1 /* 2 * Copyright 2001 The Aerospace Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of The Aerospace Corporation may not be used to endorse or 13 * promote products derived from this software. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD$ 28 */ 29 30 /*- 31 * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc. 32 * All rights reserved. 33 * 34 * This code is derived from software contributed to The NetBSD Foundation 35 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 36 * NASA Ames Research Center. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 48 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 49 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 50 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 51 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 57 * POSSIBILITY OF SUCH DAMAGE. 58 */ 59 60 #include <sys/param.h> 61 #include <sys/ioctl.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/time.h> 65 66 #include <net/ethernet.h> 67 #include <net/if.h> 68 #include <net/if_dl.h> 69 #include <net/if_types.h> 70 #include <net/if_media.h> 71 #include <net/route.h> 72 73 #include <net80211/ieee80211_ioctl.h> 74 #include <net80211/ieee80211_freebsd.h> 75 #include <net80211/ieee80211_superg.h> 76 #include <net80211/ieee80211_tdma.h> 77 #include <net80211/ieee80211_mesh.h> 78 79 #include <assert.h> 80 #include <ctype.h> 81 #include <err.h> 82 #include <errno.h> 83 #include <fcntl.h> 84 #include <inttypes.h> 85 #include <stdio.h> 86 #include <stdlib.h> 87 #include <string.h> 88 #include <unistd.h> 89 #include <stdarg.h> 90 #include <stddef.h> /* NB: for offsetof */ 91 92 #include "ifconfig.h" 93 94 #include <lib80211/lib80211_regdomain.h> 95 #include <lib80211/lib80211_ioctl.h> 96 97 #ifndef IEEE80211_FIXED_RATE_NONE 98 #define IEEE80211_FIXED_RATE_NONE 0xff 99 #endif 100 101 /* XXX need these publicly defined or similar */ 102 #ifndef IEEE80211_NODE_AUTH 103 #define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */ 104 #define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */ 105 #define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */ 106 #define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */ 107 #define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */ 108 #define IEEE80211_NODE_HT 0x000040 /* HT enabled */ 109 #define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */ 110 #define IEEE80211_NODE_WPS 0x000100 /* WPS association */ 111 #define IEEE80211_NODE_TSN 0x000200 /* TSN association */ 112 #define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */ 113 #define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */ 114 #define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */ 115 #define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */ 116 #define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */ 117 #define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */ 118 #define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */ 119 #define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */ 120 #define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */ 121 #define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */ 122 #define IEEE80211_NODE_VHT 0x100000 /* VHT enabled */ 123 #endif 124 125 #define MAXCHAN 1536 /* max 1.5K channels */ 126 127 #define MAXCOL 78 128 static int col; 129 static char spacer; 130 131 static void LINE_INIT(char c); 132 static void LINE_BREAK(void); 133 static void LINE_CHECK(const char *fmt, ...); 134 135 static const char *modename[IEEE80211_MODE_MAX] = { 136 [IEEE80211_MODE_AUTO] = "auto", 137 [IEEE80211_MODE_11A] = "11a", 138 [IEEE80211_MODE_11B] = "11b", 139 [IEEE80211_MODE_11G] = "11g", 140 [IEEE80211_MODE_FH] = "fh", 141 [IEEE80211_MODE_TURBO_A] = "turboA", 142 [IEEE80211_MODE_TURBO_G] = "turboG", 143 [IEEE80211_MODE_STURBO_A] = "sturbo", 144 [IEEE80211_MODE_11NA] = "11na", 145 [IEEE80211_MODE_11NG] = "11ng", 146 [IEEE80211_MODE_HALF] = "half", 147 [IEEE80211_MODE_QUARTER] = "quarter", 148 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 149 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 150 }; 151 152 static void set80211(int s, int type, int val, int len, void *data); 153 static int get80211(int s, int type, void *data, int len); 154 static int get80211len(int s, int type, void *data, int len, int *plen); 155 static int get80211val(int s, int type, int *val); 156 static const char *get_string(const char *val, const char *sep, 157 u_int8_t *buf, int *lenp); 158 static void print_string(const u_int8_t *buf, int len); 159 static void print_regdomain(const struct ieee80211_regdomain *, int); 160 static void print_channels(int, const struct ieee80211req_chaninfo *, 161 int allchans, int verbose); 162 static void regdomain_makechannels(struct ieee80211_regdomain_req *, 163 const struct ieee80211_devcaps_req *); 164 static const char *mesh_linkstate_string(uint8_t state); 165 166 static struct ieee80211req_chaninfo *chaninfo; 167 static struct ieee80211_regdomain regdomain; 168 static int gotregdomain = 0; 169 static struct ieee80211_roamparams_req roamparams; 170 static int gotroam = 0; 171 static struct ieee80211_txparams_req txparams; 172 static int gottxparams = 0; 173 static struct ieee80211_channel curchan; 174 static int gotcurchan = 0; 175 static struct ifmediareq *ifmr; 176 static int htconf = 0; 177 static int gothtconf = 0; 178 179 static void 180 gethtconf(int s) 181 { 182 if (gothtconf) 183 return; 184 if (get80211val(s, IEEE80211_IOC_HTCONF, &htconf) < 0) 185 warn("unable to get HT configuration information"); 186 gothtconf = 1; 187 } 188 189 /* VHT */ 190 static int vhtconf = 0; 191 static int gotvhtconf = 0; 192 193 static void 194 getvhtconf(int s) 195 { 196 if (gotvhtconf) 197 return; 198 if (get80211val(s, IEEE80211_IOC_VHTCONF, &vhtconf) < 0) 199 warn("unable to get VHT configuration information"); 200 gotvhtconf = 1; 201 } 202 203 /* 204 * Collect channel info from the kernel. We use this (mostly) 205 * to handle mapping between frequency and IEEE channel number. 206 */ 207 static void 208 getchaninfo(int s) 209 { 210 if (chaninfo != NULL) 211 return; 212 chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN)); 213 if (chaninfo == NULL) 214 errx(1, "no space for channel list"); 215 if (get80211(s, IEEE80211_IOC_CHANINFO, chaninfo, 216 IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0) 217 err(1, "unable to get channel information"); 218 ifmr = ifmedia_getstate(s); 219 gethtconf(s); 220 getvhtconf(s); 221 } 222 223 static struct regdata * 224 getregdata(void) 225 { 226 static struct regdata *rdp = NULL; 227 if (rdp == NULL) { 228 rdp = lib80211_alloc_regdata(); 229 if (rdp == NULL) 230 errx(-1, "missing or corrupted regdomain database"); 231 } 232 return rdp; 233 } 234 235 /* 236 * Given the channel at index i with attributes from, 237 * check if there is a channel with attributes to in 238 * the channel table. With suitable attributes this 239 * allows the caller to look for promotion; e.g. from 240 * 11b > 11g. 241 */ 242 static int 243 canpromote(int i, int from, int to) 244 { 245 const struct ieee80211_channel *fc = &chaninfo->ic_chans[i]; 246 u_int j; 247 248 if ((fc->ic_flags & from) != from) 249 return i; 250 /* NB: quick check exploiting ordering of chans w/ same frequency */ 251 if (i+1 < chaninfo->ic_nchans && 252 chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq && 253 (chaninfo->ic_chans[i+1].ic_flags & to) == to) 254 return i+1; 255 /* brute force search in case channel list is not ordered */ 256 for (j = 0; j < chaninfo->ic_nchans; j++) { 257 const struct ieee80211_channel *tc = &chaninfo->ic_chans[j]; 258 if (j != i && 259 tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to) 260 return j; 261 } 262 return i; 263 } 264 265 /* 266 * Handle channel promotion. When a channel is specified with 267 * only a frequency we want to promote it to the ``best'' channel 268 * available. The channel list has separate entries for 11b, 11g, 269 * 11a, and 11n[ga] channels so specifying a frequency w/o any 270 * attributes requires we upgrade, e.g. from 11b -> 11g. This 271 * gets complicated when the channel is specified on the same 272 * command line with a media request that constrains the available 273 * channe list (e.g. mode 11a); we want to honor that to avoid 274 * confusing behaviour. 275 */ 276 /* 277 * XXX VHT 278 */ 279 static int 280 promote(int i) 281 { 282 /* 283 * Query the current mode of the interface in case it's 284 * constrained (e.g. to 11a). We must do this carefully 285 * as there may be a pending ifmedia request in which case 286 * asking the kernel will give us the wrong answer. This 287 * is an unfortunate side-effect of the way ifconfig is 288 * structure for modularity (yech). 289 * 290 * NB: ifmr is actually setup in getchaninfo (above); we 291 * assume it's called coincident with to this call so 292 * we have a ``current setting''; otherwise we must pass 293 * the socket descriptor down to here so we can make 294 * the ifmedia_getstate call ourselves. 295 */ 296 int chanmode = ifmr != NULL ? IFM_MODE(ifmr->ifm_current) : IFM_AUTO; 297 298 /* when ambiguous promote to ``best'' */ 299 /* NB: we abitrarily pick HT40+ over HT40- */ 300 if (chanmode != IFM_IEEE80211_11B) 301 i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G); 302 if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) { 303 i = canpromote(i, IEEE80211_CHAN_G, 304 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20); 305 if (htconf & 2) { 306 i = canpromote(i, IEEE80211_CHAN_G, 307 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D); 308 i = canpromote(i, IEEE80211_CHAN_G, 309 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U); 310 } 311 } 312 if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) { 313 i = canpromote(i, IEEE80211_CHAN_A, 314 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20); 315 if (htconf & 2) { 316 i = canpromote(i, IEEE80211_CHAN_A, 317 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D); 318 i = canpromote(i, IEEE80211_CHAN_A, 319 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U); 320 } 321 } 322 return i; 323 } 324 325 static void 326 mapfreq(struct ieee80211_channel *chan, int freq, int flags) 327 { 328 u_int i; 329 330 for (i = 0; i < chaninfo->ic_nchans; i++) { 331 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 332 333 if (c->ic_freq == freq && (c->ic_flags & flags) == flags) { 334 if (flags == 0) { 335 /* when ambiguous promote to ``best'' */ 336 c = &chaninfo->ic_chans[promote(i)]; 337 } 338 *chan = *c; 339 return; 340 } 341 } 342 errx(1, "unknown/undefined frequency %u/0x%x", freq, flags); 343 } 344 345 static void 346 mapchan(struct ieee80211_channel *chan, int ieee, int flags) 347 { 348 u_int i; 349 350 for (i = 0; i < chaninfo->ic_nchans; i++) { 351 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 352 353 if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) { 354 if (flags == 0) { 355 /* when ambiguous promote to ``best'' */ 356 c = &chaninfo->ic_chans[promote(i)]; 357 } 358 *chan = *c; 359 return; 360 } 361 } 362 errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags); 363 } 364 365 static const struct ieee80211_channel * 366 getcurchan(int s) 367 { 368 if (gotcurchan) 369 return &curchan; 370 if (get80211(s, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) { 371 int val; 372 /* fall back to legacy ioctl */ 373 if (get80211val(s, IEEE80211_IOC_CHANNEL, &val) < 0) 374 err(-1, "cannot figure out current channel"); 375 getchaninfo(s); 376 mapchan(&curchan, val, 0); 377 } 378 gotcurchan = 1; 379 return &curchan; 380 } 381 382 static enum ieee80211_phymode 383 chan2mode(const struct ieee80211_channel *c) 384 { 385 if (IEEE80211_IS_CHAN_VHTA(c)) 386 return IEEE80211_MODE_VHT_5GHZ; 387 if (IEEE80211_IS_CHAN_VHTG(c)) 388 return IEEE80211_MODE_VHT_2GHZ; 389 if (IEEE80211_IS_CHAN_HTA(c)) 390 return IEEE80211_MODE_11NA; 391 if (IEEE80211_IS_CHAN_HTG(c)) 392 return IEEE80211_MODE_11NG; 393 if (IEEE80211_IS_CHAN_108A(c)) 394 return IEEE80211_MODE_TURBO_A; 395 if (IEEE80211_IS_CHAN_108G(c)) 396 return IEEE80211_MODE_TURBO_G; 397 if (IEEE80211_IS_CHAN_ST(c)) 398 return IEEE80211_MODE_STURBO_A; 399 if (IEEE80211_IS_CHAN_FHSS(c)) 400 return IEEE80211_MODE_FH; 401 if (IEEE80211_IS_CHAN_HALF(c)) 402 return IEEE80211_MODE_HALF; 403 if (IEEE80211_IS_CHAN_QUARTER(c)) 404 return IEEE80211_MODE_QUARTER; 405 if (IEEE80211_IS_CHAN_A(c)) 406 return IEEE80211_MODE_11A; 407 if (IEEE80211_IS_CHAN_ANYG(c)) 408 return IEEE80211_MODE_11G; 409 if (IEEE80211_IS_CHAN_B(c)) 410 return IEEE80211_MODE_11B; 411 return IEEE80211_MODE_AUTO; 412 } 413 414 static void 415 getroam(int s) 416 { 417 if (gotroam) 418 return; 419 if (get80211(s, IEEE80211_IOC_ROAM, 420 &roamparams, sizeof(roamparams)) < 0) 421 err(1, "unable to get roaming parameters"); 422 gotroam = 1; 423 } 424 425 static void 426 setroam_cb(int s, void *arg) 427 { 428 struct ieee80211_roamparams_req *roam = arg; 429 set80211(s, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam); 430 } 431 432 static void 433 gettxparams(int s) 434 { 435 if (gottxparams) 436 return; 437 if (get80211(s, IEEE80211_IOC_TXPARAMS, 438 &txparams, sizeof(txparams)) < 0) 439 err(1, "unable to get transmit parameters"); 440 gottxparams = 1; 441 } 442 443 static void 444 settxparams_cb(int s, void *arg) 445 { 446 struct ieee80211_txparams_req *txp = arg; 447 set80211(s, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp); 448 } 449 450 static void 451 getregdomain(int s) 452 { 453 if (gotregdomain) 454 return; 455 if (get80211(s, IEEE80211_IOC_REGDOMAIN, 456 ®domain, sizeof(regdomain)) < 0) 457 err(1, "unable to get regulatory domain info"); 458 gotregdomain = 1; 459 } 460 461 static void 462 getdevcaps(int s, struct ieee80211_devcaps_req *dc) 463 { 464 if (get80211(s, IEEE80211_IOC_DEVCAPS, dc, 465 IEEE80211_DEVCAPS_SPACE(dc)) < 0) 466 err(1, "unable to get device capabilities"); 467 } 468 469 static void 470 setregdomain_cb(int s, void *arg) 471 { 472 struct ieee80211_regdomain_req *req; 473 struct ieee80211_regdomain *rd = arg; 474 struct ieee80211_devcaps_req *dc; 475 struct regdata *rdp = getregdata(); 476 477 if (rd->country != NO_COUNTRY) { 478 const struct country *cc; 479 /* 480 * Check current country seting to make sure it's 481 * compatible with the new regdomain. If not, then 482 * override it with any default country for this 483 * SKU. If we cannot arrange a match, then abort. 484 */ 485 cc = lib80211_country_findbycc(rdp, rd->country); 486 if (cc == NULL) 487 errx(1, "unknown ISO country code %d", rd->country); 488 if (cc->rd->sku != rd->regdomain) { 489 const struct regdomain *rp; 490 /* 491 * Check if country is incompatible with regdomain. 492 * To enable multiple regdomains for a country code 493 * we permit a mismatch between the regdomain and 494 * the country's associated regdomain when the 495 * regdomain is setup w/o a default country. For 496 * example, US is bound to the FCC regdomain but 497 * we allow US to be combined with FCC3 because FCC3 498 * has not default country. This allows bogus 499 * combinations like FCC3+DK which are resolved when 500 * constructing the channel list by deferring to the 501 * regdomain to construct the channel list. 502 */ 503 rp = lib80211_regdomain_findbysku(rdp, rd->regdomain); 504 if (rp == NULL) 505 errx(1, "country %s (%s) is not usable with " 506 "regdomain %d", cc->isoname, cc->name, 507 rd->regdomain); 508 else if (rp->cc != NULL && rp->cc != cc) 509 errx(1, "country %s (%s) is not usable with " 510 "regdomain %s", cc->isoname, cc->name, 511 rp->name); 512 } 513 } 514 /* 515 * Fetch the device capabilities and calculate the 516 * full set of netbands for which we request a new 517 * channel list be constructed. Once that's done we 518 * push the regdomain info + channel list to the kernel. 519 */ 520 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 521 if (dc == NULL) 522 errx(1, "no space for device capabilities"); 523 dc->dc_chaninfo.ic_nchans = MAXCHAN; 524 getdevcaps(s, dc); 525 #if 0 526 if (verbose) { 527 printf("drivercaps: 0x%x\n", dc->dc_drivercaps); 528 printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps); 529 printf("htcaps : 0x%x\n", dc->dc_htcaps); 530 printf("vhtcaps : 0x%x\n", dc->dc_vhtcaps); 531 #if 0 532 memcpy(chaninfo, &dc->dc_chaninfo, 533 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 534 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/); 535 #endif 536 } 537 #endif 538 req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans)); 539 if (req == NULL) 540 errx(1, "no space for regdomain request"); 541 req->rd = *rd; 542 regdomain_makechannels(req, dc); 543 if (verbose) { 544 LINE_INIT(':'); 545 print_regdomain(rd, 1/*verbose*/); 546 LINE_BREAK(); 547 /* blech, reallocate channel list for new data */ 548 if (chaninfo != NULL) 549 free(chaninfo); 550 chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 551 if (chaninfo == NULL) 552 errx(1, "no space for channel list"); 553 memcpy(chaninfo, &req->chaninfo, 554 IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 555 print_channels(s, &req->chaninfo, 1/*allchans*/, 1/*verbose*/); 556 } 557 if (req->chaninfo.ic_nchans == 0) 558 errx(1, "no channels calculated"); 559 set80211(s, IEEE80211_IOC_REGDOMAIN, 0, 560 IEEE80211_REGDOMAIN_SPACE(req), req); 561 free(req); 562 free(dc); 563 } 564 565 static int 566 ieee80211_mhz2ieee(int freq, int flags) 567 { 568 struct ieee80211_channel chan; 569 mapfreq(&chan, freq, flags); 570 return chan.ic_ieee; 571 } 572 573 static int 574 isanyarg(const char *arg) 575 { 576 return (strncmp(arg, "-", 1) == 0 || 577 strncasecmp(arg, "any", 3) == 0 || strncasecmp(arg, "off", 3) == 0); 578 } 579 580 static void 581 set80211ssid(const char *val, int d, int s, const struct afswtch *rafp) 582 { 583 int ssid; 584 int len; 585 u_int8_t data[IEEE80211_NWID_LEN]; 586 587 ssid = 0; 588 len = strlen(val); 589 if (len > 2 && isdigit((int)val[0]) && val[1] == ':') { 590 ssid = atoi(val)-1; 591 val += 2; 592 } 593 594 bzero(data, sizeof(data)); 595 len = sizeof(data); 596 if (get_string(val, NULL, data, &len) == NULL) 597 exit(1); 598 599 set80211(s, IEEE80211_IOC_SSID, ssid, len, data); 600 } 601 602 static void 603 set80211meshid(const char *val, int d, int s, const struct afswtch *rafp) 604 { 605 int len; 606 u_int8_t data[IEEE80211_NWID_LEN]; 607 608 memset(data, 0, sizeof(data)); 609 len = sizeof(data); 610 if (get_string(val, NULL, data, &len) == NULL) 611 exit(1); 612 613 set80211(s, IEEE80211_IOC_MESH_ID, 0, len, data); 614 } 615 616 static void 617 set80211stationname(const char *val, int d, int s, const struct afswtch *rafp) 618 { 619 int len; 620 u_int8_t data[33]; 621 622 bzero(data, sizeof(data)); 623 len = sizeof(data); 624 get_string(val, NULL, data, &len); 625 626 set80211(s, IEEE80211_IOC_STATIONNAME, 0, len, data); 627 } 628 629 /* 630 * Parse a channel specification for attributes/flags. 631 * The syntax is: 632 * freq/xx channel width (5,10,20,40,40+,40-) 633 * freq:mode channel mode (a,b,g,h,n,t,s,d) 634 * 635 * These can be combined in either order; e.g. 2437:ng/40. 636 * Modes are case insensitive. 637 * 638 * The result is not validated here; it's assumed to be 639 * checked against the channel table fetched from the kernel. 640 */ 641 static int 642 getchannelflags(const char *val, int freq) 643 { 644 #define _CHAN_HT 0x80000000 645 const char *cp; 646 int flags; 647 int is_vht = 0; 648 649 flags = 0; 650 651 cp = strchr(val, ':'); 652 if (cp != NULL) { 653 for (cp++; isalpha((int) *cp); cp++) { 654 /* accept mixed case */ 655 int c = *cp; 656 if (isupper(c)) 657 c = tolower(c); 658 switch (c) { 659 case 'a': /* 802.11a */ 660 flags |= IEEE80211_CHAN_A; 661 break; 662 case 'b': /* 802.11b */ 663 flags |= IEEE80211_CHAN_B; 664 break; 665 case 'g': /* 802.11g */ 666 flags |= IEEE80211_CHAN_G; 667 break; 668 case 'v': /* vht: 802.11ac */ 669 is_vht = 1; 670 /* Fallthrough */ 671 case 'h': /* ht = 802.11n */ 672 case 'n': /* 802.11n */ 673 flags |= _CHAN_HT; /* NB: private */ 674 break; 675 case 'd': /* dt = Atheros Dynamic Turbo */ 676 flags |= IEEE80211_CHAN_TURBO; 677 break; 678 case 't': /* ht, dt, st, t */ 679 /* dt and unadorned t specify Dynamic Turbo */ 680 if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0) 681 flags |= IEEE80211_CHAN_TURBO; 682 break; 683 case 's': /* st = Atheros Static Turbo */ 684 flags |= IEEE80211_CHAN_STURBO; 685 break; 686 default: 687 errx(-1, "%s: Invalid channel attribute %c\n", 688 val, *cp); 689 } 690 } 691 } 692 cp = strchr(val, '/'); 693 if (cp != NULL) { 694 char *ep; 695 u_long cw = strtoul(cp+1, &ep, 10); 696 697 switch (cw) { 698 case 5: 699 flags |= IEEE80211_CHAN_QUARTER; 700 break; 701 case 10: 702 flags |= IEEE80211_CHAN_HALF; 703 break; 704 case 20: 705 /* NB: this may be removed below */ 706 flags |= IEEE80211_CHAN_HT20; 707 break; 708 case 40: 709 case 80: 710 case 160: 711 /* Handle the 80/160 VHT flag */ 712 if (cw == 80) 713 flags |= IEEE80211_CHAN_VHT80; 714 else if (cw == 160) 715 flags |= IEEE80211_CHAN_VHT160; 716 717 /* Fallthrough */ 718 if (ep != NULL && *ep == '+') 719 flags |= IEEE80211_CHAN_HT40U; 720 else if (ep != NULL && *ep == '-') 721 flags |= IEEE80211_CHAN_HT40D; 722 break; 723 default: 724 errx(-1, "%s: Invalid channel width\n", val); 725 } 726 } 727 728 /* 729 * Cleanup specifications. 