1 /* 2 * Copyright 2001 The Aerospace Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of The Aerospace Corporation may not be used to endorse or 13 * promote products derived from this software. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD$ 28 */ 29 30 /*- 31 * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc. 32 * All rights reserved. 33 * 34 * This code is derived from software contributed to The NetBSD Foundation 35 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 36 * NASA Ames Research Center. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 48 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 49 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 50 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 51 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 57 * POSSIBILITY OF SUCH DAMAGE. 58 */ 59 60 #include <sys/param.h> 61 #include <sys/ioctl.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/time.h> 65 66 #include <net/ethernet.h> 67 #include <net/if.h> 68 #include <net/if_dl.h> 69 #include <net/if_types.h> 70 #include <net/if_media.h> 71 #include <net/route.h> 72 73 #include <net80211/ieee80211_ioctl.h> 74 #include <net80211/ieee80211_freebsd.h> 75 #include <net80211/ieee80211_superg.h> 76 #include <net80211/ieee80211_tdma.h> 77 #include <net80211/ieee80211_mesh.h> 78 79 #include <assert.h> 80 #include <ctype.h> 81 #include <err.h> 82 #include <errno.h> 83 #include <fcntl.h> 84 #include <inttypes.h> 85 #include <stdio.h> 86 #include <stdlib.h> 87 #include <string.h> 88 #include <unistd.h> 89 #include <stdarg.h> 90 #include <stddef.h> /* NB: for offsetof */ 91 92 #include "ifconfig.h" 93 94 #include <lib80211/lib80211_regdomain.h> 95 #include <lib80211/lib80211_ioctl.h> 96 97 #ifndef IEEE80211_FIXED_RATE_NONE 98 #define IEEE80211_FIXED_RATE_NONE 0xff 99 #endif 100 101 /* XXX need these publicly defined or similar */ 102 #ifndef IEEE80211_NODE_AUTH 103 #define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */ 104 #define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */ 105 #define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */ 106 #define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */ 107 #define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */ 108 #define IEEE80211_NODE_HT 0x000040 /* HT enabled */ 109 #define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */ 110 #define IEEE80211_NODE_WPS 0x000100 /* WPS association */ 111 #define IEEE80211_NODE_TSN 0x000200 /* TSN association */ 112 #define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */ 113 #define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */ 114 #define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */ 115 #define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */ 116 #define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */ 117 #define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */ 118 #define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */ 119 #define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */ 120 #define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */ 121 #define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */ 122 #define IEEE80211_NODE_VHT 0x100000 /* VHT enabled */ 123 #endif 124 125 #define MAXCHAN 1536 /* max 1.5K channels */ 126 127 #define MAXCOL 78 128 static int col; 129 static char spacer; 130 131 static void LINE_INIT(char c); 132 static void LINE_BREAK(void); 133 static void LINE_CHECK(const char *fmt, ...); 134 135 static const char *modename[IEEE80211_MODE_MAX] = { 136 [IEEE80211_MODE_AUTO] = "auto", 137 [IEEE80211_MODE_11A] = "11a", 138 [IEEE80211_MODE_11B] = "11b", 139 [IEEE80211_MODE_11G] = "11g", 140 [IEEE80211_MODE_FH] = "fh", 141 [IEEE80211_MODE_TURBO_A] = "turboA", 142 [IEEE80211_MODE_TURBO_G] = "turboG", 143 [IEEE80211_MODE_STURBO_A] = "sturbo", 144 [IEEE80211_MODE_11NA] = "11na", 145 [IEEE80211_MODE_11NG] = "11ng", 146 [IEEE80211_MODE_HALF] = "half", 147 [IEEE80211_MODE_QUARTER] = "quarter", 148 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 149 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 150 }; 151 152 static void set80211(int s, int type, int val, int len, void *data); 153 static int get80211(int s, int type, void *data, int len); 154 static int get80211len(int s, int type, void *data, int len, int *plen); 155 static int get80211val(int s, int type, int *val); 156 static const char *get_string(const char *val, const char *sep, 157 u_int8_t *buf, int *lenp); 158 static void print_string(const u_int8_t *buf, int len); 159 static void print_regdomain(const struct ieee80211_regdomain *, int); 160 static void print_channels(int, const struct ieee80211req_chaninfo *, 161 int allchans, int verbose); 162 static void regdomain_makechannels(struct ieee80211_regdomain_req *, 163 const struct ieee80211_devcaps_req *); 164 static const char *mesh_linkstate_string(uint8_t state); 165 166 static struct ieee80211req_chaninfo *chaninfo; 167 static struct ieee80211_regdomain regdomain; 168 static int gotregdomain = 0; 169 static struct ieee80211_roamparams_req roamparams; 170 static int gotroam = 0; 171 static struct ieee80211_txparams_req txparams; 172 static int gottxparams = 0; 173 static struct ieee80211_channel curchan; 174 static int gotcurchan = 0; 175 static struct ifmediareq *ifmr; 176 static int htconf = 0; 177 static int gothtconf = 0; 178 179 static void 180 gethtconf(int s) 181 { 182 if (gothtconf) 183 return; 184 if (get80211val(s, IEEE80211_IOC_HTCONF, &htconf) < 0) 185 warn("unable to get HT configuration information"); 186 gothtconf = 1; 187 } 188 189 /* VHT */ 190 static int vhtconf = 0; 191 static int gotvhtconf = 0; 192 193 static void 194 getvhtconf(int s) 195 { 196 if (gotvhtconf) 197 return; 198 if (get80211val(s, IEEE80211_IOC_VHTCONF, &vhtconf) < 0) 199 warn("unable to get VHT configuration information"); 200 gotvhtconf = 1; 201 } 202 203 /* 204 * Collect channel info from the kernel. We use this (mostly) 205 * to handle mapping between frequency and IEEE channel number. 206 */ 207 static void 208 getchaninfo(int s) 209 { 210 if (chaninfo != NULL) 211 return; 212 chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN)); 213 if (chaninfo == NULL) 214 errx(1, "no space for channel list"); 215 if (get80211(s, IEEE80211_IOC_CHANINFO, chaninfo, 216 IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0) 217 err(1, "unable to get channel information"); 218 ifmr = ifmedia_getstate(s); 219 gethtconf(s); 220 getvhtconf(s); 221 } 222 223 static struct regdata * 224 getregdata(void) 225 { 226 static struct regdata *rdp = NULL; 227 if (rdp == NULL) { 228 rdp = lib80211_alloc_regdata(); 229 if (rdp == NULL) 230 errx(-1, "missing or corrupted regdomain database"); 231 } 232 return rdp; 233 } 234 235 /* 236 * Given the channel at index i with attributes from, 237 * check if there is a channel with attributes to in 238 * the channel table. With suitable attributes this 239 * allows the caller to look for promotion; e.g. from 240 * 11b > 11g. 241 */ 242 static int 243 canpromote(int i, int from, int to) 244 { 245 const struct ieee80211_channel *fc = &chaninfo->ic_chans[i]; 246 u_int j; 247 248 if ((fc->ic_flags & from) != from) 249 return i; 250 /* NB: quick check exploiting ordering of chans w/ same frequency */ 251 if (i+1 < chaninfo->ic_nchans && 252 chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq && 253 (chaninfo->ic_chans[i+1].ic_flags & to) == to) 254 return i+1; 255 /* brute force search in case channel list is not ordered */ 256 for (j = 0; j < chaninfo->ic_nchans; j++) { 257 const struct ieee80211_channel *tc = &chaninfo->ic_chans[j]; 258 if (j != i && 259 tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to) 260 return j; 261 } 262 return i; 263 } 264 265 /* 266 * Handle channel promotion. When a channel is specified with 267 * only a frequency we want to promote it to the ``best'' channel 268 * available. The channel list has separate entries for 11b, 11g, 269 * 11a, and 11n[ga] channels so specifying a frequency w/o any 270 * attributes requires we upgrade, e.g. from 11b -> 11g. This 271 * gets complicated when the channel is specified on the same 272 * command line with a media request that constrains the available 273 * channe list (e.g. mode 11a); we want to honor that to avoid 274 * confusing behaviour. 275 */ 276 /* 277 * XXX VHT 278 */ 279 static int 280 promote(int i) 281 { 282 /* 283 * Query the current mode of the interface in case it's 284 * constrained (e.g. to 11a). We must do this carefully 285 * as there may be a pending ifmedia request in which case 286 * asking the kernel will give us the wrong answer. This 287 * is an unfortunate side-effect of the way ifconfig is 288 * structure for modularity (yech). 