; 2424 } 2425 if (flags & IEEE80211_NODE_WPS) 2426 *cp++ = 'W'; 2427 if (flags & IEEE80211_NODE_TSN) 2428 *cp++ = 'N'; 2429 if (flags & IEEE80211_NODE_AMPDU_TX) 2430 *cp++ = 'T'; 2431 if (flags & IEEE80211_NODE_AMPDU_RX) 2432 *cp++ = 'R'; 2433 if (flags & IEEE80211_NODE_MIMO_PS) { 2434 *cp++ = 'M'; 2435 if (flags & IEEE80211_NODE_MIMO_RTS) 2436 *cp++ = '+'; 2437 } 2438 if (flags & IEEE80211_NODE_RIFS) 2439 *cp++ = 'I'; 2440 if (flags & IEEE80211_NODE_SGI40) { 2441 *cp++ = 'S'; 2442 if (flags & IEEE80211_NODE_SGI20) 2443 *cp++ = '+'; 2444 } else if (flags & IEEE80211_NODE_SGI20) 2445 *cp++ = 's'; 2446 if (flags & IEEE80211_NODE_AMSDU_TX) 2447 *cp++ = 't'; 2448 if (flags & IEEE80211_NODE_AMSDU_RX) 2449 *cp++ = 'r'; 2450 *cp = '\0'; 2451 return flagstring; 2452 } 2453 2454 static void 2455 printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen) 2456 { 2457 printf("%s", tag); 2458 if (verbose) { 2459 maxlen -= strlen(tag)+2; 2460 if (2*ielen > maxlen) 2461 maxlen--; 2462 printf("<"); 2463 for (; ielen > 0; ie++, ielen--) { 2464 if (maxlen-- <= 0) 2465 break; 2466 printf("%02x", *ie); 2467 } 2468 if (ielen != 0) 2469 printf("-"); 2470 printf(">"); 2471 } 2472 } 2473 2474 #define LE_READ_2(p) \ 2475 ((u_int16_t) \ 2476 ((((const u_int8_t *)(p))[0] ) | \ 2477 (((const u_int8_t *)(p))[1] << 8))) 2478 #define LE_READ_4(p) \ 2479 ((u_int32_t) \ 2480 ((((const u_int8_t *)(p))[0] ) | \ 2481 (((const u_int8_t *)(p))[1] << 8) | \ 2482 (((const u_int8_t *)(p))[2] << 16) | \ 2483 (((const u_int8_t *)(p))[3] << 24))) 2484 2485 /* 2486 * NB: The decoding routines assume a properly formatted ie 2487 * which should be safe as the kernel only retains them 2488 * if they parse ok. 2489 */ 2490 2491 static void 2492 printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2493 { 2494 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2495 static const char *acnames[] = { "BE", "BK", "VO", "VI" }; 2496 const struct ieee80211_wme_param *wme = 2497 (const struct ieee80211_wme_param *) ie; 2498 int i; 2499 2500 printf("%s", tag); 2501 if (!verbose) 2502 return; 2503 printf("<qosinfo 0x%x", wme->param_qosInfo); 2504 ie += offsetof(struct ieee80211_wme_param, params_acParams); 2505 for (i = 0; i < WME_NUM_AC; i++) { 2506 const struct ieee80211_wme_acparams *ac = 2507 &wme->params_acParams[i]; 2508 2509 printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]" 2510 , acnames[i] 2511 , MS(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : "" 2512 , MS(ac->acp_aci_aifsn, WME_PARAM_AIFSN) 2513 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN) 2514 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX) 2515 , LE_READ_2(&ac->acp_txop) 2516 ); 2517 } 2518 printf(">"); 2519 #undef MS 2520 } 2521 2522 static void 2523 printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2524 { 2525 printf("%s", tag); 2526 if (verbose) { 2527 const struct ieee80211_wme_info *wme = 2528 (const struct ieee80211_wme_info *) ie; 2529 printf("<version 0x%x info 0x%x>", 2530 wme->wme_version, wme->wme_info); 2531 } 2532 } 2533 2534 static void 2535 printhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2536 { 2537 printf("%s", tag); 2538 if (verbose) { 2539 const struct ieee80211_ie_htcap *htcap = 2540 (const struct ieee80211_ie_htcap *) ie; 2541 const char *sep; 2542 int i, j; 2543 2544 printf("<cap 0x%x param 0x%x", 2545 LE_READ_2(&htcap->hc_cap), htcap->hc_param); 2546 printf(" mcsset["); 2547 sep = ""; 2548 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2549 if (isset(htcap->hc_mcsset, i)) { 2550 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2551 if (isclr(htcap->hc_mcsset, j)) 2552 break; 2553 j--; 2554 if (i == j) 2555 printf("%s%u", sep, i); 2556 else 2557 printf("%s%u-%u", sep, i, j); 2558 i += j-i; 2559 sep = ","; 2560 } 2561 printf("] extcap 0x%x txbf 0x%x antenna 0x%x>", 2562 LE_READ_2(&htcap->hc_extcap), 2563 LE_READ_4(&htcap->hc_txbf), 2564 htcap->hc_antenna); 2565 } 2566 } 2567 2568 static void 2569 printhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2570 { 2571 printf("%s", tag); 2572 if (verbose) { 2573 const struct ieee80211_ie_htinfo *htinfo = 2574 (const struct ieee80211_ie_htinfo *) ie; 2575 const char *sep; 2576 int i, j; 2577 2578 printf("<ctl %u, %x,%x,%x,%x", htinfo->hi_ctrlchannel, 2579 htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3, 2580 LE_READ_2(&htinfo->hi_byte45)); 2581 printf(" basicmcs["); 2582 sep = ""; 2583 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2584 if (isset(htinfo->hi_basicmcsset, i)) { 2585 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2586 if (isclr(htinfo->hi_basicmcsset, j)) 2587 break; 2588 j--; 2589 if (i == j) 2590 printf("%s%u", sep, i); 2591 else 2592 printf("%s%u-%u", sep, i, j); 2593 i += j-i; 2594 sep = ","; 2595 } 2596 printf("]>"); 2597 } 2598 } 2599 2600 static void 2601 printathie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2602 { 2603 2604 printf("%s", tag); 2605 if (verbose) { 2606 const struct ieee80211_ath_ie *ath = 2607 (const struct ieee80211_ath_ie *)ie; 2608 2609 printf("<"); 2610 if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME) 2611 printf("DTURBO,"); 2612 if (ath->ath_capability & ATHEROS_CAP_COMPRESSION) 2613 printf("COMP,"); 2614 if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME) 2615 printf("FF,"); 2616 if (ath->ath_capability & ATHEROS_CAP_XR) 2617 printf("XR,"); 2618 if (ath->ath_capability & ATHEROS_CAP_AR) 2619 printf("AR,"); 2620 if (ath->ath_capability & ATHEROS_CAP_BURST) 2621 printf("BURST,"); 2622 if (ath->ath_capability & ATHEROS_CAP_WME) 2623 printf("WME,"); 2624 if (ath->ath_capability & ATHEROS_CAP_BOOST) 2625 printf("BOOST,"); 2626 printf("0x%x>", LE_READ_2(ath->ath_defkeyix)); 2627 } 2628 } 2629 2630 2631 static void 2632 printmeshconf(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) 2633 { 2634 #define MATCHOUI(field, oui, string) \ 2635 do { \ 2636 if (memcmp(field, oui, 4) == 0) \ 2637 printf("%s", string); \ 2638 } while (0) 2639 2640 printf("%s", tag); 2641 if (verbose) { 2642 const struct ieee80211_meshconf_ie *mconf = 2643 (const struct ieee80211_meshconf_ie *)ie; 2644 printf("<PATH:"); 2645 if (mconf->conf_pselid == IEEE80211_MESHCONF_PATH_HWMP) 2646 printf("HWMP"); 2647 else 2648 printf("UNKNOWN"); 2649 printf(" LINK:"); 2650 if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME) 2651 printf("AIRTIME"); 2652 else 2653 printf("UNKNOWN"); 2654 printf(" CONGESTION:"); 2655 if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED) 2656 printf("DISABLED"); 2657 else 2658 printf("UNKNOWN"); 2659 printf(" SYNC:"); 2660 if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF) 2661 printf("NEIGHOFF"); 2662 else 2663 printf("UNKNOWN"); 2664 printf(" AUTH:"); 2665 if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED) 2666 printf("DISABLED"); 2667 else 2668 printf("UNKNOWN"); 2669 printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form, 2670 mconf->conf_cap); 2671 } 2672 #undef MATCHOUI 2673 } 2674 2675 static const char * 2676 wpa_cipher(const u_int8_t *sel) 2677 { 2678 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2679 u_int32_t w = LE_READ_4(sel); 2680 2681 switch (w) { 2682 case WPA_SEL(WPA_CSE_NULL): 2683 return "NONE"; 2684 case WPA_SEL(WPA_CSE_WEP40): 2685 return "WEP40"; 2686 case WPA_SEL(WPA_CSE_WEP104): 2687 return "WEP104"; 2688 case WPA_SEL(WPA_CSE_TKIP): 2689 return "TKIP"; 2690 case WPA_SEL(WPA_CSE_CCMP): 2691 return "AES-CCMP"; 2692 } 2693 return "?"; /* NB: so 1<< is discarded */ 2694 #undef WPA_SEL 2695 } 2696 2697 static const char * 2698 wpa_keymgmt(const u_int8_t *sel) 2699 { 2700 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2701 u_int32_t w = LE_READ_4(sel); 2702 2703 switch (w) { 2704 case WPA_SEL(WPA_ASE_8021X_UNSPEC): 2705 return "8021X-UNSPEC"; 2706 case WPA_SEL(WPA_ASE_8021X_PSK): 2707 return "8021X-PSK"; 2708 case WPA_SEL(WPA_ASE_NONE): 2709 return "NONE"; 2710 } 2711 return "?"; 2712 #undef WPA_SEL 2713 } 2714 2715 static void 2716 printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2717 { 2718 u_int8_t len = ie[1]; 2719 2720 printf("%s", tag); 2721 if (verbose) { 2722 const char *sep; 2723 int n; 2724 2725 ie += 6, len -= 4; /* NB: len is payload only */ 2726 2727 printf("<v%u", LE_READ_2(ie)); 2728 ie += 2, len -= 2; 2729 2730 printf(" mc:%s", wpa_cipher(ie)); 2731 ie += 4, len -= 4; 2732 2733 /* unicast ciphers */ 2734 n = LE_READ_2(ie); 2735 ie += 2, len -= 2; 2736 sep = " uc:"; 2737 for (; n > 0; n--) { 2738 printf("%s%s", sep, wpa_cipher(ie)); 2739 ie += 4, len -= 4; 2740 sep = "+"; 2741 } 2742 2743 /* key management algorithms */ 2744 n = LE_READ_2(ie); 2745 ie += 2, len -= 2; 2746 sep = " km:"; 2747 for (; n > 0; n--) { 2748 printf("%s%s", sep, wpa_keymgmt(ie)); 2749 ie += 4, len -= 4; 2750 sep = "+"; 2751 } 2752 2753 if (len > 2) /* optional capabilities */ 2754 printf(", caps 0x%x", LE_READ_2(ie)); 2755 printf(">"); 2756 } 2757 } 2758 2759 static const char * 2760 rsn_cipher(const u_int8_t *sel) 2761 { 2762 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 2763 u_int32_t w = LE_READ_4(sel); 2764 2765 switch (w) { 2766 case RSN_SEL(RSN_CSE_NULL): 2767 return "NONE"; 2768 case RSN_SEL(RSN_CSE_WEP40): 2769 return "WEP40"; 2770 case RSN_SEL(RSN_CSE_WEP104): 2771 return "WEP104"; 2772 case RSN_SEL(RSN_CSE_TKIP): 2773 return "TKIP"; 2774 case RSN_SEL(RSN_CSE_CCMP): 2775 return "AES-CCMP"; 2776 case RSN_SEL(RSN_CSE_WRAP): 2777 return "AES-OCB"; 2778 } 2779 return "?"; 2780 #undef WPA_SEL 2781 } 2782 2783 static const char * 2784 rsn_keymgmt(const u_int8_t *sel) 2785 { 2786 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 2787 u_int32_t w = LE_READ_4(sel); 2788 2789 switch (w) { 2790 case RSN_SEL(RSN_ASE_8021X_UNSPEC): 2791 return "8021X-UNSPEC"; 2792 case RSN_SEL(RSN_ASE_8021X_PSK): 2793 return "8021X-PSK"; 2794 case RSN_SEL(RSN_ASE_NONE): 2795 return "NONE"; 2796 } 2797 return "?"; 2798 #undef RSN_SEL 2799 } 2800 2801 static void 2802 printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2803 { 2804 printf("%s", tag); 2805 if (verbose) { 2806 const char *sep; 2807 int n; 2808 2809 ie += 2, ielen -= 2; 2810 2811 printf("<v%u", LE_READ_2(ie)); 2812 ie += 2, ielen -= 2; 2813 2814 printf(" mc:%s", rsn_cipher(ie)); 2815 ie += 4, ielen -= 4; 2816 2817 /* unicast ciphers */ 2818 n = LE_READ_2(ie); 2819 ie += 2, ielen -= 2; 2820 sep = " uc:"; 2821 for (; n > 0; n--) { 2822 printf("%s%s", sep, rsn_cipher(ie)); 2823 ie += 4, ielen -= 4; 2824 sep = "+"; 2825 } 2826 2827 /* key management algorithms */ 2828 n = LE_READ_2(ie); 2829 ie += 2, ielen -= 2; 2830 sep = " km:"; 2831 for (; n > 0; n--) { 2832 printf("%s%s", sep, rsn_keymgmt(ie)); 2833 ie += 4, ielen -= 4; 2834 sep = "+"; 2835 } 2836 2837 if (ielen > 2) /* optional capabilities */ 2838 printf(", caps 0x%x", LE_READ_2(ie)); 2839 /* XXXPMKID */ 2840 printf(">"); 2841 } 2842 } 2843 2844 /* XXX move to a public include file */ 2845 #define IEEE80211_WPS_DEV_PASS_ID 0x1012 2846 #define IEEE80211_WPS_SELECTED_REG 0x1041 2847 #define IEEE80211_WPS_SETUP_STATE 0x1044 2848 #define IEEE80211_WPS_UUID_E 0x1047 2849 #define IEEE80211_WPS_VERSION 0x104a 2850 2851 #define BE_READ_2(p) \ 2852 ((u_int16_t) \ 2853 ((((const u_int8_t *)(p))[1] ) | \ 2854 (((const u_int8_t *)(p))[0] << 8))) 2855 2856 static void 2857 printwpsie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2858 { 2859 u_int8_t len = ie[1]; 2860 2861 printf("%s", tag); 2862 if (verbose) { 2863 static const char *dev_pass_id[] = { 2864 "D", /* Default (PIN) */ 2865 "U", /* User-specified */ 2866 "M", /* Machine-specified */ 2867 "K", /* Rekey */ 2868 "P", /* PushButton */ 2869 "R" /* Registrar-specified */ 2870 }; 2871 int n; 2872 2873 ie +=6, len -= 4; /* NB: len is payload only */ 2874 2875 /* WPS IE in Beacon and Probe Resp frames have different fields */ 2876 printf("<"); 2877 while (len) { 2878 uint16_t tlv_type = BE_READ_2(ie); 2879 uint16_t tlv_len = BE_READ_2(ie + 2); 2880 2881 ie += 4, len -= 4; 2882 2883 switch (tlv_type) { 2884 case IEEE80211_WPS_VERSION: 2885 printf("v:%d.