730 */ 731 if ((flags & _CHAN_HT) == 0) { 732 /* 733 * If user specified freq/20 or freq/40 quietly remove 734 * HT cw attributes depending on channel use. To give 735 * an explicit 20/40 width for an HT channel you must 736 * indicate it is an HT channel since all HT channels 737 * are also usable for legacy operation; e.g. freq:n/40. 738 */ 739 flags &= ~IEEE80211_CHAN_HT; 740 flags &= ~IEEE80211_CHAN_VHT; 741 } else { 742 /* 743 * Remove private indicator that this is an HT channel 744 * and if no explicit channel width has been given 745 * provide the default settings. 746 */ 747 flags &= ~_CHAN_HT; 748 if ((flags & IEEE80211_CHAN_HT) == 0) { 749 struct ieee80211_channel chan; 750 /* 751 * Consult the channel list to see if we can use 752 * HT40+ or HT40- (if both the map routines choose). 753 */ 754 if (freq > 255) 755 mapfreq(&chan, freq, 0); 756 else 757 mapchan(&chan, freq, 0); 758 flags |= (chan.ic_flags & IEEE80211_CHAN_HT); 759 } 760 761 /* 762 * If VHT is enabled, then also set the VHT flag and the 763 * relevant channel up/down. 764 */ 765 if (is_vht && (flags & IEEE80211_CHAN_HT)) { 766 /* 767 * XXX yes, maybe we should just have VHT, and reuse 768 * HT20/HT40U/HT40D 769 */ 770 if (flags & IEEE80211_CHAN_VHT80) 771 ; 772 else if (flags & IEEE80211_CHAN_HT20) 773 flags |= IEEE80211_CHAN_VHT20; 774 else if (flags & IEEE80211_CHAN_HT40U) 775 flags |= IEEE80211_CHAN_VHT40U; 776 else if (flags & IEEE80211_CHAN_HT40D) 777 flags |= IEEE80211_CHAN_VHT40D; 778 } 779 } 780 return flags; 781 #undef _CHAN_HT 782 } 783 784 static void 785 getchannel(int s, struct ieee80211_channel *chan, const char *val) 786 { 787 int v, flags; 788 char *eptr; 789 790 memset(chan, 0, sizeof(*chan)); 791 if (isanyarg(val)) { 792 chan->ic_freq = IEEE80211_CHAN_ANY; 793 return; 794 } 795 getchaninfo(s); 796 errno = 0; 797 v = strtol(val, &eptr, 10); 798 if (val[0] == '\0' || val == eptr || errno == ERANGE || 799 /* channel may be suffixed with nothing, :flag, or /width */ 800 (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/')) 801 errx(1, "invalid channel specification%s", 802 errno == ERANGE ? " (out of range)" : ""); 803 flags = getchannelflags(val, v); 804 if (v > 255) { /* treat as frequency */ 805 mapfreq(chan, v, flags); 806 } else { 807 mapchan(chan, v, flags); 808 } 809 } 810 811 static void 812 set80211channel(const char *val, int d, int s, const struct afswtch *rafp) 813 { 814 struct ieee80211_channel chan; 815 816 getchannel(s, &chan, val); 817 set80211(s, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan); 818 } 819 820 static void 821 set80211chanswitch(const char *val, int d, int s, const struct afswtch *rafp) 822 { 823 struct ieee80211_chanswitch_req csr; 824 825 getchannel(s, &csr.csa_chan, val); 826 csr.csa_mode = 1; 827 csr.csa_count = 5; 828 set80211(s, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr); 829 } 830 831 static void 832 set80211authmode(const char *val, int d, int s, const struct afswtch *rafp) 833 { 834 int mode; 835 836 if (strcasecmp(val, "none") == 0) { 837 mode = IEEE80211_AUTH_NONE; 838 } else if (strcasecmp(val, "open") == 0) { 839 mode = IEEE80211_AUTH_OPEN; 840 } else if (strcasecmp(val, "shared") == 0) { 841 mode = IEEE80211_AUTH_SHARED; 842 } else if (strcasecmp(val, "8021x") == 0) { 843 mode = IEEE80211_AUTH_8021X; 844 } else if (strcasecmp(val, "wpa") == 0) { 845 mode = IEEE80211_AUTH_WPA; 846 } else { 847 errx(1, "unknown authmode"); 848 } 849 850 set80211(s, IEEE80211_IOC_AUTHMODE, mode, 0, NULL); 851 } 852 853 static void 854 set80211powersavemode(const char *val, int d, int s, const struct afswtch *rafp) 855 { 856 int mode; 857 858 if (strcasecmp(val, "off") == 0) { 859 mode = IEEE80211_POWERSAVE_OFF; 860 } else if (strcasecmp(val, "on") == 0) { 861 mode = IEEE80211_POWERSAVE_ON; 862 } else if (strcasecmp(val, "cam") == 0) { 863 mode = IEEE80211_POWERSAVE_CAM; 864 } else if (strcasecmp(val, "psp") == 0) { 865 mode = IEEE80211_POWERSAVE_PSP; 866 } else if (strcasecmp(val, "psp-cam") == 0) { 867 mode = IEEE80211_POWERSAVE_PSP_CAM; 868 } else { 869 errx(1, "unknown powersavemode"); 870 } 871 872 set80211(s, IEEE80211_IOC_POWERSAVE, mode, 0, NULL); 873 } 874 875 static void 876 set80211powersave(const char *val, int d, int s, const struct afswtch *rafp) 877 { 878 if (d == 0) 879 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF, 880 0, NULL); 881 else 882 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON, 883 0, NULL); 884 } 885 886 static void 887 set80211powersavesleep(const char *val, int d, int s, const struct afswtch *rafp) 888 { 889 set80211(s, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL); 890 } 891 892 static void 893 set80211wepmode(const char *val, int d, int s, const struct afswtch *rafp) 894 { 895 int mode; 896 897 if (strcasecmp(val, "off") == 0) { 898 mode = IEEE80211_WEP_OFF; 899 } else if (strcasecmp(val, "on") == 0) { 900 mode = IEEE80211_WEP_ON; 901 } else if (strcasecmp(val, "mixed") == 0) { 902 mode = IEEE80211_WEP_MIXED; 903 } else { 904 errx(1, "unknown wep mode"); 905 } 906 907 set80211(s, IEEE80211_IOC_WEP, mode, 0, NULL); 908 } 909 910 static void 911 set80211wep(const char *val, int d, int s, const struct afswtch *rafp) 912 { 913 set80211(s, IEEE80211_IOC_WEP, d, 0, NULL); 914 } 915 916 static int 917 isundefarg(const char *arg) 918 { 919 return (strcmp(arg, "-") == 0 || strncasecmp(arg, "undef", 5) == 0); 920 } 921 922 static void 923 set80211weptxkey(const char *val, int d, int s, const struct afswtch *rafp) 924 { 925 if (isundefarg(val)) 926 set80211(s, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL); 927 else 928 set80211(s, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL); 929 } 930 931 static void 932 set80211wepkey(const char *val, int d, int s, const struct afswtch *rafp) 933 { 934 int key = 0; 935 int len; 936 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 937 938 if (isdigit((int)val[0]) && val[1] == ':') { 939 key = atoi(val)-1; 940 val += 2; 941 } 942 943 bzero(data, sizeof(data)); 944 len = sizeof(data); 945 get_string(val, NULL, data, &len); 946 947 set80211(s, IEEE80211_IOC_WEPKEY, key, len, data); 948 } 949 950 /* 951 * This function is purely a NetBSD compatibility interface. The NetBSD 952 * interface is too inflexible, but it's there so we'll support it since 953 * it's not all that hard. 954 */ 955 static void 956 set80211nwkey(const char *val, int d, int s, const struct afswtch *rafp) 957 { 958 int txkey; 959 int i, len; 960 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 961 962 set80211(s, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL); 963 964 if (isdigit((int)val[0]) && val[1] == ':') { 965 txkey = val[0]-'0'-1; 966 val += 2; 967 968 for (i = 0; i < 4; i++) { 969 bzero(data, sizeof(data)); 970 len = sizeof(data); 971 val = get_string(val, ",", data, &len); 972 if (val == NULL) 973 exit(1); 974 975 set80211(s, IEEE80211_IOC_WEPKEY, i, len, data); 976 } 977 } else { 978 bzero(data, sizeof(data)); 979 len = sizeof(data); 980 get_string(val, NULL, data, &len); 981 txkey = 0; 982 983 set80211(s, IEEE80211_IOC_WEPKEY, 0, len, data); 984 985 bzero(data, sizeof(data)); 986 for (i = 1; i < 4; i++) 987 set80211(s, IEEE80211_IOC_WEPKEY, i, 0, data); 988 } 989 990 set80211(s, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL); 991 } 992 993 static void 994 set80211rtsthreshold(const char *val, int d, int s, const struct afswtch *rafp) 995 { 996 set80211(s, IEEE80211_IOC_RTSTHRESHOLD, 997 isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL); 998 } 999 1000 static void 1001 set80211protmode(const char *val, int d, int s, const struct afswtch *rafp) 1002 { 1003 int mode; 1004 1005 if (strcasecmp(val, "off") == 0) { 1006 mode = IEEE80211_PROTMODE_OFF; 1007 } else if (strcasecmp(val, "cts") == 0) { 1008 mode = IEEE80211_PROTMODE_CTS; 1009 } else if (strncasecmp(val, "rtscts", 3) == 0) { 1010 mode = IEEE80211_PROTMODE_RTSCTS; 1011 } else { 1012 errx(1, "unknown protection mode"); 1013 } 1014 1015 set80211(s, IEEE80211_IOC_PROTMODE, mode, 0, NULL); 1016 } 1017 1018 static void 1019 set80211htprotmode(const char *val, int d, int s, const struct afswtch *rafp) 1020 { 1021 int mode; 1022 1023 if (strcasecmp(val, "off") == 0) { 1024 mode = IEEE80211_PROTMODE_OFF; 1025 } else if (strncasecmp(val, "rts", 3) == 0) { 1026 mode = IEEE80211_PROTMODE_RTSCTS; 1027 } else { 1028 errx(1, "unknown protection mode"); 1029 } 1030 1031 set80211(s, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL); 1032 } 1033 1034 static void 1035 set80211txpower(const char *val, int d, int s, const struct afswtch *rafp) 1036 { 1037 double v = atof(val); 1038 int txpow; 1039 1040 txpow = (int) (2*v); 1041 if (txpow != 2*v) 1042 errx(-1, "invalid tx power (must be .5 dBm units)"); 1043 set80211(s, IEEE80211_IOC_TXPOWER, txpow, 0, NULL); 1044 } 1045 1046 #define IEEE80211_ROAMING_DEVICE 0 1047 #define IEEE80211_ROAMING_AUTO 1 1048 #define IEEE80211_ROAMING_MANUAL 2 1049 1050 static void 1051 set80211roaming(const char *val, int d, int s, const struct afswtch *rafp) 1052 { 1053 int mode; 1054 1055 if (strcasecmp(val, "device") == 0) { 1056 mode = IEEE80211_ROAMING_DEVICE; 1057 } else if (strcasecmp(val, "auto") == 0) { 1058 mode = IEEE80211_ROAMING_AUTO; 1059 } else if (strcasecmp(val, "manual") == 0) { 1060 mode = IEEE80211_ROAMING_MANUAL; 1061 } else { 1062 errx(1, "unknown roaming mode"); 1063 } 1064 set80211(s, IEEE80211_IOC_ROAMING, mode, 0, NULL); 1065 } 1066 1067 static void 1068 set80211wme(const char *val, int d, int s, const struct afswtch *rafp) 1069 { 1070 set80211(s, IEEE80211_IOC_WME, d, 0, NULL); 1071 } 1072 1073 static void 1074 set80211hidessid(const char *val, int d, int s, const struct afswtch *rafp) 1075 { 1076 set80211(s, IEEE80211_IOC_HIDESSID, d, 0, NULL); 1077 } 1078 1079 static void 1080 set80211apbridge(const char *val, int d, int s, const struct afswtch *rafp) 1081 { 1082 set80211(s, IEEE80211_IOC_APBRIDGE, d, 0, NULL); 1083 } 1084 1085 static void 1086 set80211fastframes(const char *val, int d, int s, const struct afswtch *rafp) 1087 { 1088 set80211(s, IEEE80211_IOC_FF, d, 0, NULL); 1089 } 1090 1091 static void 1092 set80211dturbo(const char *val, int d, int s, const struct afswtch *rafp) 1093 { 1094 set80211(s, IEEE80211_IOC_TURBOP, d, 0, NULL); 1095 } 1096 1097 static void 1098 set80211chanlist(const char *val, int d, int s, const struct afswtch *rafp) 1099 { 1100 struct ieee80211req_chanlist chanlist; 1101 char *temp, *cp, *tp; 1102 1103 temp = malloc(strlen(val) + 1); 1104 if (temp == NULL) 1105 errx(1, "malloc failed"); 1106 strcpy(temp, val); 1107 memset(&chanlist, 0, sizeof(chanlist)); 1108 cp = temp; 1109 for (;;) { 1110 int first, last, f, c; 1111 1112 tp = strchr(cp, ','); 1113 if (tp != NULL) 1114 *tp++ = '\0'; 1115 switch (sscanf(cp, "%u-%u", &first, &last)) { 1116 case 1: 1117 if (first > IEEE80211_CHAN_MAX) 1118 errx(-1, "channel %u out of range, max %u", 1119 first, IEEE80211_CHAN_MAX); 1120 setbit(chanlist.ic_channels, first); 1121 break; 1122 case 2: 1123 if (first > IEEE80211_CHAN_MAX) 1124 errx(-1, "channel %u out of range, max %u", 1125 first, IEEE80211_CHAN_MAX); 1126 if (last > IEEE80211_CHAN_MAX) 1127 errx(-1, "channel %u out of range, max %u", 1128 last, IEEE80211_CHAN_MAX); 1129 if (first > last) 1130 errx(-1, "void channel range, %u > %u", 1131 first, last); 1132 for (f = first; f <= last; f++) 1133 setbit(chanlist.ic_channels, f); 1134 break; 1135 } 1136 if (tp == NULL) 1137 break; 1138 c = *tp; 1139 while (isspace(c)) 1140 tp++; 1141 if (!isdigit(c)) 1142 break; 1143 cp = tp; 1144 } 1145 set80211(s, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist); 1146 } 1147 1148 static void 1149 set80211bssid(const char *val, int d, int s, const struct afswtch *rafp) 1150 { 1151 1152 if (!isanyarg(val)) { 1153 char *temp; 1154 struct sockaddr_dl sdl; 1155 1156 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1157 if (temp == NULL) 1158 errx(1, "malloc failed"); 1159 temp[0] = ':'; 1160 strcpy(temp + 1, val); 1161 sdl.sdl_len = sizeof(sdl); 1162 link_addr(temp, &sdl); 1163 free(temp); 1164 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1165 errx(1, "malformed link-level address"); 1166 set80211(s, IEEE80211_IOC_BSSID, 0, 1167 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1168 } else { 1169 uint8_t zerobssid[IEEE80211_ADDR_LEN]; 1170 memset(zerobssid, 0, sizeof(zerobssid)); 1171 set80211(s, IEEE80211_IOC_BSSID, 0, 1172 IEEE80211_ADDR_LEN, zerobssid); 1173 } 1174 } 1175 1176 static int 1177 getac(const char *ac) 1178 { 1179 if (strcasecmp(ac, "ac_be") == 0 || strcasecmp(ac, "be") == 0) 1180 return WME_AC_BE; 1181 if (strcasecmp(ac, "ac_bk") == 0 || strcasecmp(ac, "bk") == 0) 1182 return WME_AC_BK; 1183 if (strcasecmp(ac, "ac_vi") == 0 || strcasecmp(ac, "vi") == 0) 1184 return WME_AC_VI; 1185 if (strcasecmp(ac, "ac_vo") == 0 || strcasecmp(ac, "vo") == 0) 1186 return WME_AC_VO; 1187 errx(1, "unknown wme access class %s", ac); 1188 } 1189 1190 static 1191 DECL_CMD_FUNC2(set80211cwmin, ac, val) 1192 { 1193 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL); 1194 } 1195 1196 static 1197 DECL_CMD_FUNC2(set80211cwmax, ac, val) 1198 { 1199 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL); 1200 } 1201 1202 static 1203 DECL_CMD_FUNC2(set80211aifs, ac, val) 1204 { 1205 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL); 1206 } 1207 1208 static 1209 DECL_CMD_FUNC2(set80211txoplimit, ac, val) 1210 { 1211 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL); 1212 } 1213 1214 static 1215 DECL_CMD_FUNC(set80211acm, ac, d) 1216 { 1217 set80211(s, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL); 1218 } 1219 static 1220 DECL_CMD_FUNC(set80211noacm, ac, d) 1221 { 1222 set80211(s, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL); 1223 } 1224 1225 static 1226 DECL_CMD_FUNC(set80211ackpolicy, ac, d) 1227 { 1228 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL); 1229 } 1230 static 1231 DECL_CMD_FUNC(set80211noackpolicy, ac, d) 1232 { 1233 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL); 1234 } 1235 1236 static 1237 DECL_CMD_FUNC2(set80211bsscwmin, ac, val) 1238 { 1239 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), 1240 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1241 } 1242 1243 static 1244 DECL_CMD_FUNC2(set80211bsscwmax, ac, val) 1245 { 1246 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), 1247 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1248 } 1249 1250 static 1251 DECL_CMD_FUNC2(set80211bssaifs, ac, val) 1252 { 1253 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), 1254 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1255 } 1256 1257 static 1258 DECL_CMD_FUNC2(set80211bsstxoplimit, ac, val) 1259 { 1260 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), 1261 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1262 } 1263 1264 static 1265 DECL_CMD_FUNC(set80211dtimperiod, val, d) 1266 { 1267 set80211(s, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL); 1268 } 1269 1270 static 1271 DECL_CMD_FUNC(set80211bintval, val, d) 1272 { 1273 set80211(s, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL); 1274 } 1275 1276 static void 1277 set80211macmac(int s, int op, const char *val) 1278 { 1279 char *temp; 1280 struct sockaddr_dl sdl; 1281 1282 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1283 if (temp == NULL) 1284 errx(1, "malloc failed"); 1285 temp[0] = ':'; 1286 strcpy(temp + 1, val); 1287 sdl.sdl_len = sizeof(sdl); 1288 link_addr(temp, &sdl); 1289 free(temp); 1290 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1291 errx(1, "malformed link-level address"); 1292 set80211(s, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1293 } 1294 1295 static 1296 DECL_CMD_FUNC(set80211addmac, val, d) 1297 { 1298 set80211macmac(s, IEEE80211_IOC_ADDMAC, val); 1299 } 1300 1301 static 1302 DECL_CMD_FUNC(set80211delmac, val, d) 1303 { 1304 set80211macmac(s, IEEE80211_IOC_DELMAC, val); 1305 } 1306 1307 static 1308 DECL_CMD_FUNC(set80211kickmac, val, d) 1309 { 1310 char *temp; 1311 struct sockaddr_dl sdl; 1312 struct ieee80211req_mlme mlme; 1313 1314 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1315 if (temp == NULL) 1316 errx(1, "malloc failed"); 1317 temp[0] = ':'; 1318 strcpy(temp + 1, val); 1319 sdl.sdl_len = sizeof(sdl); 1320 link_addr(temp, &sdl); 1321 free(temp); 1322 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1323 errx(1, "malformed link-level address"); 1324 memset(&mlme, 0, sizeof(mlme)); 1325 mlme.im_op = IEEE80211_MLME_DEAUTH; 1326 mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE; 1327 memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN); 1328 set80211(s, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme); 1329 } 1330 1331 static 1332 DECL_CMD_FUNC(set80211maccmd, val, d) 1333 { 1334 set80211(s, IEEE80211_IOC_MACCMD, d, 0, NULL); 1335 } 1336 1337 static void 1338 set80211meshrtmac(int s, int req, const char *val) 1339 { 1340 char *temp; 1341 struct sockaddr_dl sdl; 1342 1343 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1344 if (temp == NULL) 1345 errx(1, "malloc failed"); 1346 temp[0] = ':'; 1347 strcpy(temp + 1, val); 1348 sdl.sdl_len = sizeof(sdl); 1349 link_addr(temp, &sdl); 1350 free(temp); 1351 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1352 errx(1, "malformed link-level address"); 1353 set80211(s, IEEE80211_IOC_MESH_RTCMD, req, 1354 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1355 } 1356 1357 static 1358 DECL_CMD_FUNC(set80211addmeshrt, val, d) 1359 { 1360 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_ADD, val); 1361 } 1362 1363 static 1364 DECL_CMD_FUNC(set80211delmeshrt, val, d) 1365 { 1366 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_DELETE, val); 1367 } 1368 1369 static 1370 DECL_CMD_FUNC(set80211meshrtcmd, val, d) 1371 { 1372 set80211(s, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL); 1373 } 1374 1375 static 1376 DECL_CMD_FUNC(set80211hwmprootmode, val, d) 1377 { 1378 int mode; 1379 1380 if (strcasecmp(val, "normal") == 0) 1381 mode = IEEE80211_HWMP_ROOTMODE_NORMAL; 1382 else if (strcasecmp(val, "proactive") == 0) 1383 mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE; 1384 else if (strcasecmp(val, "rann") == 0) 1385 mode = IEEE80211_HWMP_ROOTMODE_RANN; 1386 else 1387 mode = IEEE80211_HWMP_ROOTMODE_DISABLED; 1388 set80211(s, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL); 1389 } 1390 1391 static 1392 DECL_CMD_FUNC(set80211hwmpmaxhops, val, d) 1393 { 1394 set80211(s, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL); 1395 } 1396 1397 static void 1398 set80211pureg(const char *val, int d, int s, const struct afswtch *rafp) 1399 { 1400 set80211(s, IEEE80211_IOC_PUREG, d, 0, NULL); 1401 } 1402 1403 static void 1404 set80211quiet(const char *val, int d, int s, const struct afswtch *rafp) 1405 { 1406 set80211(s, IEEE80211_IOC_QUIET, d, 0, NULL); 1407 } 1408 1409 static 1410 DECL_CMD_FUNC(set80211quietperiod, val, d) 1411 { 1412 set80211(s, IEEE80211_IOC_QUIET_PERIOD, atoi(val), 0, NULL); 1413 } 1414 1415 static 1416 DECL_CMD_FUNC(set80211quietcount, val, d) 1417 { 1418 set80211(s, IEEE80211_IOC_QUIET_COUNT, atoi(val), 0, NULL); 1419 } 1420 1421 static 1422 DECL_CMD_FUNC(set80211quietduration, val, d) 1423 { 1424 set80211(s, IEEE80211_IOC_QUIET_DUR, atoi(val), 0, NULL); 1425 } 1426 1427 static 1428 DECL_CMD_FUNC(set80211quietoffset, val, d) 1429 { 1430 set80211(s, IEEE80211_IOC_QUIET_OFFSET, atoi(val), 0, NULL); 1431 } 1432 1433 static void 1434 set80211bgscan(const char *val, int d, int s, const struct afswtch *rafp) 1435 { 1436 set80211(s, IEEE80211_IOC_BGSCAN, d, 0, NULL); 1437 } 1438 1439 static 1440 DECL_CMD_FUNC(set80211bgscanidle, val, d) 1441 { 1442 set80211(s, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL); 1443 } 1444 1445 static 1446 DECL_CMD_FUNC(set80211bgscanintvl, val, d) 1447 { 1448 set80211(s, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL); 1449 } 1450 1451 static 1452 DECL_CMD_FUNC(set80211scanvalid, val, d) 1453 { 1454 set80211(s, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL); 1455 } 1456 1457 /* 1458 * Parse an optional trailing specification of which netbands 1459 * to apply a parameter to. This is basically the same syntax 1460 * as used for channels but you can concatenate to specify 1461 * multiple. For example: 1462 * 14:abg apply to 11a, 11b, and 11g 1463 * 6:ht apply to 11na and 11ng 1464 * We don't make a big effort to catch silly things; this is 1465 * really a convenience mechanism. 