289 * 290 * NB: ifmr is actually setup in getchaninfo (above); we 291 * assume it's called coincident with to this call so 292 * we have a ``current setting''; otherwise we must pass 293 * the socket descriptor down to here so we can make 294 * the ifmedia_getstate call ourselves. 295 */ 296 int chanmode = ifmr != NULL ? IFM_MODE(ifmr->ifm_current) : IFM_AUTO; 297 298 /* when ambiguous promote to ``best'' */ 299 /* NB: we abitrarily pick HT40+ over HT40- */ 300 if (chanmode != IFM_IEEE80211_11B) 301 i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G); 302 if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) { 303 i = canpromote(i, IEEE80211_CHAN_G, 304 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20); 305 if (htconf & 2) { 306 i = canpromote(i, IEEE80211_CHAN_G, 307 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D); 308 i = canpromote(i, IEEE80211_CHAN_G, 309 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U); 310 } 311 } 312 if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) { 313 i = canpromote(i, IEEE80211_CHAN_A, 314 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20); 315 if (htconf & 2) { 316 i = canpromote(i, IEEE80211_CHAN_A, 317 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D); 318 i = canpromote(i, IEEE80211_CHAN_A, 319 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U); 320 } 321 } 322 return i; 323 } 324 325 static void 326 mapfreq(struct ieee80211_channel *chan, int freq, int flags) 327 { 328 u_int i; 329 330 for (i = 0; i < chaninfo->ic_nchans; i++) { 331 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 332 333 if (c->ic_freq == freq && (c->ic_flags & flags) == flags) { 334 if (flags == 0) { 335 /* when ambiguous promote to ``best'' */ 336 c = &chaninfo->ic_chans[promote(i)]; 337 } 338 *chan = *c; 339 return; 340 } 341 } 342 errx(1, "unknown/undefined frequency %u/0x%x", freq, flags); 343 } 344 345 static void 346 mapchan(struct ieee80211_channel *chan, int ieee, int flags) 347 { 348 u_int i; 349 350 for (i = 0; i < chaninfo->ic_nchans; i++) { 351 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 352 353 if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) { 354 if (flags == 0) { 355 /* when ambiguous promote to ``best'' */ 356 c = &chaninfo->ic_chans[promote(i)]; 357 } 358 *chan = *c; 359 return; 360 } 361 } 362 errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags); 363 } 364 365 static const struct ieee80211_channel * 366 getcurchan(int s) 367 { 368 if (gotcurchan) 369 return &curchan; 370 if (get80211(s, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) { 371 int val; 372 /* fall back to legacy ioctl */ 373 if (get80211val(s, IEEE80211_IOC_CHANNEL, &val) < 0) 374 err(-1, "cannot figure out current channel"); 375 getchaninfo(s); 376 mapchan(&curchan, val, 0); 377 } 378 gotcurchan = 1; 379 return &curchan; 380 } 381 382 static enum ieee80211_phymode 383 chan2mode(const struct ieee80211_channel *c) 384 { 385 if (IEEE80211_IS_CHAN_VHTA(c)) 386 return IEEE80211_MODE_VHT_5GHZ; 387 if (IEEE80211_IS_CHAN_VHTG(c)) 388 return IEEE80211_MODE_VHT_2GHZ; 389 if (IEEE80211_IS_CHAN_HTA(c)) 390 return IEEE80211_MODE_11NA; 391 if (IEEE80211_IS_CHAN_HTG(c)) 392 return IEEE80211_MODE_11NG; 393 if (IEEE80211_IS_CHAN_108A(c)) 394 return IEEE80211_MODE_TURBO_A; 395 if (IEEE80211_IS_CHAN_108G(c)) 396 return IEEE80211_MODE_TURBO_G; 397 if (IEEE80211_IS_CHAN_ST(c)) 398 return IEEE80211_MODE_STURBO_A; 399 if (IEEE80211_IS_CHAN_FHSS(c)) 400 return IEEE80211_MODE_FH; 401 if (IEEE80211_IS_CHAN_HALF(c)) 402 return IEEE80211_MODE_HALF; 403 if (IEEE80211_IS_CHAN_QUARTER(c)) 404 return IEEE80211_MODE_QUARTER; 405 if (IEEE80211_IS_CHAN_A(c)) 406 return IEEE80211_MODE_11A; 407 if (IEEE80211_IS_CHAN_ANYG(c)) 408 return IEEE80211_MODE_11G; 409 if (IEEE80211_IS_CHAN_B(c)) 410 return IEEE80211_MODE_11B; 411 return IEEE80211_MODE_AUTO; 412 } 413 414 static void 415 getroam(int s) 416 { 417 if (gotroam) 418 return; 419 if (get80211(s, IEEE80211_IOC_ROAM, 420 &roamparams, sizeof(roamparams)) < 0) 421 err(1, "unable to get roaming parameters"); 422 gotroam = 1; 423 } 424 425 static void 426 setroam_cb(int s, void *arg) 427 { 428 struct ieee80211_roamparams_req *roam = arg; 429 set80211(s, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam); 430 } 431 432 static void 433 gettxparams(int s) 434 { 435 if (gottxparams) 436 return; 437 if (get80211(s, IEEE80211_IOC_TXPARAMS, 438 &txparams, sizeof(txparams)) < 0) 439 err(1, "unable to get transmit parameters"); 440 gottxparams = 1; 441 } 442 443 static void 444 settxparams_cb(int s, void *arg) 445 { 446 struct ieee80211_txparams_req *txp = arg; 447 set80211(s, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp); 448 } 449 450 static void 451 getregdomain(int s) 452 { 453 if (gotregdomain) 454 return; 455 if (get80211(s, IEEE80211_IOC_REGDOMAIN, 456 ®domain, sizeof(regdomain)) < 0) 457 err(1, "unable to get regulatory domain info"); 458 gotregdomain = 1; 459 } 460 461 static void 462 getdevcaps(int s, struct ieee80211_devcaps_req *dc) 463 { 464 if (get80211(s, IEEE80211_IOC_DEVCAPS, dc, 465 IEEE80211_DEVCAPS_SPACE(dc)) < 0) 466 err(1, "unable to get device capabilities"); 467 } 468 469 static void 470 setregdomain_cb(int s, void *arg) 471 { 472 struct ieee80211_regdomain_req *req; 473 struct ieee80211_regdomain *rd = arg; 474 struct ieee80211_devcaps_req *dc; 475 struct regdata *rdp = getregdata(); 476 477 if (rd->country != NO_COUNTRY) { 478 const struct country *cc; 479 /* 480 * Check current country seting to make sure it's 481 * compatible with the new regdomain. If not, then 482 * override it with any default country for this 483 * SKU. If we cannot arrange a match, then abort. 484 */ 485 cc = lib80211_country_findbycc(rdp, rd->country); 486 if (cc == NULL) 487 errx(1, "unknown ISO country code %d", rd->country); 488 if (cc->rd->sku != rd->regdomain) { 489 const struct regdomain *rp; 490 /* 491 * Check if country is incompatible with regdomain. 492 * To enable multiple regdomains for a country code 493 * we permit a mismatch between the regdomain and 494 * the country's associated regdomain when the 495 * regdomain is setup w/o a default country. For 496 * example, US is bound to the FCC regdomain but 497 * we allow US to be combined with FCC3 because FCC3 498 * has not default country. This allows bogus 499 * combinations like FCC3+DK which are resolved when 500 * constructing the channel list by deferring to the 501 * regdomain to construct the channel list. 502 */ 503 rp = lib80211_regdomain_findbysku(rdp, rd->regdomain); 504 if (rp == NULL) 505 errx(1, "country %s (%s) is not usable with " 506 "regdomain %d", cc->isoname, cc->name, 507 rd->regdomain); 508 else if (rp->cc != NULL && rp->cc != cc) 509 errx(1, "country %s (%s) is not usable with " 510 "regdomain %s", cc->isoname, cc->name, 511 rp->name); 512 } 513 } 514 /* 515 * Fetch the device capabilities and calculate the 516 * full set of netbands for which we request a new 517 * channel list be constructed. Once that's done we 518 * push the regdomain info + channel list to the kernel. 519 */ 520 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 521 if (dc == NULL) 522 errx(1, "no space for device capabilities"); 523 dc->dc_chaninfo.ic_nchans = MAXCHAN; 524 getdevcaps(s, dc); 525 #if 0 526 if (verbose) { 527 printf("drivercaps: 0x%x\n", dc->dc_drivercaps); 528 printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps); 529 printf("htcaps : 0x%x\n", dc->dc_htcaps); 530 printf("vhtcaps : 0x%x\n", dc->dc_vhtcaps); 531 #if 0 532 memcpy(chaninfo, &dc->dc_chaninfo, 533 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 534 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/); 535 #endif 536 } 537 #endif 538 req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans)); 539 if (req == NULL) 540 errx(1, "no space for regdomain request"); 541 req->rd = *rd; 542 regdomain_makechannels(req, dc); 543 if (verbose) { 544 LINE_INIT(':'); 545 print_regdomain(rd, 1/*verbose*/); 546 LINE_BREAK(); 547 /* blech, reallocate channel list for new data */ 548 if (chaninfo != NULL) 549 free(chaninfo); 550 chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 551 if (chaninfo == NULL) 552 errx(1, "no space for channel list"); 553 memcpy(chaninfo, &req->chaninfo, 554 IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 555 print_channels(s, &req->chaninfo, 1/*allchans*/, 1/*verbose*/); 556 } 557 if (req->chaninfo.ic_nchans == 0) 558 errx(1, "no channels calculated"); 559 set80211(s, IEEE80211_IOC_REGDOMAIN, 0, 560 IEEE80211_REGDOMAIN_SPACE(req), req); 561 free(req); 562 free(dc); 563 } 564 565 static int 566 ieee80211_mhz2ieee(int freq, int flags) 567 { 568 struct ieee80211_channel chan; 569 mapfreq(&chan, freq, flags); 570 return chan.ic_ieee; 571 } 572 573 