%d", *ie >> 4, *ie & 0xf); 2886 break; 2887 case IEEE80211_WPS_SETUP_STATE: 2888 /* Only 1 and 2 are valid */ 2889 if (*ie == 0 || *ie >= 3) 2890 printf(" state:B"); 2891 else 2892 printf(" st:%s", *ie == 1 ? "N" : "C"); 2893 break; 2894 case IEEE80211_WPS_SELECTED_REG: 2895 printf(" sel:%s", *ie ? "T" : "F"); 2896 break; 2897 case IEEE80211_WPS_DEV_PASS_ID: 2898 n = LE_READ_2(ie); 2899 if (n < nitems(dev_pass_id)) 2900 printf(" dpi:%s", dev_pass_id[n]); 2901 break; 2902 case IEEE80211_WPS_UUID_E: 2903 printf(" uuid-e:"); 2904 for (n = 0; n < (tlv_len - 1); n++) 2905 printf("%02x-", ie[n]); 2906 printf("%02x", ie[n]); 2907 break; 2908 } 2909 ie += tlv_len, len -= tlv_len; 2910 } 2911 printf(">"); 2912 } 2913 } 2914 2915 static void 2916 printtdmaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2917 { 2918 printf("%s", tag); 2919 if (verbose && ielen >= sizeof(struct ieee80211_tdma_param)) { 2920 const struct ieee80211_tdma_param *tdma = 2921 (const struct ieee80211_tdma_param *) ie; 2922 2923 /* XXX tstamp */ 2924 printf("<v%u slot:%u slotcnt:%u slotlen:%u bintval:%u inuse:0x%x>", 2925 tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt, 2926 LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval, 2927 tdma->tdma_inuse[0]); 2928 } 2929 } 2930 2931 /* 2932 * Copy the ssid string contents into buf, truncating to fit. If the 2933 * ssid is entirely printable then just copy intact. Otherwise convert 2934 * to hexadecimal. If the result is truncated then replace the last 2935 * three characters with "...". 2936 */ 2937 static int 2938 copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len) 2939 { 2940 const u_int8_t *p; 2941 size_t maxlen; 2942 int i; 2943 2944 if (essid_len > bufsize) 2945 maxlen = bufsize; 2946 else 2947 maxlen = essid_len; 2948 /* determine printable or not */ 2949 for (i = 0, p = essid; i < maxlen; i++, p++) { 2950 if (*p < ' ' || *p > 0x7e) 2951 break; 2952 } 2953 if (i != maxlen) { /* not printable, print as hex */ 2954 if (bufsize < 3) 2955 return 0; 2956 strlcpy(buf, "0x", bufsize); 2957 bufsize -= 2; 2958 p = essid; 2959 for (i = 0; i < maxlen && bufsize >= 2; i++) { 2960 sprintf(&buf[2+2*i], "%02x", p[i]); 2961 bufsize -= 2; 2962 } 2963 if (i != essid_len) 2964 memcpy(&buf[2+2*i-3], "...", 3); 2965 } else { /* printable, truncate as needed */ 2966 memcpy(buf, essid, maxlen); 2967 if (maxlen != essid_len) 2968 memcpy(&buf[maxlen-3], "...", 3); 2969 } 2970 return maxlen; 2971 } 2972 2973 static void 2974 printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2975 { 2976 char ssid[2*IEEE80211_NWID_LEN+1]; 2977 2978 printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid); 2979 } 2980 2981 static void 2982 printrates(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2983 { 2984 const char *sep; 2985 int i; 2986 2987 printf("%s", tag); 2988 sep = "<"; 2989 for (i = 2; i < ielen; i++) { 2990 printf("%s%s%d", sep, 2991 ie[i] & IEEE80211_RATE_BASIC ? "B" : "", 2992 ie[i] & IEEE80211_RATE_VAL); 2993 sep = ","; 2994 } 2995 printf(">"); 2996 } 2997 2998 static void 2999 printcountry(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3000 { 3001 const struct ieee80211_country_ie *cie = 3002 (const struct ieee80211_country_ie *) ie; 3003 int i, nbands, schan, nchan; 3004 3005 printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]); 3006 nbands = (cie->len - 3) / sizeof(cie->band[0]); 3007 for (i = 0; i < nbands; i++) { 3008 schan = cie->band[i].schan; 3009 nchan = cie->band[i].nchan; 3010 if (nchan != 1) 3011 printf(" %u-%u,%u", schan, schan + nchan-1, 3012 cie->band[i].maxtxpwr); 3013 else 3014 printf(" %u,%u", schan, cie->band[i].maxtxpwr); 3015 } 3016 printf(">"); 3017 } 3018 3019 /* unaligned little endian access */ 3020 #define LE_READ_4(p) \ 3021 ((u_int32_t) \ 3022 ((((const u_int8_t *)(p))[0] ) | \ 3023 (((const u_int8_t *)(p))[1] << 8) | \ 3024 (((const u_int8_t *)(p))[2] << 16) | \ 3025 (((const u_int8_t *)(p))[3] << 24))) 3026 3027 static __inline int 3028 iswpaoui(const u_int8_t *frm) 3029 { 3030 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI); 3031 } 3032 3033 static __inline int 3034 iswmeinfo(const u_int8_t *frm) 3035 { 3036 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3037 frm[6] == WME_INFO_OUI_SUBTYPE; 3038 } 3039 3040 static __inline int 3041 iswmeparam(const u_int8_t *frm) 3042 { 3043 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3044 frm[6] == WME_PARAM_OUI_SUBTYPE; 3045 } 3046 3047 static __inline int 3048 isatherosoui(const u_int8_t *frm) 3049 { 3050 return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI); 3051 } 3052 3053 static __inline int 3054 istdmaoui(const uint8_t *frm) 3055 { 3056 return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI); 3057 } 3058 3059 static __inline int 3060 iswpsoui(const uint8_t *frm) 3061 { 3062 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI); 3063 } 3064 3065 static const char * 3066 iename(int elemid) 3067 { 3068 switch (elemid) { 3069 case IEEE80211_ELEMID_FHPARMS: return " FHPARMS"; 3070 case IEEE80211_ELEMID_CFPARMS: return " CFPARMS"; 3071 case IEEE80211_ELEMID_TIM: return " TIM"; 3072 case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS"; 3073 case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE"; 3074 case IEEE80211_ELEMID_PWRCNSTR: return " PWRCNSTR"; 3075 case IEEE80211_ELEMID_PWRCAP: return " PWRCAP"; 3076 case IEEE80211_ELEMID_TPCREQ: return " TPCREQ"; 3077 case IEEE80211_ELEMID_TPCREP: return " TPCREP"; 3078 case IEEE80211_ELEMID_SUPPCHAN: return " SUPPCHAN"; 3079 case IEEE80211_ELEMID_CSA: return " CSA"; 3080 case IEEE80211_ELEMID_MEASREQ: return " MEASREQ"; 3081 case IEEE80211_ELEMID_MEASREP: return " MEASREP"; 3082 case IEEE80211_ELEMID_QUIET: return " QUIET"; 3083 case IEEE80211_ELEMID_IBSSDFS: return " IBSSDFS"; 3084 case IEEE80211_ELEMID_TPC: return " TPC"; 3085 case IEEE80211_ELEMID_CCKM: return " CCKM"; 3086 } 3087 return " ???"; 3088 } 3089 3090 static void 3091 printies(const u_int8_t *vp, int ielen, int maxcols) 3092 { 3093 while (ielen > 0) { 3094 switch (vp[0]) { 3095 case IEEE80211_ELEMID_SSID: 3096 if (verbose) 3097 printssid(" SSID", vp, 2+vp[1], maxcols); 3098 break; 3099 case IEEE80211_ELEMID_RATES: 3100 case IEEE80211_ELEMID_XRATES: 3101 if (verbose) 3102 printrates(vp[0] == IEEE80211_ELEMID_RATES ? 3103 " RATES" : " XRATES", vp, 2+vp[1], maxcols); 3104 break; 3105 case IEEE80211_ELEMID_DSPARMS: 3106 if (verbose) 3107 printf(" DSPARMS<%u>", vp[2]); 3108 break; 3109 case IEEE80211_ELEMID_COUNTRY: 3110 if (verbose) 3111 printcountry(" COUNTRY", vp, 2+vp[1], maxcols); 3112 break; 3113 case IEEE80211_ELEMID_ERP: 3114 if (verbose) 3115 printf(" ERP<0x%x>", vp[2]); 3116 break; 3117 case IEEE80211_ELEMID_VENDOR: 3118 if (iswpaoui(vp)) 3119 printwpaie(" WPA", vp, 2+vp[1], maxcols); 3120 else if (iswmeinfo(vp)) 3121 printwmeinfo(" WME", vp, 2+vp[1], maxcols); 3122 else if (iswmeparam(vp)) 3123 printwmeparam(" WME", vp, 2+vp[1], maxcols); 3124 else if (isatherosoui(vp)) 3125 printathie(" ATH", vp, 2+vp[1], maxcols); 3126 else if (iswpsoui(vp)) 3127 printwpsie(" WPS", vp, 2+vp[1], maxcols); 3128 else if (istdmaoui(vp)) 3129 printtdmaie(" TDMA", vp, 2+vp[1], maxcols); 3130 else if (verbose) 3131 printie(" VEN", vp, 2+vp[1], maxcols); 3132 break; 3133 case IEEE80211_ELEMID_RSN: 3134 printrsnie(" RSN", vp, 2+vp[1], maxcols); 3135 break; 3136 case IEEE80211_ELEMID_HTCAP: 3137 printhtcap(" HTCAP", vp, 2+vp[1], maxcols); 3138 break; 3139 case IEEE80211_ELEMID_HTINFO: 3140 if (verbose) 3141 printhtinfo(" HTINFO", vp, 2+vp[1], maxcols); 3142 break; 3143 case IEEE80211_ELEMID_MESHID: 3144 if (verbose) 3145 printssid(" MESHID", vp, 2+vp[1], maxcols); 3146 break; 3147 case IEEE80211_ELEMID_MESHCONF: 3148 printmeshconf(" MESHCONF", vp, 2+vp[1], maxcols); 3149 break; 3150 default: 3151 if (verbose) 3152 printie(iename(vp[0]), vp, 2+vp[1], maxcols); 3153 break; 3154 } 3155 ielen -= 2+vp[1]; 3156 vp += 2+vp[1]; 3157 } 3158 } 3159 3160 static void 3161 printmimo(const struct ieee80211_mimo_info *mi) 3162 { 3163 /* NB: don't muddy display unless there's something to show */ 3164 if (mi->rssi[0] != 0 || mi->rssi[1] != 0 || mi->rssi[2] != 0) { 3165 /* XXX ignore EVM for now */ 3166 printf(" (rssi %d:%d:%d nf %d:%d:%d)", 3167 mi->rssi[0], mi->rssi[1], mi->rssi[2], 3168 mi->noise[0], mi->noise[1], mi->noise[2]); 3169 } 3170 } 3171 3172 static void 3173 list_scan(int s) 3174 { 3175 uint8_t buf[24*1024]; 3176 char ssid[IEEE80211_NWID_LEN+1]; 3177 const uint8_t *cp; 3178 int len, ssidmax, idlen; 3179 3180 if (get80211len(s, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0) 3181 errx(1, "unable to get scan results"); 3182 if (len < sizeof(struct ieee80211req_scan_result)) 3183 return; 3184 3185 getchaninfo(s); 3186 3187 ssidmax = verbose ? IEEE80211_NWID_LEN - 1 : 14; 3188 printf("%-*.