1466 */ 1467 static int 1468 getmodeflags(const char *val) 1469 { 1470 const char *cp; 1471 int flags; 1472 1473 flags = 0; 1474 1475 cp = strchr(val, ':'); 1476 if (cp != NULL) { 1477 for (cp++; isalpha((int) *cp); cp++) { 1478 /* accept mixed case */ 1479 int c = *cp; 1480 if (isupper(c)) 1481 c = tolower(c); 1482 switch (c) { 1483 case 'a': /* 802.11a */ 1484 flags |= IEEE80211_CHAN_A; 1485 break; 1486 case 'b': /* 802.11b */ 1487 flags |= IEEE80211_CHAN_B; 1488 break; 1489 case 'g': /* 802.11g */ 1490 flags |= IEEE80211_CHAN_G; 1491 break; 1492 case 'n': /* 802.11n */ 1493 flags |= IEEE80211_CHAN_HT; 1494 break; 1495 case 'd': /* dt = Atheros Dynamic Turbo */ 1496 flags |= IEEE80211_CHAN_TURBO; 1497 break; 1498 case 't': /* ht, dt, st, t */ 1499 /* dt and unadorned t specify Dynamic Turbo */ 1500 if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0) 1501 flags |= IEEE80211_CHAN_TURBO; 1502 break; 1503 case 's': /* st = Atheros Static Turbo */ 1504 flags |= IEEE80211_CHAN_STURBO; 1505 break; 1506 case 'h': /* 1/2-width channels */ 1507 flags |= IEEE80211_CHAN_HALF; 1508 break; 1509 case 'q': /* 1/4-width channels */ 1510 flags |= IEEE80211_CHAN_QUARTER; 1511 break; 1512 case 'v': 1513 /* XXX set HT too? */ 1514 flags |= IEEE80211_CHAN_VHT; 1515 break; 1516 default: 1517 errx(-1, "%s: Invalid mode attribute %c\n", 1518 val, *cp); 1519 } 1520 } 1521 } 1522 return flags; 1523 } 1524 1525 #define IEEE80211_CHAN_HTA (IEEE80211_CHAN_HT|IEEE80211_CHAN_5GHZ) 1526 #define IEEE80211_CHAN_HTG (IEEE80211_CHAN_HT|IEEE80211_CHAN_2GHZ) 1527 1528 #define _APPLY(_flags, _base, _param, _v) do { \ 1529 if (_flags & IEEE80211_CHAN_HT) { \ 1530 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1531 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1532 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1533 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1534 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1535 else \ 1536 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1537 } \ 1538 if (_flags & IEEE80211_CHAN_TURBO) { \ 1539 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1540 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1541 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1542 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1543 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1544 else \ 1545 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1546 } \ 1547 if (_flags & IEEE80211_CHAN_STURBO) \ 1548 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1549 if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1550 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1551 if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1552 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1553 if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1554 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1555 if (_flags & IEEE80211_CHAN_HALF) \ 1556 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1557 if (_flags & IEEE80211_CHAN_QUARTER) \ 1558 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1559 } while (0) 1560 #define _APPLY1(_flags, _base, _param, _v) do { \ 1561 if (_flags & IEEE80211_CHAN_HT) { \ 1562 if (_flags & IEEE80211_CHAN_5GHZ) \ 1563 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1564 else \ 1565 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1566 } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A) \ 1567 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1568 else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G) \ 1569 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1570 else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST) \ 1571 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1572 else if (_flags & IEEE80211_CHAN_HALF) \ 1573 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1574 else if (_flags & IEEE80211_CHAN_QUARTER) \ 1575 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1576 else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1577 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1578 else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1579 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1580 else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1581 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1582 } while (0) 1583 #define _APPLY_RATE(_flags, _base, _param, _v) do { \ 1584 if (_flags & IEEE80211_CHAN_HT) { \ 1585 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1586 } \ 1587 _APPLY(_flags, _base, _param, _v); \ 1588 } while (0) 1589 #define _APPLY_RATE1(_flags, _base, _param, _v) do { \ 1590 if (_flags & IEEE80211_CHAN_HT) { \ 1591 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1592 } \ 1593 _APPLY1(_flags, _base, _param, _v); \ 1594 } while (0) 1595 1596 static 1597 DECL_CMD_FUNC(set80211roamrssi, val, d) 1598 { 1599 double v = atof(val); 1600 int rssi, flags; 1601 1602 rssi = (int) (2*v); 1603 if (rssi != 2*v) 1604 errx(-1, "invalid rssi (must be .5 dBm units)"); 1605 flags = getmodeflags(val); 1606 getroam(s); 1607 if (flags == 0) { /* NB: no flags => current channel */ 1608 flags = getcurchan(s)->ic_flags; 1609 _APPLY1(flags, roamparams, rssi, rssi); 1610 } else 1611 _APPLY(flags, roamparams, rssi, rssi); 1612 callback_register(setroam_cb, &roamparams); 1613 } 1614 1615 static int 1616 getrate(const char *val, const char *tag) 1617 { 1618 double v = atof(val); 1619 int rate; 1620 1621 rate = (int) (2*v); 1622 if (rate != 2*v) 1623 errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag); 1624 return rate; /* NB: returns 2x the specified value */ 1625 } 1626 1627 static 1628 DECL_CMD_FUNC(set80211roamrate, val, d) 1629 { 1630 int rate, flags; 1631 1632 rate = getrate(val, "roam"); 1633 flags = getmodeflags(val); 1634 getroam(s); 1635 if (flags == 0) { /* NB: no flags => current channel */ 1636 flags = getcurchan(s)->ic_flags; 1637 _APPLY_RATE1(flags, roamparams, rate, rate); 1638 } else 1639 _APPLY_RATE(flags, roamparams, rate, rate); 1640 callback_register(setroam_cb, &roamparams); 1641 } 1642 1643 static 1644 DECL_CMD_FUNC(set80211mcastrate, val, d) 1645 { 1646 int rate, flags; 1647 1648 rate = getrate(val, "mcast"); 1649 flags = getmodeflags(val); 1650 gettxparams(s); 1651 if (flags == 0) { /* NB: no flags => current channel */ 1652 flags = getcurchan(s)->ic_flags; 1653 _APPLY_RATE1(flags, txparams, mcastrate, rate); 1654 } else 1655 _APPLY_RATE(flags, txparams, mcastrate, rate); 1656 callback_register(settxparams_cb, &txparams); 1657 } 1658 1659 static 1660 DECL_CMD_FUNC(set80211mgtrate, val, d) 1661 { 1662 int rate, flags; 1663 1664 rate = getrate(val, "mgmt"); 1665 flags = getmodeflags(val); 1666 gettxparams(s); 1667 if (flags == 0) { /* NB: no flags => current channel */ 1668 flags = getcurchan(s)->ic_flags; 1669 _APPLY_RATE1(flags, txparams, mgmtrate, rate); 1670 } else 1671 _APPLY_RATE(flags, txparams, mgmtrate, rate); 1672 callback_register(settxparams_cb, &txparams); 1673 } 1674 1675 static 1676 DECL_CMD_FUNC(set80211ucastrate, val, d) 1677 { 1678 int flags; 1679 1680 gettxparams(s); 1681 flags = getmodeflags(val); 1682 if (isanyarg(val)) { 1683 if (flags == 0) { /* NB: no flags => current channel */ 1684 flags = getcurchan(s)->ic_flags; 1685 _APPLY1(flags, txparams, ucastrate, 1686 IEEE80211_FIXED_RATE_NONE); 1687 } else 1688 _APPLY(flags, txparams, ucastrate, 1689 IEEE80211_FIXED_RATE_NONE); 1690 } else { 1691 int rate = getrate(val, "ucast"); 1692 if (flags == 0) { /* NB: no flags => current channel */ 1693 flags = getcurchan(s)->ic_flags; 1694 _APPLY_RATE1(flags, txparams, ucastrate, rate); 1695 } else 1696 _APPLY_RATE(flags, txparams, ucastrate, rate); 1697 } 1698 callback_register(settxparams_cb, &txparams); 1699 } 1700 1701 static 1702 DECL_CMD_FUNC(set80211maxretry, val, d) 1703 { 1704 int v = atoi(val), flags; 1705 1706 flags = getmodeflags(val); 1707 gettxparams(s); 1708 if (flags == 0) { /* NB: no flags => current channel */ 1709 flags = getcurchan(s)->ic_flags; 1710 _APPLY1(flags, txparams, maxretry, v); 1711 } else 1712 _APPLY(flags, txparams, maxretry, v); 1713 callback_register(settxparams_cb, &txparams); 1714 } 1715 #undef _APPLY_RATE 1716 #undef _APPLY 1717 #undef IEEE80211_CHAN_HTA 1718 #undef IEEE80211_CHAN_HTG 1719 1720 static 1721 DECL_CMD_FUNC(set80211fragthreshold, val, d) 1722 { 1723 set80211(s, IEEE80211_IOC_FRAGTHRESHOLD, 1724 isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL); 1725 } 1726 1727 static 1728 DECL_CMD_FUNC(set80211bmissthreshold, val, d) 1729 { 1730 set80211(s, IEEE80211_IOC_BMISSTHRESHOLD, 1731 isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL); 1732 } 1733 1734 static void 1735 set80211burst(const char *val, int d, int s, const struct afswtch *rafp) 1736 { 1737 set80211(s, IEEE80211_IOC_BURST, d, 0, NULL); 1738 } 1739 1740 static void 1741 set80211doth(const char *val, int d, int s, const struct afswtch *rafp) 1742 { 1743 set80211(s, IEEE80211_IOC_DOTH, d, 0, NULL); 1744 } 1745 1746 static void 1747 set80211dfs(const char *val, int d, int s, const struct afswtch *rafp) 1748 { 1749 set80211(s, IEEE80211_IOC_DFS, d, 0, NULL); 1750 } 1751 1752 static void 1753 set80211shortgi(const char *val, int d, int s, const struct afswtch *rafp) 1754 { 1755 set80211(s, IEEE80211_IOC_SHORTGI, 1756 d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0, 1757 0, NULL); 1758 } 1759 1760 static void 1761 set80211ampdu(const char *val, int d, int s, const struct afswtch *rafp) 1762 { 1763 int ampdu; 1764 1765 if (get80211val(s, IEEE80211_IOC_AMPDU, &du) < 0) 1766 errx(-1, "cannot set AMPDU setting"); 1767 if (d < 0) { 1768 d = -d; 1769 ampdu &= ~d; 1770 } else 1771 ampdu |= d; 1772 set80211(s, IEEE80211_IOC_AMPDU, ampdu, 0, NULL); 1773 } 1774 1775 static void 1776 set80211stbc(const char *val, int d, int s, const struct afswtch *rafp) 1777 { 1778 int stbc; 1779 1780 if (get80211val(s, IEEE80211_IOC_STBC, &stbc) < 0) 1781 errx(-1, "cannot set STBC setting"); 1782 if (d < 0) { 1783 d = -d; 1784 stbc &= ~d; 1785 } else 1786 stbc |= d; 1787 set80211(s, IEEE80211_IOC_STBC, stbc, 0, NULL); 1788 } 1789 1790 static 1791 DECL_CMD_FUNC(set80211ampdulimit, val, d) 1792 { 1793 int v; 1794 1795 switch (atoi(val)) { 1796 case 8: 1797 case 8*1024: 1798 v = IEEE80211_HTCAP_MAXRXAMPDU_8K; 1799 break; 1800 case 16: 1801 case 16*1024: 1802 v = IEEE80211_HTCAP_MAXRXAMPDU_16K; 1803 break; 1804 case 32: 1805 case 32*1024: 1806 v = IEEE80211_HTCAP_MAXRXAMPDU_32K; 1807 break; 1808 case 64: 1809 case 64*1024: 1810 v = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1811 break; 1812 default: 1813 errx(-1, "invalid A-MPDU limit %s", val); 1814 } 1815 set80211(s, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL); 1816 } 1817 1818 static 1819 DECL_CMD_FUNC(set80211ampdudensity, val, d) 1820 { 1821 int v; 1822 1823 if (isanyarg(val) || strcasecmp(val, "na") == 0) 1824 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1825 else switch ((int)(atof(val)*4)) { 1826 case 0: 1827 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1828 break; 1829 case 1: 1830 v = IEEE80211_HTCAP_MPDUDENSITY_025; 1831 break; 1832 case 2: 1833 v = IEEE80211_HTCAP_MPDUDENSITY_05; 1834 break; 1835 case 4: 1836 v = IEEE80211_HTCAP_MPDUDENSITY_1; 1837 break; 1838 case 8: 1839 v = IEEE80211_HTCAP_MPDUDENSITY_2; 1840 break; 1841 case 16: 1842 v = IEEE80211_HTCAP_MPDUDENSITY_4; 1843 break; 1844 case 32: 1845 v = IEEE80211_HTCAP_MPDUDENSITY_8; 1846 break; 1847 case 64: 1848 v = IEEE80211_HTCAP_MPDUDENSITY_16; 1849 break; 1850 default: 1851 errx(-1, "invalid A-MPDU density %s", val); 1852 } 1853 set80211(s, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL); 1854 } 1855 1856 static void 1857 set80211amsdu(const char *val, int d, int s, const struct afswtch *rafp) 1858 { 1859 int amsdu; 1860 1861 if (get80211val(s, IEEE80211_IOC_AMSDU, &amsdu) < 0) 1862 err(-1, "cannot get AMSDU setting"); 1863 if (d < 0) { 1864 d = -d; 1865 amsdu &= ~d; 1866 } else 1867 amsdu |= d; 1868 set80211(s, IEEE80211_IOC_AMSDU, amsdu, 0, NULL); 1869 } 1870 1871 static 1872 DECL_CMD_FUNC(set80211amsdulimit, val, d) 1873 { 1874 set80211(s, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL); 1875 } 1876 1877 static void 1878 set80211puren(const char *val, int d, int s, const struct afswtch *rafp) 1879 { 1880 set80211(s, IEEE80211_IOC_PUREN, d, 0, NULL); 1881 } 1882 1883 static void 1884 set80211htcompat(const char *val, int d, int s, const struct afswtch *rafp) 1885 { 1886 set80211(s, IEEE80211_IOC_HTCOMPAT, d, 0, NULL); 1887 } 1888 1889 static void 1890 set80211htconf(const char *val, int d, int s, const struct afswtch *rafp) 1891 { 1892 set80211(s, IEEE80211_IOC_HTCONF, d, 0, NULL); 1893 htconf = d; 1894 } 1895 1896 static void 1897 set80211dwds(const char *val, int d, int s, const struct afswtch *rafp) 1898 { 1899 set80211(s, IEEE80211_IOC_DWDS, d, 0, NULL); 1900 } 1901 1902 static void 1903 set80211inact(const char *val, int d, int s, const struct afswtch *rafp) 1904 { 1905 set80211(s, IEEE80211_IOC_INACTIVITY, d, 0, NULL); 1906 } 1907 1908 static void 1909 set80211tsn(const char *val, int d, int s, const struct afswtch *rafp) 1910 { 1911 set80211(s, IEEE80211_IOC_TSN, d, 0, NULL); 1912 } 1913 1914 static void 1915 set80211dotd(const char *val, int d, int s, const struct afswtch *rafp) 1916 { 1917 set80211(s, IEEE80211_IOC_DOTD, d, 0, NULL); 1918 } 1919 1920 static void 1921 set80211smps(const char *val, int d, int s, const struct afswtch *rafp) 1922 { 1923 set80211(s, IEEE80211_IOC_SMPS, d, 0, NULL); 1924 } 1925 1926 static void 1927 set80211rifs(const char *val, int d, int s, const struct afswtch *rafp) 1928 { 1929 set80211(s, IEEE80211_IOC_RIFS, d, 0, NULL); 1930 } 1931 1932 static void 1933 set80211vhtconf(const char *val, int d, int s, const struct afswtch *rafp) 1934 { 1935 if (get80211val(s, IEEE80211_IOC_VHTCONF, &vhtconf) < 0) 1936 errx(-1, "cannot set VHT setting"); 1937 printf("%s: vhtconf=0x%08x, d=%d\n", __func__, vhtconf, d); 1938 if (d < 0) { 1939 d = -d; 1940 vhtconf &= ~d; 1941 } else 1942 vhtconf |= d; 1943 printf("%s: vhtconf is now 0x%08x\n", __func__, vhtconf); 1944 set80211(s, IEEE80211_IOC_VHTCONF, vhtconf, 0, NULL); 1945 } 1946 1947 static 1948 DECL_CMD_FUNC(set80211tdmaslot, val, d) 1949 { 1950 set80211(s, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL); 1951 } 1952 1953 static 1954 DECL_CMD_FUNC(set80211tdmaslotcnt, val, d) 1955 { 1956 set80211(s, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL); 1957 } 1958 1959 static 1960 DECL_CMD_FUNC(set80211tdmaslotlen, val, d) 1961 { 1962 set80211(s, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL); 1963 } 1964 1965 static 1966 DECL_CMD_FUNC(set80211tdmabintval, val, d) 1967 { 1968 set80211(s, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL); 1969 } 1970 1971 static 1972 DECL_CMD_FUNC(set80211meshttl, val, d) 1973 { 1974 set80211(s, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL); 1975 } 1976 1977 static 1978 DECL_CMD_FUNC(set80211meshforward, val, d) 1979 { 1980 set80211(s, IEEE80211_IOC_MESH_FWRD, d, 0, NULL); 1981 } 1982 1983 static 1984 DECL_CMD_FUNC(set80211meshgate, val, d) 1985 { 1986 set80211(s, IEEE80211_IOC_MESH_GATE, d, 0, NULL); 1987 } 1988 1989 static 1990 DECL_CMD_FUNC(set80211meshpeering, val, d) 1991 { 1992 set80211(s, IEEE80211_IOC_MESH_AP, d, 0, NULL); 1993 } 1994 1995 static 1996 DECL_CMD_FUNC(set80211meshmetric, val, d) 1997 { 1998 char v[12]; 1999 2000 memcpy(v, val, sizeof(v)); 2001 set80211(s, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v); 2002 } 2003 2004 static 2005 DECL_CMD_FUNC(set80211meshpath, val, d) 2006 { 2007 char v[12]; 2008 2009 memcpy(v, val, sizeof(v)); 2010 set80211(s, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v); 2011 } 2012 2013 static int 2014 regdomain_sort(const void *a, const void *b) 2015 { 2016 #define CHAN_ALL \ 2017 (IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER) 2018 const struct ieee80211_channel *ca = a; 2019 const struct ieee80211_channel *cb = b; 2020 2021 return ca->ic_freq == cb->ic_freq ? 2022 (ca->ic_flags & CHAN_ALL) - (cb->ic_flags & CHAN_ALL) : 2023 ca->ic_freq - cb->ic_freq; 2024 #undef CHAN_ALL 2025 } 2026 2027 static const struct ieee80211_channel * 2028 chanlookup(const struct ieee80211_channel chans[], int nchans, 2029 int freq, int flags) 2030 { 2031 int i; 2032 2033 flags &= IEEE80211_CHAN_ALLTURBO; 2034 for (i = 0; i < nchans; i++) { 2035 const struct ieee80211_channel *c = &chans[i]; 2036 if (c->ic_freq == freq && 2037 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 2038 return c; 2039 } 2040 return NULL; 2041 } 2042 2043 static int 2044 chanfind(const struct ieee80211_channel chans[], int nchans, int flags) 2045 { 2046 int i; 2047 2048 for (i = 0; i < nchans; i++) { 2049 const struct ieee80211_channel *c = &chans[i]; 2050 if ((c->ic_flags & flags) == flags) 2051 return 1; 2052 } 2053 return 0; 2054 } 2055 2056 /* 2057 * Check channel compatibility. 2058 */ 2059 static int 2060 checkchan(const struct ieee80211req_chaninfo *avail, int freq, int flags) 2061 { 2062 flags &= ~REQ_FLAGS; 2063 /* 2064 * Check if exact channel is in the calibration table; 2065 * everything below is to deal with channels that we 2066 * want to include but that are not explicitly listed. 2067 */ 2068 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL) 2069 return 1; 2070 if (flags & IEEE80211_CHAN_GSM) { 2071 /* 2072 * XXX GSM frequency mapping is handled in the kernel 2073 * so we cannot find them in the calibration table; 2074 * just accept the channel and the kernel will reject 2075 * the channel list if it's wrong. 2076 */ 2077 return 1; 2078 } 2079 /* 2080 * If this is a 1/2 or 1/4 width channel allow it if a full 2081 * width channel is present for this frequency, and the device 2082 * supports fractional channels on this band. This is a hack 2083 * that avoids bloating the calibration table; it may be better 2084 * by per-band attributes though (we are effectively calculating 2085 * this attribute by scanning the channel list ourself). 2086 */ 2087 if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0) 2088 return 0; 2089 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, 2090 flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL) 2091 return 0; 2092 if (flags & IEEE80211_CHAN_HALF) { 2093 return chanfind(avail->ic_chans, avail->ic_nchans, 2094 IEEE80211_CHAN_HALF | 2095 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 2096 } else { 2097 return chanfind(avail->ic_chans, avail->ic_nchans, 2098 IEEE80211_CHAN_QUARTER | 2099 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 2100 } 2101 } 2102 2103 static void 2104 regdomain_addchans(struct ieee80211req_chaninfo *ci, 2105 const netband_head *bands, 2106 const struct ieee80211_regdomain *reg, 2107 uint32_t chanFlags, 2108 const struct ieee80211req_chaninfo *avail) 2109 { 2110 const struct netband *nb; 2111 const struct freqband *b; 2112 struct ieee80211_channel *c, *prev; 2113 int freq, hi_adj, lo_adj, channelSep; 2114 uint32_t flags; 2115 2116 hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0; 2117 lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0; 2118 channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40; 2119 2120 LIST_FOREACH(nb, bands, next) { 2121 b = nb->band; 2122 if (verbose) { 2123 printf("%s:", __func__); 2124 printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS); 2125 printb(" bandFlags", nb->flags | b->flags, 2126 IEEE80211_CHAN_BITS); 2127 putchar('\n'); 2128 } 2129 prev = NULL; 2130 2131 for (freq = b->freqStart + lo_adj; 2132 freq <= b->freqEnd + hi_adj; freq += b->chanSep) { 2133 /* 2134 * Construct flags for the new channel. We take 2135 * the attributes from the band descriptions except 2136 * for HT40 which is enabled generically (i.e. +/- 2137 * extension channel) in the band description and 2138 * then constrained according by channel separation. 