static int 574 isanyarg(const char *arg) 575 { 576 return (strncmp(arg, "-", 1) == 0 || 577 strncasecmp(arg, "any", 3) == 0 || strncasecmp(arg, "off", 3) == 0); 578 } 579 580 static void 581 set80211ssid(const char *val, int d, int s, const struct afswtch *rafp) 582 { 583 int ssid; 584 int len; 585 u_int8_t data[IEEE80211_NWID_LEN]; 586 587 ssid = 0; 588 len = strlen(val); 589 if (len > 2 && isdigit((int)val[0]) && val[1] == ':') { 590 ssid = atoi(val)-1; 591 val += 2; 592 } 593 594 bzero(data, sizeof(data)); 595 len = sizeof(data); 596 if (get_string(val, NULL, data, &len) == NULL) 597 exit(1); 598 599 set80211(s, IEEE80211_IOC_SSID, ssid, len, data); 600 } 601 602 static void 603 set80211meshid(const char *val, int d, int s, const struct afswtch *rafp) 604 { 605 int len; 606 u_int8_t data[IEEE80211_NWID_LEN]; 607 608 memset(data, 0, sizeof(data)); 609 len = sizeof(data); 610 if (get_string(val, NULL, data, &len) == NULL) 611 exit(1); 612 613 set80211(s, IEEE80211_IOC_MESH_ID, 0, len, data); 614 } 615 616 static void 617 set80211stationname(const char *val, int d, int s, const struct afswtch *rafp) 618 { 619 int len; 620 u_int8_t data[33]; 621 622 bzero(data, sizeof(data)); 623 len = sizeof(data); 624 get_string(val, NULL, data, &len); 625 626 set80211(s, IEEE80211_IOC_STATIONNAME, 0, len, data); 627 } 628 629 /* 630 * Parse a channel specification for attributes/flags. 631 * The syntax is: 632 * freq/xx channel width (5,10,20,40,40+,40-) 633 * freq:mode channel mode (a,b,g,h,n,t,s,d) 634 * 635 * These can be combined in either order; e.g. 2437:ng/40. 636 * Modes are case insensitive. 637 * 638 * The result is not validated here; it's assumed to be 639 * checked against the channel table fetched from the kernel. 640 */ 641 static int 642 getchannelflags(const char *val, int freq) 643 { 644 #define _CHAN_HT 0x80000000 645 const char *cp; 646 int flags; 647 int is_vht = 0; 648 649 flags = 0; 650 651 cp = strchr(val, ':'); 652 if (cp != NULL) { 653 for (cp++; isalpha((int) *cp); cp++) { 654 /* accept mixed case */ 655 int c = *cp; 656 if (isupper(c)) 657 c = tolower(c); 658 switch (c) { 659 case 'a': /* 802.11a */ 660 flags |= IEEE80211_CHAN_A; 661 break; 662 case 'b': /* 802.11b */ 663 flags |= IEEE80211_CHAN_B; 664 break; 665 case 'g': /* 802.11g */ 666 flags |= IEEE80211_CHAN_G; 667 break; 668 case 'v': /* vht: 802.11ac */ 669 is_vht = 1; 670 /* Fallthrough */ 671 case 'h': /* ht = 802.11n */ 672 case 'n': /* 802.11n */ 673 flags |= _CHAN_HT; /* NB: private */ 674 break; 675 case 'd': /* dt = Atheros Dynamic Turbo */ 676 flags |= IEEE80211_CHAN_TURBO; 677 break; 678 case 't': /* ht, dt, st, t */ 679 /* dt and unadorned t specify Dynamic Turbo */ 680 if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0) 681 flags |= IEEE80211_CHAN_TURBO; 682 break; 683 case 's': /* st = Atheros Static Turbo */ 684 flags |= IEEE80211_CHAN_STURBO; 685 break; 686 default: 687 errx(-1, "%s: Invalid channel attribute %c\n", 688 val, *cp); 689 } 690 } 691 } 692 cp = strchr(val, '/'); 693 if (cp != NULL) { 694 char *ep; 695 u_long cw = strtoul(cp+1, &ep, 10); 696 697 switch (cw) { 698 case 5: 699 flags |= IEEE80211_CHAN_QUARTER; 700 break; 701 case 10: 702 flags |= IEEE80211_CHAN_HALF; 703 break; 704 case 20: 705 /* NB: this may be removed below */ 706 flags |= IEEE80211_CHAN_HT20; 707 break; 708 case 40: 709 case 80: 710 case 160: 711 /* Handle the 80/160 VHT flag */ 712 if (cw == 80) 713 flags |= IEEE80211_CHAN_VHT80; 714 else if (cw == 160) 715 flags |= IEEE80211_CHAN_VHT160; 716 717 /* Fallthrough */ 718 if (ep != NULL && *ep == '+') 719 flags |= IEEE80211_CHAN_HT40U; 720 else if (ep != NULL && *ep == '-') 721 flags |= IEEE80211_CHAN_HT40D; 722 break; 723 default: 724 errx(-1, "%s: Invalid channel width\n", val); 725 } 726 } 727 728 /* 729 * Cleanup specifications. 730 */ 731 if ((flags & _CHAN_HT) == 0) { 732 /* 733 * If user specified freq/20 or freq/40 quietly remove 734 * HT cw attributes depending on channel use. To give 735 * an explicit 20/40 width for an HT channel you must 736 * indicate it is an HT channel since all HT channels 737 * are also usable for legacy operation; e.g. freq:n/40. 738 */ 739 flags &= ~IEEE80211_CHAN_HT; 740 flags &= ~IEEE80211_CHAN_VHT; 741 } else { 742 /* 743 * Remove private indicator that this is an HT channel 744 * and if no explicit channel width has been given 745 * provide the default settings. 746 */ 747 flags &= ~_CHAN_HT; 748 if ((flags & IEEE80211_CHAN_HT) == 0) { 749 struct ieee80211_channel chan; 750 /* 751 * Consult the channel list to see if we can use 752 * HT40+ or HT40- (if both the map routines choose). 753 */ 754 if (freq > 255) 755 mapfreq(&chan, freq, 0); 756 else 757 mapchan(&chan, freq, 0); 758 flags |= (chan.ic_flags & IEEE80211_CHAN_HT); 759 } 760 761 /* 762 * If VHT is enabled, then also set the VHT flag and the 763 * relevant channel up/down. 764 */ 765 if (is_vht && (flags & IEEE80211_CHAN_HT)) { 766 /* 767 * XXX yes, maybe we should just have VHT, and reuse 768 * HT20/HT40U/HT40D 769 */ 770 if (flags & IEEE80211_CHAN_VHT80) 771 ; 772 else if (flags & IEEE80211_CHAN_HT20) 773 flags |= IEEE80211_CHAN_VHT20; 774 else if (flags & IEEE80211_CHAN_HT40U) 775 flags |= IEEE80211_CHAN_VHT40U; 776 else if (flags & IEEE80211_CHAN_HT40D) 777 flags |= IEEE80211_CHAN_VHT40D; 778 } 779 } 780 return flags; 781 #undef _CHAN_HT 782 } 783 784 static void 785 getchannel(int s, struct ieee80211_channel *chan, const char *val) 786 { 787 int v, flags; 788 char *eptr; 789 790 memset(chan, 0, sizeof(*chan)); 791 if (isanyarg(val)) { 792 chan->ic_freq = IEEE80211_CHAN_ANY; 793 return; 794 } 795 getchaninfo(s); 796 errno = 0; 797 v = strtol(val, &eptr, 10); 798 if (val[0] == '\0' || val == eptr || errno == ERANGE || 799 /* channel may be suffixed with nothing, :flag, or /width */ 800 (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/')) 801 errx(1, "invalid channel specification%s", 802 errno == ERANGE ? " (out of range)" : ""); 803 flags = getchannelflags(val, v); 804 if (v > 255) { /* treat as frequency */ 805 mapfreq(chan, v, flags); 806 } else { 807 mapchan(chan, v, flags); 808 } 809 } 810 811 static void 812 set80211channel(const char *val, int d, int s, const struct afswtch *rafp) 813 { 814 struct ieee80211_channel chan; 815 816 getchannel(s, &chan, val); 817 set80211(s, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan); 818 } 819 820 static void 821 set80211chanswitch(const char *val, int d, int s, const struct afswtch *rafp) 822 { 823 struct ieee80211_chanswitch_req csr; 824 825 getchannel(s, &csr.csa_chan, val); 826 csr.csa_mode = 1; 827 csr.csa_count = 5; 828 set80211(s, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr); 829 } 830 831 static void 832 set80211authmode(const char *val, int d, int s, const struct afswtch *rafp) 833 { 834 int mode; 835 836 if (strcasecmp(val, "none") == 0) { 837 mode = IEEE80211_AUTH_NONE; 838 } else if (strcasecmp(val, "open") == 0) { 839 mode = IEEE80211_AUTH_OPEN; 840 } else if (strcasecmp(val, "shared") == 0) { 841 mode = IEEE80211_AUTH_SHARED; 842 } else if (strcasecmp(val, "8021x") == 0) { 843 mode = IEEE80211_AUTH_8021X; 844 } else if (strcasecmp(val, "wpa") == 0) { 845 mode = IEEE80211_AUTH_WPA; 846 } else { 847 errx(1, "unknown authmode"); 848 } 849 850 set80211(s, IEEE80211_IOC_AUTHMODE, mode, 0, NULL); 851 } 852 853 static void 854 set80211powersavemode(const char *val, int d, int s, const struct afswtch *rafp) 855 { 856 int mode; 857 858 if (strcasecmp(val, "off") == 0) { 859 mode = IEEE80211_POWERSAVE_OFF; 860 } else if (strcasecmp(val, "on") == 0) { 861 mode = IEEE80211_POWERSAVE_ON; 862 } else if (strcasecmp(val, "cam") == 0) { 863 mode = IEEE80211_POWERSAVE_CAM; 864 } else if (strcasecmp(val, "psp") == 0) { 865 mode = IEEE80211_POWERSAVE_PSP; 866 } else if (strcasecmp(val, "psp-cam") == 0) { 867 mode = IEEE80211_POWERSAVE_PSP_CAM; 868 } else { 869 errx(1, "unknown powersavemode"); 870 } 871 872 set80211(s, IEEE80211_IOC_POWERSAVE, mode, 0, NULL); 873 } 874 875 static void 876 set80211powersave(const char *val, int d, int s, const struct afswtch *rafp) 877 { 878 if (d == 0) 879 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF, 880 0, NULL); 881 else 882 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON, 883 0, NULL); 884 } 885 886 static void 887 set80211powersavesleep(const char *val, int d, int s, const struct afswtch *rafp) 888 { 889 set80211(s, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL); 890 } 891 892 static void 893 set80211wepmode(const char *val, int d, int s, const struct afswtch *rafp) 894 { 895 int mode; 896 897 if (strcasecmp(val, "off") == 0) { 898 mode = IEEE80211_WEP_OFF; 899 } else if (strcasecmp(val, "on") == 0) { 900 mode = IEEE80211_WEP_ON; 901 } else if (strcasecmp(val, "mixed") == 0) { 902 mode = IEEE80211_WEP_MIXED; 903 } else { 904 errx(1, "unknown wep mode"); 905 } 906 907 set80211(s, IEEE80211_IOC_WEP, mode, 0, NULL); 908 } 909 910 static void 911 set80211wep(const char *val, int d, int s, const struct afswtch *rafp) 912 { 913 set80211(s, IEEE80211_IOC_WEP, d, 0, NULL); 914 } 915 916 static int 917 isundefarg(const char *arg) 918 { 919 return (strcmp(arg, "-") == 0 || strncasecmp(arg, "undef", 5) == 0); 920 } 921 922 static void 923 set80211weptxkey(const char *val, int d, int s, const struct afswtch *rafp) 924 { 925 if (isundefarg(val)) 926 set80211(s, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL); 927 else 928 set80211(s, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL); 929 } 930 931 static void 932 set80211wepkey(const char *val, int d, int s, const struct afswtch *rafp) 933 { 934 int key = 0; 935 int len; 936 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 937 938 if (isdigit((int)val[0]) && val[1] == ':') { 939 key = atoi(val)-1; 940 val += 2; 941 } 942 943 bzero(data, sizeof(data)); 944 len = sizeof(data); 945 get_string(val, NULL, data, &len); 946 947 set80211(s, IEEE80211_IOC_WEPKEY, key, len, data); 948 } 949 950 /* 951 * This function is purely a NetBSD compatibility interface. The NetBSD 952 * interface is too inflexible, but it's there so we'll support it since 953 * it's not all that hard. 954 */ 955 static void 956 set80211nwkey(const char *val, int d, int s, const struct afswtch *rafp) 957 { 958 int txkey; 959 int i, len; 960 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 961 962 set80211(s, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL); 963 964 if (isdigit((int)val[0]) && val[1] == ':') { 965 txkey = val[0]-'0'-1; 966 val += 2; 967 968 for (i = 0; i < 4; i++) { 969 bzero(data, sizeof(data)); 970 len = sizeof(data); 971 val = get_string(val, ",", data, &len); 972 if (val == NULL) 973 exit(1); 974 975 set80211(s, IEEE80211_IOC_WEPKEY, i, len, data); 976 } 977 } else { 978 bzero(data, sizeof(data)); 979 len = sizeof(data); 980 get_string(val, NULL, data, &len); 981 txkey = 0; 982 983 set80211(s, IEEE80211_IOC_WEPKEY, 0, len, data); 984 985 bzero(data, sizeof(data)); 986 for (i = 1; i < 4; i++) 987 set80211(s, IEEE80211_IOC_WEPKEY, i, 0, data); 988 } 989 990 set80211(s, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL); 991 } 992 993 static void 994 set80211rtsthreshold(const char *val, int d, int s, const struct afswtch *rafp) 995 { 996 set80211(s, IEEE80211_IOC_RTSTHRESHOLD, 997 isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL); 998 } 999 1000 static void 1001 set80211protmode(const char *val, int d, int s, const struct afswtch *rafp) 1002 { 1003 int mode; 1004 1005 if (strcasecmp(val, "off") == 0) { 1006 mode = IEEE80211_PROTMODE_OFF; 1007 } else if (strcasecmp(val, "cts") == 0) { 1008 mode = IEEE80211_PROTMODE_CTS; 1009 } else if (strncasecmp(val, "rtscts", 3) == 0) { 1010 mode = IEEE80211_PROTMODE_RTSCTS; 1011 } else { 1012 errx(1, "unknown protection mode"); 1013 } 1014 1015 set80211(s, IEEE80211_IOC_PROTMODE, mode, 0, NULL); 1016 } 1017 1018 static void 1019 set80211htprotmode(const char *val, int d, int s, const struct afswtch *rafp) 1020 { 1021 int mode; 1022 1023 if (strcasecmp(val, "off") == 0) { 1024 mode = IEEE80211_PROTMODE_OFF; 1025 } else if (strncasecmp(val, "rts", 3) == 0) { 1026 mode = IEEE80211_PROTMODE_RTSCTS; 1027 } else { 1028 errx(1, "unknown protection mode"); 1029 } 1030 1031 set80211(s, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL); 1032 } 1033 1034 static void 1035 set80211txpower(const char *val, int d, int s, const struct afswtch *rafp) 1036 { 1037 double v = atof(val); 1038 int txpow; 1039 1040 txpow = (int) (2*v); 1041 if (txpow != 2*v) 1042 errx(-1, "invalid tx power (must be .5 dBm units)"); 1043 set80211(s, IEEE80211_IOC_TXPOWER, txpow, 0, NULL); 1044 } 1045 1046 #define IEEE80211_ROAMING_DEVICE 0 1047 #define IEEE80211_ROAMING_AUTO 1 1048 #define IEEE80211_ROAMING_MANUAL 2 1049 1050 static void 1051 set80211roaming(const char *val, int d, int s, const struct afswtch *rafp) 1052 { 1053 int mode; 1054 1055 if (strcasecmp(val, "device") == 0) { 1056 mode = IEEE80211_ROAMING_DEVICE; 1057 } else if (strcasecmp(val, "auto") == 0) { 1058 mode = IEEE80211_ROAMING_AUTO; 1059 } else if (strcasecmp(val, "manual") == 0) { 1060 mode = IEEE80211_ROAMING_MANUAL; 1061 } else { 1062 errx(1, "unknown roaming mode"); 1063 } 1064 set80211(s, IEEE80211_IOC_ROAMING, mode, 0, NULL); 1065 } 1066 1067 static void 1068 set80211wme(const char *val, int d, int s, const struct afswtch *rafp) 1069 { 1070 set80211(s, IEEE80211_IOC_WME, d, 0, NULL); 1071 } 1072 1073 static void 1074 set80211hidessid(const char *val, int d, int s, const struct afswtch *rafp) 1075 { 1076 set80211(s, IEEE80211_IOC_HIDESSID, d, 0, NULL); 1077 } 1078 1079 static void 1080 set80211apbridge(const char *val, int d, int s, const struct afswtch *rafp) 1081 { 1082 set80211(s, IEEE80211_IOC_APBRIDGE, d, 0, NULL); 1083 } 1084 1085 static void 1086 set80211fastframes(const char *val, int d, int s, const struct afswtch *rafp) 1087 { 1088 set80211(s, IEEE80211_IOC_FF, d, 0, NULL); 1089 } 1090 1091 static void 1092 set80211dturbo(const char *val, int d, int s, const struct afswtch *rafp) 1093 { 1094 set80211(s, IEEE80211_IOC_TURBOP, d, 0, NULL); 1095 } 1096 1097 static void 1098 set80211chanlist(const char *val, int d, int s, const struct afswtch *rafp) 1099 { 1100 struct ieee80211req_chanlist chanlist; 1101 char *temp, *cp, *tp; 1102 1103 temp = malloc(strlen(val) + 1); 1104 if (temp == NULL) 1105 errx(1, "malloc failed"); 1106 strcpy(temp, val); 1107 memset(&chanlist, 0, sizeof(chanlist)); 1108 cp = temp; 1109 for (;;) { 1110 int first, last, f, c; 1111 1112 tp = strchr(cp, ','); 1113 if (tp != NULL) 1114 *tp++ = '\0'; 1115 switch (sscanf(cp, "%u-%u", &first, &last)) { 1116 case 1: 1117 if (first > IEEE80211_CHAN_MAX) 1118 errx(-1, "channel %u out of range, max %u", 1119 first, IEEE80211_CHAN_MAX); 1120 setbit(chanlist.ic_channels, first); 1121 break; 1122 case 2: 1123 if (first > IEEE80211_CHAN_MAX) 1124 errx(-1, "channel %u out of range, max %u", 1125 first, IEEE80211_CHAN_MAX); 1126 if (last > IEEE80211_CHAN_MAX) 1127 errx(-1, "channel %u out of range, max %u", 1128 last, IEEE80211_CHAN_MAX); 1129 if (first > last) 1130 errx(-1, "void channel range, %u > %u", 1131 first, last); 1132 for (f = first; f <= last; f++) 1133 setbit(chanlist.ic_channels, f); 1134 break; 1135 } 1136 if (tp == NULL) 1137 break; 1138 c = *tp; 1139 while (isspace(c)) 1140 tp++; 1141 if (!isdigit(c)) 1142 break; 1143 cp = tp; 1144 } 1145 set80211(s, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist); 1146 free(temp); 1147 } 1148 1149 static void 1150 set80211bssid(const char *val, int d, int s, const struct afswtch *rafp) 1151 { 1152 1153 if (!isanyarg(val)) { 1154 char *temp; 1155 struct sockaddr_dl sdl; 1156 1157 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1158 if (temp == NULL) 1159 errx(1, "malloc failed"); 1160 temp[0] = ':'; 1161 strcpy(temp + 1, val); 1162 sdl.sdl_len = sizeof(sdl); 1163 link_addr(temp, &sdl); 1164 free(temp); 1165 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1166 errx(1, "malformed link-level address"); 1167 set80211(s, IEEE80211_IOC_BSSID, 0, 1168 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1169 } else { 1170 uint8_t zerobssid[IEEE80211_ADDR_LEN]; 1171 memset(zerobssid, 0, sizeof(zerobssid)); 1172 set80211(s, IEEE80211_IOC_BSSID, 0, 1173 IEEE80211_ADDR_LEN, zerobssid); 1174 } 1175 } 1176 1177 static int 1178 getac(const char *ac) 1179 { 1180 if (strcasecmp(ac, "ac_be") == 0 || strcasecmp(ac, "be") == 0) 1181 return WME_AC_BE; 1182 if (strcasecmp(ac, "ac_bk") == 0 || strcasecmp(ac, "bk") == 0) 1183 return WME_AC_BK; 1184 if (strcasecmp(ac, "ac_vi") == 0 || strcasecmp(ac, "vi") == 0) 1185 return WME_AC_VI; 1186 if (strcasecmp(ac, "ac_vo") == 0 || strcasecmp(ac, "vo") == 0) 1187 return WME_AC_VO; 1188 errx(1, "unknown wme access class %s", ac); 1189 } 1190 1191 static 1192 DECL_CMD_FUNC2(set80211cwmin, ac, val) 1193 { 1194 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL); 1195 } 1196 1197 static 1198 DECL_CMD_FUNC2(set80211cwmax, ac, val) 1199 { 1200 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL); 1201 } 1202 1203 static 1204 DECL_CMD_FUNC2(set80211aifs, ac, val) 1205 { 1206 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL); 1207 } 1208 1209 static 1210 DECL_CMD_FUNC2(set80211txoplimit, ac, val) 1211 { 1212 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL); 1213 } 1214 1215 static 1216 DECL_CMD_FUNC(set80211acm, ac, d) 1217 { 1218 set80211(s, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL); 1219 } 1220 static 1221 DECL_CMD_FUNC(set80211noacm, ac, d) 