*s %-17.17s %4s %4s %-7s %3s %4s\n" 3189 , ssidmax, ssidmax, "SSID/MESH ID" 3190 , "BSSID" 3191 , "CHAN" 3192 , "RATE" 3193 , " S:N" 3194 , "INT" 3195 , "CAPS" 3196 ); 3197 cp = buf; 3198 do { 3199 const struct ieee80211req_scan_result *sr; 3200 const uint8_t *vp, *idp; 3201 3202 sr = (const struct ieee80211req_scan_result *) cp; 3203 vp = cp + sr->isr_ie_off; 3204 if (sr->isr_meshid_len) { 3205 idp = vp + sr->isr_ssid_len; 3206 idlen = sr->isr_meshid_len; 3207 } else { 3208 idp = vp; 3209 idlen = sr->isr_ssid_len; 3210 } 3211 printf("%-*.*s %s %3d %3dM %3d:%-3d %3d %-4.4s" 3212 , ssidmax 3213 , copy_essid(ssid, ssidmax, idp, idlen) 3214 , ssid 3215 , ether_ntoa((const struct ether_addr *) sr->isr_bssid) 3216 , ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags) 3217 , getmaxrate(sr->isr_rates, sr->isr_nrates) 3218 , (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise 3219 , sr->isr_intval 3220 , getcaps(sr->isr_capinfo) 3221 ); 3222 printies(vp + sr->isr_ssid_len + sr->isr_meshid_len, 3223 sr->isr_ie_len, 24); 3224 printf("\n"); 3225 cp += sr->isr_len, len -= sr->isr_len; 3226 } while (len >= sizeof(struct ieee80211req_scan_result)); 3227 } 3228 3229 static void 3230 scan_and_wait(int s) 3231 { 3232 struct ieee80211_scan_req sr; 3233 struct ieee80211req ireq; 3234 int sroute; 3235 3236 sroute = socket(PF_ROUTE, SOCK_RAW, 0); 3237 if (sroute < 0) { 3238 perror("socket(PF_ROUTE,SOCK_RAW)"); 3239 return; 3240 } 3241 (void) memset(&ireq, 0, sizeof(ireq)); 3242 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 3243 ireq.i_type = IEEE80211_IOC_SCAN_REQ; 3244 3245 memset(&sr, 0, sizeof(sr)); 3246 sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE 3247 | IEEE80211_IOC_SCAN_BGSCAN 3248 | IEEE80211_IOC_SCAN_NOPICK 3249 | IEEE80211_IOC_SCAN_ONCE; 3250 sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER; 3251 sr.sr_nssid = 0; 3252 3253 ireq.i_data = &sr; 3254 ireq.i_len = sizeof(sr); 3255 /* 3256 * NB: only root can trigger a scan so ignore errors. Also ignore 3257 * possible errors from net80211, even if no new scan could be 3258 * started there might still be a valid scan cache. 3259 */ 3260 if (ioctl(s, SIOCS80211, &ireq) == 0) { 3261 char buf[2048]; 3262 struct if_announcemsghdr *ifan; 3263 struct rt_msghdr *rtm; 3264 3265 do { 3266 if (read(sroute, buf, sizeof(buf)) < 0) { 3267 perror("read(PF_ROUTE)"); 3268 break; 3269 } 3270 rtm = (struct rt_msghdr *) buf; 3271 if (rtm->rtm_version != RTM_VERSION) 3272 break; 3273 ifan = (struct if_announcemsghdr *) rtm; 3274 } while (rtm->rtm_type != RTM_IEEE80211 || 3275 ifan->ifan_what != RTM_IEEE80211_SCAN); 3276 } 3277 close(sroute); 3278 } 3279 3280 static 3281 DECL_CMD_FUNC(set80211scan, val, d) 3282 { 3283 scan_and_wait(s); 3284 list_scan(s); 3285 } 3286 3287 static enum ieee80211_opmode get80211opmode(int s); 3288 3289 static int 3290 gettxseq(const struct ieee80211req_sta_info *si) 3291 { 3292 int i, txseq; 3293 3294 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3295 return si->isi_txseqs[0]; 3296 /* XXX not right but usually what folks want */ 3297 txseq = 0; 3298 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3299 if (si->isi_txseqs[i] > txseq) 3300 txseq = si->isi_txseqs[i]; 3301 return txseq; 3302 } 3303 3304 static int 3305 getrxseq(const struct ieee80211req_sta_info *si) 3306 { 3307 int i, rxseq; 3308 3309 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3310 return si->isi_rxseqs[0]; 3311 /* XXX not right but usually what folks want */ 3312 rxseq = 0; 3313 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3314 if (si->isi_rxseqs[i] > rxseq) 3315 rxseq = si->isi_rxseqs[i]; 3316 return rxseq; 3317 } 3318 3319 static void 3320 list_stations(int s) 3321 { 3322 union { 3323 struct ieee80211req_sta_req req; 3324 uint8_t buf[24*1024]; 3325 } u; 3326 enum ieee80211_opmode opmode = get80211opmode(s); 3327 const uint8_t *cp; 3328 int len; 3329 3330 /* broadcast address =>'s get all stations */ 3331 (void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN); 3332 if (opmode == IEEE80211_M_STA) { 3333 /* 3334 * Get information about the associated AP. 3335 */ 3336 (void) get80211(s, IEEE80211_IOC_BSSID, 3337 u.req.is_u.macaddr, IEEE80211_ADDR_LEN); 3338 } 3339 if (get80211len(s, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0) 3340 errx(1, "unable to get station information"); 3341 if (len < sizeof(struct ieee80211req_sta_info)) 3342 return; 3343 3344 getchaninfo(s); 3345 3346 if (opmode == IEEE80211_M_MBSS) 3347 printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n" 3348 , "ADDR" 3349 , "CHAN" 3350 , "LOCAL" 3351 , "PEER" 3352 , "STATE" 3353 , "RATE" 3354 , "RSSI" 3355 , "IDLE" 3356 , "TXSEQ" 3357 , "RXSEQ" 3358 ); 3359 else 3360 printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-7s\n" 3361 , "ADDR" 3362 , "AID" 3363 , "CHAN" 3364 , "RATE" 3365 , "RSSI" 3366 , "IDLE" 3367 , "TXSEQ" 3368 , "RXSEQ" 3369 , "CAPS" 3370 , "FLAG" 3371 ); 3372 cp = (const uint8_t *) u.req.info; 3373 do { 3374 const struct ieee80211req_sta_info *si; 3375 3376 si = (const struct ieee80211req_sta_info *) cp; 3377 if (si->isi_len < sizeof(*si)) 3378 break; 3379 if (opmode == IEEE80211_M_MBSS) 3380 printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d" 3381 , ether_ntoa((const struct ether_addr*) 3382 si->isi_macaddr) 3383 , ieee80211_mhz2ieee(si->isi_freq, 3384 si->isi_flags) 3385 , si->isi_localid 3386 , si->isi_peerid 3387 , mesh_linkstate_string(si->isi_peerstate) 3388 , si->isi_txmbps/2 3389 , si->isi_rssi/2. 3390 , si->isi_inact 3391 , gettxseq(si) 3392 , getrxseq(si) 3393 ); 3394 else 3395 printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-7.7s" 3396 , ether_ntoa((const struct ether_addr*) 3397 si->isi_macaddr) 3398 , IEEE80211_AID(si->isi_associd) 3399 , ieee80211_mhz2ieee(si->isi_freq, 3400 si->isi_flags) 3401 , si->isi_txmbps/2 3402 , si->isi_rssi/2. 3403 , si->isi_inact 3404 , gettxseq(si) 3405 , getrxseq(si) 3406 , getcaps(si->isi_capinfo) 3407 , getflags(si->isi_state) 3408 ); 3409 printies(cp + si->isi_ie_off, si->isi_ie_len, 24); 3410 printmimo(&si->isi_mimo); 3411 printf("\n"); 3412 cp += si->isi_len, len -= si->isi_len; 3413 } while (len >= sizeof(struct ieee80211req_sta_info)); 3414 } 3415 3416 static const char * 3417 mesh_linkstate_string(uint8_t state) 3418 { 3419 static const char *state_names[] = { 3420 [0] = "IDLE", 3421 [1] = "OPEN-TX", 3422 [2] = "OPEN-RX", 3423 [3] = "CONF-RX", 3424 [4] = "ESTAB", 3425 [5] = "HOLDING", 3426 }; 3427 3428 if (state >= nitems(state_names)) { 3429 static char buf[10]; 3430 snprintf(buf, sizeof(buf), "#%u", state); 3431 return buf; 3432 } else 3433 return state_names[state]; 3434 } 3435 3436 static const char * 3437 get_chaninfo(const struct ieee80211_channel *c, int precise, 3438 char buf[], size_t bsize) 3439 { 3440 buf[0] = '\0'; 3441 if (IEEE80211_IS_CHAN_FHSS(c)) 3442 strlcat(buf, " FHSS", bsize); 3443 if (IEEE80211_IS_CHAN_A(c)) 3444 strlcat(buf, " 11a", bsize); 3445 else if (IEEE80211_IS_CHAN_ANYG(c)) 3446 strlcat(buf, " 11g", bsize); 3447 else if (IEEE80211_IS_CHAN_B(c)) 3448 strlcat(buf, " 11b", bsize); 3449 if (IEEE80211_IS_CHAN_HALF(c)) 3450 strlcat(buf, "/10MHz", bsize); 3451 if (IEEE80211_IS_CHAN_QUARTER(c)) 3452 strlcat(buf, "/5MHz", bsize); 3453 if (IEEE80211_IS_CHAN_TURBO(c)) 3454 strlcat(buf, " Turbo", bsize); 3455 if (precise) { 3456 if (IEEE80211_IS_CHAN_HT20(c)) 3457 strlcat(buf, " ht/20", bsize); 3458 else if (IEEE80211_IS_CHAN_HT40D(c)) 3459 strlcat(buf, " ht/40-", bsize); 3460 else if (IEEE80211_IS_CHAN_HT40U(c)) 3461 strlcat(buf, " ht/40+", bsize); 3462 } else { 3463 if (IEEE80211_IS_CHAN_HT(c)) 3464 strlcat(buf, " ht", bsize); 3465 } 3466 return buf; 3467 } 3468 3469 static void 3470 print_chaninfo(const struct ieee80211_channel *c, int verb) 3471 { 3472 char buf[14]; 3473 3474 if (verb) 3475 printf("Channel %3u : %u%c%c%c%c%c MHz%-14.14s", 3476 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3477 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3478 IEEE80211_IS_CHAN_DFS(c) ? 'D' : ' ', 3479 IEEE80211_IS_CHAN_RADAR(c) ? 'R' : ' ', 3480 IEEE80211_IS_CHAN_CWINT(c) ? 'I' : ' ', 3481 IEEE80211_IS_CHAN_CACDONE(c) ? 'C' : ' ', 3482 get_chaninfo(c, verb, buf, sizeof(buf))); 3483 else 3484 printf("Channel %3u : %u%c MHz%-14.14s", 3485 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3486 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3487 get_chaninfo(c, verb, buf, sizeof(buf))); 3488 3489 } 3490 3491 static int 3492 chanpref(const struct ieee80211_channel *c) 3493 { 3494 if (IEEE80211_IS_CHAN_HT40(c)) 3495 return 40; 3496 if (IEEE80211_IS_CHAN_HT20(c)) 3497 return 30; 3498 if (IEEE80211_IS_CHAN_HALF(c)) 3499 return 10; 3500 if (IEEE80211_IS_CHAN_QUARTER(c)) 3501 return 5; 3502 if (IEEE80211_IS_CHAN_TURBO(c)) 3503 return 25; 3504 if (IEEE80211_IS_CHAN_A(c)) 3505 return 20; 3506 if (IEEE80211_IS_CHAN_G(c)) 3507 return 20; 3508 if (IEEE80211_IS_CHAN_B(c)) 3509 return 15; 3510 if (IEEE80211_IS_CHAN_PUREG(c)) 3511 return 15; 3512 return 0; 3513 } 3514 3515 static void 3516 print_channels(int s, const struct ieee80211req_chaninfo *chans, 3517 int allchans, int verb) 3518 { 3519 struct ieee80211req_chaninfo *achans; 3520 uint8_t reported[IEEE80211_CHAN_BYTES]; 3521 const struct ieee80211_channel *c; 3522 int i, half; 3523 3524 achans = malloc(IEEE80211_CHANINFO_SPACE(chans)); 3525 if (achans == NULL) 3526 errx(1, "no space for active channel list"); 3527 achans->ic_nchans = 0; 3528 memset(reported, 0, sizeof(reported)); 3529 if (!allchans) { 3530 struct ieee80211req_chanlist active; 3531 3532 if (get80211(s, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0) 3533 errx(1, "unable to get active channel list"); 3534 for (i = 0; i < chans->ic_nchans; i++) { 3535 c = &chans->ic_chans[i]; 3536 if (!isset(active.ic_channels, c->ic_ieee)) 3537 continue; 3538 /* 3539 * Suppress compatible duplicates unless 3540 * verbose. The kernel gives us it's 3541 * complete channel list which has separate 3542 * entries for 11g/11b and 11a/turbo. 