2139 */ 2140 flags = nb->flags | b->flags; 2141 2142 /* 2143 * VHT first - HT is a subset. 2144 * 2145 * XXX TODO: VHT80p80, VHT160 is not yet done. 2146 */ 2147 if (flags & IEEE80211_CHAN_VHT) { 2148 if ((chanFlags & IEEE80211_CHAN_VHT20) && 2149 (flags & IEEE80211_CHAN_VHT20) == 0) { 2150 if (verbose) 2151 printf("%u: skip, not a " 2152 "VHT20 channel\n", freq); 2153 continue; 2154 } 2155 if ((chanFlags & IEEE80211_CHAN_VHT40) && 2156 (flags & IEEE80211_CHAN_VHT40) == 0) { 2157 if (verbose) 2158 printf("%u: skip, not a " 2159 "VHT40 channel\n", freq); 2160 continue; 2161 } 2162 if ((chanFlags & IEEE80211_CHAN_VHT80) && 2163 (flags & IEEE80211_CHAN_VHT80) == 0) { 2164 if (verbose) 2165 printf("%u: skip, not a " 2166 "VHT80 channel\n", freq); 2167 continue; 2168 } 2169 2170 flags &= ~IEEE80211_CHAN_VHT; 2171 flags |= chanFlags & IEEE80211_CHAN_VHT; 2172 } 2173 2174 /* Now, constrain HT */ 2175 if (flags & IEEE80211_CHAN_HT) { 2176 /* 2177 * HT channels are generated specially; we're 2178 * called to add HT20, HT40+, and HT40- chan's 2179 * so we need to expand only band specs for 2180 * the HT channel type being added. 2181 */ 2182 if ((chanFlags & IEEE80211_CHAN_HT20) && 2183 (flags & IEEE80211_CHAN_HT20) == 0) { 2184 if (verbose) 2185 printf("%u: skip, not an " 2186 "HT20 channel\n", freq); 2187 continue; 2188 } 2189 if ((chanFlags & IEEE80211_CHAN_HT40) && 2190 (flags & IEEE80211_CHAN_HT40) == 0) { 2191 if (verbose) 2192 printf("%u: skip, not an " 2193 "HT40 channel\n", freq); 2194 continue; 2195 } 2196 /* NB: HT attribute comes from caller */ 2197 flags &= ~IEEE80211_CHAN_HT; 2198 flags |= chanFlags & IEEE80211_CHAN_HT; 2199 } 2200 /* 2201 * Check if device can operate on this frequency. 2202 */ 2203 if (!checkchan(avail, freq, flags)) { 2204 if (verbose) { 2205 printf("%u: skip, ", freq); 2206 printb("flags", flags, 2207 IEEE80211_CHAN_BITS); 2208 printf(" not available\n"); 2209 } 2210 continue; 2211 } 2212 if ((flags & REQ_ECM) && !reg->ecm) { 2213 if (verbose) 2214 printf("%u: skip, ECM channel\n", freq); 2215 continue; 2216 } 2217 if ((flags & REQ_INDOOR) && reg->location == 'O') { 2218 if (verbose) 2219 printf("%u: skip, indoor channel\n", 2220 freq); 2221 continue; 2222 } 2223 if ((flags & REQ_OUTDOOR) && reg->location == 'I') { 2224 if (verbose) 2225 printf("%u: skip, outdoor channel\n", 2226 freq); 2227 continue; 2228 } 2229 if ((flags & IEEE80211_CHAN_HT40) && 2230 prev != NULL && (freq - prev->ic_freq) < channelSep) { 2231 if (verbose) 2232 printf("%u: skip, only %u channel " 2233 "separation, need %d\n", freq, 2234 freq - prev->ic_freq, channelSep); 2235 continue; 2236 } 2237 if (ci->ic_nchans == IEEE80211_CHAN_MAX) { 2238 if (verbose) 2239 printf("%u: skip, channel table full\n", 2240 freq); 2241 break; 2242 } 2243 c = &ci->ic_chans[ci->ic_nchans++]; 2244 memset(c, 0, sizeof(*c)); 2245 c->ic_freq = freq; 2246 c->ic_flags = flags; 2247 if (c->ic_flags & IEEE80211_CHAN_DFS) 2248 c->ic_maxregpower = nb->maxPowerDFS; 2249 else 2250 c->ic_maxregpower = nb->maxPower; 2251 if (verbose) { 2252 printf("[%3d] add freq %u ", 2253 ci->ic_nchans-1, c->ic_freq); 2254 printb("flags", c->ic_flags, IEEE80211_CHAN_BITS); 2255 printf(" power %u\n", c->ic_maxregpower); 2256 } 2257 /* NB: kernel fills in other fields */ 2258 prev = c; 2259 } 2260 } 2261 } 2262 2263 static void 2264 regdomain_makechannels( 2265 struct ieee80211_regdomain_req *req, 2266 const struct ieee80211_devcaps_req *dc) 2267 { 2268 struct regdata *rdp = getregdata(); 2269 const struct country *cc; 2270 const struct ieee80211_regdomain *reg = &req->rd; 2271 struct ieee80211req_chaninfo *ci = &req->chaninfo; 2272 const struct regdomain *rd; 2273 2274 /* 2275 * Locate construction table for new channel list. We treat 2276 * the regdomain/SKU as definitive so a country can be in 2277 * multiple with different properties (e.g. US in FCC+FCC3). 2278 * If no regdomain is specified then we fallback on the country 2279 * code to find the associated regdomain since countries always 2280 * belong to at least one regdomain. 2281 */ 2282 if (reg->regdomain == 0) { 2283 cc = lib80211_country_findbycc(rdp, reg->country); 2284 if (cc == NULL) 2285 errx(1, "internal error, country %d not found", 2286 reg->country); 2287 rd = cc->rd; 2288 } else 2289 rd = lib80211_regdomain_findbysku(rdp, reg->regdomain); 2290 if (rd == NULL) 2291 errx(1, "internal error, regdomain %d not found", 2292 reg->regdomain); 2293 if (rd->sku != SKU_DEBUG) { 2294 /* 2295 * regdomain_addchans incrememnts the channel count for 2296 * each channel it adds so initialize ic_nchans to zero. 2297 * Note that we know we have enough space to hold all possible 2298 * channels because the devcaps list size was used to 2299 * allocate our request. 2300 */ 2301 ci->ic_nchans = 0; 2302 if (!LIST_EMPTY(&rd->bands_11b)) 2303 regdomain_addchans(ci, &rd->bands_11b, reg, 2304 IEEE80211_CHAN_B, &dc->dc_chaninfo); 2305 if (!LIST_EMPTY(&rd->bands_11g)) 2306 regdomain_addchans(ci, &rd->bands_11g, reg, 2307 IEEE80211_CHAN_G, &dc->dc_chaninfo); 2308 if (!LIST_EMPTY(&rd->bands_11a)) 2309 regdomain_addchans(ci, &rd->bands_11a, reg, 2310 IEEE80211_CHAN_A, &dc->dc_chaninfo); 2311 if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) { 2312 regdomain_addchans(ci, &rd->bands_11na, reg, 2313 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20, 2314 &dc->dc_chaninfo); 2315 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2316 regdomain_addchans(ci, &rd->bands_11na, reg, 2317 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U, 2318 &dc->dc_chaninfo); 2319 regdomain_addchans(ci, &rd->bands_11na, reg, 2320 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D, 2321 &dc->dc_chaninfo); 2322 } 2323 } 2324 if (!LIST_EMPTY(&rd->bands_11ac) && dc->dc_vhtcaps != 0) { 2325 regdomain_addchans(ci, &rd->bands_11ac, reg, 2326 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 2327 IEEE80211_CHAN_VHT20, 2328 &dc->dc_chaninfo); 2329 2330 /* VHT40 is a function of HT40.. */ 2331 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2332 regdomain_addchans(ci, &rd->bands_11ac, reg, 2333 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 2334 IEEE80211_CHAN_VHT40U, 2335 &dc->dc_chaninfo); 2336 regdomain_addchans(ci, &rd->bands_11ac, reg, 2337 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 2338 IEEE80211_CHAN_VHT40D, 2339 &dc->dc_chaninfo); 2340 } 2341 2342 /* VHT80 */ 2343 /* XXX dc_vhtcap? */ 2344 if (1) { 2345 regdomain_addchans(ci, &rd->bands_11ac, reg, 2346 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 2347 IEEE80211_CHAN_VHT80, 2348 &dc->dc_chaninfo); 2349 regdomain_addchans(ci, &rd->bands_11ac, reg, 2350 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 2351 IEEE80211_CHAN_VHT80, 2352 &dc->dc_chaninfo); 2353 } 2354 2355 /* XXX TODO: VHT80_80, VHT160 */ 2356 } 2357 2358 if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) { 2359 regdomain_addchans(ci, &rd->bands_11ng, reg, 2360 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20, 2361 &dc->dc_chaninfo); 2362 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2363 regdomain_addchans(ci, &rd->bands_11ng, reg, 2364 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U, 2365 &dc->dc_chaninfo); 2366 regdomain_addchans(ci, &rd->bands_11ng, reg, 2367 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D, 2368 &dc->dc_chaninfo); 2369 } 2370 } 2371 qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]), 2372 regdomain_sort); 2373 } else 2374 memcpy(ci, &dc->dc_chaninfo, 2375 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 2376 } 2377 2378 static void 2379 list_countries(void) 2380 { 2381 struct regdata *rdp = getregdata(); 2382 const struct country *cp; 2383 const struct regdomain *dp; 2384 int i; 2385 2386 i = 0; 2387 printf("\nCountry codes:\n"); 2388 LIST_FOREACH(cp, &rdp->countries, next) { 2389 printf("%2s %-15.15s%s", cp->isoname, 2390 cp->name, ((i+1)%4) == 0 ? "\n" : " "); 2391 i++; 2392 } 2393 i = 0; 2394 printf("\nRegulatory domains:\n"); 2395 LIST_FOREACH(dp, &rdp->domains, next) { 2396 printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " "); 2397 i++; 2398 } 2399 printf("\n"); 2400 } 2401 2402 static void 2403 defaultcountry(const struct regdomain *rd) 2404 { 2405 struct regdata *rdp = getregdata(); 2406 const struct country *cc; 2407 2408 cc = lib80211_country_findbycc(rdp, rd->cc->code); 2409 if (cc == NULL) 2410 errx(1, "internal error, ISO country code %d not " 2411 "defined for regdomain %s", rd->cc->code, rd->name); 2412 regdomain.country = cc->code; 2413 regdomain.isocc[0] = cc->isoname[0]; 2414 regdomain.isocc[1] = cc->isoname[1]; 2415 } 2416 2417 static 2418 DECL_CMD_FUNC(set80211regdomain, val, d) 2419 { 2420 struct regdata *rdp = getregdata(); 2421 const struct regdomain *rd; 2422 2423 rd = lib80211_regdomain_findbyname(rdp, val); 2424 if (rd == NULL) { 2425 char *eptr; 2426 long sku = strtol(val, &eptr, 0); 2427 2428 if (eptr != val) 2429 rd = lib80211_regdomain_findbysku(rdp, sku); 2430 if (eptr == val || rd == NULL) 2431 errx(1, "unknown regdomain %s", val); 2432 } 2433 getregdomain(s); 2434 regdomain.regdomain = rd->sku; 2435 if (regdomain.country == 0 && rd->cc != NULL) { 2436 /* 2437 * No country code setup and there's a default 2438 * one for this regdomain fill it in. 2439 */ 2440 defaultcountry(rd); 2441 } 2442 callback_register(setregdomain_cb, ®domain); 2443 } 2444 2445 static 2446 DECL_CMD_FUNC(set80211country, val, d) 2447 { 2448 struct regdata *rdp = getregdata(); 2449 const struct country *cc; 2450 2451 cc = lib80211_country_findbyname(rdp, val); 2452 if (cc == NULL) { 2453 char *eptr; 2454 long code = strtol(val, &eptr, 0); 2455 2456 if (eptr != val) 2457 cc = lib80211_country_findbycc(rdp, code); 2458 if (eptr == val || cc == NULL) 2459 errx(1, "unknown ISO country code %s", val); 2460 } 2461 getregdomain(s); 2462 regdomain.regdomain = cc->rd->sku; 2463 regdomain.country = cc->code; 2464 regdomain.isocc[0] = cc->isoname[0]; 2465 regdomain.isocc[1] = cc->isoname[1]; 2466 callback_register(setregdomain_cb, ®domain); 2467 } 2468 2469 static void 2470 set80211location(const char *val, int d, int s, const struct afswtch *rafp) 2471 { 2472 getregdomain(s); 2473 regdomain.location = d; 2474 callback_register(setregdomain_cb, ®domain); 2475 } 2476 2477 static void 2478 set80211ecm(const char *val, int d, int s, const struct afswtch *rafp) 2479 { 2480 getregdomain(s); 2481 regdomain.ecm = d; 2482 callback_register(setregdomain_cb, ®domain); 2483 } 2484 2485 static void 2486 LINE_INIT(char c) 2487 { 2488 spacer = c; 2489 if (c == '\t') 2490 col = 8; 2491 else 2492 col = 1; 2493 } 2494 2495 static void 2496 LINE_BREAK(void) 2497 { 2498 if (spacer != '\t') { 2499 printf("\n"); 2500 spacer = '\t'; 2501 } 2502 col = 8; /* 8-col tab */ 2503 } 2504 2505 static void 2506 LINE_CHECK(const char *fmt, ...) 2507 { 2508 char buf[80]; 2509 va_list ap; 2510 int n; 2511 2512 va_start(ap, fmt); 2513 n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap); 2514 va_end(ap); 2515 col += 1+n; 2516 if (col > MAXCOL) { 2517 LINE_BREAK(); 2518 col += n; 2519 } 2520 buf[0] = spacer; 2521 printf("%s", buf); 2522 spacer = ' '; 2523 } 2524 2525 static int 2526 getmaxrate(const uint8_t rates[15], uint8_t nrates) 2527 { 2528 int i, maxrate = -1; 2529 2530 for (i = 0; i < nrates; i++) { 2531 int rate = rates[i] & IEEE80211_RATE_VAL; 2532 if (rate > maxrate) 2533 maxrate = rate; 2534 } 2535 return maxrate / 2; 2536 } 2537 2538 static const char * 2539 getcaps(int capinfo) 2540 { 2541 static char capstring[32]; 2542 char *cp = capstring; 2543 2544 if (capinfo & IEEE80211_CAPINFO_ESS) 2545 *cp++ = 'E'; 2546 if (capinfo & IEEE80211_CAPINFO_IBSS) 2547 *cp++ = 'I'; 2548 if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE) 2549 *cp++ = 'c'; 2550 if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ) 2551 *cp++ = 'C'; 2552 if (capinfo & IEEE80211_CAPINFO_PRIVACY) 2553 *cp++ = 'P'; 2554 if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) 2555 *cp++ = 'S'; 2556 if (capinfo & IEEE80211_CAPINFO_PBCC) 2557 *cp++ = 'B'; 2558 if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY) 2559 *cp++ = 'A'; 2560 if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2561 *cp++ = 's'; 2562 if (capinfo & IEEE80211_CAPINFO_RSN) 2563 *cp++ = 'R'; 2564 if (capinfo & IEEE80211_CAPINFO_DSSSOFDM) 2565 *cp++ = 'D'; 2566 *cp = '\0'; 2567 return capstring; 2568 } 2569 2570 static const char * 2571 getflags(int flags) 2572 { 2573 static char flagstring[32]; 2574 char *cp = flagstring; 2575 2576 if (flags & IEEE80211_NODE_AUTH) 2577 *cp++ = 'A'; 2578 if (flags & IEEE80211_NODE_QOS) 2579 *cp++ = 'Q'; 2580 if (flags & IEEE80211_NODE_ERP) 2581 *cp++ = 'E'; 2582 if (flags & IEEE80211_NODE_PWR_MGT) 2583 *cp++ = 'P'; 2584 if (flags & IEEE80211_NODE_HT) { 2585 *cp++ = 'H'; 2586 if (flags & IEEE80211_NODE_HTCOMPAT) 2587 *cp++ = '+'; 2588 } 2589 if (flags & IEEE80211_NODE_VHT) 2590 *cp++ = 'V'; 2591 if (flags & IEEE80211_NODE_WPS) 2592 *cp++ = 'W'; 2593 if (flags & IEEE80211_NODE_TSN) 2594 *cp++ = 'N'; 2595 if (flags & IEEE80211_NODE_AMPDU_TX) 2596 *cp++ = 'T'; 2597 if (flags & IEEE80211_NODE_AMPDU_RX) 2598 *cp++ = 'R'; 2599 if (flags & IEEE80211_NODE_MIMO_PS) { 2600 *cp++ = 'M'; 2601 if (flags & IEEE80211_NODE_MIMO_RTS) 2602 *cp++ = '+'; 2603 } 2604 if (flags & IEEE80211_NODE_RIFS) 2605 *cp++ = 'I'; 2606 if (flags & IEEE80211_NODE_SGI40) { 2607 *cp++ = 'S'; 2608 if (flags & IEEE80211_NODE_SGI20) 2609 *cp++ = '+'; 2610 } else if (flags & IEEE80211_NODE_SGI20) 2611 *cp++ = 's'; 2612 if (flags & IEEE80211_NODE_AMSDU_TX) 2613 *cp++ = 't'; 2614 if (flags & IEEE80211_NODE_AMSDU_RX) 2615 *cp++ = 'r'; 2616 *cp = '\0'; 2617 return flagstring; 2618 } 2619 2620 static void 2621 printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen) 2622 { 2623 printf("%s", tag); 2624 if (verbose) { 2625 maxlen -= strlen(tag)+2; 2626 if (2*ielen > maxlen) 2627 maxlen--; 2628 printf("<"); 2629 for (; ielen > 0; ie++, ielen--) { 2630 if (maxlen-- <= 0) 2631 break; 2632 printf("%02x", *ie); 2633 } 2634 if (ielen != 0) 2635 printf("-"); 2636 printf(">"); 2637 } 2638 } 2639 2640 #define LE_READ_2(p) \ 2641 ((u_int16_t) \ 2642 ((((const u_int8_t *)(p))[0] ) | \ 2643 (((const u_int8_t *)(p))[1] << 8))) 2644 #define LE_READ_4(p) \ 2645 ((u_int32_t) \ 2646 ((((const u_int8_t *)(p))[0] ) | \ 2647 (((const u_int8_t *)(p))[1] << 8) | \ 2648 (((const u_int8_t *)(p))[2] << 16) | \ 2649 (((const u_int8_t *)(p))[3] << 24))) 2650 2651 /* 2652 * NB: The decoding routines assume a properly formatted ie 2653 * which should be safe as the kernel only retains them 2654 * if they parse ok. 2655 */ 2656 2657 static void 2658 printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2659 { 2660 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2661 static const char *acnames[] = { "BE", "BK", "VO", "VI" }; 2662 const struct ieee80211_wme_param *wme = 2663 (const struct ieee80211_wme_param *) ie; 2664 int i; 2665 2666 printf("%s", tag); 2667 if (!verbose) 2668 return; 2669 printf("<qosinfo 0x%x", wme->param_qosInfo); 2670 ie += offsetof(struct ieee80211_wme_param, params_acParams); 2671 for (i = 0; i < WME_NUM_AC; i++) { 2672 const struct ieee80211_wme_acparams *ac = 2673 &wme->params_acParams[i]; 2674 2675 printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]" 2676 , acnames[i] 2677 , MS(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : "" 2678 , MS(ac->acp_aci_aifsn, WME_PARAM_AIFSN) 2679 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN) 2680 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX) 2681 , LE_READ_2(&ac->acp_txop) 2682 ); 2683 } 2684 printf(">"); 2685 #undef MS 2686 } 2687 2688 static void 2689 printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2690 { 2691 printf("%s", tag); 2692 if (verbose) { 2693 const struct ieee80211_wme_info *wme = 2694 (const struct ieee80211_wme_info *) ie; 2695 printf("<version 0x%x info 0x%x>", 2696 wme->wme_version, wme->wme_info); 2697 } 2698 } 2699 2700 static void 2701 printvhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2702 { 2703 printf("%s", tag); 2704 if (verbose) { 2705 const struct ieee80211_ie_vhtcap *vhtcap = 2706 (const struct ieee80211_ie_vhtcap *) ie; 2707 uint32_t vhtcap_info = LE_READ_4(&vhtcap->vht_cap_info); 2708 2709 printf("<cap 0x%08x", vhtcap_info); 2710 printf(" rx_mcs_map 0x%x", 2711 LE_READ_2(&vhtcap->supp_mcs.rx_mcs_map)); 2712 printf(" rx_highest %d", 2713 LE_READ_2(&vhtcap->supp_mcs.rx_highest) & 0x1fff); 2714 printf(" tx_mcs_map 0x%x", 2715 LE_READ_2(&vhtcap->supp_mcs.tx_mcs_map)); 2716 printf(" tx_highest %d", 2717 LE_READ_2(&vhtcap->supp_mcs.tx_highest) & 0x1fff); 2718 2719 printf(">"); 2720 } 2721 } 2722 2723 static void 2724 printvhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2725 { 2726 printf("%s", tag); 2727 if (verbose) { 2728 const struct ieee80211_ie_vht_operation *vhtinfo = 2729 (const struct ieee80211_ie_vht_operation *) ie; 2730 2731 printf("<chw %d freq1_idx %d freq2_idx %d basic_mcs_set 0x%04x>", 2732 vhtinfo->chan_width, 2733 vhtinfo->center_freq_seg1_idx, 2734 vhtinfo->center_freq_seg2_idx, 2735 LE_READ_2(&vhtinfo->basic_mcs_set)); 2736 } 2737 } 2738 2739 static void 2740 printvhtpwrenv(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2741 { 2742 printf("%s", tag); 2743 static const char *txpwrmap[] = { 2744 "20", 2745 "40", 2746 "80", 2747 "160", 2748 }; 2749 if (verbose) { 2750 const struct ieee80211_ie_vht_txpwrenv *vhtpwr = 2751 (const struct ieee80211_ie_vht_txpwrenv *) ie; 2752 int i, n; 2753 const char *sep = ""; 2754 2755 /* Get count; trim at ielen */ 2756 n = (vhtpwr->tx_info & 2757 IEEE80211_VHT_TXPWRENV_INFO_COUNT_MASK) + 1; 2758 /* Trim at ielen */ 2759 if (n > ielen - 3) 2760 n = ielen - 3; 2761 printf("<tx_info 0x%02x pwr:[", vhtpwr->tx_info); 2762 for (i = 0; i < n; i++) { 2763 printf("%s%s:%.2f", sep, txpwrmap[i], 2764 ((float) ((int8_t) ie[i+3])) / 2.0); 2765 sep = " "; 2766 } 2767 2768 printf("]>"); 2769 } 2770 } 2771 2772 static void 2773 printhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2774 { 2775 printf("%s", tag); 2776 if (verbose) { 2777 const struct ieee80211_ie_htcap *htcap = 2778 (const struct ieee80211_ie_htcap *) ie; 2779 const char *sep; 2780 int i, j; 2781 2782 printf("<cap 0x%x param 0x%x", 2783 LE_READ_2(&htcap->hc_cap), htcap->hc_param); 2784 printf(" mcsset["); 2785 sep = ""; 2786 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2787 if (isset(htcap->hc_mcsset, i)) { 2788 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2789 if (isclr(htcap->hc_mcsset, j)) 2790 break; 2791 j--; 2792 if (i == j) 2793 printf("%s%u", sep, i); 2794 else 2795 printf("%s%u-%u", sep, i, j); 2796 i += j-i; 2797 sep = ","; 2798 } 2799 printf("] extcap 0x%x txbf 0x%x antenna 0x%x>", 2800 LE_READ_2(&htcap->hc_extcap), 2801 LE_READ_4(&htcap->hc_txbf), 2802 htcap->hc_antenna); 2803 } 2804 } 2805 2806 static void 2807 printhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2808 { 2809 printf("%s", tag); 2810 if (verbose) { 2811 const struct ieee80211_ie_htinfo *htinfo = 2812 (const struct ieee80211_ie_htinfo *) ie; 2813 const char *sep; 2814 int i, j; 2815 2816 printf("<ctl %u, %x,%x,%x,%x", htinfo->hi_ctrlchannel, 2817 htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3, 2818 LE_READ_2(&htinfo->hi_byte45)); 2819 printf(" basicmcs["); 2820 sep = ""; 2821 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2822 if (isset(htinfo->hi_basicmcsset, i)) { 2823 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2824 if (isclr(htinfo->hi_basicmcsset, j)) 2825 break; 2826 j--; 2827 if (i == j) 2828 printf("%s%u", sep, i); 2829 else 2830 printf("%s%u-%u", sep, i, j); 2831 i += j-i; 2832 sep = ","; 2833 } 2834 printf("]>"); 2835 } 2836 } 2837 2838 static void 2839 printathie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2840 { 2841 2842 printf("%s", tag); 2843 if (verbose) { 2844 const struct ieee80211_ath_ie *ath = 2845 (const struct ieee80211_ath_ie *)ie; 2846 2847 printf("<"); 2848 if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME) 2849 printf("DTURBO,"); 2850 if (ath->ath_capability & ATHEROS_CAP_COMPRESSION) 2851 printf("COMP,"); 2852 if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME) 2853 printf("FF,"); 2854 if (ath->ath_capability & ATHEROS_CAP_XR) 2855 printf("XR,"); 2856 if (ath->ath_capability & ATHEROS_CAP_AR) 2857 printf("AR,"); 2858 if (ath->ath_capability & ATHEROS_CAP_BURST) 2859 printf("BURST,"); 2860 if (ath->ath_capability & ATHEROS_CAP_WME) 2861 printf("WME,"); 2862 if (ath->ath_capability & ATHEROS_CAP_BOOST) 2863 printf("BOOST,"); 2864 printf("0x%x>", LE_READ_2(ath->ath_defkeyix)); 2865 } 2866 } 2867 2868 2869 static void 2870 printmeshconf(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) 2871 { 2872 2873 printf("%s", tag); 2874 if (verbose) { 2875 const struct ieee80211_meshconf_ie *mconf = 2876 (const struct ieee80211_meshconf_ie *)ie; 2877 printf("<PATH:"); 2878 if (mconf->conf_pselid == IEEE80211_MESHCONF_PATH_HWMP) 2879 printf("HWMP"); 2880 else 2881 printf("UNKNOWN"); 2882 printf(" LINK:"); 2883 if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME) 2884 printf("AIRTIME"); 2885 else 2886 printf("UNKNOWN"); 2887 printf(" CONGESTION:"); 2888 if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED) 2889 printf("DISABLED"); 2890 else 2891 printf("UNKNOWN"); 2892 printf(" SYNC:"); 2893 if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF) 2894 printf("NEIGHOFF"); 2895 else 2896 printf("UNKNOWN"); 2897 printf(" AUTH:"); 2898 if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED) 2899 printf("DISABLED"); 2900 else 2901 printf("UNKNOWN"); 2902 printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form, 2903 mconf->conf_cap); 2904 } 2905 } 2906 2907 static void 2908 printbssload(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) 2909 { 2910 printf("%s", tag); 2911 if (verbose) { 2912 const struct ieee80211_bss_load_ie *bssload = 2913 (const struct ieee80211_bss_load_ie *) ie; 2914 printf("<sta count %d, chan load %d, aac %d>", 2915 LE_READ_2(&bssload->sta_count), 2916 bssload->chan_load, 2917 bssload->aac); 2918 } 2919 } 2920 2921 static void 2922 printapchanrep(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2923 { 2924 printf("%s", tag); 2925 if (verbose) { 2926 const struct ieee80211_ap_chan_report_ie *ap = 2927 (const struct ieee80211_ap_chan_report_ie *) ie; 2928 const char *sep = ""; 2929 int i; 2930 2931 printf("<class %u, chan:[", ap->i_class); 2932 2933 for (i = 3; i < ielen; i++) { 2934 printf("%s%u", sep, ie[i]); 2935 sep = ","; 2936 } 2937 printf("]>"); 2938 } 2939 } 2940 2941 static const char * 2942 wpa_cipher(const u_int8_t *sel) 2943 { 2944 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2945 u_int32_t w = LE_READ_4(sel); 2946 2947 switch (w) { 2948 case WPA_SEL(WPA_CSE_NULL): 2949 return "NONE"; 2950 case WPA_SEL(WPA_CSE_WEP40): 2951 return "WEP40"; 2952 case WPA_SEL(WPA_CSE_WEP104): 2953 return "WEP104"; 2954 case WPA_SEL(WPA_CSE_TKIP): 2955 return "TKIP"; 2956 case WPA_SEL(WPA_CSE_CCMP): 2957 return "AES-CCMP"; 2958 } 2959 return "?"; /* NB: so 1<< is discarded */ 2960 #undef WPA_SEL 2961 } 2962 2963 static const char * 2964 wpa_keymgmt(const u_int8_t *sel) 2965 { 2966 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2967 u_int32_t w = LE_READ_4(sel); 2968 2969 switch (w) { 2970 case WPA_SEL(WPA_ASE_8021X_UNSPEC): 2971 return "8021X-UNSPEC"; 2972 case WPA_SEL(WPA_ASE_8021X_PSK): 2973 return "8021X-PSK"; 2974 case WPA_SEL(WPA_ASE_NONE): 2975 return "NONE"; 2976 } 2977 return "?"; 2978 #undef WPA_SEL 2979 } 2980 2981 static void 2982 printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2983 { 2984 u_int8_t len = ie[1]; 2985 2986 printf("%s", tag); 2987 if (verbose) { 2988 const char *sep; 2989 int n; 2990 2991 ie += 6, len -= 4; /* NB: len is payload only */ 2992 2993 printf("<v%u", LE_READ_2(ie)); 2994 ie += 2, len -= 2; 2995 2996 printf(" mc:%s", wpa_cipher(ie)); 2997 ie += 4, len -= 4; 2998 2999 /* unicast ciphers */ 3000 n = LE_READ_2(ie); 3001 ie += 2, len -= 2; 3002 sep = " uc:"; 3003 for (; n > 0; n--) { 3004 printf("%s%s", sep, wpa_cipher(ie)); 3005 ie += 4, len -= 4; 3006 sep = "+"; 3007 } 3008 3009 /* key management algorithms */ 3010 n = LE_READ_2(ie); 3011 ie += 2, len -= 2; 3012 sep = " km:"; 3013 for (; n > 0; n--) { 3014 printf("%s%s", sep, wpa_keymgmt(ie)); 3015 ie += 4, len -= 4; 3016 sep = "+"; 3017 } 3018 3019 if (len > 2) /* optional capabilities */ 3020 printf(", caps 0x%x", LE_READ_2(ie)); 3021 printf(">"); 3022 } 3023 } 3024 3025 static const char * 3026 rsn_cipher(const u_int8_t *sel) 3027 { 3028 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 3029 u_int32_t w = LE_READ_4(sel); 3030 3031 switch (w) { 3032 case RSN_SEL(RSN_CSE_NULL): 3033 return "NONE"; 3034 case RSN_SEL(RSN_CSE_WEP40): 3035 return "WEP40"; 3036 case RSN_SEL(RSN_CSE_WEP104): 3037 return "WEP104"; 3038 case RSN_SEL(RSN_CSE_TKIP): 3039 return "TKIP"; 3040 case RSN_SEL(RSN_CSE_CCMP): 3041 return "AES-CCMP"; 3042 case RSN_SEL(RSN_CSE_WRAP): 3043 return "AES-OCB"; 3044 } 3045 return "?"; 3046 #undef WPA_SEL 3047 } 3048 3049 static const char * 3050 rsn_keymgmt(const u_int8_t *sel) 3051 { 3052 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 3053 u_int32_t w = LE_READ_4(sel); 3054 3055 switch (w) { 3056 case RSN_SEL(RSN_ASE_8021X_UNSPEC): 3057 return "8021X-UNSPEC"; 3058 case RSN_SEL(RSN_ASE_8021X_PSK): 3059 return "8021X-PSK"; 3060 case RSN_SEL(RSN_ASE_NONE): 3061 return "NONE"; 3062 } 3063 return "?"; 3064 #undef RSN_SEL 3065 } 3066 3067 static void 3068 printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3069 { 3070 printf("%s", tag); 3071 if (verbose) { 3072 const char *sep; 3073 int n; 3074 3075 ie += 2, ielen -= 2; 3076 3077 printf("<v%u", LE_READ_2(ie)); 3078 ie += 2, ielen -= 2; 3079 3080 printf(" mc:%s", rsn_cipher(ie)); 3081 ie += 4, ielen -= 4; 3082 3083 /* unicast ciphers */ 3084 n = LE_READ_2(ie); 3085 ie += 2, ielen -= 2; 3086 sep = " uc:"; 3087 for (; n > 0; n--) { 3088 printf("%s%s", sep, rsn_cipher(ie)); 3089 ie += 4, ielen -= 4; 3090 sep = "+"; 3091 } 3092 3093 /* key management algorithms */ 3094 n = LE_READ_2(ie); 3095 ie += 2, ielen -= 2; 3096 sep = " km:"; 3097 for (; n > 0; n--) { 3098 printf("%s%s", sep, rsn_keymgmt(ie)); 3099 ie += 4, ielen -= 4; 3100 sep = "+"; 3101 } 3102 3103 if (ielen > 2) /* optional capabilities */ 3104 printf(", caps 0x%x", LE_READ_2(ie)); 3105 /* XXXPMKID */ 3106 printf(">"); 3107 } 3108 } 3109 3110 /* XXX move to a public include file */ 3111 #define IEEE80211_WPS_DEV_PASS_ID 0x1012 3112 #define IEEE80211_WPS_SELECTED_REG 0x1041 3113 #define IEEE80211_WPS_SETUP_STATE 0x1044 3114 #define IEEE80211_WPS_UUID_E 0x1047 3115 #define IEEE80211_WPS_VERSION 0x104a 3116 3117 #define BE_READ_2(p) \ 3118 ((u_int16_t) \ 3119 ((((const u_int8_t *)(p))[1] ) | \ 3120 (((const u_int8_t *)(p))[0] << 8))) 3121 3122 static void 3123 printwpsie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3124 { 3125 u_int8_t len = ie[1]; 3126 3127 printf("%s", tag); 3128 if (verbose) { 3129 static const char *dev_pass_id[] = { 3130 "D", /* Default (PIN) */ 3131 "U", /* User-specified */ 3132 "M", /* Machine-specified */ 3133 "K", /* Rekey */ 3134 "P", /* PushButton */ 3135 "R" /* Registrar-specified */ 3136 }; 3137 int n; 3138 3139 ie +=6, len -= 4; /* NB: len is payload only */ 3140 3141 /* WPS IE in Beacon and Probe Resp frames have different fields */ 3142 printf("<"); 3143 while (len) { 3144 uint16_t tlv_type = BE_READ_2(ie); 3145 uint16_t tlv_len = BE_READ_2(ie + 2); 3146 3147 ie += 4, len -= 4; 3148 3149 switch (tlv_type) { 3150 case IEEE80211_WPS_VERSION: 3151 printf("v:%d.%d", *ie >> 4, *ie & 0xf); 3152 break; 3153 case IEEE80211_WPS_SETUP_STATE: 3154 /* Only 1 and 2 are valid */ 3155 if (*ie == 0 || *ie >= 3) 3156 printf(" state:B"); 3157 else 3158 printf(" st:%s", *ie == 1 ? "N" : "C"); 3159 break; 3160 case IEEE80211_WPS_SELECTED_REG: 3161 printf(" sel:%s", *ie ? "T" : "F"); 3162 break; 3163 case IEEE80211_WPS_DEV_PASS_ID: 3164 n = LE_READ_2(ie); 3165 if (n < nitems(dev_pass_id)) 3166 printf(" dpi:%s", dev_pass_id[n]); 3167 break; 3168 case IEEE80211_WPS_UUID_E: 3169 printf(" uuid-e:"); 3170 for (n = 0; n < (tlv_len - 1); n++) 3171 printf("%02x-", ie[n]); 3172 printf("%02x", ie[n]); 3173 break; 3174 } 3175 ie += tlv_len, len -= tlv_len; 3176 } 3177 printf(">"); 3178 } 3179 } 3180 3181 static void 3182 printtdmaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3183 { 3184 printf("%s", tag); 3185 if (verbose && ielen >= sizeof(struct ieee80211_tdma_param)) { 3186 const struct ieee80211_tdma_param *tdma = 3187 (const struct ieee80211_tdma_param *) ie; 3188 3189 /* XXX tstamp */ 3190 printf("<v%u slot:%u slotcnt:%u slotlen:%u bintval:%u inuse:0x%x>", 3191 tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt, 3192 LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval, 3193 tdma->tdma_inuse[0]); 3194 } 3195 } 3196 3197 /* 3198 * Copy the ssid string contents into buf, truncating to fit. If the 3199 * ssid is entirely printable then just copy intact. Otherwise convert 3200 * to hexadecimal. If the result is truncated then replace the last 3201 * three characters with "...". 3202 */ 3203 static int 3204 copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len) 3205 { 3206 const u_int8_t *p; 3207 size_t maxlen; 3208 u_int i; 3209 3210 if (essid_len > bufsize) 3211 maxlen = bufsize; 3212 else 3213 maxlen = essid_len; 3214 /* determine printable or not */ 3215 for (i = 0, p = essid; i < maxlen; i++, p++) { 3216 if (*p < ' ' || *p > 0x7e) 3217 break; 3218 } 3219 if (i != maxlen) { /* not printable, print as hex */ 3220 if (bufsize < 3) 3221 return 0; 3222 strlcpy(buf, "0x", bufsize); 3223 bufsize -= 2; 3224 p = essid; 3225 for (i = 0; i < maxlen && bufsize >= 2; i++) { 3226 sprintf(&buf[2+2*i], "%02x", p[i]); 3227 bufsize -= 2; 3228 } 3229 if (i != essid_len) 3230 memcpy(&buf[2+2*i-3], "...", 3); 3231 } else { /* printable, truncate as needed */ 3232 memcpy(buf, essid, maxlen); 3233 if (maxlen != essid_len) 3234 memcpy(&buf[maxlen-3], "...", 3); 3235 } 3236 return maxlen; 3237 } 3238 3239 static void 3240 printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3241 { 3242 char ssid[2*IEEE80211_NWID_LEN+1]; 3243 3244 printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid); 3245 } 3246 3247 static void 3248 printrates(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3249 { 3250 const char *sep; 3251 int i; 3252 3253 printf("%s", tag); 3254 sep = "<"; 3255 for (i = 2; i < ielen; i++) { 3256 printf("%s%s%d", sep, 3257 ie[i] & IEEE80211_RATE_BASIC ? "B" : "", 3258 ie[i] & IEEE80211_RATE_VAL); 3259 sep = ","; 3260 } 3261 printf(">"); 3262 } 3263 3264 static void 3265 printcountry(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3266 { 3267 const struct ieee80211_country_ie *cie = 3268 (const struct ieee80211_country_ie *) ie; 3269 int i, nbands, schan, nchan; 3270 3271 printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]); 3272 nbands = (cie->len - 3) / sizeof(cie->band[0]); 3273 for (i = 0; i < nbands; i++) { 3274 schan = cie->band[i].schan; 3275 nchan = cie->band[i].nchan; 3276 if (nchan != 1) 3277 printf(" %u-%u,%u", schan, schan + nchan-1, 3278 cie->band[i].maxtxpwr); 3279 else 3280 printf(" %u,%u", schan, cie->band[i].maxtxpwr); 3281 } 3282 printf(">"); 3283 } 3284 3285 static __inline int 3286 iswpaoui(const u_int8_t *frm) 3287 { 3288 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI); 3289 } 3290 3291 static __inline int 3292 iswmeinfo(const u_int8_t *frm) 3293 { 3294 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3295 frm[6] == WME_INFO_OUI_SUBTYPE; 3296 } 3297 3298 static __inline int 3299 iswmeparam(const u_int8_t *frm) 3300 { 3301 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3302 frm[6] == WME_PARAM_OUI_SUBTYPE; 3303 } 3304 3305 static __inline int 3306 isatherosoui(const u_int8_t *frm) 3307 { 3308 return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI); 3309 } 3310 3311 static __inline int 3312 istdmaoui(const uint8_t *frm) 3313 { 3314 return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI); 3315 } 3316 3317 static __inline int 3318 iswpsoui(const uint8_t *frm) 3319 { 3320 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI); 3321 } 3322 3323 static const char * 3324 iename(int elemid) 3325 { 3326 switch (elemid) { 3327 case IEEE80211_ELEMID_FHPARMS: return " FHPARMS"; 3328 case IEEE80211_ELEMID_CFPARMS: return " CFPARMS"; 3329 case IEEE80211_ELEMID_TIM: return " TIM"; 3330 case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS"; 3331 case IEEE80211_ELEMID_BSSLOAD: return " BSSLOAD"; 3332 case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE"; 3333 case IEEE80211_ELEMID_PWRCNSTR: return " PWRCNSTR"; 3334 case IEEE80211_ELEMID_PWRCAP: return " PWRCAP"; 3335 case IEEE80211_ELEMID_TPCREQ: return " TPCREQ"; 3336 case IEEE80211_ELEMID_TPCREP: return " TPCREP"; 3337 case IEEE80211_ELEMID_SUPPCHAN: return " SUPPCHAN"; 3338 case IEEE80211_ELEMID_CSA: return " CSA"; 3339 case IEEE80211_ELEMID_MEASREQ: return " MEASREQ"; 3340 case IEEE80211_ELEMID_MEASREP: return " MEASREP"; 3341 case IEEE80211_ELEMID_QUIET: return " QUIET"; 3342 case IEEE80211_ELEMID_IBSSDFS: return " IBSSDFS"; 3343 case IEEE80211_ELEMID_TPC: return " TPC"; 3344 case IEEE80211_ELEMID_CCKM: return " CCKM"; 3345 } 3346 return " ???"; 3347 } 3348 3349 static void 3350 printies(const u_int8_t *vp, int ielen, int maxcols) 3351 { 3352 while (ielen > 0) { 3353 switch (vp[0]) { 3354 case IEEE80211_ELEMID_SSID: 3355 if (verbose) 3356 printssid(" SSID", vp, 2+vp[1], maxcols); 3357 break; 3358 case IEEE80211_ELEMID_RATES: 3359 case IEEE80211_ELEMID_XRATES: 3360 if (verbose) 3361 printrates(vp[0] == IEEE80211_ELEMID_RATES ? 3362 " RATES" : " XRATES", vp, 2+vp[1], maxcols); 3363 break; 3364 case IEEE80211_ELEMID_DSPARMS: 3365 if (verbose) 3366 printf(" DSPARMS<%u>", vp[2]); 3367 break; 3368 case IEEE80211_ELEMID_COUNTRY: 3369 if (verbose) 3370 printcountry(" COUNTRY", vp, 2+vp[1], maxcols); 3371 break; 3372 case IEEE80211_ELEMID_ERP: 3373 if (verbose) 3374 printf(" ERP<0x%x>", vp[2]); 3375 break; 3376 case IEEE80211_ELEMID_VENDOR: 3377 if (iswpaoui(vp)) 3378 printwpaie(" WPA", vp, 2+vp[1], maxcols); 3379 else if (iswmeinfo(vp)) 3380 printwmeinfo(" WME", vp, 2+vp[1], maxcols); 3381 else if (iswmeparam(vp)) 3382 printwmeparam(" WME", vp, 2+vp[1], maxcols); 3383 else if (isatherosoui(vp)) 3384 printathie(" ATH", vp, 2+vp[1], maxcols); 3385 else if (iswpsoui(vp)) 3386 printwpsie(" WPS", vp, 2+vp[1], maxcols); 3387 else if (istdmaoui(vp)) 3388 printtdmaie(" TDMA", vp, 2+vp[1], maxcols); 3389 else if (verbose) 3390 printie(" VEN", vp, 2+vp[1], maxcols); 3391 break; 3392 case IEEE80211_ELEMID_RSN: 3393 printrsnie(" RSN", vp, 2+vp[1], maxcols); 3394 break; 3395 case IEEE80211_ELEMID_HTCAP: 3396 printhtcap(" HTCAP", vp, 2+vp[1], maxcols); 3397 break; 3398 case IEEE80211_ELEMID_HTINFO: 3399 if (verbose) 3400 printhtinfo(" HTINFO", vp, 2+vp[1], maxcols); 3401 break; 3402 case IEEE80211_ELEMID_MESHID: 3403 if (verbose) 3404 printssid(" MESHID", vp, 2+vp[1], maxcols); 3405 break; 3406 case IEEE80211_ELEMID_MESHCONF: 3407 printmeshconf(" MESHCONF", vp, 2+vp[1], maxcols); 3408 break; 3409 case IEEE80211_ELEMID_VHT_CAP: 3410 printvhtcap(" VHTCAP", vp, 2+vp[1], maxcols); 3411 break; 3412 case IEEE80211_ELEMID_VHT_OPMODE: 3413 printvhtinfo(" VHTOPMODE", vp, 2+vp[1], maxcols); 3414 break; 3415 case IEEE80211_ELEMID_VHT_PWR_ENV: 3416 printvhtpwrenv(" VHTPWRENV", vp, 2+vp[1], maxcols); 3417 break; 3418 case IEEE80211_ELEMID_BSSLOAD: 3419 printbssload(" BSSLOAD", vp, 2+vp[1], maxcols); 3420 break; 3421 case IEEE80211_ELEMID_APCHANREP: 3422 printapchanrep(" APCHANREP", vp, 2+vp[1], maxcols); 3423 break; 3424 default: 3425 if (verbose) 3426 printie(iename(vp[0]), vp, 2+vp[1], maxcols); 3427 break; 3428 } 3429 ielen -= 2+vp[1]; 3430 vp += 2+vp[1]; 3431 } 3432 } 3433 3434 static void 3435 printmimo(const struct ieee80211_mimo_info *mi) 3436 { 3437 /* NB: don't muddy display unless there's something to show */ 3438 if (mi->rssi[0] != 0 || mi->rssi[1] != 0 || mi->rssi[2] != 0) { 3439 /* XXX ignore EVM for now */ 3440 printf(" (rssi %.1f:%.1f:%.1f nf %d:%d:%d)", 3441 mi->rssi[0] / 2.0, mi->rssi[1] / 2.0, mi->rssi[2] / 2.0, 3442 mi->noise[0], mi->noise[1], mi->noise[2]); 3443 } 3444 } 3445 3446 static void 3447 list_scan(int s) 3448 { 3449 uint8_t buf[24*1024]; 3450 char ssid[IEEE80211_NWID_LEN+1]; 3451 const uint8_t *cp; 3452 int len, ssidmax, idlen; 3453 3454 if (get80211len(s, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0) 3455 errx(1, "unable to get scan results"); 3456 if (len < sizeof(struct ieee80211req_scan_result)) 3457 return; 3458 3459 getchaninfo(s); 3460 3461 ssidmax = verbose ? IEEE80211_NWID_LEN : 14; 3462 printf("%-*.*s %-17.17s %4s %4s %-7s %3s %4s\n" 3463 , ssidmax, ssidmax, "SSID/MESH ID" 3464 , "BSSID" 3465 , "CHAN" 3466 , "RATE" 3467 , " S:N" 3468 , "INT" 3469 , "CAPS" 3470 ); 3471 cp = buf; 3472 do { 3473 const struct ieee80211req_scan_result *sr; 3474 const uint8_t *vp, *idp; 3475 3476 sr = (const struct ieee80211req_scan_result *) cp; 3477 vp = cp + sr->isr_ie_off; 3478 if (sr->isr_meshid_len) { 3479 idp = vp + sr->isr_ssid_len; 3480 idlen = sr->isr_meshid_len; 3481 } else { 3482 idp = vp; 3483 idlen = sr->isr_ssid_len; 3484 } 3485 printf("%-*.*s %s %3d %3dM %4d:%-4d %4d %-4.4s" 3486 , ssidmax 3487 , copy_essid(ssid, ssidmax, idp, idlen) 3488 , ssid 3489 , ether_ntoa((const struct ether_addr *) sr->isr_bssid) 3490 , ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags) 3491 , getmaxrate(sr->isr_rates, sr->isr_nrates) 3492 , (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise 3493 , sr->isr_intval 3494 , getcaps(sr->isr_capinfo) 3495 ); 3496 printies(vp + sr->isr_ssid_len + sr->isr_meshid_len, 3497 sr->isr_ie_len, 24); 3498 printf("\n"); 3499 cp += sr->isr_len, len -= sr->isr_len; 3500 } while (len >= sizeof(struct ieee80211req_scan_result)); 3501 } 3502 3503 static void 3504 scan_and_wait(int s) 3505 { 3506 struct ieee80211_scan_req sr; 3507 struct ieee80211req ireq; 3508 int sroute; 3509 3510 sroute = socket(PF_ROUTE, SOCK_RAW, 0); 3511 if (sroute < 0) { 3512 perror("socket(PF_ROUTE,SOCK_RAW)"); 3513 return; 3514 } 3515 (void) memset(&ireq, 0, sizeof(ireq)); 3516 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 3517 ireq.i_type = IEEE80211_IOC_SCAN_REQ; 3518 3519 memset(&sr, 0, sizeof(sr)); 3520 sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE 3521 | IEEE80211_IOC_SCAN_BGSCAN 3522 | IEEE80211_IOC_SCAN_NOPICK 3523 | IEEE80211_IOC_SCAN_ONCE; 3524 sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER; 3525 sr.sr_nssid = 0; 3526 3527 ireq.i_data = &sr; 3528 ireq.i_len = sizeof(sr); 3529 /* 3530 * NB: only root can trigger a scan so ignore errors. Also ignore 3531 * possible errors from net80211, even if no new scan could be 3532 * started there might still be a valid scan cache. 3533 */ 3534 if (ioctl(s, SIOCS80211, &ireq) == 0) { 3535 char buf[2048]; 3536 struct if_announcemsghdr *ifan; 3537 struct rt_msghdr *rtm; 3538 3539 do { 3540 if (read(sroute, buf, sizeof(buf)) < 0) { 3541 perror("read(PF_ROUTE)"); 3542 break; 3543 } 3544 rtm = (struct rt_msghdr *) buf; 3545 if (rtm->rtm_version != RTM_VERSION) 3546 break; 3547 ifan = (struct if_announcemsghdr *) rtm; 3548 } while (rtm->rtm_type != RTM_IEEE80211 || 3549 ifan->ifan_what != RTM_IEEE80211_SCAN); 3550 } 3551 close(sroute); 3552 } 3553 3554 static 3555 DECL_CMD_FUNC(set80211scan, val, d) 3556 { 3557 scan_and_wait(s); 3558 list_scan(s); 3559 } 3560 3561 static enum ieee80211_opmode get80211opmode(int s); 3562 3563 static int 3564 gettxseq(const struct ieee80211req_sta_info *si) 3565 { 3566 int i, txseq; 3567 3568 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3569 return si->isi_txseqs[0]; 3570 /* XXX not right but usually what folks want */ 3571 txseq = 0; 3572 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3573 if (si->isi_txseqs[i] > txseq) 3574 txseq = si->isi_txseqs[i]; 3575 return txseq; 3576 } 3577 3578 static int 3579 getrxseq(const struct ieee80211req_sta_info *si) 3580 { 3581 int i, rxseq; 3582 3583 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3584 return si->isi_rxseqs[0]; 3585 /* XXX not right but usually what folks want */ 3586 rxseq = 0; 3587 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3588 if (si->isi_rxseqs[i] > rxseq) 3589 rxseq = si->isi_rxseqs[i]; 3590 return rxseq; 3591 } 3592 3593 static void 3594 list_stations(int s) 3595 { 3596 union { 3597 struct ieee80211req_sta_req req; 3598 uint8_t buf[24*1024]; 3599 } u; 3600 enum ieee80211_opmode opmode = get80211opmode(s); 3601 const uint8_t *cp; 3602 int len; 3603 3604 /* broadcast address =>'s get all stations */ 3605 (void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN); 3606 if (opmode == IEEE80211_M_STA) { 3607 /* 3608 * Get information about the associated AP. 3609 */ 3610 (void) get80211(s, IEEE80211_IOC_BSSID, 3611 u.req.is_u.macaddr, IEEE80211_ADDR_LEN); 3612 } 3613 if (get80211len(s, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0) 3614 errx(1, "unable to get station information"); 3615 if (len < sizeof(struct ieee80211req_sta_info)) 3616 return; 3617 3618 getchaninfo(s); 3619 3620 if (opmode == IEEE80211_M_MBSS) 3621 printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n" 3622 , "ADDR" 3623 , "CHAN" 3624 , "LOCAL" 3625 , "PEER" 3626 , "STATE" 3627 , "RATE" 3628 , "RSSI" 3629 , "IDLE" 3630 , "TXSEQ" 3631 , "RXSEQ" 3632 ); 3633 else 3634 printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-7s\n" 3635 , "ADDR" 3636 , "AID" 3637 , "CHAN" 3638 , "RATE" 3639 , "RSSI" 3640 , "IDLE" 3641 , "TXSEQ" 3642 , "RXSEQ" 3643 , "CAPS" 3644 , "FLAG" 3645 ); 3646 cp = (const uint8_t *) u.req.info; 3647 do { 3648 const struct ieee80211req_sta_info *si; 3649 3650 si = (const struct ieee80211req_sta_info *) cp; 3651 if (si->isi_len < sizeof(*si)) 3652 break; 3653 if (opmode == IEEE80211_M_MBSS) 3654 printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d" 3655 , ether_ntoa((const struct ether_addr*) 3656 si->isi_macaddr) 3657 , ieee80211_mhz2ieee(si->isi_freq, 3658 si->isi_flags) 3659 , si->isi_localid 3660 , si->isi_peerid 3661 , mesh_linkstate_string(si->isi_peerstate) 3662 , si->isi_txmbps/2 3663 , si->isi_rssi/2. 