1222 { 1223 set80211(s, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL); 1224 } 1225 1226 static 1227 DECL_CMD_FUNC(set80211ackpolicy, ac, d) 1228 { 1229 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL); 1230 } 1231 static 1232 DECL_CMD_FUNC(set80211noackpolicy, ac, d) 1233 { 1234 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL); 1235 } 1236 1237 static 1238 DECL_CMD_FUNC2(set80211bsscwmin, ac, val) 1239 { 1240 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), 1241 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1242 } 1243 1244 static 1245 DECL_CMD_FUNC2(set80211bsscwmax, ac, val) 1246 { 1247 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), 1248 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1249 } 1250 1251 static 1252 DECL_CMD_FUNC2(set80211bssaifs, ac, val) 1253 { 1254 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), 1255 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1256 } 1257 1258 static 1259 DECL_CMD_FUNC2(set80211bsstxoplimit, ac, val) 1260 { 1261 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), 1262 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1263 } 1264 1265 static 1266 DECL_CMD_FUNC(set80211dtimperiod, val, d) 1267 { 1268 set80211(s, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL); 1269 } 1270 1271 static 1272 DECL_CMD_FUNC(set80211bintval, val, d) 1273 { 1274 set80211(s, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL); 1275 } 1276 1277 static void 1278 set80211macmac(int s, int op, const char *val) 1279 { 1280 char *temp; 1281 struct sockaddr_dl sdl; 1282 1283 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1284 if (temp == NULL) 1285 errx(1, "malloc failed"); 1286 temp[0] = ':'; 1287 strcpy(temp + 1, val); 1288 sdl.sdl_len = sizeof(sdl); 1289 link_addr(temp, &sdl); 1290 free(temp); 1291 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1292 errx(1, "malformed link-level address"); 1293 set80211(s, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1294 } 1295 1296 static 1297 DECL_CMD_FUNC(set80211addmac, val, d) 1298 { 1299 set80211macmac(s, IEEE80211_IOC_ADDMAC, val); 1300 } 1301 1302 static 1303 DECL_CMD_FUNC(set80211delmac, val, d) 1304 { 1305 set80211macmac(s, IEEE80211_IOC_DELMAC, val); 1306 } 1307 1308 static 1309 DECL_CMD_FUNC(set80211kickmac, val, d) 1310 { 1311 char *temp; 1312 struct sockaddr_dl sdl; 1313 struct ieee80211req_mlme mlme; 1314 1315 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1316 if (temp == NULL) 1317 errx(1, "malloc failed"); 1318 temp[0] = ':'; 1319 strcpy(temp + 1, val); 1320 sdl.sdl_len = sizeof(sdl); 1321 link_addr(temp, &sdl); 1322 free(temp); 1323 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1324 errx(1, "malformed link-level address"); 1325 memset(&mlme, 0, sizeof(mlme)); 1326 mlme.im_op = IEEE80211_MLME_DEAUTH; 1327 mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE; 1328 memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN); 1329 set80211(s, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme); 1330 } 1331 1332 static 1333 DECL_CMD_FUNC(set80211maccmd, val, d) 1334 { 1335 set80211(s, IEEE80211_IOC_MACCMD, d, 0, NULL); 1336 } 1337 1338 static void 1339 set80211meshrtmac(int s, int req, const char *val) 1340 { 1341 char *temp; 1342 struct sockaddr_dl sdl; 1343 1344 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1345 if (temp == NULL) 1346 errx(1, "malloc failed"); 1347 temp[0] = ':'; 1348 strcpy(temp + 1, val); 1349 sdl.sdl_len = sizeof(sdl); 1350 link_addr(temp, &sdl); 1351 free(temp); 1352 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1353 errx(1, "malformed link-level address"); 1354 set80211(s, IEEE80211_IOC_MESH_RTCMD, req, 1355 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1356 } 1357 1358 static 1359 DECL_CMD_FUNC(set80211addmeshrt, val, d) 1360 { 1361 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_ADD, val); 1362 } 1363 1364 static 1365 DECL_CMD_FUNC(set80211delmeshrt, val, d) 1366 { 1367 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_DELETE, val); 1368 } 1369 1370 static 1371 DECL_CMD_FUNC(set80211meshrtcmd, val, d) 1372 { 1373 set80211(s, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL); 1374 } 1375 1376 static 1377 DECL_CMD_FUNC(set80211hwmprootmode, val, d) 1378 { 1379 int mode; 1380 1381 if (strcasecmp(val, "normal") == 0) 1382 mode = IEEE80211_HWMP_ROOTMODE_NORMAL; 1383 else if (strcasecmp(val, "proactive") == 0) 1384 mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE; 1385 else if (strcasecmp(val, "rann") == 0) 1386 mode = IEEE80211_HWMP_ROOTMODE_RANN; 1387 else 1388 mode = IEEE80211_HWMP_ROOTMODE_DISABLED; 1389 set80211(s, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL); 1390 } 1391 1392 static 1393 DECL_CMD_FUNC(set80211hwmpmaxhops, val, d) 1394 { 1395 set80211(s, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL); 1396 } 1397 1398 static void 1399 set80211pureg(const char *val, int d, int s, const struct afswtch *rafp) 1400 { 1401 set80211(s, IEEE80211_IOC_PUREG, d, 0, NULL); 1402 } 1403 1404 static void 1405 set80211quiet(const char *val, int d, int s, const struct afswtch *rafp) 1406 { 1407 set80211(s, IEEE80211_IOC_QUIET, d, 0, NULL); 1408 } 1409 1410 static 1411 DECL_CMD_FUNC(set80211quietperiod, val, d) 1412 { 1413 set80211(s, IEEE80211_IOC_QUIET_PERIOD, atoi(val), 0, NULL); 1414 } 1415 1416 static 1417 DECL_CMD_FUNC(set80211quietcount, val, d) 1418 { 1419 set80211(s, IEEE80211_IOC_QUIET_COUNT, atoi(val), 0, NULL); 1420 } 1421 1422 static 1423 DECL_CMD_FUNC(set80211quietduration, val, d) 1424 { 1425 set80211(s, IEEE80211_IOC_QUIET_DUR, atoi(val), 0, NULL); 1426 } 1427 1428 static 1429 DECL_CMD_FUNC(set80211quietoffset, val, d) 1430 { 1431 set80211(s, IEEE80211_IOC_QUIET_OFFSET, atoi(val), 0, NULL); 1432 } 1433 1434 static void 1435 set80211bgscan(const char *val, int d, int s, const struct afswtch *rafp) 1436 { 1437 set80211(s, IEEE80211_IOC_BGSCAN, d, 0, NULL); 1438 } 1439 1440 static 1441 DECL_CMD_FUNC(set80211bgscanidle, val, d) 1442 { 1443 set80211(s, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL); 1444 } 1445 1446 static 1447 DECL_CMD_FUNC(set80211bgscanintvl, val, d) 1448 { 1449 set80211(s, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL); 1450 } 1451 1452 static 1453 DECL_CMD_FUNC(set80211scanvalid, val, d) 1454 { 1455 set80211(s, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL); 1456 } 1457 1458 /* 1459 * Parse an optional trailing specification of which netbands 1460 * to apply a parameter to. This is basically the same syntax 1461 * as used for channels but you can concatenate to specify 1462 * multiple. For example: 1463 * 14:abg apply to 11a, 11b, and 11g 1464 * 6:ht apply to 11na and 11ng 1465 * We don't make a big effort to catch silly things; this is 1466 * really a convenience mechanism. 1467 */ 1468 static int 1469 getmodeflags(const char *val) 1470 { 1471 const char *cp; 1472 int flags; 1473 1474 flags = 0; 1475 1476 cp = strchr(val, ':'); 1477 if (cp != NULL) { 1478 for (cp++; isalpha((int) *cp); cp++) { 1479 /* accept mixed case */ 1480 int c = *cp; 1481 if (isupper(c)) 1482 c = tolower(c); 1483 switch (c) { 1484 case 'a': /* 802.11a */ 1485 flags |= IEEE80211_CHAN_A; 1486 break; 1487 case 'b': /* 802.11b */ 1488 flags |= IEEE80211_CHAN_B; 1489 break; 1490 case 'g': /* 802.11g */ 1491 flags |= IEEE80211_CHAN_G; 1492 break; 1493 case 'n': /* 802.11n */ 1494 flags |= IEEE80211_CHAN_HT; 1495 break; 1496 case 'd': /* dt = Atheros Dynamic Turbo */ 1497 flags |= IEEE80211_CHAN_TURBO; 1498 break; 1499 case 't': /* ht, dt, st, t */ 1500 /* dt and unadorned t specify Dynamic Turbo */ 1501 if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0) 1502 flags |= IEEE80211_CHAN_TURBO; 1503 break; 1504 case 's': /* st = Atheros Static Turbo */ 1505 flags |= IEEE80211_CHAN_STURBO; 1506 break; 1507 case 'h': /* 1/2-width channels */ 1508 flags |= IEEE80211_CHAN_HALF; 1509 break; 1510 case 'q': /* 1/4-width channels */ 1511 flags |= IEEE80211_CHAN_QUARTER; 1512 break; 1513 case 'v': 1514 /* XXX set HT too? */ 1515 flags |= IEEE80211_CHAN_VHT; 1516 break; 1517 default: 1518 errx(-1, "%s: Invalid mode attribute %c\n", 1519 val, *cp); 1520 } 1521 } 1522 } 1523 return flags; 1524 } 1525 1526 #define IEEE80211_CHAN_HTA (IEEE80211_CHAN_HT|IEEE80211_CHAN_5GHZ) 1527 #define IEEE80211_CHAN_HTG (IEEE80211_CHAN_HT|IEEE80211_CHAN_2GHZ) 1528 1529 #define _APPLY(_flags, _base, _param, _v) do { \ 1530 if (_flags & IEEE80211_CHAN_HT) { \ 1531 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1532 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1533 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1534 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1535 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1536 else \ 1537 