3543 */ 3544 if (isset(reported, c->ic_ieee) && !verb) { 3545 /* XXX we assume duplicates are adjacent */ 3546 achans->ic_chans[achans->ic_nchans-1] = *c; 3547 } else { 3548 achans->ic_chans[achans->ic_nchans++] = *c; 3549 setbit(reported, c->ic_ieee); 3550 } 3551 } 3552 } else { 3553 for (i = 0; i < chans->ic_nchans; i++) { 3554 c = &chans->ic_chans[i]; 3555 /* suppress duplicates as above */ 3556 if (isset(reported, c->ic_ieee) && !verb) { 3557 /* XXX we assume duplicates are adjacent */ 3558 struct ieee80211_channel *a = 3559 &achans->ic_chans[achans->ic_nchans-1]; 3560 if (chanpref(c) > chanpref(a)) 3561 *a = *c; 3562 } else { 3563 achans->ic_chans[achans->ic_nchans++] = *c; 3564 setbit(reported, c->ic_ieee); 3565 } 3566 } 3567 } 3568 half = achans->ic_nchans / 2; 3569 if (achans->ic_nchans % 2) 3570 half++; 3571 3572 for (i = 0; i < achans->ic_nchans / 2; i++) { 3573 print_chaninfo(&achans->ic_chans[i], verb); 3574 print_chaninfo(&achans->ic_chans[half+i], verb); 3575 printf("\n"); 3576 } 3577 if (achans->ic_nchans % 2) { 3578 print_chaninfo(&achans->ic_chans[i], verb); 3579 printf("\n"); 3580 } 3581 free(achans); 3582 } 3583 3584 static void 3585 list_channels(int s, int allchans) 3586 { 3587 getchaninfo(s); 3588 print_channels(s, chaninfo, allchans, verbose); 3589 } 3590 3591 static void 3592 print_txpow(const struct ieee80211_channel *c) 3593 { 3594 printf("Channel %3u : %u MHz %3.1f reg %2d ", 3595 c->ic_ieee, c->ic_freq, 3596 c->ic_maxpower/2., c->ic_maxregpower); 3597 } 3598 3599 static void 3600 print_txpow_verbose(const struct ieee80211_channel *c) 3601 { 3602 print_chaninfo(c, 1); 3603 printf("min %4.1f dBm max %3.1f dBm reg %2d dBm", 3604 c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower); 3605 /* indicate where regulatory cap limits power use */ 3606 if (c->ic_maxpower > 2*c->ic_maxregpower) 3607 printf(" <"); 3608 } 3609 3610 static void 3611 list_txpow(int s) 3612 { 3613 struct ieee80211req_chaninfo *achans; 3614 uint8_t reported[IEEE80211_CHAN_BYTES]; 3615 struct ieee80211_channel *c, *prev; 3616 int i, half; 3617 3618 getchaninfo(s); 3619 achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo)); 3620 if (achans == NULL) 3621 errx(1, "no space for active channel list"); 3622 achans->ic_nchans = 0; 3623 memset(reported, 0, sizeof(reported)); 3624 for (i = 0; i < chaninfo->ic_nchans; i++) { 3625 c = &chaninfo->ic_chans[i]; 3626 /* suppress duplicates as above */ 3627 if (isset(reported, c->ic_ieee) && !verbose) { 3628 /* XXX we assume duplicates are adjacent */ 3629 prev = &achans->ic_chans[achans->ic_nchans-1]; 3630 /* display highest power on channel */ 3631 if (c->ic_maxpower > prev->ic_maxpower) 3632 *prev = *c; 3633 } else { 3634 achans->ic_chans[achans->ic_nchans++] = *c; 3635 setbit(reported, c->ic_ieee); 3636 } 3637 } 3638 if (!verbose) { 3639 half = achans->ic_nchans / 2; 3640 if (achans->ic_nchans % 2) 3641 half++; 3642 3643 for (i = 0; i < achans->ic_nchans / 2; i++) { 3644 print_txpow(&achans->ic_chans[i]); 3645 print_txpow(&achans->ic_chans[half+i]); 3646 printf("\n"); 3647 } 3648 if (achans->ic_nchans % 2) { 3649 print_txpow(&achans->ic_chans[i]); 3650 printf("\n"); 3651 } 3652 } else { 3653 for (i = 0; i < achans->ic_nchans; i++) { 3654 print_txpow_verbose(&achans->ic_chans[i]); 3655 printf("\n"); 3656 } 3657 } 3658 free(achans); 3659 } 3660 3661 static void 3662 list_keys(int s) 3663 { 3664 } 3665 3666 #define IEEE80211_C_BITS \ 3667 "\20\1STA\002803ENCAP\7FF\10TURBOP\11IBSS\12PMGT" \ 3668 "\13HOSTAP\14AHDEMO\15SWRETRY\16TXPMGT\17SHSLOT\20SHPREAMBLE" \ 3669 "\21MONITOR\22DFS\23MBSS\30WPA1\31WPA2\32BURST\33WME\34WDS\36BGSCAN" \ 3670 "\37TXFRAG\40TDMA" 3671 3672 static void 3673 list_capabilities(int s) 3674 { 3675 struct ieee80211_devcaps_req *dc; 3676 3677 if (verbose) 3678 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 3679 else 3680 dc = malloc(IEEE80211_DEVCAPS_SIZE(1)); 3681 if (dc == NULL) 3682 errx(1, "no space for device capabilities"); 3683 dc->dc_chaninfo.ic_nchans = verbose ? MAXCHAN : 1; 3684 getdevcaps(s, dc); 3685 printb("drivercaps", dc->dc_drivercaps, IEEE80211_C_BITS); 3686 if (dc->dc_cryptocaps != 0 || verbose) { 3687 putchar('\n'); 3688 printb("cryptocaps", dc->dc_cryptocaps, IEEE80211_CRYPTO_BITS); 3689 } 3690 if (dc->dc_htcaps != 0 || verbose) { 3691 putchar('\n'); 3692 printb("htcaps", dc->dc_htcaps, IEEE80211_HTCAP_BITS); 3693 } 3694 putchar('\n'); 3695 if (verbose) { 3696 chaninfo = &dc->dc_chaninfo; /* XXX */ 3697 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, verbose); 3698 } 3699 free(dc); 3700 } 3701 3702 static int 3703 get80211wme(int s, int param, int ac, int *val) 3704 { 3705 struct ieee80211req ireq; 3706 3707 (void) memset(&ireq, 0, sizeof(ireq)); 3708 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 3709 ireq.i_type = param; 3710 ireq.i_len = ac; 3711 if (ioctl(s, SIOCG80211, &ireq) < 0) { 3712 warn("cannot get WME parameter %d, ac %d%s", 3713 param, ac & IEEE80211_WMEPARAM_VAL, 3714 ac & IEEE80211_WMEPARAM_BSS ? " (BSS)" : ""); 3715 return -1; 3716 } 3717 *val = ireq.i_val; 3718 return 0; 3719 } 3720 3721 static void 3722 list_wme_aci(int s, const char *tag, int ac) 3723 { 3724 int val; 3725 3726 printf("\t%s", tag); 3727 3728 /* show WME BSS parameters */ 3729 if (get80211wme(s, IEEE80211_IOC_WME_CWMIN, ac, &val) != -1) 3730 printf(" cwmin %2u", val); 3731 if (get80211wme(s, IEEE80211_IOC_WME_CWMAX, ac, &val) != -1) 3732 printf(" cwmax %2u", val); 3733 if (get80211wme(s, IEEE80211_IOC_WME_AIFS, ac, &val) != -1) 3734 printf(" aifs %2u", val); 3735 if (get80211wme(s, IEEE80211_IOC_WME_TXOPLIMIT, ac, &val) != -1) 3736 printf(" txopLimit %3u", val); 3737 if (get80211wme(s, IEEE80211_IOC_WME_ACM, ac, &val) != -1) { 3738 if (val) 3739 printf(" acm"); 3740 else if (verbose) 3741 printf(" -acm"); 3742 } 3743 /* !BSS only */ 3744 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 3745 if (get80211wme(s, IEEE80211_IOC_WME_ACKPOLICY, ac, &val) != -1) { 3746 if (!val) 3747 printf(" -ack"); 3748 else if (verbose) 3749 printf(" ack"); 3750 } 3751 } 3752 printf("\n"); 3753 } 3754 3755 static void 3756 list_wme(int s) 3757 { 3758 static const char *acnames[] = { "AC_BE", "AC_BK", "AC_VI", "AC_VO" }; 3759 int ac; 3760 3761 if (verbose) { 3762 /* display both BSS and local settings */ 3763 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) { 3764 again: 3765 if (ac & IEEE80211_WMEPARAM_BSS) 3766 list_wme_aci(s, " ", ac); 3767 else 3768 list_wme_aci(s, acnames[ac], ac); 3769 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 3770 ac |= IEEE80211_WMEPARAM_BSS; 3771 goto again; 3772 } else 3773 ac &= ~IEEE80211_WMEPARAM_BSS; 3774 } 3775 } else { 3776 /* display only channel settings */ 3777 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) 3778 list_wme_aci(s, acnames[ac], ac); 3779 } 3780 } 3781 3782 static void 3783 list_roam(int s) 3784 { 3785 const struct ieee80211_roamparam *rp; 3786 int mode; 3787 3788 getroam(s); 3789 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 3790 rp = &roamparams.params[mode]; 3791 if (rp->rssi == 0 && rp->rate == 0) 3792 continue; 3793 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 3794 if (rp->rssi & 1) 3795 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm MCS %2u ", 3796 modename[mode], rp->rssi/2, 3797 rp->rate &~ IEEE80211_RATE_MCS); 3798 else 3799 LINE_CHECK("roam:%-7.7s rssi %4udBm MCS %2u ", 3800 modename[mode], rp->rssi/2, 3801 rp->rate &~ IEEE80211_RATE_MCS); 3802 } else { 3803 if (rp->rssi & 1) 3804 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm rate %2u Mb/s", 3805 modename[mode], rp->rssi/2, rp->rate/2); 3806 else 3807 LINE_CHECK("roam:%-7.7s rssi %4udBm rate %2u Mb/s", 3808 modename[mode], rp->rssi/2, rp->rate/2); 3809 } 3810 } 3811 } 3812 3813 static void 3814 list_txparams(int s) 3815 { 3816 const struct ieee80211_txparam *tp; 3817 int mode; 3818 3819 gettxparams(s); 3820 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 3821 tp = &txparams.params[mode]; 3822 if (tp->mgmtrate == 0 && tp->mcastrate == 0) 3823 continue; 3824 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 3825 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 3826 LINE_CHECK("%-7.7s ucast NONE mgmt %2u MCS " 3827 "mcast %2u MCS maxretry %u", 3828 modename[mode], 3829 tp->mgmtrate &~ IEEE80211_RATE_MCS, 3830 tp->mcastrate &~ IEEE80211_RATE_MCS, 3831 tp->maxretry); 3832 else 3833 LINE_CHECK("%-7.7s ucast %2u MCS mgmt %2u MCS " 3834 "mcast %2u MCS maxretry %u", 3835 modename[mode], 3836 tp->ucastrate &~ IEEE80211_RATE_MCS, 3837 tp->mgmtrate &~ IEEE80211_RATE_MCS, 3838 tp->mcastrate &~ IEEE80211_RATE_MCS, 3839 tp->maxretry); 3840 } else { 3841 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 3842 LINE_CHECK("%-7.7s ucast NONE mgmt %2u Mb/s " 3843 "mcast %2u Mb/s maxretry %u", 3844 modename[mode], 3845 tp->mgmtrate/2, 3846 tp->mcastrate/2, tp->maxretry); 3847 else 3848 LINE_CHECK("%-7.7s ucast %2u Mb/s mgmt %2u Mb/s " 3849 "mcast %2u Mb/s maxretry %u", 3850 modename[mode], 3851 tp->ucastrate/2, tp->mgmtrate/2, 3852 tp->mcastrate/2, tp->maxretry); 3853 } 3854 } 3855 } 3856 3857 static void 3858 printpolicy(int policy) 3859 { 3860 switch (policy) { 3861 case IEEE80211_MACCMD_POLICY_OPEN: 3862 printf("policy: open\n"); 3863 break; 3864 case IEEE80211_MACCMD_POLICY_ALLOW: 3865 printf("policy: allow\n"); 3866 break; 3867 case IEEE80211_MACCMD_POLICY_DENY: 3868 printf("policy: deny\n"); 3869 break; 3870 case IEEE80211_MACCMD_POLICY_RADIUS: 3871 printf("policy: radius\n"); 3872 break; 3873 default: 3874 printf("policy: unknown (%u)\n", policy); 3875 break; 3876 } 3877 } 3878 3879 static void 3880 list_mac(int s) 3881 { 3882 struct ieee80211req ireq; 3883 struct ieee80211req_maclist *acllist; 3884 int i, nacls, policy, len; 3885 uint8_t *data; 3886 char c; 3887 3888 (void) memset(&ireq, 0, sizeof(ireq)); 3889 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); /* XXX ?? */ 3890 ireq.i_type = IEEE80211_IOC_MACCMD; 3891 ireq.i_val = IEEE80211_MACCMD_POLICY; 3892 if (ioctl(s, SIOCG80211, &ireq) < 0) { 3893 if (errno == EINVAL) { 3894 printf("No acl policy loaded\n"); 3895 return; 3896 } 3897 err(1, "unable to get mac policy"); 3898 } 3899 policy = ireq.i_val; 3900 if (policy == IEEE80211_MACCMD_POLICY_OPEN) { 3901 c = '*'; 3902 } else if (policy == IEEE80211_MACCMD_POLICY_ALLOW) { 3903 c = '+'; 3904 } else if (policy == IEEE80211_MACCMD_POLICY_DENY) { 3905 c = '-'; 3906 } else if (policy == IEEE80211_MACCMD_POLICY_RADIUS) { 3907 c = 'r'; /* NB: should never have entries */ 3908 } else { 3909 printf("policy: unknown (%u)\n", policy); 3910 c = '?'; 3911 } 3912 if (verbose || c == '?') 3913 printpolicy(policy); 3914 3915 ireq.i_val = IEEE80211_MACCMD_LIST; 3916 ireq.i_len = 0; 3917 if (ioctl(s, SIOCG80211, &ireq) < 0) 3918 err(1, "unable to get mac acl list size"); 3919 if (ireq.i_len == 0) { /* NB: no acls */ 3920 if (!(verbose || c == '?')) 