3664 , si->isi_inact 3665 , gettxseq(si) 3666 , getrxseq(si) 3667 ); 3668 else 3669 printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-7.7s" 3670 , ether_ntoa((const struct ether_addr*) 3671 si->isi_macaddr) 3672 , IEEE80211_AID(si->isi_associd) 3673 , ieee80211_mhz2ieee(si->isi_freq, 3674 si->isi_flags) 3675 , si->isi_txmbps/2 3676 , si->isi_rssi/2. 3677 , si->isi_inact 3678 , gettxseq(si) 3679 , getrxseq(si) 3680 , getcaps(si->isi_capinfo) 3681 , getflags(si->isi_state) 3682 ); 3683 printies(cp + si->isi_ie_off, si->isi_ie_len, 24); 3684 printmimo(&si->isi_mimo); 3685 printf("\n"); 3686 cp += si->isi_len, len -= si->isi_len; 3687 } while (len >= sizeof(struct ieee80211req_sta_info)); 3688 } 3689 3690 static const char * 3691 mesh_linkstate_string(uint8_t state) 3692 { 3693 static const char *state_names[] = { 3694 [0] = "IDLE", 3695 [1] = "OPEN-TX", 3696 [2] = "OPEN-RX", 3697 [3] = "CONF-RX", 3698 [4] = "ESTAB", 3699 [5] = "HOLDING", 3700 }; 3701 3702 if (state >= nitems(state_names)) { 3703 static char buf[10]; 3704 snprintf(buf, sizeof(buf), "#%u", state); 3705 return buf; 3706 } else 3707 return state_names[state]; 3708 } 3709 3710 static const char * 3711 get_chaninfo(const struct ieee80211_channel *c, int precise, 3712 char buf[], size_t bsize) 3713 { 3714 buf[0] = '\0'; 3715 if (IEEE80211_IS_CHAN_FHSS(c)) 3716 strlcat(buf, " FHSS", bsize); 3717 if (IEEE80211_IS_CHAN_A(c)) 3718 strlcat(buf, " 11a", bsize); 3719 else if (IEEE80211_IS_CHAN_ANYG(c)) 3720 strlcat(buf, " 11g", bsize); 3721 else if (IEEE80211_IS_CHAN_B(c)) 3722 strlcat(buf, " 11b", bsize); 3723 if (IEEE80211_IS_CHAN_HALF(c)) 3724 strlcat(buf, "/10MHz", bsize); 3725 if (IEEE80211_IS_CHAN_QUARTER(c)) 3726 strlcat(buf, "/5MHz", bsize); 3727 if (IEEE80211_IS_CHAN_TURBO(c)) 3728 strlcat(buf, " Turbo", bsize); 3729 if (precise) { 3730 /* XXX should make VHT80U, VHT80D */ 3731 if (IEEE80211_IS_CHAN_VHT80(c) && 3732 IEEE80211_IS_CHAN_HT40D(c)) 3733 strlcat(buf, " vht/80-", bsize); 3734 else if (IEEE80211_IS_CHAN_VHT80(c) && 3735 IEEE80211_IS_CHAN_HT40U(c)) 3736 strlcat(buf, " vht/80+", bsize); 3737 else if (IEEE80211_IS_CHAN_VHT80(c)) 3738 strlcat(buf, " vht/80", bsize); 3739 else if (IEEE80211_IS_CHAN_VHT40D(c)) 3740 strlcat(buf, " vht/40-", bsize); 3741 else if (IEEE80211_IS_CHAN_VHT40U(c)) 3742 strlcat(buf, " vht/40+", bsize); 3743 else if (IEEE80211_IS_CHAN_VHT20(c)) 3744 strlcat(buf, " vht/20", bsize); 3745 else if (IEEE80211_IS_CHAN_HT20(c)) 3746 strlcat(buf, " ht/20", bsize); 3747 else if (IEEE80211_IS_CHAN_HT40D(c)) 3748 strlcat(buf, " ht/40-", bsize); 3749 else if (IEEE80211_IS_CHAN_HT40U(c)) 3750 strlcat(buf, " ht/40+", bsize); 3751 } else { 3752 if (IEEE80211_IS_CHAN_VHT(c)) 3753 strlcat(buf, " vht", bsize); 3754 else if (IEEE80211_IS_CHAN_HT(c)) 3755 strlcat(buf, " ht", bsize); 3756 } 3757 return buf; 3758 } 3759 3760 static void 3761 print_chaninfo(const struct ieee80211_channel *c, int verb) 3762 { 3763 char buf[14]; 3764 3765 if (verb) 3766 printf("Channel %3u : %u%c%c%c%c%c MHz%-14.14s", 3767 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3768 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3769 IEEE80211_IS_CHAN_DFS(c) ? 'D' : ' ', 3770 IEEE80211_IS_CHAN_RADAR(c) ? 'R' : ' ', 3771 IEEE80211_IS_CHAN_CWINT(c) ? 'I' : ' ', 3772 IEEE80211_IS_CHAN_CACDONE(c) ? 'C' : ' ', 3773 get_chaninfo(c, verb, buf, sizeof(buf))); 3774 else 3775 printf("Channel %3u : %u%c MHz%-14.14s", 3776 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3777 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3778 get_chaninfo(c, verb, buf, sizeof(buf))); 3779 3780 } 3781 3782 static int 3783 chanpref(const struct ieee80211_channel *c) 3784 { 3785 if (IEEE80211_IS_CHAN_VHT160(c)) 3786 return 80; 3787 if (IEEE80211_IS_CHAN_VHT80_80(c)) 3788 return 75; 3789 if (IEEE80211_IS_CHAN_VHT80(c)) 3790 return 70; 3791 if (IEEE80211_IS_CHAN_VHT40(c)) 3792 return 60; 3793 if (IEEE80211_IS_CHAN_VHT20(c)) 3794 return 50; 3795 if (IEEE80211_IS_CHAN_HT40(c)) 3796 return 40; 3797 if (IEEE80211_IS_CHAN_HT20(c)) 3798 return 30; 3799 if (IEEE80211_IS_CHAN_HALF(c)) 3800 return 10; 3801 if (IEEE80211_IS_CHAN_QUARTER(c)) 3802 return 5; 3803 if (IEEE80211_IS_CHAN_TURBO(c)) 3804 return 25; 3805 if (IEEE80211_IS_CHAN_A(c)) 3806 return 20; 3807 if (IEEE80211_IS_CHAN_G(c)) 3808 return 20; 3809 if (IEEE80211_IS_CHAN_B(c)) 3810 return 15; 3811 if (IEEE80211_IS_CHAN_PUREG(c)) 3812 return 15; 3813 return 0; 3814 } 3815 3816 static void 3817 print_channels(int s, const struct ieee80211req_chaninfo *chans, 3818 int allchans, int verb) 3819 { 3820 struct ieee80211req_chaninfo *achans; 3821 uint8_t reported[IEEE80211_CHAN_BYTES]; 3822 const struct ieee80211_channel *c; 3823 int i, half; 3824 3825 achans = malloc(IEEE80211_CHANINFO_SPACE(chans)); 3826 if (achans == NULL) 3827 errx(1, "no space for active channel list"); 3828 achans->ic_nchans = 0; 3829 memset(reported, 0, sizeof(reported)); 3830 if (!allchans) { 3831 struct ieee80211req_chanlist active; 3832 3833 if (get80211(s, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0) 3834 errx(1, "unable to get active channel list"); 3835 for (i = 0; i < chans->ic_nchans; i++) { 3836 c = &chans->ic_chans[i]; 3837 if (!isset(active.ic_channels, c->ic_ieee)) 3838 continue; 3839 /* 3840 * Suppress compatible duplicates unless 3841 * verbose. The kernel gives us it's 3842 * complete channel list which has separate 3843 * entries for 11g/11b and 11a/turbo. 3844 */ 3845 if (isset(reported, c->ic_ieee) && !verb) { 3846 /* XXX we assume duplicates are adjacent */ 3847 achans->ic_chans[achans->ic_nchans-1] = *c; 3848 } else { 3849 achans->ic_chans[achans->ic_nchans++] = *c; 3850 setbit(reported, c->ic_ieee); 3851 } 3852 } 3853 } else { 3854 for (i = 0; i < chans->ic_nchans; i++) { 3855 c = &chans->ic_chans[i]; 3856 /* suppress duplicates as above */ 3857 if (isset(reported, c->ic_ieee) && !verb) { 3858 /* XXX we assume duplicates are adjacent */ 3859 struct ieee80211_channel *a = 3860 &achans->ic_chans[achans->ic_nchans-1]; 3861 if (chanpref(c) > chanpref(a)) 3862 *a = *c; 3863 } else { 3864 achans->ic_chans[achans->ic_nchans++] = *c; 3865 setbit(reported, c->ic_ieee); 3866 } 3867 } 3868 } 3869 half = achans->ic_nchans / 2; 3870 if (achans->ic_nchans % 2) 3871 half++; 3872 3873 for (i = 0; i < achans->ic_nchans / 2; i++) { 3874 print_chaninfo(&achans->ic_chans[i], verb); 3875 print_chaninfo(&achans->ic_chans[half+i], verb); 3876 printf("\n"); 3877 } 3878 if (achans->ic_nchans % 2) { 3879 print_chaninfo(&achans->ic_chans[i], verb); 3880 printf("\n"); 3881 } 3882 free(achans); 3883 } 3884 3885 static void 3886 list_channels(int s, int allchans) 3887 { 3888 getchaninfo(s); 3889 print_channels(s, chaninfo, allchans, verbose); 3890 } 3891 3892 static void 3893 print_txpow(const struct ieee80211_channel *c) 3894 { 3895 printf("Channel %3u : %u MHz %3.1f reg %2d ", 3896 c->ic_ieee, c->ic_freq, 3897 c->ic_maxpower/2., c->ic_maxregpower); 3898 } 3899 3900 static void 3901 print_txpow_verbose(const struct ieee80211_channel *c) 3902 { 3903 print_chaninfo(c, 1); 3904 printf("min %4.1f dBm max %3.1f dBm reg %2d dBm", 3905 c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower); 3906 /* indicate where regulatory cap limits power use */ 3907 if (c->ic_maxpower > 2*c->ic_maxregpower) 3908 printf(" <"); 3909 } 3910 3911 static void 3912 list_txpow(int s) 3913 { 3914 struct ieee80211req_chaninfo *achans; 3915 uint8_t reported[IEEE80211_CHAN_BYTES]; 3916 struct ieee80211_channel *c, *prev; 3917 int i, half; 3918 3919 getchaninfo(s); 3920 achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo)); 3921 if (achans == NULL) 3922 errx(1, "no space for active channel list"); 3923 achans->ic_nchans = 0; 3924 memset(reported, 0, sizeof(reported)); 3925 for (i = 0; i < chaninfo->ic_nchans; i++) { 3926 c = &chaninfo->ic_chans[i]; 3927 /* suppress duplicates as above */ 3928 if (isset(reported, c->ic_ieee) && !verbose) { 3929 /* XXX we assume duplicates are adjacent */ 3930 assert(achans->ic_nchans > 0); 3931 prev = &achans->ic_chans[achans->ic_nchans-1]; 3932 /* display highest power on channel */ 3933 if (c->ic_maxpower > prev->ic_maxpower) 3934 *prev = *c; 3935 } else { 3936 achans->ic_chans[achans->ic_nchans++] = *c; 3937 setbit(reported, c->ic_ieee); 3938 } 3939 } 3940 if (!verbose) { 3941 half = achans->ic_nchans / 2; 3942 if (achans->ic_nchans % 2) 3943 half++; 3944 3945 for (i = 0; i < achans->ic_nchans / 2; i++) { 3946 print_txpow(&achans->ic_chans[i]); 3947 print_txpow(&achans->ic_chans[half+i]); 3948 printf("\n"); 3949 } 3950 if (achans->ic_nchans % 2) { 3951 print_txpow(&achans->ic_chans[i]); 3952 printf("\n"); 3953 } 3954 } else { 3955 for (i = 0; i < achans->ic_nchans; i++) { 3956 print_txpow_verbose(&achans->ic_chans[i]); 3957 printf("\n"); 3958 } 3959 } 3960 free(achans); 3961 } 3962 3963 static void 3964 list_keys(int s) 3965 { 3966 } 3967 3968 static void 3969 list_capabilities(int s) 3970 { 3971 struct ieee80211_devcaps_req *dc; 3972 3973 if (verbose) 3974 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 3975 else 3976 dc = malloc(IEEE80211_DEVCAPS_SIZE(1)); 3977 if (dc == NULL) 3978 errx(1, "no space for device capabilities"); 3979 dc->dc_chaninfo.ic_nchans = verbose ? MAXCHAN : 1; 3980 getdevcaps(s, dc); 3981 printb("drivercaps", dc->dc_drivercaps, IEEE80211_C_BITS); 3982 if (dc->dc_cryptocaps != 0 || verbose) { 3983 putchar('\n'); 3984 printb("cryptocaps", dc->dc_cryptocaps, IEEE80211_CRYPTO_BITS); 3985 } 3986 if (dc->dc_htcaps != 0 || verbose) { 3987 putchar('\n'); 3988 printb("htcaps", dc->dc_htcaps, IEEE80211_HTCAP_BITS); 3989 } 3990 if (dc->dc_vhtcaps != 0 || verbose) { 3991 putchar('\n'); 3992 printb("vhtcaps", dc->dc_vhtcaps, IEEE80211_VHTCAP_BITS); 3993 } 3994 3995 putchar('\n'); 3996 if (verbose) { 3997 chaninfo = &dc->dc_chaninfo; /* XXX */ 3998 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, verbose); 3999 } 4000 free(dc); 4001 } 4002 4003 static int 4004 get80211wme(int s, int param, int ac, int *val) 4005 { 4006 struct ieee80211req ireq; 4007 4008 (void) memset(&ireq, 0, sizeof(ireq)); 4009 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 4010 ireq.i_type = param; 4011 ireq.i_len = ac; 4012 if (ioctl(s, SIOCG80211, &ireq) < 0) { 4013 warn("cannot get WME parameter %d, ac %d%s", 4014 param, ac & IEEE80211_WMEPARAM_VAL, 4015 ac & IEEE80211_WMEPARAM_BSS ? " (BSS)" : ""); 4016 return -1; 4017 } 4018 *val = ireq.i_val; 4019 return 0; 4020 } 4021 4022 static void 4023 list_wme_aci(int s, const char *tag, int ac) 4024 { 4025 int val; 4026 4027 printf("\t%s", tag); 4028 4029 /* show WME BSS parameters */ 4030 if (get80211wme(s, IEEE80211_IOC_WME_CWMIN, ac, &val) != -1) 4031 printf(" cwmin %2u", val); 4032 if (get80211wme(s, IEEE80211_IOC_WME_CWMAX, ac, &val) != -1) 4033 printf(" cwmax %2u", val); 4034 if (get80211wme(s, IEEE80211_IOC_WME_AIFS, ac, &val) != -1) 4035 printf(" aifs %2u", val); 4036 if (get80211wme(s, IEEE80211_IOC_WME_TXOPLIMIT, ac, &val) != -1) 4037 printf(" txopLimit %3u", val); 4038 if (get80211wme(s, IEEE80211_IOC_WME_ACM, ac, &val) != -1) { 4039 if (val) 4040 printf(" acm"); 4041 else if (verbose) 4042 printf(" -acm"); 4043 } 4044 /* !BSS only */ 4045 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 4046 if (get80211wme(s, IEEE80211_IOC_WME_ACKPOLICY, ac, &val) != -1) { 4047 if (!val) 4048 printf(" -ack"); 4049 else if (verbose) 4050 printf(" ack"); 4051 } 4052 } 4053 printf("\n"); 4054 } 4055 4056 static void 4057 list_wme(int s) 4058 { 4059 static const char *acnames[] = { "AC_BE", "AC_BK", "AC_VI", "AC_VO" }; 4060 int ac; 4061 4062 if (verbose) { 4063 /* display both BSS and local settings */ 4064 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) { 4065 again: 4066 if (ac & IEEE80211_WMEPARAM_BSS) 4067 list_wme_aci(s, " ", ac); 4068 else 4069 list_wme_aci(s, acnames[ac], ac); 4070 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 4071 ac |= IEEE80211_WMEPARAM_BSS; 4072 goto again; 4073 } else 4074 ac &= ~IEEE80211_WMEPARAM_BSS; 4075 } 4076 } else { 4077 /* display only channel settings */ 4078 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) 4079 list_wme_aci(s, acnames[ac], ac); 4080 } 4081 } 4082 4083 static void 4084 list_roam(int s) 4085 { 4086 const struct ieee80211_roamparam *rp; 4087 int mode; 4088 4089 getroam(s); 4090 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 4091 rp = &roamparams.params[mode]; 4092 if (rp->rssi == 0 && rp->rate == 0) 4093 continue; 4094 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 4095 if (rp->rssi & 1) 4096 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm MCS %2u ", 4097 modename[mode], rp->rssi/2, 4098 rp->rate &~ IEEE80211_RATE_MCS); 4099 else 4100 LINE_CHECK("roam:%-7.7s rssi %4udBm MCS %2u ", 4101 modename[mode], rp->rssi/2, 4102 rp->rate &~ IEEE80211_RATE_MCS); 4103 } else { 4104 if (rp->rssi & 1) 4105 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm rate %2u Mb/s", 4106 modename[mode], rp->rssi/2, rp->rate/2); 4107 else 4108 LINE_CHECK("roam:%-7.7s rssi %4udBm rate %2u Mb/s", 4109 modename[mode], rp->rssi/2, rp->rate/2); 4110 } 4111 } 4112 } 4113 4114 static void 4115 list_txparams(int s) 4116 { 4117 const struct ieee80211_txparam *tp; 4118 int mode; 4119 4120 gettxparams(s); 4121 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 4122 tp = &txparams.params[mode]; 4123 if (tp->mgmtrate == 0 && tp->mcastrate == 0) 4124 continue; 4125 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 4126 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 4127 LINE_CHECK("%-7.7s ucast NONE mgmt %2u MCS " 4128 "mcast %2u MCS maxretry %u", 4129 modename[mode], 4130 tp->mgmtrate &~ IEEE80211_RATE_MCS, 4131 tp->mcastrate &~ IEEE80211_RATE_MCS, 4132 tp->maxretry); 4133 else 4134 LINE_CHECK("%-7.7s ucast %2u MCS mgmt %2u MCS " 4135 "mcast %2u MCS maxretry %u", 4136 modename[mode], 4137 tp->ucastrate &~ IEEE80211_RATE_MCS, 4138 tp->mgmtrate &~ IEEE80211_RATE_MCS, 4139 tp->mcastrate &~ IEEE80211_RATE_MCS, 4140 tp->maxretry); 4141 } else { 4142 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 4143 LINE_CHECK("%-7.7s ucast NONE mgmt %2u Mb/s " 4144 "mcast %2u Mb/s maxretry %u", 4145 modename[mode], 4146 tp->mgmtrate/2, 4147 tp->mcastrate/2, tp->maxretry); 4148 else 4149 LINE_CHECK("%-7.7s ucast %2u Mb/s mgmt %2u Mb/s " 4150 "mcast %2u Mb/s maxretry %u", 4151 modename[mode], 4152 tp->ucastrate/2, tp->mgmtrate/2, 4153 tp->mcastrate/2, tp->maxretry); 4154 } 4155 } 4156 } 4157 4158 static void 4159 printpolicy(int policy) 4160 { 4161 switch (policy) { 4162 case IEEE80211_MACCMD_POLICY_OPEN: 4163 printf("policy: open\n"); 4164 break; 4165 case IEEE80211_MACCMD_POLICY_ALLOW: 4166 printf("policy: allow\n"); 4167 break; 4168 case IEEE80211_MACCMD_POLICY_DENY: 4169 printf("policy: deny\n"); 4170 break; 4171 case IEEE80211_MACCMD_POLICY_RADIUS: 4172 printf("policy: radius\n"); 4173 break; 4174 default: 4175 printf("policy: unknown (%u)\n", policy); 4176 break; 4177 } 4178 } 4179 4180 static void 4181 list_mac(int s) 4182 { 4183 struct ieee80211req ireq; 4184 struct ieee80211req_maclist *acllist; 4185 int i, nacls, policy, len; 4186 uint8_t *data; 4187 char c; 4188 4189 (void) memset(&ireq, 0, sizeof(ireq)); 4190 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); /* XXX ?? */ 4191 ireq.i_type = IEEE80211_IOC_MACCMD; 4192 ireq.i_val = IEEE80211_MACCMD_POLICY; 4193 if (ioctl(s, SIOCG80211, &ireq) < 0) { 4194 if (errno == EINVAL) { 4195 printf("No acl policy loaded\n"); 4196 return; 4197 } 4198 err(1, "unable to get mac policy"); 4199 } 4200 policy = ireq.i_val; 4201 if (policy == IEEE80211_MACCMD_POLICY_OPEN) { 4202 c = '*'; 4203 } else if (policy == IEEE80211_MACCMD_POLICY_ALLOW) { 4204 c = '+'; 4205 } else if (policy == IEEE80211_MACCMD_POLICY_DENY) { 4206 c = '-'; 4207 } else if (policy == IEEE80211_MACCMD_POLICY_RADIUS) { 4208 c = 'r'; /* NB: should never have entries */ 4209 } else { 4210 printf("policy: unknown (%u)\n", policy); 4211 c = '?'; 4212 } 4213 if (verbose || c == '?') 4214 printpolicy(policy); 4215 4216 ireq.i_val = IEEE80211_MACCMD_LIST; 4217 ireq.i_len = 0; 4218 if (ioctl(s, SIOCG80211, &ireq) < 0) 4219 err(1, "unable to get mac acl list size"); 4220 if (ireq.i_len == 0) { /* NB: no acls */ 4221 if (!(verbose || c == '?')) 4222 printpolicy(policy); 4223 return; 4224 } 4225 len = ireq.i_len; 4226 4227 data = malloc(len); 4228 if (data == NULL) 4229 err(1, "out of memory for acl list"); 4230 4231 ireq.i_data = data; 4232 if (ioctl(s, SIOCG80211, &ireq) < 0) 4233 err(1, "unable to get mac acl list"); 4234 nacls = len / sizeof(*acllist); 4235 acllist = (struct ieee80211req_maclist *) data; 4236 for (i = 0; i < nacls; i++) 4237 printf("%c%s\n", c, ether_ntoa( 4238 (const struct ether_addr *) acllist[i].ml_macaddr)); 4239 free(data); 4240 } 4241 4242 static void 4243 print_regdomain(const struct ieee80211_regdomain *reg, int verb) 4244 { 4245 if ((reg->regdomain != 0 && 4246 reg->regdomain != reg->country) || verb) { 4247 const struct regdomain *rd = 4248 lib80211_regdomain_findbysku(getregdata(), reg->regdomain); 4249 if (rd == NULL) 4250 LINE_CHECK("regdomain %d", reg->regdomain); 4251 else 4252 LINE_CHECK("regdomain %s", rd->name); 4253 } 4254 if (reg->country != 0 || verb) { 4255 const struct country *cc = 4256 lib80211_country_findbycc(getregdata(), reg->country); 4257 if (cc == NULL) 4258 LINE_CHECK("country %d", reg->country); 4259 else 4260 LINE_CHECK("country %s", cc->isoname); 4261 } 4262 if (reg->location == 'I') 4263 LINE_CHECK("indoor"); 4264 else if (reg->location == 'O') 4265 LINE_CHECK("outdoor"); 4266 else if (verb) 4267 LINE_CHECK("anywhere"); 4268 if (reg->ecm) 4269 LINE_CHECK("ecm"); 4270 else if (verb) 4271 LINE_CHECK("-ecm"); 4272 } 4273 4274 static void 4275 list_regdomain(int s, int channelsalso) 4276 { 4277 getregdomain(s); 4278 if (channelsalso) { 4279 getchaninfo(s); 4280 spacer = ':'; 4281 print_regdomain(®domain, 1); 4282 LINE_BREAK(); 4283 print_channels(s, chaninfo, 1/*allchans*/, 1/*verbose*/); 4284 } else 4285 print_regdomain(®domain, verbose); 4286 } 4287 4288 static void 4289 list_mesh(int s) 4290 { 4291 struct ieee80211req ireq; 4292 struct ieee80211req_mesh_route routes[128]; 4293 struct ieee80211req_mesh_route *rt; 4294 4295 (void) memset(&ireq, 0, sizeof(ireq)); 4296 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 4297 ireq.i_type = IEEE80211_IOC_MESH_RTCMD; 4298 ireq.i_val = IEEE80211_MESH_RTCMD_LIST; 4299 ireq.i_data = &routes; 4300 ireq.i_len = sizeof(routes); 4301 if (ioctl(s, SIOCG80211, &ireq) < 0) 4302 err(1, "unable to get the Mesh routing table"); 4303 4304 printf("%-17.17s %-17.17s %4s %4s %4s %6s %s\n" 4305 , "DEST" 4306 , "NEXT HOP" 4307 , "HOPS" 4308 , "METRIC" 4309 , "LIFETIME" 4310 , "MSEQ" 4311 , "FLAGS"); 4312 4313 for (rt = &routes[0]; rt - &routes[0] < ireq.i_len / sizeof(*rt); rt++){ 4314 printf("%s ", 4315 ether_ntoa((const struct ether_addr *)rt->imr_dest)); 4316 printf("%s %4u %4u %6u %6u %c%c\n", 4317 ether_ntoa((const struct ether_addr *)rt->imr_nexthop), 4318 rt->imr_nhops, rt->imr_metric, rt->imr_lifetime, 4319 rt->imr_lastmseq, 4320 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_DISCOVER) ? 4321 'D' : 4322 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_VALID) ? 4323 'V' : '!', 4324 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_PROXY) ? 4325 'P' : 4326 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_GATE) ? 