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1538 } \ 1539 if (_flags & IEEE80211_CHAN_TURBO) { \ 1540 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1541 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1542 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1543 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1544 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1545 else \ 1546 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1547 } \ 1548 if (_flags & IEEE80211_CHAN_STURBO) \ 1549 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1550 if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1551 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1552 if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1553 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1554 if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1555 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1556 if (_flags & IEEE80211_CHAN_HALF) \ 1557 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1558 if (_flags & IEEE80211_CHAN_QUARTER) \ 1559 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1560 } while (0) 1561 #define _APPLY1(_flags, _base, _param, _v) do { \ 1562 if (_flags & IEEE80211_CHAN_HT) { \ 1563 if (_flags & IEEE80211_CHAN_5GHZ) \ 1564 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1565 else \ 1566 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1567 } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A) \ 1568 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1569 else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G) \ 1570 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1571 else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST) \ 1572 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1573 else if (_flags & IEEE80211_CHAN_HALF) \ 1574 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1575 else if (_flags & IEEE80211_CHAN_QUARTER) \ 1576 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1577 else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1578 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1579 else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1580 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1581 else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1582 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1583 } while (0) 1584 #define _APPLY_RATE(_flags, _base, _param, _v) do { \ 1585 if (_flags & IEEE80211_CHAN_HT) { \ 1586 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1587 } \ 1588 _APPLY(_flags, _base, _param, _v); \ 1589 } while (0) 1590 #define _APPLY_RATE1(_flags, _base, _param, _v) do { \ 1591 if (_flags & IEEE80211_CHAN_HT) { \ 1592 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1593 } \ 1594 _APPLY1(_flags, _base, _param, _v); \ 1595 } while (0) 1596 1597 static 1598 DECL_CMD_FUNC(set80211roamrssi, val, d) 1599 { 1600 double v = atof(val); 1601 int rssi, flags; 1602 1603 rssi = (int) (2*v); 1604 if (rssi != 2*v) 1605 errx(-1, "invalid rssi (must be .5 dBm units)"); 1606 flags = getmodeflags(val); 1607 getroam(s); 1608 if (flags == 0) { /* NB: no flags => current channel */ 1609 flags = getcurchan(s)->ic_flags; 1610 _APPLY1(flags, roamparams, rssi, rssi); 1611 } else 1612 _APPLY(flags, roamparams, rssi, rssi); 1613 callback_register(setroam_cb, &roamparams); 1614 } 1615 1616 static int 1617 getrate(const char *val, const char *tag) 1618 { 1619 double v = atof(val); 1620 int rate; 1621 1622 rate = (int) (2*v); 1623 if (rate != 2*v) 1624 errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag); 1625 return rate; /* NB: returns 2x the specified value */ 1626 } 1627 1628 static 1629 DECL_CMD_FUNC(set80211roamrate, val, d) 1630 { 1631 int rate, flags; 1632 1633 rate = getrate(val, "roam"); 1634 flags = getmodeflags(val); 1635 getroam(s); 1636 if (flags == 0) { /* NB: no flags => current channel */ 1637 flags = getcurchan(s)->ic_flags; 1638 _APPLY_RATE1(flags, roamparams, rate, rate); 1639 } else 1640 _APPLY_RATE(flags, roamparams, rate, rate); 1641 callback_register(setroam_cb, &roamparams); 1642 } 1643 1644 static 1645 DECL_CMD_FUNC(set80211mcastrate, val, d) 1646 { 1647 int rate, flags; 1648 1649 rate = getrate(val, "mcast"); 1650 flags = getmodeflags(val); 1651 gettxparams(s); 1652 if (flags == 0) { /* NB: no flags => current channel */ 1653 flags = getcurchan(s)->ic_flags; 1654 _APPLY_RATE1(flags, txparams, mcastrate, rate); 1655 } else 1656 _APPLY_RATE(flags, txparams, mcastrate, rate); 1657 callback_register(settxparams_cb, &txparams); 1658 } 1659 1660 static 1661 DECL_CMD_FUNC(set80211mgtrate, val, d) 1662 { 1663 int rate, flags; 1664 1665 rate = getrate(val, "mgmt"); 1666 flags = getmodeflags(val); 1667 gettxparams(s); 1668 if (flags == 0) { /* NB: no flags => current channel */ 1669 flags = getcurchan(s)->ic_flags; 1670 _APPLY_RATE1(flags, txparams, mgmtrate, rate); 1671 } else 1672 _APPLY_RATE(flags, txparams, mgmtrate, rate); 1673 callback_register(settxparams_cb, &txparams); 1674 } 1675 1676 static 1677 DECL_CMD_FUNC(set80211ucastrate, val, d) 1678 { 1679 int flags; 1680 1681 gettxparams(s); 1682 flags = getmodeflags(val); 1683 if (isanyarg(val)) { 1684 if (flags == 0) { /* NB: no flags => current channel */ 1685 flags = getcurchan(s)->ic_flags; 1686 _APPLY1(flags, txparams, ucastrate, 1687 IEEE80211_FIXED_RATE_NONE); 1688 } else 1689 _APPLY(flags, txparams, ucastrate, 1690 IEEE80211_FIXED_RATE_NONE); 1691 } else { 1692 int rate = getrate(val, "ucast"); 1693 if (flags == 0) { /* NB: no flags => current channel */ 1694 flags = getcurchan(s)->ic_flags; 1695 _APPLY_RATE1(flags, txparams, ucastrate, rate); 1696 } else 1697 _APPLY_RATE(flags, txparams, ucastrate, rate); 1698 } 1699 callback_register(settxparams_cb, &txparams); 1700 } 1701 1702 static 1703 DECL_CMD_FUNC(set80211maxretry, val, d) 1704 { 1705 int v = atoi(val), flags; 1706 1707 flags = getmodeflags(val); 1708 gettxparams(s); 1709 if (flags == 0) { /* NB: no flags => current channel */ 1710 flags = getcurchan(s)->ic_flags; 1711 _APPLY1(flags, txparams, maxretry, v); 1712 } else 1713 _APPLY(flags, txparams, maxretry, v); 1714 callback_register(settxparams_cb, &txparams); 1715 } 1716 #undef _APPLY_RATE 1717 #undef _APPLY 1718 #undef IEEE80211_CHAN_HTA 1719 #undef IEEE80211_CHAN_HTG 1720 1721 static 1722 DECL_CMD_FUNC(set80211fragthreshold, val, d) 1723 { 1724 set80211(s, IEEE80211_IOC_FRAGTHRESHOLD, 1725 isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL); 1726 } 1727 1728 static 1729 DECL_CMD_FUNC(set80211bmissthreshold, val, d) 1730 { 1731 set80211(s, IEEE80211_IOC_BMISSTHRESHOLD, 1732 isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL); 1733 } 1734 1735 static void 1736 set80211burst(const char *val, int d, int s, const struct afswtch *rafp) 1737 { 1738 set80211(s, IEEE80211_IOC_BURST, d, 0, NULL); 1739 } 1740 1741 static void 1742 set80211doth(const char *val, int d, int s, const struct afswtch *rafp) 1743 { 1744 set80211(s, IEEE80211_IOC_DOTH, d, 0, NULL); 1745 } 1746 1747 static void 1748 set80211dfs(const char *val, int d, int s, const struct afswtch *rafp) 1749 { 1750 set80211(s, IEEE80211_IOC_DFS, d, 0, NULL); 1751 } 1752 1753 static void 1754 set80211shortgi(const char *val, int d, int s, const struct afswtch *rafp) 1755 { 1756 set80211(s, IEEE80211_IOC_SHORTGI, 1757 d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0, 1758 0, NULL); 1759 } 1760 1761 /* XXX 11ac density/size is different */ 1762 static void 1763 set80211ampdu(const char *val, int d, int s, const struct afswtch *rafp) 1764 { 1765 int ampdu; 1766 1767 if (get80211val(s, IEEE80211_IOC_AMPDU, &du) < 0) 1768 errx(-1, "cannot set AMPDU setting"); 1769 if (d < 0) { 1770 d = -d; 1771 ampdu &= ~d; 1772 } else 1773 ampdu |= d; 1774 set80211(s, IEEE80211_IOC_AMPDU, ampdu, 0, NULL); 1775 } 1776 1777 static void 1778 set80211stbc(const char *val, int d, int s, const struct afswtch *rafp) 1779 { 1780 int stbc; 1781 1782 if (get80211val(s, IEEE80211_IOC_STBC, &stbc) < 0) 1783 errx(-1, "cannot set STBC setting"); 1784 if (d < 0) { 1785 d = -d; 1786 stbc &= ~d; 1787 } else 1788 stbc |= d; 1789 set80211(s, IEEE80211_IOC_STBC, stbc, 0, NULL); 1790 } 1791 1792 static void 1793 set80211ldpc(const char *val, int d, int s, const struct afswtch *rafp) 1794 { 1795 int ldpc; 1796 1797 if (get80211val(s, IEEE80211_IOC_LDPC, &ldpc) < 0) 1798 errx(-1, "cannot set LDPC setting"); 1799 if (d < 0) { 1800 d = -d; 1801 ldpc &= ~d; 1802 } else 1803 ldpc |= d; 1804 set80211(s, IEEE80211_IOC_LDPC, ldpc, 0, NULL); 1805 } 1806 1807 static 1808 DECL_CMD_FUNC(set80211ampdulimit, val, d) 1809 { 1810 int v; 1811 1812 switch (atoi(val)) { 1813 case 8: 1814 case 8*1024: 1815 v = IEEE80211_HTCAP_MAXRXAMPDU_8K; 1816 break; 1817 case 16: 1818 case 16*1024: 