3921 printpolicy(policy); 3922 return; 3923 } 3924 len = ireq.i_len; 3925 3926 data = malloc(len); 3927 if (data == NULL) 3928 err(1, "out of memory for acl list"); 3929 3930 ireq.i_data = data; 3931 if (ioctl(s, SIOCG80211, &ireq) < 0) 3932 err(1, "unable to get mac acl list"); 3933 nacls = len / sizeof(*acllist); 3934 acllist = (struct ieee80211req_maclist *) data; 3935 for (i = 0; i < nacls; i++) 3936 printf("%c%s\n", c, ether_ntoa( 3937 (const struct ether_addr *) acllist[i].ml_macaddr)); 3938 free(data); 3939 } 3940 3941 static void 3942 print_regdomain(const struct ieee80211_regdomain *reg, int verb) 3943 { 3944 if ((reg->regdomain != 0 && 3945 reg->regdomain != reg->country) || verb) { 3946 const struct regdomain *rd = 3947 lib80211_regdomain_findbysku(getregdata(), reg->regdomain); 3948 if (rd == NULL) 3949 LINE_CHECK("regdomain %d", reg->regdomain); 3950 else 3951 LINE_CHECK("regdomain %s", rd->name); 3952 } 3953 if (reg->country != 0 || verb) { 3954 const struct country *cc = 3955 lib80211_country_findbycc(getregdata(), reg->country); 3956 if (cc == NULL) 3957 LINE_CHECK("country %d", reg->country); 3958 else 3959 LINE_CHECK("country %s", cc->isoname); 3960 } 3961 if (reg->location == 'I') 3962 LINE_CHECK("indoor"); 3963 else if (reg->location == 'O') 3964 LINE_CHECK("outdoor"); 3965 else if (verb) 3966 LINE_CHECK("anywhere"); 3967 if (reg->ecm) 3968 LINE_CHECK("ecm"); 3969 else if (verb) 3970 LINE_CHECK("-ecm"); 3971 } 3972 3973 static void 3974 list_regdomain(int s, int channelsalso) 3975 { 3976 getregdomain(s); 3977 if (channelsalso) { 3978 getchaninfo(s); 3979 spacer = ':'; 3980 print_regdomain(®domain, 1); 3981 LINE_BREAK(); 3982 print_channels(s, chaninfo, 1/*allchans*/, 1/*verbose*/); 3983 } else 3984 print_regdomain(®domain, verbose); 3985 } 3986 3987 static void 3988 list_mesh(int s) 3989 { 3990 struct ieee80211req ireq; 3991 struct ieee80211req_mesh_route routes[128]; 3992 struct ieee80211req_mesh_route *rt; 3993 3994 (void) memset(&ireq, 0, sizeof(ireq)); 3995 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 3996 ireq.i_type = IEEE80211_IOC_MESH_RTCMD; 3997 ireq.i_val = IEEE80211_MESH_RTCMD_LIST; 3998 ireq.i_data = &routes; 3999 ireq.i_len = sizeof(routes); 4000 if (ioctl(s, SIOCG80211, &ireq) < 0) 4001 err(1, "unable to get the Mesh routing table"); 4002 4003 printf("%-17.17s %-17.17s %4s %4s %4s %6s %s\n" 4004 , "DEST" 4005 , "NEXT HOP" 4006 , "HOPS" 4007 , "METRIC" 4008 , "LIFETIME" 4009 , "MSEQ" 4010 , "FLAGS"); 4011 4012 for (rt = &routes[0]; rt - &routes[0] < ireq.i_len / sizeof(*rt); rt++){ 4013 printf("%s ", 4014 ether_ntoa((const struct ether_addr *)rt->imr_dest)); 4015 printf("%s %4u %4u %6u %6u %c%c\n", 4016 ether_ntoa((const struct ether_addr *)rt->imr_nexthop), 4017 rt->imr_nhops, rt->imr_metric, rt->imr_lifetime, 4018 rt->imr_lastmseq, 4019 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_DISCOVER) ? 4020 'D' : 4021 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_VALID) ? 4022 'V' : '!', 4023 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_PROXY) ? 4024 'P' : 4025 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_GATE) ? 4026 'G' :' '); 4027 } 4028 } 4029 4030 static 4031 DECL_CMD_FUNC(set80211list, arg, d) 4032 { 4033 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 4034 4035 LINE_INIT('\t'); 4036 4037 if (iseq(arg, "sta")) 4038 list_stations(s); 4039 else if (iseq(arg, "scan") || iseq(arg, "ap")) 4040 list_scan(s); 4041 else if (iseq(arg, "chan") || iseq(arg, "freq")) 4042 list_channels(s, 1); 4043 else if (iseq(arg, "active")) 4044 list_channels(s, 0); 4045 else if (iseq(arg, "keys")) 4046 list_keys(s); 4047 else if (iseq(arg, "caps")) 4048 list_capabilities(s); 4049 else if (iseq(arg, "wme") || iseq(arg, "wmm")) 4050 list_wme(s); 4051 else if (iseq(arg, "mac")) 4052 list_mac(s); 4053 else if (iseq(arg, "txpow")) 4054 list_txpow(s); 4055 else if (iseq(arg, "roam")) 4056 list_roam(s); 4057 else if (iseq(arg, "txparam") || iseq(arg, "txparm")) 4058 list_txparams(s); 4059 else if (iseq(arg, "regdomain")) 4060 list_regdomain(s, 1); 4061 else if (iseq(arg, "countries")) 4062 list_countries(); 4063 else if (iseq(arg, "mesh")) 4064 list_mesh(s); 4065 else 4066 errx(1, "Don't know how to list %s for %s", arg, name); 4067 LINE_BREAK(); 4068 #undef iseq 4069 } 4070 4071 static enum ieee80211_opmode 4072 get80211opmode(int s) 4073 { 4074 struct ifmediareq ifmr; 4075 4076 (void) memset(&ifmr, 0, sizeof(ifmr)); 4077 (void) strncpy(ifmr.ifm_name, name, sizeof(ifmr.ifm_name)); 4078 4079 if (ioctl(s, SIOCGIFMEDIA, (caddr_t)&ifmr) >= 0) { 4080 if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) { 4081 if (ifmr.ifm_current & IFM_FLAG0) 4082 return IEEE80211_M_AHDEMO; 4083 else 4084 return IEEE80211_M_IBSS; 4085 } 4086 if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP) 4087 return IEEE80211_M_HOSTAP; 4088 if (ifmr.ifm_current & IFM_IEEE80211_MONITOR) 4089 return IEEE80211_M_MONITOR; 4090 if (ifmr.ifm_current & IFM_IEEE80211_MBSS) 4091 return IEEE80211_M_MBSS; 4092 } 4093 return IEEE80211_M_STA; 4094 } 4095 4096 #if 0 4097 static void 4098 printcipher(int s, struct ieee80211req *ireq, int keylenop) 4099 { 4100 switch (ireq->i_val) { 4101 case IEEE80211_CIPHER_WEP: 4102 ireq->i_type = keylenop; 4103 if (ioctl(s, SIOCG80211, ireq) != -1) 4104 printf("WEP-%s", 4105 ireq->i_len <= 5 ? "40" : 4106 ireq->i_len <= 13 ? "104" : "128"); 4107 else 4108 printf("WEP"); 4109 break; 4110 case IEEE80211_CIPHER_TKIP: 4111 printf("TKIP"); 4112 break; 4113 case IEEE80211_CIPHER_AES_OCB: 4114 printf("AES-OCB"); 4115 break; 4116 case IEEE80211_CIPHER_AES_CCM: 4117 printf("AES-CCM"); 4118 break; 4119 case IEEE80211_CIPHER_CKIP: 4120 printf("CKIP"); 4121 break; 4122 case IEEE80211_CIPHER_NONE: 4123 printf("NONE"); 4124 break; 4125 default: 4126 printf("UNKNOWN (0x%x)", ireq->i_val); 4127 break; 4128 } 4129 } 4130 #endif 4131 4132 static void 4133 printkey(const struct ieee80211req_key *ik) 4134 { 4135 static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE]; 4136 int keylen = ik->ik_keylen; 4137 int printcontents; 4138 4139 printcontents = printkeys && 4140 (memcmp(ik->ik_keydata, zerodata, keylen) != 0 || verbose); 4141 if (printcontents) 4142 LINE_BREAK(); 4143 switch (ik->ik_type) { 4144 case IEEE80211_CIPHER_WEP: 4145 /* compatibility */ 4146 LINE_CHECK("wepkey %u:%s", ik->ik_keyix+1, 4147 keylen <= 5 ? "40-bit" : 4148 keylen <= 13 ? "104-bit" : "128-bit"); 4149 break; 4150 case IEEE80211_CIPHER_TKIP: 4151 if (keylen > 128/8) 4152 keylen -= 128/8; /* ignore MIC for now */ 4153 LINE_CHECK("TKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4154 break; 4155 case IEEE80211_CIPHER_AES_OCB: 4156 LINE_CHECK("AES-OCB %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4157 break; 4158 case IEEE80211_CIPHER_AES_CCM: 4159 LINE_CHECK("AES-CCM %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4160 break; 4161 case IEEE80211_CIPHER_CKIP: 4162 LINE_CHECK("CKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4163 break; 4164 case IEEE80211_CIPHER_NONE: 4165 LINE_CHECK("NULL %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4166 break; 4167 default: 4168 LINE_CHECK("UNKNOWN (0x%x) %u:%u-bit", 4169 ik->ik_type, ik->ik_keyix+1, 8*keylen); 4170 break; 4171 } 4172 if (printcontents) { 4173 int i; 4174 4175 printf(" <"); 4176 for (i = 0; i < keylen; i++) 4177 printf("%02x", ik->ik_keydata[i]); 4178 printf(">"); 4179 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4180 (ik->ik_keyrsc != 0 || verbose)) 4181 printf(" rsc %ju", (uintmax_t)ik->ik_keyrsc); 4182 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4183 (ik->ik_keytsc != 0 || verbose)) 4184 printf(" tsc %ju", (uintmax_t)ik->ik_keytsc); 4185 if (ik->ik_flags != 0 && verbose) { 4186 const char *sep = " "; 4187 4188 if (ik->ik_flags & IEEE80211_KEY_XMIT) 4189 printf("%stx", sep), sep = "+"; 4190 if (ik->ik_flags & IEEE80211_KEY_RECV) 4191 printf("%srx", sep), sep = "+"; 4192 if (ik->ik_flags & IEEE80211_KEY_DEFAULT) 4193 printf("%sdef", sep), sep = "+"; 4194 } 4195 LINE_BREAK(); 4196 } 4197 } 4198 4199 static void 4200 printrate(const char *tag, int v, int defrate, int defmcs) 4201 { 4202 if ((v & IEEE80211_RATE_MCS) == 0) { 4203 if (v != defrate) { 4204 if (v & 1) 4205 LINE_CHECK("%s %d.5", tag, v/2); 4206 else 4207 LINE_CHECK("%s %d", tag, v/2); 4208 } 4209 } else { 4210 if (v != defmcs) 4211 LINE_CHECK("%s %d", tag, v &~ 0x80); 4212 } 4213 } 4214 4215 static int 4216 getid(int s, int ix, void *data, size_t len, int *plen, int mesh) 4217 { 4218 struct ieee80211req ireq; 4219 4220 (void) memset(&ireq, 0, sizeof(ireq)); 4221 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4222 ireq.i_type = (!mesh) ? IEEE80211_IOC_SSID : IEEE80211_IOC_MESH_ID; 4223 ireq.i_val = ix; 4224 ireq.i_data = data; 4225 ireq.i_len = len; 4226 if (ioctl(s, SIOCG80211, &ireq) < 0) 4227 return -1; 4228 *plen = ireq.i_len; 4229 return 0; 4230 } 4231 4232 static void 4233 ieee80211_status(int s) 4234 { 4235 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 4236 enum ieee80211_opmode opmode = get80211opmode(s); 4237 int i, num, wpa, wme, bgscan, bgscaninterval, val, len, wepmode; 4238 uint8_t data[32]; 4239 const struct ieee80211_channel *c; 4240 const struct ieee80211_roamparam *rp; 4241 const struct ieee80211_txparam *tp; 4242 4243 if (getid(s, -1, data, sizeof(data), &len, 0) < 0) { 4244 /* If we can't get the SSID, this isn't an 802.11 device. */ 4245 return; 4246 } 4247 4248 /* 4249 * Invalidate cached state so printing status for multiple 4250 * if's doesn't reuse the first interfaces' cached state. 