4327 'G' :' '); 4328 } 4329 } 4330 4331 static 4332 DECL_CMD_FUNC(set80211list, arg, d) 4333 { 4334 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 4335 4336 LINE_INIT('\t'); 4337 4338 if (iseq(arg, "sta")) 4339 list_stations(s); 4340 else if (iseq(arg, "scan") || iseq(arg, "ap")) 4341 list_scan(s); 4342 else if (iseq(arg, "chan") || iseq(arg, "freq")) 4343 list_channels(s, 1); 4344 else if (iseq(arg, "active")) 4345 list_channels(s, 0); 4346 else if (iseq(arg, "keys")) 4347 list_keys(s); 4348 else if (iseq(arg, "caps")) 4349 list_capabilities(s); 4350 else if (iseq(arg, "wme") || iseq(arg, "wmm")) 4351 list_wme(s); 4352 else if (iseq(arg, "mac")) 4353 list_mac(s); 4354 else if (iseq(arg, "txpow")) 4355 list_txpow(s); 4356 else if (iseq(arg, "roam")) 4357 list_roam(s); 4358 else if (iseq(arg, "txparam") || iseq(arg, "txparm")) 4359 list_txparams(s); 4360 else if (iseq(arg, "regdomain")) 4361 list_regdomain(s, 1); 4362 else if (iseq(arg, "countries")) 4363 list_countries(); 4364 else if (iseq(arg, "mesh")) 4365 list_mesh(s); 4366 else 4367 errx(1, "Don't know how to list %s for %s", arg, name); 4368 LINE_BREAK(); 4369 #undef iseq 4370 } 4371 4372 static enum ieee80211_opmode 4373 get80211opmode(int s) 4374 { 4375 struct ifmediareq ifmr; 4376 4377 (void) memset(&ifmr, 0, sizeof(ifmr)); 4378 (void) strlcpy(ifmr.ifm_name, name, sizeof(ifmr.ifm_name)); 4379 4380 if (ioctl(s, SIOCGIFMEDIA, (caddr_t)&ifmr) >= 0) { 4381 if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) { 4382 if (ifmr.ifm_current & IFM_FLAG0) 4383 return IEEE80211_M_AHDEMO; 4384 else 4385 return IEEE80211_M_IBSS; 4386 } 4387 if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP) 4388 return IEEE80211_M_HOSTAP; 4389 if (ifmr.ifm_current & IFM_IEEE80211_IBSS) 4390 return IEEE80211_M_IBSS; 4391 if (ifmr.ifm_current & IFM_IEEE80211_MONITOR) 4392 return IEEE80211_M_MONITOR; 4393 if (ifmr.ifm_current & IFM_IEEE80211_MBSS) 4394 return IEEE80211_M_MBSS; 4395 } 4396 return IEEE80211_M_STA; 4397 } 4398 4399 #if 0 4400 static void 4401 printcipher(int s, struct ieee80211req *ireq, int keylenop) 4402 { 4403 switch (ireq->i_val) { 4404 case IEEE80211_CIPHER_WEP: 4405 ireq->i_type = keylenop; 4406 if (ioctl(s, SIOCG80211, ireq) != -1) 4407 printf("WEP-%s", 4408 ireq->i_len <= 5 ? "40" : 4409 ireq->i_len <= 13 ? "104" : "128"); 4410 else 4411 printf("WEP"); 4412 break; 4413 case IEEE80211_CIPHER_TKIP: 4414 printf("TKIP"); 4415 break; 4416 case IEEE80211_CIPHER_AES_OCB: 4417 printf("AES-OCB"); 4418 break; 4419 case IEEE80211_CIPHER_AES_CCM: 4420 printf("AES-CCM"); 4421 break; 4422 case IEEE80211_CIPHER_CKIP: 4423 printf("CKIP"); 4424 break; 4425 case IEEE80211_CIPHER_NONE: 4426 printf("NONE"); 4427 break; 4428 default: 4429 printf("UNKNOWN (0x%x)", ireq->i_val); 4430 break; 4431 } 4432 } 4433 #endif 4434 4435 static void 4436 printkey(const struct ieee80211req_key *ik) 4437 { 4438 static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE]; 4439 u_int keylen = ik->ik_keylen; 4440 int printcontents; 4441 4442 printcontents = printkeys && 4443 (memcmp(ik->ik_keydata, zerodata, keylen) != 0 || verbose); 4444 if (printcontents) 4445 LINE_BREAK(); 4446 switch (ik->ik_type) { 4447 case IEEE80211_CIPHER_WEP: 4448 /* compatibility */ 4449 LINE_CHECK("wepkey %u:%s", ik->ik_keyix+1, 4450 keylen <= 5 ? "40-bit" : 4451 keylen <= 13 ? "104-bit" : "128-bit"); 4452 break; 4453 case IEEE80211_CIPHER_TKIP: 4454 if (keylen > 128/8) 4455 keylen -= 128/8; /* ignore MIC for now */ 4456 LINE_CHECK("TKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4457 break; 4458 case IEEE80211_CIPHER_AES_OCB: 4459 LINE_CHECK("AES-OCB %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4460 break; 4461 case IEEE80211_CIPHER_AES_CCM: 4462 LINE_CHECK("AES-CCM %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4463 break; 4464 case IEEE80211_CIPHER_CKIP: 4465 LINE_CHECK("CKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4466 break; 4467 case IEEE80211_CIPHER_NONE: 4468 LINE_CHECK("NULL %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4469 break; 4470 default: 4471 LINE_CHECK("UNKNOWN (0x%x) %u:%u-bit", 4472 ik->ik_type, ik->ik_keyix+1, 8*keylen); 4473 break; 4474 } 4475 if (printcontents) { 4476 u_int i; 4477 4478 printf(" <"); 4479 for (i = 0; i < keylen; i++) 4480 printf("%02x", ik->ik_keydata[i]); 4481 printf(">"); 4482 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4483 (ik->ik_keyrsc != 0 || verbose)) 4484 printf(" rsc %ju", (uintmax_t)ik->ik_keyrsc); 4485 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4486 (ik->ik_keytsc != 0 || verbose)) 4487 printf(" tsc %ju", (uintmax_t)ik->ik_keytsc); 4488 if (ik->ik_flags != 0 && verbose) { 4489 const char *sep = " "; 4490 4491 if (ik->ik_flags & IEEE80211_KEY_XMIT) 4492 printf("%stx", sep), sep = "+"; 4493 if (ik->ik_flags & IEEE80211_KEY_RECV) 4494 printf("%srx", sep), sep = "+"; 4495 if (ik->ik_flags & IEEE80211_KEY_DEFAULT) 4496 printf("%sdef", sep), sep = "+"; 4497 } 4498 LINE_BREAK(); 4499 } 4500 } 4501 4502 static void 4503 printrate(const char *tag, int v, int defrate, int defmcs) 4504 { 4505 if ((v & IEEE80211_RATE_MCS) == 0) { 4506 if (v != defrate) { 4507 if (v & 1) 4508 LINE_CHECK("%s %d.5", tag, v/2); 4509 else 4510 LINE_CHECK("%s %d", tag, v/2); 4511 } 4512 } else { 4513 if (v != defmcs) 4514 LINE_CHECK("%s %d", tag, v &~ 0x80); 4515 } 4516 } 4517 4518 static int 4519 getid(int s, int ix, void *data, size_t len, int *plen, int mesh) 4520 { 4521 struct ieee80211req ireq; 4522 4523 (void) memset(&ireq, 0, sizeof(ireq)); 4524 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 4525 ireq.i_type = (!mesh) ? IEEE80211_IOC_SSID : IEEE80211_IOC_MESH_ID; 4526 ireq.i_val = ix; 4527 ireq.i_data = data; 4528 ireq.i_len = len; 4529 if (ioctl(s, SIOCG80211, &ireq) < 0) 4530 return -1; 4531 *plen = ireq.i_len; 4532 return 0; 4533 } 4534 4535 static void 4536 ieee80211_status(int s) 4537 { 4538 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 4539 enum ieee80211_opmode opmode = get80211opmode(s); 4540 int i, num, wpa, wme, bgscan, bgscaninterval, val, len, wepmode; 4541 uint8_t data[32]; 4542 const struct ieee80211_channel *c; 4543 const struct ieee80211_roamparam *rp; 4544 const struct ieee80211_txparam *tp; 4545 4546 if (getid(s, -1, data, sizeof(data), &len, 0) < 0) { 4547 /* If we can't get the SSID, this isn't an 802.11 device. */ 4548 return; 4549 } 4550 4551 /* 4552 * Invalidate cached state so printing status for multiple 4553 * if's doesn't reuse the first interfaces' cached state. 4554 */ 4555 gotcurchan = 0; 4556 gotroam = 0; 4557 gottxparams = 0; 4558 gothtconf = 0; 4559 gotregdomain = 0; 4560 4561 printf("\t"); 4562 if (opmode == IEEE80211_M_MBSS) { 4563 printf("meshid "); 4564 getid(s, 0, data, sizeof(data), &len, 1); 4565 print_string(data, len); 4566 } else { 4567 if (get80211val(s, IEEE80211_IOC_NUMSSIDS, &num) < 0) 4568 num = 0; 4569 printf("ssid "); 4570 if (num > 1) { 4571 for (i = 0; i < num; i++) { 4572 if (getid(s, i, data, sizeof(data), &len, 0) >= 0 && len > 0) { 4573 printf(" %d:", i + 1); 4574 print_string(data, len); 4575 } 4576 } 4577 } else 4578 print_string(data, len); 4579 } 4580 c = getcurchan(s); 4581 if (c->ic_freq != IEEE80211_CHAN_ANY) { 4582 char buf[14]; 4583 printf(" channel %d (%u MHz%s)", c->ic_ieee, c->ic_freq, 4584 get_chaninfo(c, 1, buf, sizeof(buf))); 4585 } else if (verbose) 4586 printf(" channel UNDEF"); 4587 4588 if (get80211(s, IEEE80211_IOC_BSSID, data, IEEE80211_ADDR_LEN) >= 0 && 4589 (memcmp(data, zerobssid, sizeof(zerobssid)) != 0 || verbose)) 4590 printf(" bssid %s", ether_ntoa((struct ether_addr *)data)); 4591 4592 if (get80211len(s, IEEE80211_IOC_STATIONNAME, data, sizeof(data), &len) != -1) { 4593 printf("\n\tstationname "); 4594 print_string(data, len); 4595 } 4596 4597 spacer = ' '; /* force first break */ 4598 LINE_BREAK(); 4599 4600 list_regdomain(s, 0); 4601 4602 wpa = 0; 4603 if (get80211val(s, IEEE80211_IOC_AUTHMODE, &val) != -1) { 4604 switch (val) { 4605 case IEEE80211_AUTH_NONE: 4606 LINE_CHECK("authmode NONE"); 4607 break; 4608 case IEEE80211_AUTH_OPEN: 4609 LINE_CHECK("authmode OPEN"); 4610 break; 4611 case IEEE80211_AUTH_SHARED: 4612 LINE_CHECK("authmode SHARED"); 4613 break; 4614 case IEEE80211_AUTH_8021X: 4615 LINE_CHECK("authmode 802.1x"); 4616 break; 4617 case IEEE80211_AUTH_WPA: 4618 if (get80211val(s, IEEE80211_IOC_WPA, &wpa) < 0) 4619 wpa = 1; /* default to WPA1 */ 4620 switch (wpa) { 4621 case 2: 4622 LINE_CHECK("authmode WPA2/802.11i"); 4623 break; 4624 case 3: 4625 LINE_CHECK("authmode WPA1+WPA2/802.11i"); 4626 break; 4627 default: 4628 LINE_CHECK("authmode WPA"); 4629 break; 4630 } 4631 break; 4632 case IEEE80211_AUTH_AUTO: 4633 LINE_CHECK("authmode AUTO"); 4634 break; 4635 default: 4636 LINE_CHECK("authmode UNKNOWN (0x%x)", val); 4637 break; 4638 } 4639 } 4640 4641 if (wpa || verbose) { 4642 if (get80211val(s, IEEE80211_IOC_WPS, &val) != -1) { 4643 if (val) 4644 LINE_CHECK("wps"); 4645 else if (verbose) 4646 LINE_CHECK("-wps"); 4647 } 4648 if (get80211val(s, IEEE80211_IOC_TSN, &val) != -1) { 4649 if (val) 4650 LINE_CHECK("tsn"); 4651 else if (verbose) 4652 LINE_CHECK("-tsn"); 4653 } 4654 if (ioctl(s, IEEE80211_IOC_COUNTERMEASURES, &val) != -1) { 4655 if (val) 4656 LINE_CHECK("countermeasures"); 4657 else if (verbose) 4658 LINE_CHECK("-countermeasures"); 4659 } 4660 #if 0 4661 /* XXX not interesting with WPA done in user space */ 4662 ireq.i_type = IEEE80211_IOC_KEYMGTALGS; 4663 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4664 } 4665 4666 ireq.i_type = IEEE80211_IOC_MCASTCIPHER; 4667 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4668 LINE_CHECK("mcastcipher "); 4669 printcipher(s, &ireq, IEEE80211_IOC_MCASTKEYLEN); 4670 spacer = ' '; 4671 } 4672 4673 ireq.i_type = IEEE80211_IOC_UCASTCIPHER; 4674 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4675 LINE_CHECK("ucastcipher "); 4676 printcipher(s, &ireq, IEEE80211_IOC_UCASTKEYLEN); 4677 } 4678 4679 if (wpa & 2) { 4680 ireq.i_type = IEEE80211_IOC_RSNCAPS; 4681 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4682 LINE_CHECK("RSN caps 0x%x", ireq.i_val); 4683 spacer = ' '; 4684 } 4685 } 4686 4687 ireq.i_type = IEEE80211_IOC_UCASTCIPHERS; 4688 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4689 } 4690 #endif 4691 } 4692 4693 if (get80211val(s, IEEE80211_IOC_WEP, &wepmode) != -1 && 4694 wepmode != IEEE80211_WEP_NOSUP) { 4695 4696 switch (wepmode) { 4697 case IEEE80211_WEP_OFF: 4698 LINE_CHECK("privacy OFF"); 4699 break; 4700 case IEEE80211_WEP_ON: 4701 LINE_CHECK("privacy ON"); 4702 break; 4703 case IEEE80211_WEP_MIXED: 4704 LINE_CHECK("privacy MIXED"); 4705 break; 4706 default: 4707 LINE_CHECK("privacy UNKNOWN (0x%x)", wepmode); 4708 break; 4709 } 4710 4711 /* 4712 * If we get here then we've got WEP support so we need 4713 * to print WEP status. 4714 */ 4715 4716 if (get80211val(s, IEEE80211_IOC_WEPTXKEY, &val) < 0) { 4717 warn("WEP support, but no tx key!"); 4718 goto end; 4719 } 4720 if (val != -1) 4721 LINE_CHECK("deftxkey %d", val+1); 4722 else if (wepmode != IEEE80211_WEP_OFF || verbose) 4723 LINE_CHECK("deftxkey UNDEF"); 4724 4725 if (get80211val(s, IEEE80211_IOC_NUMWEPKEYS, &num) < 0) { 4726 warn("WEP support, but no NUMWEPKEYS support!"); 4727 goto end; 4728 } 4729 4730 for (i = 0; i < num; i++) { 4731 struct ieee80211req_key ik; 4732 4733 memset(&ik, 0, sizeof(ik)); 4734 ik.ik_keyix = i; 4735 if (get80211(s, IEEE80211_IOC_WPAKEY, &ik, sizeof(ik)) < 0) { 4736 warn("WEP support, but can get keys!"); 4737 goto end; 4738 } 4739 if (ik.ik_keylen != 0) { 4740 if (verbose) 4741 LINE_BREAK(); 4742 printkey(&ik); 4743 } 4744 } 4745 end: 4746 ; 4747 } 4748 4749 if (get80211val(s, IEEE80211_IOC_POWERSAVE, &val) != -1 && 4750 val != IEEE80211_POWERSAVE_NOSUP ) { 4751 if (val != IEEE80211_POWERSAVE_OFF || verbose) { 4752 switch (val) { 4753 case IEEE80211_POWERSAVE_OFF: 4754 LINE_CHECK("powersavemode OFF"); 4755 break; 4756 case IEEE80211_POWERSAVE_CAM: 4757 LINE_CHECK("powersavemode CAM"); 4758 break; 4759 case IEEE80211_POWERSAVE_PSP: 4760 LINE_CHECK("powersavemode PSP"); 4761 break; 4762 case IEEE80211_POWERSAVE_PSP_CAM: 4763 LINE_CHECK("powersavemode PSP-CAM"); 4764 break; 4765 } 4766 if (get80211val(s, IEEE80211_IOC_POWERSAVESLEEP, &val) != -1) 4767 LINE_CHECK("powersavesleep %d", val); 4768 } 4769 } 4770 4771 if (get80211val(s, IEEE80211_IOC_TXPOWER, &val) != -1) { 4772 if (val & 1) 4773 LINE_CHECK("txpower %d.5", val/2); 4774 else 4775 LINE_CHECK("txpower %d", val/2); 4776 } 4777 if (verbose) { 4778 if (get80211val(s, IEEE80211_IOC_TXPOWMAX, &val) != -1) 4779 LINE_CHECK("txpowmax %.1f", val/2.); 4780 } 4781 4782 if (get80211val(s, IEEE80211_IOC_DOTD, &val) != -1) { 4783 if (val) 4784 LINE_CHECK("dotd"); 4785 else if (verbose) 4786 LINE_CHECK("-dotd"); 4787 } 4788 4789 if (get80211val(s, IEEE80211_IOC_RTSTHRESHOLD, &val) != -1) { 4790 if (val != IEEE80211_RTS_MAX || verbose) 4791 LINE_CHECK("rtsthreshold %d", val); 4792 } 4793 4794 if (get80211val(s, IEEE80211_IOC_FRAGTHRESHOLD, &val) != -1) { 4795 if (val != IEEE80211_FRAG_MAX || verbose) 4796 LINE_CHECK("fragthreshold %d", val); 4797 } 4798 if (opmode == IEEE80211_M_STA || verbose) { 4799 if (get80211val(s, IEEE80211_IOC_BMISSTHRESHOLD, &val) != -1) { 4800 if (val != IEEE80211_HWBMISS_MAX || verbose) 4801 LINE_CHECK("bmiss %d", val); 4802 } 4803 } 4804 4805 if (!verbose) { 4806 gettxparams(s); 4807 tp = &txparams.params[chan2mode(c)]; 4808 printrate("ucastrate", tp->ucastrate, 4809 IEEE80211_FIXED_RATE_NONE, IEEE80211_FIXED_RATE_NONE); 4810 printrate("mcastrate", tp->mcastrate, 2*1, 4811 IEEE80211_RATE_MCS|0); 4812 printrate("mgmtrate", tp->mgmtrate, 2*1, 4813 IEEE80211_RATE_MCS|0); 4814 if (tp->maxretry != 6) /* XXX */ 4815 LINE_CHECK("maxretry %d", tp->maxretry); 4816 } else { 4817 LINE_BREAK(); 4818 list_txparams(s); 4819 } 4820 4821 bgscaninterval = -1; 4822 (void) get80211val(s, IEEE80211_IOC_BGSCAN_INTERVAL, &bgscaninterval); 4823 4824 if (get80211val(s, IEEE80211_IOC_SCANVALID, &val) != -1) { 4825 if (val != bgscaninterval || verbose) 4826 LINE_CHECK("scanvalid %u", val); 4827 } 4828 4829 bgscan = 0; 4830 if (get80211val(s, IEEE80211_IOC_BGSCAN, &bgscan) != -1) { 4831 if (bgscan) 4832 LINE_CHECK("bgscan"); 4833 else if (verbose) 4834 LINE_CHECK("-bgscan"); 4835 } 4836 if (bgscan || verbose) { 4837 if (bgscaninterval != -1) 4838 LINE_CHECK("bgscanintvl %u", bgscaninterval); 4839 if (get80211val(s, IEEE80211_IOC_BGSCAN_IDLE, &val) != -1) 4840 LINE_CHECK("bgscanidle %u", val); 4841 if (!verbose) { 4842 getroam(s); 4843 rp = &roamparams.params[chan2mode(c)]; 4844 if (rp->rssi & 1) 4845 LINE_CHECK("roam:rssi %u.5", rp->rssi/2); 4846 else 4847 LINE_CHECK("roam:rssi %u", rp->rssi/2); 4848 LINE_CHECK("roam:rate %u", rp->rate/2); 4849 } else { 4850 LINE_BREAK(); 4851 list_roam(s); 4852 LINE_BREAK(); 4853 } 4854 } 4855 4856 if (IEEE80211_IS_CHAN_ANYG(c) || verbose) { 4857 if (get80211val(s, IEEE80211_IOC_PUREG, &val) != -1) { 4858 if (val) 4859 LINE_CHECK("pureg"); 4860 else if (verbose) 4861 LINE_CHECK("-pureg"); 4862 } 4863 if (get80211val(s, IEEE80211_IOC_PROTMODE, &val) != -1) { 4864 switch (val) { 4865 case IEEE80211_PROTMODE_OFF: 4866 LINE_CHECK("protmode OFF"); 4867 break; 4868 case IEEE80211_PROTMODE_CTS: 4869 LINE_CHECK("protmode CTS"); 4870 break; 4871 case IEEE80211_PROTMODE_RTSCTS: 4872 LINE_CHECK("protmode RTSCTS"); 4873 break; 4874 default: 4875 LINE_CHECK("protmode UNKNOWN (0x%x)", val); 4876 break; 4877 } 4878 } 4879 } 4880 4881 if (IEEE80211_IS_CHAN_HT(c) || verbose) { 4882 gethtconf(s); 4883 switch (htconf & 3) { 4884 case 0: 4885 case 2: 4886 LINE_CHECK("-ht"); 4887 break; 4888 case 1: 4889 LINE_CHECK("ht20"); 4890 break; 4891 case 3: 4892 if (verbose) 4893 LINE_CHECK("ht"); 4894 break; 4895 } 4896 if (get80211val(s, IEEE80211_IOC_HTCOMPAT, &val) != -1) { 4897 if (!val) 4898 LINE_CHECK("-htcompat"); 4899 else if (verbose) 4900 LINE_CHECK("htcompat"); 4901 } 4902 if (get80211val(s, IEEE80211_IOC_AMPDU, &val) != -1) { 4903 switch (val) { 4904 case 0: 4905 LINE_CHECK("-ampdu"); 4906 break; 4907 case 1: 4908 LINE_CHECK("ampdutx -ampdurx"); 4909 break; 4910 case 2: 4911 LINE_CHECK("-ampdutx ampdurx"); 4912 break; 4913 case 3: 4914 if (verbose) 4915 LINE_CHECK("ampdu"); 4916 break; 4917 } 4918 } 4919 if (get80211val(s, IEEE80211_IOC_AMPDU_LIMIT, &val) != -1) { 4920 switch (val) { 4921 case IEEE80211_HTCAP_MAXRXAMPDU_8K: 4922 LINE_CHECK("ampdulimit 8k"); 4923 break; 4924 case IEEE80211_HTCAP_MAXRXAMPDU_16K: 4925 LINE_CHECK("ampdulimit 16k"); 4926 break; 4927 case IEEE80211_HTCAP_MAXRXAMPDU_32K: 4928 LINE_CHECK("ampdulimit 32k"); 4929 break; 4930 case IEEE80211_HTCAP_MAXRXAMPDU_64K: 4931 LINE_CHECK("ampdulimit 64k"); 4932 break; 4933 } 4934 } 4935 if (get80211val(s, IEEE80211_IOC_AMPDU_DENSITY, &val) != -1) { 4936 switch (val) { 4937 case IEEE80211_HTCAP_MPDUDENSITY_NA: 4938 if (verbose) 4939 LINE_CHECK("ampdudensity NA"); 4940 break; 4941 case IEEE80211_HTCAP_MPDUDENSITY_025: 4942 LINE_CHECK("ampdudensity .25"); 4943 break; 4944 case IEEE80211_HTCAP_MPDUDENSITY_05: 4945 LINE_CHECK("ampdudensity .5"); 4946 break; 4947 case IEEE80211_HTCAP_MPDUDENSITY_1: 4948 LINE_CHECK("ampdudensity 1"); 4949 break; 4950 case IEEE80211_HTCAP_MPDUDENSITY_2: 4951 LINE_CHECK("ampdudensity 2"); 4952 break; 4953 case IEEE80211_HTCAP_MPDUDENSITY_4: 4954 LINE_CHECK("ampdudensity 4"); 4955 break; 4956 case IEEE80211_HTCAP_MPDUDENSITY_8: 4957 LINE_CHECK("ampdudensity 8"); 4958 break; 4959 case IEEE80211_HTCAP_MPDUDENSITY_16: 4960 LINE_CHECK("ampdudensity 16"); 4961 break; 4962 } 4963 } 4964 if (get80211val(s, IEEE80211_IOC_AMSDU, &val) != -1) { 4965 switch (val) { 4966 case 0: 4967 LINE_CHECK("-amsdu"); 4968 break; 4969 case 1: 4970 LINE_CHECK("amsdutx -amsdurx"); 4971 break; 4972 case 2: 4973 LINE_CHECK("-amsdutx amsdurx"); 4974 break; 4975 case 3: 4976 if (verbose) 4977 LINE_CHECK("amsdu"); 4978 break; 4979 } 4980 } 4981 /* XXX amsdu limit */ 4982 if (get80211val(s, IEEE80211_IOC_SHORTGI, &val) != -1) { 4983 if (val) 4984 LINE_CHECK("shortgi"); 4985 else if (verbose) 4986 LINE_CHECK("-shortgi"); 4987 } 4988 if (get80211val(s, IEEE80211_IOC_HTPROTMODE, &val) != -1) { 4989 if (val == IEEE80211_PROTMODE_OFF) 4990 LINE_CHECK("htprotmode OFF"); 4991 else if (val != IEEE80211_PROTMODE_RTSCTS) 4992 LINE_CHECK("htprotmode UNKNOWN (0x%x)", val); 4993 else if (verbose) 4994 LINE_CHECK("htprotmode RTSCTS"); 4995 } 4996 if (get80211val(s, IEEE80211_IOC_PUREN, &val) != -1) { 4997 if (val) 4998 LINE_CHECK("puren"); 4999 else if (verbose) 5000 LINE_CHECK("-puren"); 5001 } 5002 if (get80211val(s, IEEE80211_IOC_SMPS, &val) != -1) { 5003 if (val == IEEE80211_HTCAP_SMPS_DYNAMIC) 5004 LINE_CHECK("smpsdyn"); 5005 else if (val == IEEE80211_HTCAP_SMPS_ENA) 5006 LINE_CHECK("smps"); 5007 else if (verbose) 5008 LINE_CHECK("-smps"); 5009 } 5010 if (get80211val(s, IEEE80211_IOC_RIFS, &val) != -1) { 5011 if (val) 5012 LINE_CHECK("rifs"); 5013 else if (verbose) 5014 LINE_CHECK("-rifs"); 5015 } 5016 if (get80211val(s, IEEE80211_IOC_STBC, &val) != -1) { 5017 switch (val) { 5018 case 0: 5019 LINE_CHECK("-stbc"); 5020 break; 5021 case 1: 5022 LINE_CHECK("stbctx -stbcrx"); 5023 break; 5024 case 2: 5025 LINE_CHECK("-stbctx stbcrx"); 5026 break; 5027 case 3: 5028 if (verbose) 5029 LINE_CHECK("stbc"); 5030 break; 5031 } 5032 } 5033 } 5034 5035 if (IEEE80211_IS_CHAN_VHT(c) || verbose) { 5036 getvhtconf(s); 5037 if (vhtconf & 0x1) 5038 LINE_CHECK("vht"); 5039 else 5040 LINE_CHECK("-vht"); 5041 if (vhtconf & 0x2) 5042 LINE_CHECK("vht40"); 5043 else 5044 LINE_CHECK("-vht40"); 5045 if (vhtconf & 0x4) 5046 LINE_CHECK("vht80"); 5047 else 5048 LINE_CHECK("-vht80"); 5049 if (vhtconf & 0x8) 5050 LINE_CHECK("vht80p80"); 5051 else 5052 LINE_CHECK("-vht80p80"); 5053 if (vhtconf & 0x10) 5054 LINE_CHECK("vht160"); 5055 else 5056 LINE_CHECK("-vht160"); 5057 } 5058 5059 if (get80211val(s, IEEE80211_IOC_WME, &wme) != -1) { 5060 if (wme) 5061 LINE_CHECK("wme"); 5062 else if (verbose) 5063 LINE_CHECK("-wme"); 5064 } else 5065 wme = 0; 5066 5067 if (get80211val(s, IEEE80211_IOC_BURST, &val) != -1) { 5068 if (val) 5069 LINE_CHECK("burst"); 5070 else if (verbose) 5071 LINE_CHECK("-burst"); 5072 } 5073 5074 if (get80211val(s, IEEE80211_IOC_FF, &val) != -1) { 5075 if (val) 5076 LINE_CHECK("ff"); 5077 else if (verbose) 5078 LINE_CHECK("-ff"); 5079 } 5080 if (get80211val(s, IEEE80211_IOC_TURBOP, &val) != -1) { 5081 if (val) 5082 LINE_CHECK("dturbo"); 5083 else if (verbose) 5084 LINE_CHECK("-dturbo"); 5085 } 5086 if (get80211val(s, IEEE80211_IOC_DWDS, &val) != -1) { 5087 if (val) 5088 LINE_CHECK("dwds"); 5089 else if (verbose) 