1819 v = IEEE80211_HTCAP_MAXRXAMPDU_16K; 1820 break; 1821 case 32: 1822 case 32*1024: 1823 v = IEEE80211_HTCAP_MAXRXAMPDU_32K; 1824 break; 1825 case 64: 1826 case 64*1024: 1827 v = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1828 break; 1829 default: 1830 errx(-1, "invalid A-MPDU limit %s", val); 1831 } 1832 set80211(s, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL); 1833 } 1834 1835 /* XXX 11ac density/size is different */ 1836 static 1837 DECL_CMD_FUNC(set80211ampdudensity, val, d) 1838 { 1839 int v; 1840 1841 if (isanyarg(val) || strcasecmp(val, "na") == 0) 1842 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1843 else switch ((int)(atof(val)*4)) { 1844 case 0: 1845 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1846 break; 1847 case 1: 1848 v = IEEE80211_HTCAP_MPDUDENSITY_025; 1849 break; 1850 case 2: 1851 v = IEEE80211_HTCAP_MPDUDENSITY_05; 1852 break; 1853 case 4: 1854 v = IEEE80211_HTCAP_MPDUDENSITY_1; 1855 break; 1856 case 8: 1857 v = IEEE80211_HTCAP_MPDUDENSITY_2; 1858 break; 1859 case 16: 1860 v = IEEE80211_HTCAP_MPDUDENSITY_4; 1861 break; 1862 case 32: 1863 v = IEEE80211_HTCAP_MPDUDENSITY_8; 1864 break; 1865 case 64: 1866 v = IEEE80211_HTCAP_MPDUDENSITY_16; 1867 break; 1868 default: 1869 errx(-1, "invalid A-MPDU density %s", val); 1870 } 1871 set80211(s, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL); 1872 } 1873 1874 static void 1875 set80211amsdu(const char *val, int d, int s, const struct afswtch *rafp) 1876 { 1877 int amsdu; 1878 1879 if (get80211val(s, IEEE80211_IOC_AMSDU, &amsdu) < 0) 1880 err(-1, "cannot get AMSDU setting"); 1881 if (d < 0) { 1882 d = -d; 1883 amsdu &= ~d; 1884 } else 1885 amsdu |= d; 1886 set80211(s, IEEE80211_IOC_AMSDU, amsdu, 0, NULL); 1887 } 1888 1889 static 1890 DECL_CMD_FUNC(set80211amsdulimit, val, d) 1891 { 1892 set80211(s, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL); 1893 } 1894 1895 static void 1896 set80211puren(const char *val, int d, int s, const struct afswtch *rafp) 1897 { 1898 set80211(s, IEEE80211_IOC_PUREN, d, 0, NULL); 1899 } 1900 1901 static void 1902 set80211htcompat(const char *val, int d, int s, const struct afswtch *rafp) 1903 { 1904 set80211(s, IEEE80211_IOC_HTCOMPAT, d, 0, NULL); 1905 } 1906 1907 static void 1908 set80211htconf(const char *val, int d, int s, const struct afswtch *rafp) 1909 { 1910 set80211(s, IEEE80211_IOC_HTCONF, d, 0, NULL); 1911 htconf = d; 1912 } 1913 1914 static void 1915 set80211dwds(const char *val, int d, int s, const struct afswtch *rafp) 1916 { 1917 set80211(s, IEEE80211_IOC_DWDS, d, 0, NULL); 1918 } 1919 1920 static void 1921 set80211inact(const char *val, int d, int s, const struct afswtch *rafp) 1922 { 1923 set80211(s, IEEE80211_IOC_INACTIVITY, d, 0, NULL); 1924 } 1925 1926 static void 1927 set80211tsn(const char *val, int d, int s, const struct afswtch *rafp) 1928 { 1929 set80211(s, IEEE80211_IOC_TSN, d, 0, NULL); 1930 } 1931 1932 static void 1933 set80211dotd(const char *val, int d, int s, const struct afswtch *rafp) 1934 { 1935 set80211(s, IEEE80211_IOC_DOTD, d, 0, NULL); 1936 } 1937 1938 static void 1939 set80211smps(const char *val, int d, int s, const struct afswtch *rafp) 1940 { 1941 set80211(s, IEEE80211_IOC_SMPS, d, 0, NULL); 1942 } 1943 1944 static void 1945 set80211rifs(const char *val, int d, int s, const struct afswtch *rafp) 1946 { 1947 set80211(s, IEEE80211_IOC_RIFS, d, 0, NULL); 1948 } 1949 1950 static void 1951 set80211vhtconf(const char *val, int d, int s, const struct afswtch *rafp) 1952 { 1953 if (get80211val(s, IEEE80211_IOC_VHTCONF, &vhtconf) < 0) 1954 errx(-1, "cannot set VHT setting"); 1955 printf("%s: vhtconf=0x%08x, d=%d\n", __func__, vhtconf, d); 1956 if (d < 0) { 1957 d = -d; 1958 vhtconf &= ~d; 1959 } else 1960 vhtconf |= d; 1961 printf("%s: vhtconf is now 0x%08x\n", __func__, vhtconf); 1962 set80211(s, IEEE80211_IOC_VHTCONF, vhtconf, 0, NULL); 1963 } 1964 1965 static 1966 DECL_CMD_FUNC(set80211tdmaslot, val, d) 1967 { 1968 set80211(s, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL); 1969 } 1970 1971 static 1972 DECL_CMD_FUNC(set80211tdmaslotcnt, val, d) 1973 { 1974 set80211(s, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL); 1975 } 1976 1977 static 1978 DECL_CMD_FUNC(set80211tdmaslotlen, val, d) 1979 { 1980 set80211(s, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL); 1981 } 1982 1983 static 1984 DECL_CMD_FUNC(set80211tdmabintval, val, d) 1985 { 1986 set80211(s, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL); 1987 } 1988 1989 static 1990 DECL_CMD_FUNC(set80211meshttl, val, d) 1991 { 1992 set80211(s, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL); 1993 } 1994 1995 static 1996 DECL_CMD_FUNC(set80211meshforward, val, d) 1997 { 1998 set80211(s, IEEE80211_IOC_MESH_FWRD, d, 0, NULL); 1999 } 2000 2001 static 2002 DECL_CMD_FUNC(set80211meshgate, val, d) 2003 { 2004 set80211(s, IEEE80211_IOC_MESH_GATE, d, 0, NULL); 2005 } 2006 2007 static 2008 DECL_CMD_FUNC(set80211meshpeering, val, d) 2009 { 2010 set80211(s, IEEE80211_IOC_MESH_AP, d, 0, NULL); 2011 } 2012 2013 static 2014 DECL_CMD_FUNC(set80211meshmetric, val, d) 2015 { 2016 char v[12]; 2017 2018 memcpy(v, val, sizeof(v)); 2019 set80211(s, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v); 2020 } 2021 2022 static 2023 DECL_CMD_FUNC(set80211meshpath, val, d) 2024 { 2025 char v[12]; 2026 2027 memcpy(v, val, sizeof(v)); 2028 set80211(s, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v); 2029 } 2030 2031 static int 2032 regdomain_sort(const void *a, const void *b) 2033 { 2034 #define CHAN_ALL \ 2035 (IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER) 2036 const struct ieee80211_channel *ca = a; 2037 const struct ieee80211_channel *cb = b; 2038 2039 return ca->ic_freq == cb->ic_freq ? 2040 (ca->ic_flags & CHAN_ALL) - (cb->ic_flags & CHAN_ALL) : 2041 ca->ic_freq - cb->ic_freq; 2042 #undef CHAN_ALL 2043 } 2044 2045 static const struct ieee80211_channel * 2046 chanlookup(const struct ieee80211_channel chans[], int nchans, 2047 int freq, int flags) 2048 { 2049 int i; 2050 2051 flags &= IEEE80211_CHAN_ALLTURBO; 2052 for (i = 0; i < nchans; i++) { 2053 const struct ieee80211_channel *c = &chans[i]; 2054 if (c->ic_freq == freq && 2055 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 2056 return c; 2057 } 2058 return NULL; 2059 } 2060 2061 static int 2062 chanfind(const struct ieee80211_channel chans[], int nchans, int flags) 2063 { 2064 int i; 2065 2066 for (i = 0; i < nchans; i++) { 2067 const struct ieee80211_channel *c = &chans[i]; 2068 if ((c->ic_flags & flags) == flags) 2069 return 1; 2070 } 2071 return 0; 2072 } 2073 2074 /* 2075 * Check channel compatibility. 2076 */ 2077 static int 2078 checkchan(const struct ieee80211req_chaninfo *avail, int freq, int flags) 2079 { 2080 flags &= ~REQ_FLAGS; 2081 /* 2082 * Check if exact channel is in the calibration table; 2083 * everything below is to deal with channels that we 2084 * want to include but that are not explicitly listed. 2085 */ 2086 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL) 2087 return 1; 2088 if (flags & IEEE80211_CHAN_GSM) { 2089 /* 2090 * XXX GSM frequency mapping is handled in the kernel 2091 * so we cannot find them in the calibration table; 2092 * just accept the channel and the kernel will reject 2093 * the channel list if it's wrong. 2094 */ 2095 return 1; 2096 } 2097 /* 2098 * If this is a 1/2 or 1/4 width channel allow it if a full 2099 * width channel is present for this frequency, and the device 2100 * supports fractional channels on this band. This is a hack 2101 * that avoids bloating the calibration table; it may be better 2102 * by per-band attributes though (we are effectively calculating 2103 * this attribute by scanning the channel list ourself). 2104 */ 2105 if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0) 2106 return 0; 2107 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, 2108 flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL) 2109 return 0; 2110 if (flags & IEEE80211_CHAN_HALF) { 2111 return chanfind(avail->ic_chans, avail->ic_nchans, 2112 IEEE80211_CHAN_HALF | 2113 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 2114 } else { 2115 return chanfind(avail->ic_chans, avail->ic_nchans, 2116 IEEE80211_CHAN_QUARTER | 2117 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 2118 } 2119 } 2120 2121 static void 2122 regdomain_addchans(struct ieee80211req_chaninfo *ci, 2123 const netband_head *bands, 2124 const struct ieee80211_regdomain *reg, 2125 uint32_t chanFlags, 2126 const struct ieee80211req_chaninfo *avail) 2127 { 2128 const struct netband *nb; 2129 const struct freqband *b; 2130 struct ieee80211_channel *c, *prev; 2131 int freq, hi_adj, lo_adj, channelSep; 2132 uint32_t flags; 2133 2134 hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0; 2135 lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0; 2136 channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40; 2137 2138 LIST_FOREACH(nb, bands, next) { 2139 b = nb->band; 2140 if (verbose) { 2141 printf("%s:", __func__); 2142 printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS); 2143 printb(" bandFlags", nb->flags | b->flags, 2144 IEEE80211_CHAN_BITS); 2145 putchar('\n'); 2146 } 2147 prev = NULL; 2148 2149 for (freq = b->freqStart + lo_adj; 2150 freq <= b->freqEnd + hi_adj; freq += b->chanSep) { 2151 /* 2152 * Construct flags for the new channel. We take 2153 * the attributes from the band descriptions except 2154 * for HT40 which is enabled generically (i.e. +/- 2155 * extension channel) in the band description and 2156 * then constrained according by channel separation. 