4251 */ 4252 gotcurchan = 0; 4253 gotroam = 0; 4254 gottxparams = 0; 4255 gothtconf = 0; 4256 gotregdomain = 0; 4257 4258 printf("\t"); 4259 if (opmode == IEEE80211_M_MBSS) { 4260 printf("meshid "); 4261 getid(s, 0, data, sizeof(data), &len, 1); 4262 print_string(data, len); 4263 } else { 4264 if (get80211val(s, IEEE80211_IOC_NUMSSIDS, &num) < 0) 4265 num = 0; 4266 printf("ssid "); 4267 if (num > 1) { 4268 for (i = 0; i < num; i++) { 4269 if (getid(s, i, data, sizeof(data), &len, 0) >= 0 && len > 0) { 4270 printf(" %d:", i + 1); 4271 print_string(data, len); 4272 } 4273 } 4274 } else 4275 print_string(data, len); 4276 } 4277 c = getcurchan(s); 4278 if (c->ic_freq != IEEE80211_CHAN_ANY) { 4279 char buf[14]; 4280 printf(" channel %d (%u MHz%s)", c->ic_ieee, c->ic_freq, 4281 get_chaninfo(c, 1, buf, sizeof(buf))); 4282 } else if (verbose) 4283 printf(" channel UNDEF"); 4284 4285 if (get80211(s, IEEE80211_IOC_BSSID, data, IEEE80211_ADDR_LEN) >= 0 && 4286 (memcmp(data, zerobssid, sizeof(zerobssid)) != 0 || verbose)) 4287 printf(" bssid %s", ether_ntoa((struct ether_addr *)data)); 4288 4289 if (get80211len(s, IEEE80211_IOC_STATIONNAME, data, sizeof(data), &len) != -1) { 4290 printf("\n\tstationname "); 4291 print_string(data, len); 4292 } 4293 4294 spacer = ' '; /* force first break */ 4295 LINE_BREAK(); 4296 4297 list_regdomain(s, 0); 4298 4299 wpa = 0; 4300 if (get80211val(s, IEEE80211_IOC_AUTHMODE, &val) != -1) { 4301 switch (val) { 4302 case IEEE80211_AUTH_NONE: 4303 LINE_CHECK("authmode NONE"); 4304 break; 4305 case IEEE80211_AUTH_OPEN: 4306 LINE_CHECK("authmode OPEN"); 4307 break; 4308 case IEEE80211_AUTH_SHARED: 4309 LINE_CHECK("authmode SHARED"); 4310 break; 4311 case IEEE80211_AUTH_8021X: 4312 LINE_CHECK("authmode 802.1x"); 4313 break; 4314 case IEEE80211_AUTH_WPA: 4315 if (get80211val(s, IEEE80211_IOC_WPA, &wpa) < 0) 4316 wpa = 1; /* default to WPA1 */ 4317 switch (wpa) { 4318 case 2: 4319 LINE_CHECK("authmode WPA2/802.11i"); 4320 break; 4321 case 3: 4322 LINE_CHECK("authmode WPA1+WPA2/802.11i"); 4323 break; 4324 default: 4325 LINE_CHECK("authmode WPA"); 4326 break; 4327 } 4328 break; 4329 case IEEE80211_AUTH_AUTO: 4330 LINE_CHECK("authmode AUTO"); 4331 break; 4332 default: 4333 LINE_CHECK("authmode UNKNOWN (0x%x)", val); 4334 break; 4335 } 4336 } 4337 4338 if (wpa || verbose) { 4339 if (get80211val(s, IEEE80211_IOC_WPS, &val) != -1) { 4340 if (val) 4341 LINE_CHECK("wps"); 4342 else if (verbose) 4343 LINE_CHECK("-wps"); 4344 } 4345 if (get80211val(s, IEEE80211_IOC_TSN, &val) != -1) { 4346 if (val) 4347 LINE_CHECK("tsn"); 4348 else if (verbose) 4349 LINE_CHECK("-tsn"); 4350 } 4351 if (ioctl(s, IEEE80211_IOC_COUNTERMEASURES, &val) != -1) { 4352 if (val) 4353 LINE_CHECK("countermeasures"); 4354 else if (verbose) 4355 LINE_CHECK("-countermeasures"); 4356 } 4357 #if 0 4358 /* XXX not interesting with WPA done in user space */ 4359 ireq.i_type = IEEE80211_IOC_KEYMGTALGS; 4360 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4361 } 4362 4363 ireq.i_type = IEEE80211_IOC_MCASTCIPHER; 4364 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4365 LINE_CHECK("mcastcipher "); 4366 printcipher(s, &ireq, IEEE80211_IOC_MCASTKEYLEN); 4367 spacer = ' '; 4368 } 4369 4370 ireq.i_type = IEEE80211_IOC_UCASTCIPHER; 4371 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4372 LINE_CHECK("ucastcipher "); 4373 printcipher(s, &ireq, IEEE80211_IOC_UCASTKEYLEN); 4374 } 4375 4376 if (wpa & 2) { 4377 ireq.i_type = IEEE80211_IOC_RSNCAPS; 4378 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4379 LINE_CHECK("RSN caps 0x%x", ireq.i_val); 4380 spacer = ' '; 4381 } 4382 } 4383 4384 ireq.i_type = IEEE80211_IOC_UCASTCIPHERS; 4385 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4386 } 4387 #endif 4388 } 4389 4390 if (get80211val(s, IEEE80211_IOC_WEP, &wepmode) != -1 && 4391 wepmode != IEEE80211_WEP_NOSUP) { 4392 4393 switch (wepmode) { 4394 case IEEE80211_WEP_OFF: 4395 LINE_CHECK("privacy OFF"); 4396 break; 4397 case IEEE80211_WEP_ON: 4398 LINE_CHECK("privacy ON"); 4399 break; 4400 case IEEE80211_WEP_MIXED: 4401 LINE_CHECK("privacy MIXED"); 4402 break; 4403 default: 4404 LINE_CHECK("privacy UNKNOWN (0x%x)", wepmode); 4405 break; 4406 } 4407 4408 /* 4409 * If we get here then we've got WEP support so we need 4410 * to print WEP status. 4411 */ 4412 4413 if (get80211val(s, IEEE80211_IOC_WEPTXKEY, &val) < 0) { 4414 warn("WEP support, but no tx key!"); 4415 goto end; 4416 } 4417 if (val != -1) 4418 LINE_CHECK("deftxkey %d", val+1); 4419 else if (wepmode != IEEE80211_WEP_OFF || verbose) 4420 LINE_CHECK("deftxkey UNDEF"); 4421 4422 if (get80211val(s, IEEE80211_IOC_NUMWEPKEYS, &num) < 0) { 4423 warn("WEP support, but no NUMWEPKEYS support!"); 4424 goto end; 4425 } 4426 4427 for (i = 0; i < num; i++) { 4428 struct ieee80211req_key ik; 4429 4430 memset(&ik, 0, sizeof(ik)); 4431 ik.ik_keyix = i; 4432 if (get80211(s, IEEE80211_IOC_WPAKEY, &ik, sizeof(ik)) < 0) { 4433 warn("WEP support, but can get keys!"); 4434 goto end; 4435 } 4436 if (ik.ik_keylen != 0) { 4437 if (verbose) 4438 LINE_BREAK(); 4439 printkey(&ik); 4440 } 4441 } 4442 end: 4443 ; 4444 } 4445 4446 if (get80211val(s, IEEE80211_IOC_POWERSAVE, &val) != -1 && 4447 val != IEEE80211_POWERSAVE_NOSUP ) { 4448 if (val != IEEE80211_POWERSAVE_OFF || verbose) { 4449 switch (val) { 4450 case IEEE80211_POWERSAVE_OFF: 4451 LINE_CHECK("powersavemode OFF"); 4452 break; 4453 case IEEE80211_POWERSAVE_CAM: 4454 LINE_CHECK("powersavemode CAM"); 4455 break; 4456 case IEEE80211_POWERSAVE_PSP: 4457 LINE_CHECK("powersavemode PSP"); 4458 break; 4459 case IEEE80211_POWERSAVE_PSP_CAM: 4460 LINE_CHECK("powersavemode PSP-CAM"); 4461 break; 4462 } 4463 if (get80211val(s, IEEE80211_IOC_POWERSAVESLEEP, &val) != -1) 4464 LINE_CHECK("powersavesleep %d", val); 4465 } 4466 } 4467 4468 if (get80211val(s, IEEE80211_IOC_TXPOWER, &val) != -1) { 4469 if (val & 1) 4470 LINE_CHECK("txpower %d.5", val/2); 4471 else 4472 LINE_CHECK("txpower %d", val/2); 4473 } 4474 if (verbose) { 4475 if (get80211val(s, IEEE80211_IOC_TXPOWMAX, &val) != -1) 4476 LINE_CHECK("txpowmax %.1f", val/2.); 4477 } 4478 4479 if (get80211val(s, IEEE80211_IOC_DOTD, &val) != -1) { 4480 if (val) 4481 LINE_CHECK("dotd"); 4482 else if (verbose) 4483 LINE_CHECK("-dotd"); 4484 } 4485 4486 if (get80211val(s, IEEE80211_IOC_RTSTHRESHOLD, &val) != -1) { 4487 if (val != IEEE80211_RTS_MAX || verbose) 4488 LINE_CHECK("rtsthreshold %d", val); 4489 } 4490 4491 if (get80211val(s, IEEE80211_IOC_FRAGTHRESHOLD, &val) != -1) { 4492 if (val != IEEE80211_FRAG_MAX || verbose) 4493 LINE_CHECK("fragthreshold %d", val); 4494 } 4495 if (opmode == IEEE80211_M_STA || verbose) { 4496 if (get80211val(s, IEEE80211_IOC_BMISSTHRESHOLD, &val) != -1) { 4497 if (val != IEEE80211_HWBMISS_MAX || verbose) 4498 LINE_CHECK("bmiss %d", val); 4499 } 4500 } 4501 4502 if (!verbose) { 4503 gettxparams(s); 4504 tp = &txparams.params[chan2mode(c)]; 4505 printrate("ucastrate", tp->ucastrate, 4506 IEEE80211_FIXED_RATE_NONE, IEEE80211_FIXED_RATE_NONE); 4507 printrate("mcastrate", tp->mcastrate, 2*1, 4508 IEEE80211_RATE_MCS|0); 4509 printrate("mgmtrate", tp->mgmtrate, 2*1, 4510 IEEE80211_RATE_MCS|0); 4511 if (tp->maxretry != 6) /* XXX */ 4512 LINE_CHECK("maxretry %d", tp->maxretry); 4513 } else { 4514 LINE_BREAK(); 4515 list_txparams(s); 4516 } 4517 4518 bgscaninterval = -1; 4519 (void) get80211val(s, IEEE80211_IOC_BGSCAN_INTERVAL, &bgscaninterval); 4520 4521 if (get80211val(s, IEEE80211_IOC_SCANVALID, &val) != -1) { 4522 if (val != bgscaninterval || verbose) 4523 LINE_CHECK("scanvalid %u", val); 4524 } 4525 4526 bgscan = 0; 4527 if (get80211val(s, IEEE80211_IOC_BGSCAN, &bgscan) != -1) { 4528 if (bgscan) 4529 LINE_CHECK("bgscan"); 4530 else if (verbose) 4531 LINE_CHECK("-bgscan"); 4532 } 4533 if (bgscan || verbose) { 4534 if (bgscaninterval != -1) 4535 LINE_CHECK("bgscanintvl %u", bgscaninterval); 4536 if (get80211val(s, IEEE80211_IOC_BGSCAN_IDLE, &val) != -1) 4537 LINE_CHECK("bgscanidle %u", val); 4538 if (!verbose) { 4539 getroam(s); 4540 rp = &roamparams.params[chan2mode(c)]; 4541 if (rp->rssi & 1) 4542 LINE_CHECK("roam:rssi %u.5", rp->rssi/2); 4543 else 4544 LINE_CHECK("roam:rssi %u", rp->rssi/2); 4545 LINE_CHECK("roam:rate %u", rp->rate/2); 4546 } else { 4547 LINE_BREAK(); 4548 list_roam(s); 4549 LINE_BREAK(); 4550 } 4551 } 4552 4553 if (IEEE80211_IS_CHAN_ANYG(c) || verbose) { 4554 if (get80211val(s, IEEE80211_IOC_PUREG, &val) != -1) { 4555 if (val) 4556 LINE_CHECK("pureg"); 4557 else if (verbose) 4558 LINE_CHECK("-pureg"); 4559 } 4560 if (get80211val(s, IEEE80211_IOC_PROTMODE, &val) != -1) { 4561 switch (val) { 4562 case IEEE80211_PROTMODE_OFF: 4563 LINE_CHECK("protmode OFF"); 4564 break; 4565 case IEEE80211_PROTMODE_CTS: 4566 LINE_CHECK("protmode CTS"); 4567 break; 4568 case IEEE80211_PROTMODE_RTSCTS: 4569 LINE_CHECK("protmode RTSCTS"); 4570 break; 4571 default: 4572 LINE_CHECK("protmode UNKNOWN (0x%x)", val); 4573 break; 4574 } 4575 } 4576 } 4577 4578 if (IEEE80211_IS_CHAN_HT(c) || verbose) { 4579 gethtconf(s); 4580 switch (htconf & 3) { 4581 case 0: 4582 case 2: 4583 LINE_CHECK("-ht"); 4584 break; 4585 case 1: 4586 LINE_CHECK("ht20"); 4587 break; 4588 case 3: 4589 if (verbose) 4590 LINE_CHECK("ht"); 4591 break; 4592 } 4593 if (get80211val(s, IEEE80211_IOC_HTCOMPAT, &val) != -1) { 4594 if (!val) 4595 LINE_CHECK("-htcompat"); 4596 else if (verbose) 4597 LINE_CHECK("htcompat"); 4598 } 4599 if (get80211val(s, IEEE80211_IOC_AMPDU, &val) != -1) { 4600 switch (val) { 4601 case 0: 4602 LINE_CHECK("-ampdu"); 4603 break; 4604 case 1: 4605 LINE_CHECK("ampdutx -ampdurx"); 4606 break; 4607 case 2: 4608 LINE_CHECK("-ampdutx ampdurx"); 4609 break; 4610 case 3: 4611 if (verbose) 4612 LINE_CHECK("ampdu"); 4613 break; 4614 } 4615 } 4616 if (get80211val(s, IEEE80211_IOC_AMPDU_LIMIT, &val) != -1) { 4617 switch (val) { 4618 case IEEE80211_HTCAP_MAXRXAMPDU_8K: 4619 LINE_CHECK("ampdulimit 8k"); 4620 break; 4621 case IEEE80211_HTCAP_MAXRXAMPDU_16K: 4622 LINE_CHECK("ampdulimit 16k"); 4623 break; 4624 case IEEE80211_HTCAP_MAXRXAMPDU_32K: 4625 LINE_CHECK("ampdulimit 32k"); 4626 break; 4627 case IEEE80211_HTCAP_MAXRXAMPDU_64K: 4628 LINE_CHECK("ampdulimit 64k"); 4629 break; 4630 } 4631 } 4632 if (get80211val(s, IEEE80211_IOC_AMPDU_DENSITY, &val) != -1) { 4633 switch (val) { 4634 case IEEE80211_HTCAP_MPDUDENSITY_NA: 4635 if (verbose) 4636 LINE_CHECK("ampdudensity NA"); 4637 break; 4638 case IEEE80211_HTCAP_MPDUDENSITY_025: 4639 LINE_CHECK("ampdudensity .25"); 4640 break; 4641 case IEEE80211_HTCAP_MPDUDENSITY_05: 4642 LINE_CHECK("ampdudensity .5"); 4643 break; 4644 case IEEE80211_HTCAP_MPDUDENSITY_1: 4645 LINE_CHECK("ampdudensity 1"); 4646 break; 4647 case IEEE80211_HTCAP_MPDUDENSITY_2: 4648 LINE_CHECK("ampdudensity 2"); 4649 break; 4650 case IEEE80211_HTCAP_MPDUDENSITY_4: 4651 LINE_CHECK("ampdudensity 4"); 4652 break; 4653 case IEEE80211_HTCAP_MPDUDENSITY_8: 4654 LINE_CHECK("ampdudensity 8"); 4655 break; 4656 case IEEE80211_HTCAP_MPDUDENSITY_16: 4657 LINE_CHECK("ampdudensity 16"); 4658 break; 4659 } 4660 } 4661 if (get80211val(s, IEEE80211_IOC_AMSDU, &val) != -1) { 4662 switch (val) { 4663 case 0: 4664 LINE_CHECK("-amsdu"); 4665 break; 4666 case 1: 4667 LINE_CHECK("amsdutx -amsdurx"); 4668 break; 4669 case 2: 4670 LINE_CHECK("-amsdutx amsdurx"); 4671 break; 4672 case 3: 4673 if (verbose) 4674 LINE_CHECK("amsdu"); 4675 break; 4676 } 4677 } 4678 /* XXX amsdu limit */ 4679 if (get80211val(s, IEEE80211_IOC_SHORTGI, &val) != -1) { 4680 if (val) 4681 LINE_CHECK("shortgi"); 4682 else if (verbose) 4683 LINE_CHECK("-shortgi"); 4684 } 4685 if (get80211val(s, IEEE80211_IOC_HTPROTMODE, &val) != -1) { 4686 if (val == IEEE80211_PROTMODE_OFF) 4687 LINE_CHECK("htprotmode OFF"); 