5090 LINE_CHECK("-dwds"); 5091 } 5092 5093 if (opmode == IEEE80211_M_HOSTAP) { 5094 if (get80211val(s, IEEE80211_IOC_HIDESSID, &val) != -1) { 5095 if (val) 5096 LINE_CHECK("hidessid"); 5097 else if (verbose) 5098 LINE_CHECK("-hidessid"); 5099 } 5100 if (get80211val(s, IEEE80211_IOC_APBRIDGE, &val) != -1) { 5101 if (!val) 5102 LINE_CHECK("-apbridge"); 5103 else if (verbose) 5104 LINE_CHECK("apbridge"); 5105 } 5106 if (get80211val(s, IEEE80211_IOC_DTIM_PERIOD, &val) != -1) 5107 LINE_CHECK("dtimperiod %u", val); 5108 5109 if (get80211val(s, IEEE80211_IOC_DOTH, &val) != -1) { 5110 if (!val) 5111 LINE_CHECK("-doth"); 5112 else if (verbose) 5113 LINE_CHECK("doth"); 5114 } 5115 if (get80211val(s, IEEE80211_IOC_DFS, &val) != -1) { 5116 if (!val) 5117 LINE_CHECK("-dfs"); 5118 else if (verbose) 5119 LINE_CHECK("dfs"); 5120 } 5121 if (get80211val(s, IEEE80211_IOC_INACTIVITY, &val) != -1) { 5122 if (!val) 5123 LINE_CHECK("-inact"); 5124 else if (verbose) 5125 LINE_CHECK("inact"); 5126 } 5127 } else { 5128 if (get80211val(s, IEEE80211_IOC_ROAMING, &val) != -1) { 5129 if (val != IEEE80211_ROAMING_AUTO || verbose) { 5130 switch (val) { 5131 case IEEE80211_ROAMING_DEVICE: 5132 LINE_CHECK("roaming DEVICE"); 5133 break; 5134 case IEEE80211_ROAMING_AUTO: 5135 LINE_CHECK("roaming AUTO"); 5136 break; 5137 case IEEE80211_ROAMING_MANUAL: 5138 LINE_CHECK("roaming MANUAL"); 5139 break; 5140 default: 5141 LINE_CHECK("roaming UNKNOWN (0x%x)", 5142 val); 5143 break; 5144 } 5145 } 5146 } 5147 } 5148 5149 if (opmode == IEEE80211_M_AHDEMO) { 5150 if (get80211val(s, IEEE80211_IOC_TDMA_SLOT, &val) != -1) 5151 LINE_CHECK("tdmaslot %u", val); 5152 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTCNT, &val) != -1) 5153 LINE_CHECK("tdmaslotcnt %u", val); 5154 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTLEN, &val) != -1) 5155 LINE_CHECK("tdmaslotlen %u", val); 5156 if (get80211val(s, IEEE80211_IOC_TDMA_BINTERVAL, &val) != -1) 5157 LINE_CHECK("tdmabintval %u", val); 5158 } else if (get80211val(s, IEEE80211_IOC_BEACON_INTERVAL, &val) != -1) { 5159 /* XXX default define not visible */ 5160 if (val != 100 || verbose) 5161 LINE_CHECK("bintval %u", val); 5162 } 5163 5164 if (wme && verbose) { 5165 LINE_BREAK(); 5166 list_wme(s); 5167 } 5168 5169 if (opmode == IEEE80211_M_MBSS) { 5170 if (get80211val(s, IEEE80211_IOC_MESH_TTL, &val) != -1) { 5171 LINE_CHECK("meshttl %u", val); 5172 } 5173 if (get80211val(s, IEEE80211_IOC_MESH_AP, &val) != -1) { 5174 if (val) 5175 LINE_CHECK("meshpeering"); 5176 else 5177 LINE_CHECK("-meshpeering"); 5178 } 5179 if (get80211val(s, IEEE80211_IOC_MESH_FWRD, &val) != -1) { 5180 if (val) 5181 LINE_CHECK("meshforward"); 5182 else 5183 LINE_CHECK("-meshforward"); 5184 } 5185 if (get80211val(s, IEEE80211_IOC_MESH_GATE, &val) != -1) { 5186 if (val) 5187 LINE_CHECK("meshgate"); 5188 else 5189 LINE_CHECK("-meshgate"); 5190 } 5191 if (get80211len(s, IEEE80211_IOC_MESH_PR_METRIC, data, 12, 5192 &len) != -1) { 5193 data[len] = '\0'; 5194 LINE_CHECK("meshmetric %s", data); 5195 } 5196 if (get80211len(s, IEEE80211_IOC_MESH_PR_PATH, data, 12, 5197 &len) != -1) { 5198 data[len] = '\0'; 5199 LINE_CHECK("meshpath %s", data); 5200 } 5201 if (get80211val(s, IEEE80211_IOC_HWMP_ROOTMODE, &val) != -1) { 5202 switch (val) { 5203 case IEEE80211_HWMP_ROOTMODE_DISABLED: 5204 LINE_CHECK("hwmprootmode DISABLED"); 5205 break; 5206 case IEEE80211_HWMP_ROOTMODE_NORMAL: 5207 LINE_CHECK("hwmprootmode NORMAL"); 5208 break; 5209 case IEEE80211_HWMP_ROOTMODE_PROACTIVE: 5210 LINE_CHECK("hwmprootmode PROACTIVE"); 5211 break; 5212 case IEEE80211_HWMP_ROOTMODE_RANN: 5213 LINE_CHECK("hwmprootmode RANN"); 5214 break; 5215 default: 5216 LINE_CHECK("hwmprootmode UNKNOWN(%d)", val); 5217 break; 5218 } 5219 } 5220 if (get80211val(s, IEEE80211_IOC_HWMP_MAXHOPS, &val) != -1) { 5221 LINE_CHECK("hwmpmaxhops %u", val); 5222 } 5223 } 5224 5225 LINE_BREAK(); 5226 } 5227 5228 static int 5229 get80211(int s, int type, void *data, int len) 5230 { 5231 5232 return (lib80211_get80211(s, name, type, data, len)); 5233 } 5234 5235 static int 5236 get80211len(int s, int type, void *data, int len, int *plen) 5237 { 5238 5239 return (lib80211_get80211len(s, name, type, data, len, plen)); 5240 } 5241 5242 static int 5243 get80211val(int s, int type, int *val) 5244 { 5245 5246 return (lib80211_get80211val(s, name, type, val)); 5247 } 5248 5249 static void 5250 set80211(int s, int type, int val, int len, void *data) 5251 { 5252 int ret; 5253 5254 ret = lib80211_set80211(s, name, type, val, len, data); 5255 if (ret < 0) 5256 err(1, "SIOCS80211"); 5257 } 5258 5259 static const char * 5260 get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp) 5261 { 5262 int len; 5263 int hexstr; 5264 u_int8_t *p; 5265 5266 len = *lenp; 5267 p = buf; 5268 hexstr = (val[0] == '0' && tolower((u_char)val[1]) == 'x'); 5269 if (hexstr) 5270 val += 2; 5271 for (;;) { 5272 if (*val == '\0') 5273 break; 5274 if (sep != NULL && strchr(sep, *val) != NULL) { 5275 val++; 5276 break; 5277 } 5278 if (hexstr) { 5279 if (!isxdigit((u_char)val[0])) { 5280 warnx("bad hexadecimal digits"); 5281 return NULL; 5282 } 5283 if (!isxdigit((u_char)val[1])) { 5284 warnx("odd count hexadecimal digits"); 5285 return NULL; 5286 } 5287 } 5288 if (p >= buf + len) { 5289 if (hexstr) 5290 warnx("hexadecimal digits too long"); 5291 else 5292 warnx("string too long"); 5293 return NULL; 5294 } 5295 if (hexstr) { 5296 #define tohex(x) (isdigit(x) ? (x) - '0' : tolower(x) - 'a' + 10) 5297 *p++ = (tohex((u_char)val[0]) << 4) | 5298 tohex((u_char)val[1]); 5299 #undef tohex 5300 val += 2; 5301 } else 5302 *p++ = *val++; 5303 } 5304 len = p - buf; 5305 /* The string "-" is treated as the empty string. */ 5306 if (!hexstr && len == 1 && buf[0] == '-') { 5307 len = 0; 5308 memset(buf, 0, *lenp); 5309 } else if (len < *lenp) 5310 memset(p, 0, *lenp - len); 5311 *lenp = len; 5312 return val; 5313 } 5314 5315 static void 5316 print_string(const u_int8_t *buf, int len) 5317 { 5318 int i; 5319 int hasspc; 5320 5321 i = 0; 5322 hasspc = 0; 5323 for (; i < len; i++) { 5324 if (!isprint(buf[i]) && buf[i] != '\0') 5325 break; 5326 if (isspace(buf[i])) 5327 hasspc++; 5328 } 5329 if (i == len) { 5330 if (hasspc || len == 0 || buf[0] == '\0') 5331 printf("\"%.*s\"", len, buf); 5332 else 5333 printf("%.*s", len, buf); 5334 } else { 5335 printf("0x"); 5336 for (i = 0; i < len; i++) 5337 printf("%02x", buf[i]); 5338 } 5339 } 5340 5341 static void 5342 setdefregdomain(int s) 5343 { 5344 struct regdata *rdp = getregdata(); 5345 const struct regdomain *rd; 5346 5347 /* Check if regdomain/country was already set by a previous call. */ 5348 /* XXX is it possible? */ 5349 if (regdomain.regdomain != 0 || 5350 regdomain.country != CTRY_DEFAULT) 5351 return; 5352 5353 getregdomain(s); 5354 5355 /* Check if it was already set by the driver. */ 5356 if (regdomain.regdomain != 0 || 5357 regdomain.country != CTRY_DEFAULT) 5358 return; 5359 5360 /* Set FCC/US as default. */ 5361 rd = lib80211_regdomain_findbysku(rdp, SKU_FCC); 5362 if (rd == NULL) 5363 errx(1, "FCC regdomain was not found"); 5364 5365 regdomain.regdomain = rd->sku; 5366 if (rd->cc != NULL) 5367 defaultcountry(rd); 5368 5369 /* Send changes to net80211. */ 5370 setregdomain_cb(s, ®domain); 5371 5372 /* Cleanup (so it can be overriden by subsequent parameters). */ 5373 regdomain.regdomain = 0; 5374 regdomain.country = CTRY_DEFAULT; 5375 regdomain.isocc[0] = 0; 5376 regdomain.isocc[1] = 0; 5377 } 5378 5379 /* 5380 * Virtual AP cloning support. 5381 */ 5382 static struct ieee80211_clone_params params = { 5383 .icp_opmode = IEEE80211_M_STA, /* default to station mode */ 5384 }; 5385 5386 static void 5387 wlan_create(int s, struct ifreq *ifr) 5388 { 5389 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 5390 char orig_name[IFNAMSIZ]; 5391 5392 if (params.icp_parent[0] == '\0') 5393 errx(1, "must specify a parent device (wlandev) when creating " 5394 "a wlan device"); 5395 if (params.icp_opmode == IEEE80211_M_WDS && 5396 memcmp(params.icp_bssid, zerobssid, sizeof(zerobssid)) == 0) 5397 errx(1, "no bssid specified for WDS (use wlanbssid)"); 5398 ifr->ifr_data = (caddr_t) ¶ms; 5399 if (ioctl(s, SIOCIFCREATE2, ifr) < 0) 5400 err(1, "SIOCIFCREATE2"); 5401 5402 /* XXX preserve original name for ifclonecreate(). */ 5403 strlcpy(orig_name, name, sizeof(orig_name)); 5404 strlcpy(name, ifr->ifr_name, sizeof(name)); 5405 5406 setdefregdomain(s); 5407 5408 strlcpy(name, orig_name, sizeof(name)); 5409 } 5410 5411 static 5412 DECL_CMD_FUNC(set80211clone_wlandev, arg, d) 5413 { 5414 strlcpy(params.icp_parent, arg, IFNAMSIZ); 5415 } 5416 5417 static 5418 DECL_CMD_FUNC(set80211clone_wlanbssid, arg, d) 5419 { 5420 const struct ether_addr *ea; 5421 5422 ea = ether_aton(arg); 5423 if (ea == NULL) 5424 errx(1, "%s: cannot parse bssid", arg); 5425 memcpy(params.icp_bssid, ea->octet, IEEE80211_ADDR_LEN); 5426 } 5427 5428 static 5429 DECL_CMD_FUNC(set80211clone_wlanaddr, arg, d) 5430 { 5431 const struct ether_addr *ea; 5432 5433 ea = ether_aton(arg); 5434 if (ea == NULL) 5435 errx(1, "%s: cannot parse address", arg); 5436 memcpy(params.icp_macaddr, ea->octet, IEEE80211_ADDR_LEN); 5437 params.icp_flags |= IEEE80211_CLONE_MACADDR; 5438 } 5439 5440 static 5441 DECL_CMD_FUNC(set80211clone_wlanmode, arg, d) 5442 { 5443 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 5444 if (iseq(arg, "sta")) 5445 params.icp_opmode = IEEE80211_M_STA; 5446 else if (iseq(arg, "ahdemo") || iseq(arg, "adhoc-demo")) 5447 params.icp_opmode = IEEE80211_M_AHDEMO; 5448 else if (iseq(arg, "ibss") || iseq(arg, "adhoc")) 5449 params.icp_opmode = IEEE80211_M_IBSS; 5450 else if (iseq(arg, "ap") || iseq(arg, "host")) 5451 params.icp_opmode = IEEE80211_M_HOSTAP; 5452 else if (iseq(arg, "wds")) 5453 params.icp_opmode = IEEE80211_M_WDS; 5454 else if (iseq(arg, "monitor")) 5455 params.icp_opmode = IEEE80211_M_MONITOR; 5456 else if (iseq(arg, "tdma")) { 5457 params.icp_opmode = IEEE80211_M_AHDEMO; 5458 params.icp_flags |= IEEE80211_CLONE_TDMA; 5459 } else if (iseq(arg, "mesh") || iseq(arg, "mp")) /* mesh point */ 5460 params.icp_opmode = IEEE80211_M_MBSS; 5461 else 5462 errx(1, "Don't know to create %s for %s", arg, name); 5463 #undef iseq 5464 } 5465 5466 static void 5467 set80211clone_beacons(const char *val, int d, int s, const struct afswtch *rafp) 5468 { 5469 /* NB: inverted sense */ 5470 if (d) 5471 params.icp_flags &= ~IEEE80211_CLONE_NOBEACONS; 5472 else 5473 params.icp_flags |= IEEE80211_CLONE_NOBEACONS; 5474 } 5475 5476 static void 5477 set80211clone_bssid(const char *val, int d, int s, const struct afswtch *rafp) 5478 { 5479 if (d) 5480 params.icp_flags |= IEEE80211_CLONE_BSSID; 5481 else 5482 params.icp_flags &= ~IEEE80211_CLONE_BSSID; 5483 } 5484 5485 static void 5486 set80211clone_wdslegacy(const char *val, int d, int s, const struct afswtch *rafp) 5487 { 5488 if (d) 5489 params.icp_flags |= IEEE80211_CLONE_WDSLEGACY; 5490 else 5491 params.icp_flags &= ~IEEE80211_CLONE_WDSLEGACY; 5492 } 5493 5494 static struct cmd ieee80211_cmds[] = { 5495 DEF_CMD_ARG("ssid", set80211ssid), 5496 DEF_CMD_ARG("nwid", set80211ssid), 5497 DEF_CMD_ARG("meshid", set80211meshid), 5498 DEF_CMD_ARG("stationname", set80211stationname), 5499 DEF_CMD_ARG("station", set80211stationname), /* BSD/OS */ 5500 DEF_CMD_ARG("channel", set80211channel), 5501 DEF_CMD_ARG("authmode", set80211authmode), 5502 DEF_CMD_ARG("powersavemode", set80211powersavemode), 5503 DEF_CMD("powersave", 1, set80211powersave), 5504 DEF_CMD("-powersave", 0, set80211powersave), 5505 DEF_CMD_ARG("powersavesleep", set80211powersavesleep), 5506 DEF_CMD_ARG("wepmode", set80211wepmode), 5507 DEF_CMD("wep", 1, set80211wep), 5508 DEF_CMD("-wep", 0, set80211wep), 5509 DEF_CMD_ARG("deftxkey", set80211weptxkey), 5510 DEF_CMD_ARG("weptxkey", set80211weptxkey), 5511 DEF_CMD_ARG("wepkey", set80211wepkey), 5512 DEF_CMD_ARG("nwkey", set80211nwkey), /* NetBSD */ 5513 DEF_CMD("-nwkey", 0, set80211wep), /* NetBSD */ 5514 DEF_CMD_ARG("rtsthreshold", set80211rtsthreshold), 5515 DEF_CMD_ARG("protmode", set80211protmode), 5516 DEF_CMD_ARG("txpower", set80211txpower), 5517 DEF_CMD_ARG("roaming", set80211roaming), 5518 DEF_CMD("wme", 1, set80211wme), 5519 DEF_CMD("-wme", 0, set80211wme), 5520 DEF_CMD("wmm", 1, set80211wme), 5521 DEF_CMD("-wmm", 0, set80211wme), 5522 DEF_CMD("hidessid", 1, set80211hidessid), 5523 DEF_CMD("-hidessid", 0, set80211hidessid), 5524 DEF_CMD("apbridge", 1, set80211apbridge), 5525 DEF_CMD("-apbridge", 0, set80211apbridge), 5526 DEF_CMD_ARG("chanlist", set80211chanlist), 5527 DEF_CMD_ARG("bssid", set80211bssid), 5528 DEF_CMD_ARG("ap", set80211bssid), 5529 DEF_CMD("scan", 0, set80211scan), 5530 DEF_CMD_ARG("list", set80211list), 5531 DEF_CMD_ARG2("cwmin", set80211cwmin), 5532 DEF_CMD_ARG2("cwmax", set80211cwmax), 5533 DEF_CMD_ARG2("aifs", set80211aifs), 5534 DEF_CMD_ARG2("txoplimit", set80211txoplimit), 5535 DEF_CMD_ARG("acm", set80211acm), 5536 DEF_CMD_ARG("-acm", set80211noacm), 5537 DEF_CMD_ARG("ack", set80211ackpolicy), 5538 DEF_CMD_ARG("-ack", set80211noackpolicy), 5539 DEF_CMD_ARG2("bss:cwmin", set80211bsscwmin), 5540 DEF_CMD_ARG2("bss:cwmax", set80211bsscwmax), 5541 DEF_CMD_ARG2("bss:aifs", set80211bssaifs), 5542 DEF_CMD_ARG2("bss:txoplimit", set80211bsstxoplimit), 5543 DEF_CMD_ARG("dtimperiod", set80211dtimperiod), 5544 DEF_CMD_ARG("bintval", set80211bintval), 5545 DEF_CMD("mac:open", IEEE80211_MACCMD_POLICY_OPEN, set80211maccmd), 5546 DEF_CMD("mac:allow", IEEE80211_MACCMD_POLICY_ALLOW, set80211maccmd), 5547 DEF_CMD("mac:deny", IEEE80211_MACCMD_POLICY_DENY, set80211maccmd), 5548 DEF_CMD("mac:radius", IEEE80211_MACCMD_POLICY_RADIUS, set80211maccmd), 5549 DEF_CMD("mac:flush", IEEE80211_MACCMD_FLUSH, set80211maccmd), 5550 DEF_CMD("mac:detach", IEEE80211_MACCMD_DETACH, set80211maccmd), 5551 DEF_CMD_ARG("mac:add", set80211addmac), 5552 DEF_CMD_ARG("mac:del", set80211delmac), 5553 DEF_CMD_ARG("mac:kick", set80211kickmac), 5554 DEF_CMD("pureg", 1, set80211pureg), 5555 DEF_CMD("-pureg", 0, set80211pureg), 5556 DEF_CMD("ff", 1, set80211fastframes), 5557 DEF_CMD("-ff", 0, set80211fastframes), 5558 DEF_CMD("dturbo", 1, set80211dturbo), 5559 DEF_CMD("-dturbo", 0, set80211dturbo), 5560 DEF_CMD("bgscan", 1, set80211bgscan), 5561 DEF_CMD("-bgscan", 0, set80211bgscan), 5562 DEF_CMD_ARG("bgscanidle", set80211bgscanidle), 5563 DEF_CMD_ARG("bgscanintvl", set80211bgscanintvl), 5564 DEF_CMD_ARG("scanvalid", set80211scanvalid), 5565 DEF_CMD("quiet", 1, set80211quiet), 5566 DEF_CMD("-quiet", 0, set80211quiet), 5567 DEF_CMD_ARG("quiet_count", set80211quietcount), 5568 DEF_CMD_ARG("quiet_period", set80211quietperiod), 5569 DEF_CMD_ARG("quiet_dur", set80211quietduration), 5570 DEF_CMD_ARG("quiet_offset", set80211quietoffset), 5571 DEF_CMD_ARG("roam:rssi", set80211roamrssi), 5572 DEF_CMD_ARG("roam:rate", set80211roamrate), 5573 DEF_CMD_ARG("mcastrate", set80211mcastrate), 5574 DEF_CMD_ARG("ucastrate", set80211ucastrate), 5575 DEF_CMD_ARG("mgtrate", set80211mgtrate), 5576 DEF_CMD_ARG("mgmtrate", set80211mgtrate), 5577 DEF_CMD_ARG("maxretry", set80211maxretry), 5578 DEF_CMD_ARG("fragthreshold", set80211fragthreshold), 5579 DEF_CMD("burst", 1, set80211burst), 5580 DEF_CMD("-burst", 0, set80211burst), 5581 DEF_CMD_ARG("bmiss", set80211bmissthreshold), 5582 DEF_CMD_ARG("bmissthreshold", set80211bmissthreshold), 5583 DEF_CMD("shortgi", 1, set80211shortgi), 5584 DEF_CMD("-shortgi", 0, set80211shortgi), 5585 DEF_CMD("ampdurx", 2, set80211ampdu), 5586 DEF_CMD("-ampdurx", -2, set80211ampdu), 5587 DEF_CMD("ampdutx", 1, set80211ampdu), 5588 DEF_CMD("-ampdutx", -1, set80211ampdu), 5589 DEF_CMD("ampdu", 3, set80211ampdu), /* NB: tx+rx */ 5590 DEF_CMD("-ampdu", -3, set80211ampdu), 5591 DEF_CMD_ARG("ampdulimit", set80211ampdulimit), 5592 DEF_CMD_ARG("ampdudensity", set80211ampdudensity), 5593 DEF_CMD("amsdurx", 2, set80211amsdu), 5594 DEF_CMD("-amsdurx", -2, set80211amsdu), 5595 DEF_CMD("amsdutx", 1, set80211amsdu), 5596 DEF_CMD("-amsdutx", -1, set80211amsdu), 5597 DEF_CMD("amsdu", 3, set80211amsdu), /* NB: tx+rx */ 5598 DEF_CMD("-amsdu", -3, set80211amsdu), 5599 DEF_CMD_ARG("amsdulimit", set80211amsdulimit), 5600 DEF_CMD("stbcrx", 2, set80211stbc), 5601 DEF_CMD("-stbcrx", -2, set80211stbc), 5602 DEF_CMD("stbctx", 1, set80211stbc), 5603 DEF_CMD("-stbctx", -1, set80211stbc), 5604 DEF_CMD("stbc", 3, set80211stbc), /* NB: tx+rx */ 5605 DEF_CMD("-ampdu", -3, set80211stbc), 5606 DEF_CMD("puren", 1, set80211puren), 5607 DEF_CMD("-puren", 0, set80211puren), 5608 DEF_CMD("doth", 1, set80211doth), 5609 DEF_CMD("-doth", 0, set80211doth), 5610 DEF_CMD("dfs", 1, set80211dfs), 5611 DEF_CMD("-dfs", 0, set80211dfs), 5612 DEF_CMD("htcompat", 1, set80211htcompat), 5613 DEF_CMD("-htcompat", 0, set80211htcompat), 5614 DEF_CMD("dwds", 1, set80211dwds), 5615 DEF_CMD("-dwds", 0, set80211dwds), 5616 DEF_CMD("inact", 1, set80211inact), 5617 DEF_CMD("-inact", 0, set80211inact), 5618 DEF_CMD("tsn", 1, set80211tsn), 5619 DEF_CMD("-tsn", 0, set80211tsn), 5620 DEF_CMD_ARG("regdomain", set80211regdomain), 5621 DEF_CMD_ARG("country", set80211country), 5622 DEF_CMD("indoor", 'I', set80211location), 5623 DEF_CMD("-indoor", 'O', set80211location), 5624 DEF_CMD("outdoor", 'O', set80211location), 5625 DEF_CMD("-outdoor", 'I', set80211location), 5626 DEF_CMD("anywhere", ' ', set80211location), 5627 DEF_CMD("ecm", 1, set80211ecm), 5628 DEF_CMD("-ecm", 0, set80211ecm), 5629 DEF_CMD("dotd", 1, set80211dotd), 5630 DEF_CMD("-dotd", 0, set80211dotd), 5631 DEF_CMD_ARG("htprotmode", set80211htprotmode), 5632 DEF_CMD("ht20", 1, set80211htconf), 5633 DEF_CMD("-ht20", 0, set80211htconf), 5634 DEF_CMD("ht40", 3, set80211htconf), /* NB: 20+40 */ 5635 DEF_CMD("-ht40", 0, set80211htconf), 5636 DEF_CMD("ht", 3, set80211htconf), /* NB: 20+40 */ 5637 DEF_CMD("-ht", 0, set80211htconf), 5638 DEF_CMD("vht", 1, set80211vhtconf), 5639 DEF_CMD("-vht", 0, set80211vhtconf), 5640 DEF_CMD("vht40", 2, set80211vhtconf), 5641 DEF_CMD("-vht40", -2, set80211vhtconf), 5642 DEF_CMD("vht80", 4, set80211vhtconf), 5643 DEF_CMD("-vht80", -4, set80211vhtconf), 5644 DEF_CMD("vht80p80", 8, set80211vhtconf), 5645 DEF_CMD("-vht80p80", -8, set80211vhtconf), 5646 DEF_CMD("vht160", 16, set80211vhtconf), 5647 DEF_CMD("-vht160", -16, set80211vhtconf), 5648 DEF_CMD("rifs", 1, set80211rifs), 5649 DEF_CMD("-rifs", 0, set80211rifs), 5650 DEF_CMD("smps", IEEE80211_HTCAP_SMPS_ENA, set80211smps), 5651 DEF_CMD("smpsdyn", IEEE80211_HTCAP_SMPS_DYNAMIC, set80211smps), 5652 DEF_CMD("-smps", IEEE80211_HTCAP_SMPS_OFF, set80211smps), 5653 /* XXX for testing */ 5654 DEF_CMD_ARG("chanswitch", set80211chanswitch), 5655 5656 DEF_CMD_ARG("tdmaslot", set80211tdmaslot), 5657 DEF_CMD_ARG("tdmaslotcnt", set80211tdmaslotcnt), 5658 DEF_CMD_ARG("tdmaslotlen", set80211tdmaslotlen), 5659 DEF_CMD_ARG("tdmabintval", set80211tdmabintval), 5660 5661 DEF_CMD_ARG("meshttl", set80211meshttl), 5662 DEF_CMD("meshforward", 1, set80211meshforward), 5663 DEF_CMD("-meshforward", 0, set80211meshforward), 5664 DEF_CMD("meshgate", 1, set80211meshgate), 5665 DEF_CMD("-meshgate", 0, set80211meshgate), 5666 DEF_CMD("meshpeering", 1, set80211meshpeering), 5667 DEF_CMD("-meshpeering", 0, set80211meshpeering), 5668 DEF_CMD_ARG("meshmetric", set80211meshmetric), 5669 DEF_CMD_ARG("meshpath", set80211meshpath), 5670 DEF_CMD("meshrt:flush", IEEE80211_MESH_RTCMD_FLUSH, set80211meshrtcmd), 5671 DEF_CMD_ARG("meshrt:add", set80211addmeshrt), 5672 DEF_CMD_ARG("meshrt:del", set80211delmeshrt), 5673 DEF_CMD_ARG("hwmprootmode", set80211hwmprootmode), 5674 DEF_CMD_ARG("hwmpmaxhops", set80211hwmpmaxhops), 5675 5676 /* vap cloning support */ 5677 DEF_CLONE_CMD_ARG("wlanaddr", set80211clone_wlanaddr), 5678 DEF_CLONE_CMD_ARG("wlanbssid", set80211clone_wlanbssid), 5679 DEF_CLONE_CMD_ARG("wlandev", set80211clone_wlandev), 5680 DEF_CLONE_CMD_ARG("wlanmode", set80211clone_wlanmode), 5681 DEF_CLONE_CMD("beacons", 1, set80211clone_beacons), 5682 DEF_CLONE_CMD("-beacons", 0, set80211clone_beacons), 5683 DEF_CLONE_CMD("bssid", 1, set80211clone_bssid), 5684 DEF_CLONE_CMD("-bssid", 0, set80211clone_bssid), 5685 DEF_CLONE_CMD("wdslegacy", 1, set80211clone_wdslegacy), 5686 DEF_CLONE_CMD("-wdslegacy", 0, set80211clone_wdslegacy), 5687 }; 5688 static struct afswtch af_ieee80211 = { 5689 .af_name = "af_ieee80211", 5690 .af_af = AF_UNSPEC, 5691 .af_other_status = ieee80211_status, 5692 }; 5693 5694 static __constructor void 5695 ieee80211_ctor(void) 5696 { 5697 int i; 5698 5699 for (i = 0; i < nitems(ieee80211_cmds); i++) 5700 cmd_register(&ieee80211_cmds[i]); 5701 af_register(&af_ieee80211); 5702 clone_setdefcallback("wlan", wlan_create); 5703 } 5704