4688 else if (val != IEEE80211_PROTMODE_RTSCTS) 4689 LINE_CHECK("htprotmode UNKNOWN (0x%x)", val); 4690 else if (verbose) 4691 LINE_CHECK("htprotmode RTSCTS"); 4692 } 4693 if (get80211val(s, IEEE80211_IOC_PUREN, &val) != -1) { 4694 if (val) 4695 LINE_CHECK("puren"); 4696 else if (verbose) 4697 LINE_CHECK("-puren"); 4698 } 4699 if (get80211val(s, IEEE80211_IOC_SMPS, &val) != -1) { 4700 if (val == IEEE80211_HTCAP_SMPS_DYNAMIC) 4701 LINE_CHECK("smpsdyn"); 4702 else if (val == IEEE80211_HTCAP_SMPS_ENA) 4703 LINE_CHECK("smps"); 4704 else if (verbose) 4705 LINE_CHECK("-smps"); 4706 } 4707 if (get80211val(s, IEEE80211_IOC_RIFS, &val) != -1) { 4708 if (val) 4709 LINE_CHECK("rifs"); 4710 else if (verbose) 4711 LINE_CHECK("-rifs"); 4712 } 4713 } 4714 4715 if (get80211val(s, IEEE80211_IOC_WME, &wme) != -1) { 4716 if (wme) 4717 LINE_CHECK("wme"); 4718 else if (verbose) 4719 LINE_CHECK("-wme"); 4720 } else 4721 wme = 0; 4722 4723 if (get80211val(s, IEEE80211_IOC_BURST, &val) != -1) { 4724 if (val) 4725 LINE_CHECK("burst"); 4726 else if (verbose) 4727 LINE_CHECK("-burst"); 4728 } 4729 4730 if (get80211val(s, IEEE80211_IOC_FF, &val) != -1) { 4731 if (val) 4732 LINE_CHECK("ff"); 4733 else if (verbose) 4734 LINE_CHECK("-ff"); 4735 } 4736 if (get80211val(s, IEEE80211_IOC_TURBOP, &val) != -1) { 4737 if (val) 4738 LINE_CHECK("dturbo"); 4739 else if (verbose) 4740 LINE_CHECK("-dturbo"); 4741 } 4742 if (get80211val(s, IEEE80211_IOC_DWDS, &val) != -1) { 4743 if (val) 4744 LINE_CHECK("dwds"); 4745 else if (verbose) 4746 LINE_CHECK("-dwds"); 4747 } 4748 4749 if (opmode == IEEE80211_M_HOSTAP) { 4750 if (get80211val(s, IEEE80211_IOC_HIDESSID, &val) != -1) { 4751 if (val) 4752 LINE_CHECK("hidessid"); 4753 else if (verbose) 4754 LINE_CHECK("-hidessid"); 4755 } 4756 if (get80211val(s, IEEE80211_IOC_APBRIDGE, &val) != -1) { 4757 if (!val) 4758 LINE_CHECK("-apbridge"); 4759 else if (verbose) 4760 LINE_CHECK("apbridge"); 4761 } 4762 if (get80211val(s, IEEE80211_IOC_DTIM_PERIOD, &val) != -1) 4763 LINE_CHECK("dtimperiod %u", val); 4764 4765 if (get80211val(s, IEEE80211_IOC_DOTH, &val) != -1) { 4766 if (!val) 4767 LINE_CHECK("-doth"); 4768 else if (verbose) 4769 LINE_CHECK("doth"); 4770 } 4771 if (get80211val(s, IEEE80211_IOC_DFS, &val) != -1) { 4772 if (!val) 4773 LINE_CHECK("-dfs"); 4774 else if (verbose) 4775 LINE_CHECK("dfs"); 4776 } 4777 if (get80211val(s, IEEE80211_IOC_INACTIVITY, &val) != -1) { 4778 if (!val) 4779 LINE_CHECK("-inact"); 4780 else if (verbose) 4781 LINE_CHECK("inact"); 4782 } 4783 } else { 4784 if (get80211val(s, IEEE80211_IOC_ROAMING, &val) != -1) { 4785 if (val != IEEE80211_ROAMING_AUTO || verbose) { 4786 switch (val) { 4787 case IEEE80211_ROAMING_DEVICE: 4788 LINE_CHECK("roaming DEVICE"); 4789 break; 4790 case IEEE80211_ROAMING_AUTO: 4791 LINE_CHECK("roaming AUTO"); 4792 break; 4793 case IEEE80211_ROAMING_MANUAL: 4794 LINE_CHECK("roaming MANUAL"); 4795 break; 4796 default: 4797 LINE_CHECK("roaming UNKNOWN (0x%x)", 4798 val); 4799 break; 4800 } 4801 } 4802 } 4803 } 4804 4805 if (opmode == IEEE80211_M_AHDEMO) { 4806 if (get80211val(s, IEEE80211_IOC_TDMA_SLOT, &val) != -1) 4807 LINE_CHECK("tdmaslot %u", val); 4808 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTCNT, &val) != -1) 4809 LINE_CHECK("tdmaslotcnt %u", val); 4810 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTLEN, &val) != -1) 4811 LINE_CHECK("tdmaslotlen %u", val); 4812 if (get80211val(s, IEEE80211_IOC_TDMA_BINTERVAL, &val) != -1) 4813 LINE_CHECK("tdmabintval %u", val); 4814 } else if (get80211val(s, IEEE80211_IOC_BEACON_INTERVAL, &val) != -1) { 4815 /* XXX default define not visible */ 4816 if (val != 100 || verbose) 4817 LINE_CHECK("bintval %u", val); 4818 } 4819 4820 if (wme && verbose) { 4821 LINE_BREAK(); 4822 list_wme(s); 4823 } 4824 4825 if (opmode == IEEE80211_M_MBSS) { 4826 if (get80211val(s, IEEE80211_IOC_MESH_TTL, &val) != -1) { 4827 LINE_CHECK("meshttl %u", val); 4828 } 4829 if (get80211val(s, IEEE80211_IOC_MESH_AP, &val) != -1) { 4830 if (val) 4831 LINE_CHECK("meshpeering"); 4832 else 4833 LINE_CHECK("-meshpeering"); 4834 } 4835 if (get80211val(s, IEEE80211_IOC_MESH_FWRD, &val) != -1) { 4836 if (val) 4837 LINE_CHECK("meshforward"); 4838 else 4839 LINE_CHECK("-meshforward"); 4840 } 4841 if (get80211val(s, IEEE80211_IOC_MESH_GATE, &val) != -1) { 4842 if (val) 4843 LINE_CHECK("meshgate"); 4844 else 4845 LINE_CHECK("-meshgate"); 4846 } 4847 if (get80211len(s, IEEE80211_IOC_MESH_PR_METRIC, data, 12, 4848 &len) != -1) { 4849 data[len] = '\0'; 4850 LINE_CHECK("meshmetric %s", data); 4851 } 4852 if (get80211len(s, IEEE80211_IOC_MESH_PR_PATH, data, 12, 4853 &len) != -1) { 4854 data[len] = '\0'; 4855 LINE_CHECK("meshpath %s", data); 4856 } 4857 if (get80211val(s, IEEE80211_IOC_HWMP_ROOTMODE, &val) != -1) { 4858 switch (val) { 4859 case IEEE80211_HWMP_ROOTMODE_DISABLED: 4860 LINE_CHECK("hwmprootmode DISABLED"); 4861 break; 4862 case IEEE80211_HWMP_ROOTMODE_NORMAL: 4863 LINE_CHECK("hwmprootmode NORMAL"); 4864 break; 4865 case IEEE80211_HWMP_ROOTMODE_PROACTIVE: 4866 LINE_CHECK("hwmprootmode PROACTIVE"); 4867 break; 4868 case IEEE80211_HWMP_ROOTMODE_RANN: 4869 LINE_CHECK("hwmprootmode RANN"); 4870 break; 4871 default: 4872 LINE_CHECK("hwmprootmode UNKNOWN(%d)", val); 4873 break; 4874 } 4875 } 4876 if (get80211val(s, IEEE80211_IOC_HWMP_MAXHOPS, &val) != -1) { 4877 LINE_CHECK("hwmpmaxhops %u", val); 4878 } 4879 } 4880 4881 LINE_BREAK(); 4882 } 4883 4884 static int 4885 get80211(int s, int type, void *data, int len) 4886 { 4887 struct ieee80211req ireq; 4888 4889 (void) memset(&ireq, 0, sizeof(ireq)); 4890 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4891 ireq.i_type = type; 4892 ireq.i_data = data; 4893 ireq.i_len = len; 4894 return ioctl(s, SIOCG80211, &ireq); 4895 } 4896 4897 static int 4898 get80211len(int s, int type, void *data, int len, int *plen) 4899 { 4900 struct ieee80211req ireq; 4901 4902 (void) memset(&ireq, 0, sizeof(ireq)); 4903 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4904 ireq.i_type = type; 4905 ireq.i_len = len; 4906 assert(ireq.i_len == len); /* NB: check for 16-bit truncation */ 4907 ireq.i_data = data; 4908 if (ioctl(s, SIOCG80211, &ireq) < 0) 4909 return -1; 4910 *plen = ireq.i_len; 4911 return 0; 4912 } 4913 4914 static int 4915 get80211val(int s, int type, int *val) 4916 { 4917 struct ieee80211req ireq; 4918 4919 (void) memset(&ireq, 0, sizeof(ireq)); 4920 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4921 ireq.i_type = type; 4922 if (ioctl(s, SIOCG80211, &ireq) < 0) 4923 return -1; 4924 *val = ireq.i_val; 4925 return 0; 4926 } 4927 4928 static void 4929 set80211(int s, int type, int val, int len, void *data) 4930 { 4931 struct ieee80211req ireq; 4932 4933 (void) memset(&ireq, 0, sizeof(ireq)); 4934 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4935 ireq.i_type = type; 4936 ireq.i_val = val; 4937 ireq.i_len = len; 4938 assert(ireq.i_len == len); /* NB: check for 16-bit truncation */ 4939 ireq.i_data = data; 4940 if (ioctl(s, SIOCS80211, &ireq) < 0) 4941 err(1, "SIOCS80211"); 4942 } 4943 4944 static const char * 4945 get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp) 4946 { 4947 int len; 4948 int hexstr; 4949 u_int8_t *p; 4950 4951 len = *lenp; 4952 p = buf; 4953 hexstr = (val[0] == '0' && tolower((u_char)val[1]) == 'x'); 4954 if (hexstr) 4955 val += 2; 4956 for (;;) { 4957 if (*val == '\0') 4958 break; 4959 if (sep != NULL && strchr(sep, *val) != NULL) { 4960 val++; 4961 break; 4962 } 4963 if (hexstr) { 4964 if (!isxdigit((u_char)val[0])) { 4965 warnx("bad hexadecimal digits"); 4966 return NULL; 4967 } 4968 if (!isxdigit((u_char)val[1])) { 4969 warnx("odd count hexadecimal digits"); 4970 return NULL; 4971 } 4972 } 4973 if (p >= buf + len) { 4974 if (hexstr) 4975 warnx("hexadecimal digits too long"); 4976 else 4977 warnx("string too long"); 4978 return NULL; 4979 } 4980 if (hexstr) { 4981 #define tohex(x) (isdigit(x) ? (x) - '0' : tolower(x) - 'a' + 10) 4982 *p++ = (tohex((u_char)val[0]) << 4) | 4983 tohex((u_char)val[1]); 4984 #undef tohex 4985 val += 2; 4986 } else 4987 *p++ = *val++; 4988 } 4989 len = p - buf; 4990 /* The string "-" is treated as the empty string. */ 4991 if (!hexstr && len == 1 && buf[0] == '-') { 4992 len = 0; 4993 memset(buf, 0, *lenp); 4994 } else if (len < *lenp) 4995 memset(p, 0, *lenp - len); 4996 *lenp = len; 4997 return val; 4998 } 4999 5000 static void 5001 print_string(const u_int8_t *buf, int len) 5002 { 5003 int i; 5004 int hasspc; 5005 5006 i = 0; 5007 hasspc = 0; 5008 for (; i < len; i++) { 5009 if (!isprint(buf[i]) && buf[i] != '\0') 5010 break; 5011 if (isspace(buf[i])) 5012 hasspc++; 5013 } 5014 if (i == len) { 5015 if (hasspc || len == 0 || buf[0] == '\0') 5016 printf("\"%.*s\"", len, buf); 5017 else 5018 printf("%.*s", len, buf); 5019 } else { 5020 printf("0x"); 5021 for (i = 0; i < len; i++) 5022 printf("%02x", buf[i]); 5023 } 5024 } 5025 5026 /* 5027 * Virtual AP cloning support. 5028 */ 5029 static struct ieee80211_clone_params params = { 5030 .icp_opmode = IEEE80211_M_STA, /* default to station mode */ 5031 }; 5032 5033 static void 5034 wlan_create(int s, struct ifreq *ifr) 5035 { 5036 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 5037 5038 if (params.icp_parent[0] == '\0') 5039 errx(1, "must specify a parent device (wlandev) when creating " 5040 "a wlan device"); 5041 if (params.icp_opmode == IEEE80211_M_WDS && 5042 memcmp(params.icp_bssid, zerobssid, sizeof(zerobssid)) == 0) 5043 errx(1, "no bssid specified for WDS (use wlanbssid)"); 5044 ifr->ifr_data = (caddr_t) ¶ms; 5045 if (ioctl(s, SIOCIFCREATE2, ifr) < 0) 5046 err(1, "SIOCIFCREATE2"); 5047 } 5048 5049 static 5050 DECL_CMD_FUNC(set80211clone_wlandev, arg, d) 5051 { 5052 strlcpy(params.icp_parent, arg, IFNAMSIZ); 5053 } 5054 5055 static 5056 DECL_CMD_FUNC(set80211clone_wlanbssid, arg, d) 5057 { 5058 const struct ether_addr *ea; 5059 5060 ea = ether_aton(arg); 5061 if (ea == NULL) 5062 errx(1, "%s: cannot parse bssid", arg); 5063 memcpy(params.icp_bssid, ea->octet, IEEE80211_ADDR_LEN); 5064 } 5065 5066 static 5067 DECL_CMD_FUNC(set80211clone_wlanaddr, arg, d) 5068 { 5069 const struct ether_addr *ea; 5070 5071 ea = ether_aton(arg); 5072 if (ea == NULL) 5073 errx(1, "%s: cannot parse address", arg); 5074 memcpy(params.icp_macaddr, ea->octet, IEEE80211_ADDR_LEN); 5075 params.icp_flags |= IEEE80211_CLONE_MACADDR; 5076 } 5077 5078 static 5079 DECL_CMD_FUNC(set80211clone_wlanmode, arg, d) 5080 { 5081 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 5082 if (iseq(arg, "sta")) 5083 params.icp_opmode = IEEE80211_M_STA; 5084 else if (iseq(arg, "ahdemo") || iseq(arg, "adhoc-demo")) 5085 params.icp_opmode = IEEE80211_M_AHDEMO; 5086 else if (iseq(arg, "ibss") || iseq(arg, "adhoc")) 5087 params.icp_opmode = IEEE80211_M_IBSS; 5088 else if (iseq(arg, "ap") || iseq(arg, "host")) 5089 params.icp_opmode = IEEE80211_M_HOSTAP; 5090 else if (iseq(arg, "wds")) 5091 params.icp_opmode = IEEE80211_M_WDS; 5092 else if (iseq(arg, "monitor")) 5093 params.icp_opmode = IEEE80211_M_MONITOR; 5094 else if (iseq(arg, "tdma")) { 5095 params.icp_opmode = IEEE80211_M_AHDEMO; 5096 params.icp_flags |= IEEE80211_CLONE_TDMA; 5097 } else if (iseq(arg, "mesh") || iseq(arg, "mp")) /* mesh point */ 5098 params.icp_opmode = IEEE80211_M_MBSS; 5099 else 5100 errx(1, "Don't know to create %s for %s", arg, name); 5101 #undef iseq 5102 } 5103 5104 static void 5105 set80211clone_beacons(const char *val, int d, int s, const struct afswtch *rafp) 5106 { 5107 /* NB: inverted sense */ 5108 if (d) 5109 params.icp_flags &= ~IEEE80211_CLONE_NOBEACONS; 5110 else 5111 params.icp_flags |= IEEE80211_CLONE_NOBEACONS; 5112 } 5113 5114 static void 5115 set80211clone_bssid(const char *val, int d, int s, const struct afswtch *rafp) 5116 { 5117 if (d) 5118 params.icp_flags |= IEEE80211_CLONE_BSSID; 5119 else 5120 params.icp_flags &= ~IEEE80211_CLONE_BSSID; 5121 } 5122 5123 static void 5124 set80211clone_wdslegacy(const char *val, int d, int s, const struct afswtch *rafp) 5125 { 5126 if (d) 5127 params.icp_flags |= IEEE80211_CLONE_WDSLEGACY; 5128 else 5129 params.icp_flags &= ~IEEE80211_CLONE_WDSLEGACY; 5130 } 5131 5132 static struct cmd ieee80211_cmds[] = { 5133 DEF_CMD_ARG("ssid", set80211ssid), 5134 DEF_CMD_ARG("nwid", set80211ssid), 5135 DEF_CMD_ARG("meshid", set80211meshid), 5136 DEF_CMD_ARG("stationname", set80211stationname), 5137 DEF_CMD_ARG("station", set80211stationname), /* BSD/OS */ 5138 DEF_CMD_ARG("channel", set80211channel), 5139 DEF_CMD_ARG("authmode", set80211authmode), 5140 DEF_CMD_ARG("powersavemode", set80211powersavemode), 5141 DEF_CMD("powersave", 1, set80211powersave), 5142 DEF_CMD("-powersave", 0, set80211powersave), 5143 DEF_CMD_ARG("powersavesleep", set80211powersavesleep), 5144 DEF_CMD_ARG("wepmode", set80211wepmode), 5145 DEF_CMD("wep", 1, set80211wep), 5146 DEF_CMD("-wep", 0, set80211wep), 5147 DEF_CMD_ARG("deftxkey", set80211weptxkey), 5148 DEF_CMD_ARG("weptxkey", set80211weptxkey), 5149 DEF_CMD_ARG("wepkey", set80211wepkey), 5150 DEF_CMD_ARG("nwkey", set80211nwkey), /* NetBSD */ 5151 DEF_CMD("-nwkey", 0, set80211wep), /* NetBSD */ 5152 DEF_CMD_ARG("rtsthreshold", set80211rtsthreshold), 5153 DEF_CMD_ARG("protmode", set80211protmode), 5154 DEF_CMD_ARG("txpower", set80211txpower), 5155 DEF_CMD_ARG("roaming", set80211roaming), 5156 DEF_CMD("wme", 1, set80211wme), 5157 DEF_CMD("-wme", 0, set80211wme), 5158 DEF_CMD("wmm", 1, set80211wme), 5159 DEF_CMD("-wmm", 0, set80211wme), 5160 DEF_CMD("hidessid", 1, set80211hidessid), 5161 DEF_CMD("-hidessid", 0, set80211hidessid), 5162 DEF_CMD("apbridge", 1, set80211apbridge), 5163 DEF_CMD("-apbridge", 0, set80211apbridge), 5164 DEF_CMD_ARG("chanlist", set80211chanlist), 5165 DEF_CMD_ARG("bssid", set80211bssid), 5166 DEF_CMD_ARG("ap", set80211bssid), 5167 DEF_CMD("scan", 0, set80211scan), 5168 DEF_CMD_ARG("list", set80211list), 5169 DEF_CMD_ARG2("cwmin", set80211cwmin), 5170 DEF_CMD_ARG2("cwmax", set80211cwmax), 5171 DEF_CMD_ARG2("aifs", set80211aifs), 5172 DEF_CMD_ARG2("txoplimit", set80211txoplimit), 5173 DEF_CMD_ARG("acm", set80211acm), 5174 DEF_CMD_ARG("-acm", set80211noacm), 5175 DEF_CMD_ARG("ack", set80211ackpolicy), 5176 DEF_CMD_ARG("-ack", set80211noackpolicy), 5177 DEF_CMD_ARG2("bss:cwmin", set80211bsscwmin), 5178 DEF_CMD_ARG2("bss:cwmax", set80211bsscwmax), 5179 DEF_CMD_ARG2("bss:aifs", set80211bssaifs), 5180 DEF_CMD_ARG2("bss:txoplimit", set80211bsstxoplimit), 5181 DEF_CMD_ARG("dtimperiod", set80211dtimperiod), 5182 DEF_CMD_ARG("bintval", set80211bintval), 5183 DEF_CMD("mac:open", IEEE80211_MACCMD_POLICY_OPEN, set80211maccmd), 5184 DEF_CMD("mac:allow", IEEE80211_MACCMD_POLICY_ALLOW, set80211maccmd), 5185 DEF_CMD("mac:deny", IEEE80211_MACCMD_POLICY_DENY, set80211maccmd), 5186 DEF_CMD("mac:radius", IEEE80211_MACCMD_POLICY_RADIUS, set80211maccmd), 5187 DEF_CMD("mac:flush", IEEE80211_MACCMD_FLUSH, set80211maccmd), 5188 DEF_CMD("mac:detach", IEEE80211_MACCMD_DETACH, set80211maccmd), 5189 DEF_CMD_ARG("mac:add", set80211addmac), 5190 DEF_CMD_ARG("mac:del", set80211delmac), 5191 DEF_CMD_ARG("mac:kick", set80211kickmac), 5192 DEF_CMD("pureg", 1, set80211pureg), 5193 DEF_CMD("-pureg", 0, set80211pureg), 5194 DEF_CMD("ff", 1, set80211fastframes), 5195 DEF_CMD("-ff", 0, set80211fastframes), 5196 DEF_CMD("dturbo", 1, set80211dturbo), 5197 DEF_CMD("-dturbo", 0, set80211dturbo), 5198 DEF_CMD("bgscan", 1, set80211bgscan), 5199 DEF_CMD("-bgscan", 0, set80211bgscan), 5200 DEF_CMD_ARG("bgscanidle", set80211bgscanidle), 5201 DEF_CMD_ARG("bgscanintvl", set80211bgscanintvl), 5202 DEF_CMD_ARG("scanvalid", set80211scanvalid), 5203 DEF_CMD("quiet", 1, set80211quiet), 5204 DEF_CMD("-quiet", 0, set80211quiet), 5205 DEF_CMD_ARG("quiet_count", set80211quietcount), 5206 DEF_CMD_ARG("quiet_period", set80211quietperiod), 5207 DEF_CMD_ARG("quiet_dur", set80211quietduration), 5208 DEF_CMD_ARG("quiet_offset", set80211quietoffset), 5209 DEF_CMD_ARG("roam:rssi", set80211roamrssi), 5210 DEF_CMD_ARG("roam:rate", set80211roamrate), 5211 DEF_CMD_ARG("mcastrate", set80211mcastrate), 5212 DEF_CMD_ARG("ucastrate", set80211ucastrate), 5213 DEF_CMD_ARG("mgtrate", set80211mgtrate), 5214 DEF_CMD_ARG("mgmtrate", set80211mgtrate), 5215 DEF_CMD_ARG("maxretry", set80211maxretry), 5216 DEF_CMD_ARG("fragthreshold", set80211fragthreshold), 5217 DEF_CMD("burst", 1, set80211burst), 5218 DEF_CMD("-burst", 0, set80211burst), 5219 DEF_CMD_ARG("bmiss", set80211bmissthreshold), 5220 DEF_CMD_ARG("bmissthreshold", set80211bmissthreshold), 5221 DEF_CMD("shortgi", 1, set80211shortgi), 5222 DEF_CMD("-shortgi", 0, set80211shortgi), 5223 DEF_CMD("ampdurx", 2, set80211ampdu), 5224 DEF_CMD("-ampdurx", -2, set80211ampdu), 5225 DEF_CMD("ampdutx", 1, set80211ampdu), 5226 DEF_CMD("-ampdutx", -1, set80211ampdu), 5227 DEF_CMD("ampdu", 3, set80211ampdu), /* NB: tx+rx */ 5228 DEF_CMD("-ampdu", -3, set80211ampdu), 5229 DEF_CMD_ARG("ampdulimit", set80211ampdulimit), 5230 DEF_CMD_ARG("ampdudensity", set80211ampdudensity), 5231 DEF_CMD("amsdurx", 2, set80211amsdu), 5232 DEF_CMD("-amsdurx", -2, set80211amsdu), 5233 DEF_CMD("amsdutx", 1, set80211amsdu), 5234 DEF_CMD("-amsdutx", -1, set80211amsdu), 5235 DEF_CMD("amsdu", 3, set80211amsdu), /* NB: tx+rx */ 5236 DEF_CMD("-amsdu", -3, set80211amsdu), 5237 DEF_CMD_ARG("amsdulimit", set80211amsdulimit), 5238 DEF_CMD("puren", 1, set80211puren), 5239 DEF_CMD("-puren", 0, set80211puren), 5240 DEF_CMD("doth", 1, set80211doth), 5241 DEF_CMD("-doth", 0, set80211doth), 5242 DEF_CMD("dfs", 1, set80211dfs), 5243 DEF_CMD("-dfs", 0, set80211dfs), 5244 DEF_CMD("htcompat", 1, set80211htcompat), 5245 DEF_CMD("-htcompat", 0, set80211htcompat), 5246 DEF_CMD("dwds", 1, set80211dwds), 5247 DEF_CMD("-dwds", 0, set80211dwds), 5248 DEF_CMD("inact", 1, set80211inact), 5249 DEF_CMD("-inact", 0, set80211inact), 5250 DEF_CMD("tsn", 1, set80211tsn), 5251 DEF_CMD("-tsn", 0, set80211tsn), 5252 DEF_CMD_ARG("regdomain", set80211regdomain), 5253 DEF_CMD_ARG("country", set80211country), 5254 DEF_CMD("indoor", 'I', set80211location), 5255 DEF_CMD("-indoor", 'O', set80211location), 5256 DEF_CMD("outdoor", 'O', set80211location), 5257 DEF_CMD("-outdoor", 'I', set80211location), 5258 DEF_CMD("anywhere", ' ', set80211location), 5259 DEF_CMD("ecm", 1, set80211ecm), 5260 DEF_CMD("-ecm", 0, set80211ecm), 5261 DEF_CMD("dotd", 1, set80211dotd), 5262 DEF_CMD("-dotd", 0, set80211dotd), 5263 DEF_CMD_ARG("htprotmode", set80211htprotmode), 5264 DEF_CMD("ht20", 1, set80211htconf), 5265 DEF_CMD("-ht20", 0, set80211htconf), 5266 DEF_CMD("ht40", 3, set80211htconf), /* NB: 20+40 */ 5267 DEF_CMD("-ht40", 0, set80211htconf), 5268 DEF_CMD("ht", 3, set80211htconf), /* NB: 20+40 */ 5269 DEF_CMD("-ht", 0, set80211htconf), 5270 DEF_CMD("rifs", 1, set80211rifs), 5271 DEF_CMD("-rifs", 0, set80211rifs), 5272 DEF_CMD("smps", IEEE80211_HTCAP_SMPS_ENA, set80211smps), 5273 DEF_CMD("smpsdyn", IEEE80211_HTCAP_SMPS_DYNAMIC, set80211smps), 5274 DEF_CMD("-smps", IEEE80211_HTCAP_SMPS_OFF, set80211smps), 5275 /* XXX for testing */ 5276 DEF_CMD_ARG("chanswitch", set80211chanswitch), 5277 5278 DEF_CMD_ARG("tdmaslot", set80211tdmaslot), 5279 DEF_CMD_ARG("tdmaslotcnt", set80211tdmaslotcnt), 5280 DEF_CMD_ARG("tdmaslotlen", set80211tdmaslotlen), 5281 DEF_CMD_ARG("tdmabintval", set80211tdmabintval), 5282 5283 DEF_CMD_ARG("meshttl", set80211meshttl), 5284 DEF_CMD("meshforward", 1, set80211meshforward), 5285 DEF_CMD("-meshforward", 0, set80211meshforward), 5286 DEF_CMD("meshgate", 1, set80211meshgate), 5287 DEF_CMD("-meshgate", 0, set80211meshgate), 5288 DEF_CMD("meshpeering", 1, set80211meshpeering), 5289 DEF_CMD("-meshpeering", 0, set80211meshpeering), 5290 DEF_CMD_ARG("meshmetric", set80211meshmetric), 5291 DEF_CMD_ARG("meshpath", set80211meshpath), 5292 DEF_CMD("meshrt:flush", IEEE80211_MESH_RTCMD_FLUSH, set80211meshrtcmd), 5293 DEF_CMD_ARG("meshrt:add", set80211addmeshrt), 5294 DEF_CMD_ARG("meshrt:del", set80211delmeshrt), 5295 DEF_CMD_ARG("hwmprootmode", set80211hwmprootmode), 5296 DEF_CMD_ARG("hwmpmaxhops", set80211hwmpmaxhops), 5297 5298 /* vap cloning support */ 5299 DEF_CLONE_CMD_ARG("wlanaddr", set80211clone_wlanaddr), 5300 DEF_CLONE_CMD_ARG("wlanbssid", set80211clone_wlanbssid), 5301 DEF_CLONE_CMD_ARG("wlandev", set80211clone_wlandev), 5302 DEF_CLONE_CMD_ARG("wlanmode", set80211clone_wlanmode), 5303 DEF_CLONE_CMD("beacons", 1, set80211clone_beacons), 5304 DEF_CLONE_CMD("-beacons", 0, set80211clone_beacons), 5305 DEF_CLONE_CMD("bssid", 1, set80211clone_bssid), 5306 DEF_CLONE_CMD("-bssid", 0, set80211clone_bssid), 5307 DEF_CLONE_CMD("wdslegacy", 1, set80211clone_wdslegacy), 5308 DEF_CLONE_CMD("-wdslegacy", 0, set80211clone_wdslegacy), 5309 }; 5310 static struct afswtch af_ieee80211 = { 5311 .af_name = "af_ieee80211", 5312 .af_af = AF_UNSPEC, 5313 .af_other_status = ieee80211_status, 5314 }; 5315 5316 static __constructor void 5317 ieee80211_ctor(void) 5318 { 5319 int i; 5320 5321 for (i = 0; i < nitems(ieee80211_cmds); i++) 5322 cmd_register(&ieee80211_cmds[i]); 5323 af_register(&af_ieee80211); 5324 clone_setdefcallback("wlan", wlan_create); 5325 } 5326