2157 */ 2158 flags = nb->flags | b->flags; 2159 2160 /* 2161 * VHT first - HT is a subset. 2162 * 2163 * XXX TODO: VHT80p80, VHT160 is not yet done. 2164 */ 2165 if (flags & IEEE80211_CHAN_VHT) { 2166 if ((chanFlags & IEEE80211_CHAN_VHT20) && 2167 (flags & IEEE80211_CHAN_VHT20) == 0) { 2168 if (verbose) 2169 printf("%u: skip, not a " 2170 "VHT20 channel\n", freq); 2171 continue; 2172 } 2173 if ((chanFlags & IEEE80211_CHAN_VHT40) && 2174 (flags & IEEE80211_CHAN_VHT40) == 0) { 2175 if (verbose) 2176 printf("%u: skip, not a " 2177 "VHT40 channel\n", freq); 2178 continue; 2179 } 2180 if ((chanFlags & IEEE80211_CHAN_VHT80) && 2181 (flags & IEEE80211_CHAN_VHT80) == 0) { 2182 if (verbose) 2183 printf("%u: skip, not a " 2184 "VHT80 channel\n", freq); 2185 continue; 2186 } 2187 2188 flags &= ~IEEE80211_CHAN_VHT; 2189 flags |= chanFlags & IEEE80211_CHAN_VHT; 2190 } 2191 2192 /* Now, constrain HT */ 2193 if (flags & IEEE80211_CHAN_HT) { 2194 /* 2195 * HT channels are generated specially; we're 2196 * called to add HT20, HT40+, and HT40- chan's 2197 * so we need to expand only band specs for 2198 * the HT channel type being added. 2199 */ 2200 if ((chanFlags & IEEE80211_CHAN_HT20) && 2201 (flags & IEEE80211_CHAN_HT20) == 0) { 2202 if (verbose) 2203 printf("%u: skip, not an " 2204 "HT20 channel\n", freq); 2205 continue; 2206 } 2207 if ((chanFlags & IEEE80211_CHAN_HT40) && 2208 (flags & IEEE80211_CHAN_HT40) == 0) { 2209 if (verbose) 2210 printf("%u: skip, not an " 2211 "HT40 channel\n", freq); 2212 continue; 2213 } 2214 /* NB: HT attribute comes from caller */ 2215 flags &= ~IEEE80211_CHAN_HT; 2216 flags |= chanFlags & IEEE80211_CHAN_HT; 2217 } 2218 /* 2219 * Check if device can operate on this frequency. 2220 */ 2221 if (!checkchan(avail, freq, flags)) { 2222 if (verbose) { 2223 printf("%u: skip, ", freq); 2224 printb("flags", flags, 2225 IEEE80211_CHAN_BITS); 2226 printf(" not available\n"); 2227 } 2228 continue; 2229 } 2230 if ((flags & REQ_ECM) && !reg->ecm) { 2231 if (verbose) 2232 printf("%u: skip, ECM channel\n", freq); 2233 continue; 2234 } 2235 if ((flags & REQ_INDOOR) && reg->location == 'O') { 2236 if (verbose) 2237 printf("%u: skip, indoor channel\n", 2238 freq); 2239 continue; 2240 } 2241 if ((flags & REQ_OUTDOOR) && reg->location == 'I') { 2242 if (verbose) 2243 printf("%u: skip, outdoor channel\n", 2244 freq); 2245 continue; 2246 } 2247 if ((flags & IEEE80211_CHAN_HT40) && 2248 prev != NULL && (freq - prev->ic_freq) < channelSep) { 2249 if (verbose) 2250 printf("%u: skip, only %u channel " 2251 "separation, need %d\n", freq, 2252 freq - prev->ic_freq, channelSep); 2253 continue; 2254 } 2255 if (ci->ic_nchans == IEEE80211_CHAN_MAX) { 2256 if (verbose) 2257 printf("%u: skip, channel table full\n", 2258 freq); 2259 break; 2260 } 2261 c = &ci->ic_chans[ci->ic_nchans++]; 2262 memset(c, 0, sizeof(*c)); 2263 c->ic_freq = freq; 2264 c->ic_flags = flags; 2265 if (c->ic_flags & IEEE80211_CHAN_DFS) 2266 c->ic_maxregpower = nb->maxPowerDFS; 2267 else 2268 c->ic_maxregpower = nb->maxPower; 2269 if (verbose) { 2270 printf("[%3d] add freq %u ", 2271 ci->ic_nchans-1, c->ic_freq); 2272 printb("flags", c->ic_flags, IEEE80211_CHAN_BITS); 2273 printf(" power %u\n", c->ic_maxregpower); 2274 } 2275 /* NB: kernel fills in other fields */ 2276 prev = c; 2277 } 2278 } 2279 } 2280 2281 static void 2282 regdomain_makechannels( 2283 struct ieee80211_regdomain_req *req, 2284 const struct ieee80211_devcaps_req *dc) 2285 { 2286 struct regdata *rdp = getregdata(); 2287 const struct country *cc; 2288 const struct ieee80211_regdomain *reg = &req->rd; 2289 struct ieee80211req_chaninfo *ci = &req->chaninfo; 2290 const struct regdomain *rd; 2291 2292 /* 2293 * Locate construction table for new channel list. We treat 2294 * the regdomain/SKU as definitive so a country can be in 2295 * multiple with different properties (e.g. US in FCC+FCC3). 2296 * If no regdomain is specified then we fallback on the country 2297 * code to find the associated regdomain since countries always 2298 * belong to at least one regdomain. 2299 */ 2300 if (reg->regdomain == 0) { 2301 cc = lib80211_country_findbycc(rdp, reg->country); 2302 if (cc == NULL) 2303 errx(1, "internal error, country %d not found", 2304 reg->country); 2305 rd = cc->rd; 2306 } else 2307 rd = lib80211_regdomain_findbysku(rdp, reg->regdomain); 2308 if (rd == NULL) 2309 errx(1, "internal error, regdomain %d not found", 2310 reg->regdomain); 2311 if (rd->sku != SKU_DEBUG) { 2312 /* 2313 * regdomain_addchans incrememnts the channel count for 2314 * each channel it adds so initialize ic_nchans to zero. 2315 * Note that we know we have enough space to hold all possible 2316 * channels because the devcaps list size was used to 2317 * allocate our request. 2318 */ 2319 ci->ic_nchans = 0; 2320 if (!LIST_EMPTY(&rd->bands_11b)) 2321 regdomain_addchans(ci, &rd->bands_11b, reg, 2322 IEEE80211_CHAN_B, &dc->dc_chaninfo); 2323 if (!LIST_EMPTY(&rd->bands_11g)) 2324 regdomain_addchans(ci, &rd->bands_11g, reg, 2325 IEEE80211_CHAN_G, &dc->dc_chaninfo); 2326 if (!LIST_EMPTY(&rd->bands_11a)) 2327 regdomain_addchans(ci, &rd->bands_11a, reg, 2328 IEEE80211_CHAN_A, &dc->dc_chaninfo); 2329 if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) { 2330 regdomain_addchans(ci, &rd->bands_11na, reg, 2331 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20, 2332 &dc->dc_chaninfo); 2333 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2334 regdomain_addchans(ci, &rd->bands_11na, reg, 2335 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U, 2336 &dc->dc_chaninfo); 2337 regdomain_addchans(ci, &rd->bands_11na, reg, 2338 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D, 2339 &dc->dc_chaninfo); 2340 } 2341 } 2342 if (!LIST_EMPTY(&rd->bands_11ac) && dc->dc_vhtcaps != 0) { 2343 regdomain_addchans(ci, &rd->bands_11ac, reg, 2344 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 2345 IEEE80211_CHAN_VHT20, 2346 &dc->dc_chaninfo); 2347 2348 /* VHT40 is a function of HT40.. */ 2349 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2350 regdomain_addchans(ci, &rd->bands_11ac, reg, 2351 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 2352 IEEE80211_CHAN_VHT40U, 2353 &dc->dc_chaninfo); 2354 regdomain_addchans(ci, &rd->bands_11ac, reg, 2355 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 2356 IEEE80211_CHAN_VHT40D, 2357 &dc->dc_chaninfo); 2358 } 2359 2360 /* VHT80 */ 2361 /* XXX dc_vhtcap? */ 2362 if (1) { 2363 regdomain_addchans(ci, &rd->bands_11ac, reg, 2364 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 2365 IEEE80211_CHAN_VHT80, 2366 &dc->dc_chaninfo); 2367 regdomain_addchans(ci, &rd->bands_11ac, reg, 2368 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 2369 IEEE80211_CHAN_VHT80, 2370 &dc->dc_chaninfo); 2371 } 2372 2373 /* XXX TODO: VHT80_80, VHT160 */ 2374 } 2375 2376 if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) { 2377 regdomain_addchans(ci, &rd->bands_11ng, reg, 2378 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20, 2379 &dc->dc_chaninfo); 2380 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2381 regdomain_addchans(ci, &rd->bands_11ng, reg, 2382 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U, 2383 &dc->dc_chaninfo); 2384 regdomain_addchans(ci, &rd->bands_11ng, reg, 2385 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D, 2386 &dc->dc_chaninfo); 2387 } 2388 } 2389 qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]), 2390 regdomain_sort); 2391 } else 2392 memcpy(ci, &dc->dc_chaninfo, 2393 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 2394 } 2395 2396 static void 2397 list_countries(void) 2398 { 2399 struct regdata *rdp = getregdata(); 2400 const struct country *cp; 2401 const struct regdomain *dp; 2402 int i; 2403 2404 i = 0; 2405 printf("\nCountry codes:\n"); 2406 LIST_FOREACH(cp, &rdp->countries, next) { 2407 printf("%2s %-15.15s%s", cp->isoname, 2408 cp->name, ((i+1)%4) == 0 ? "\n" : " "); 2409 i++; 2410 } 2411 i = 0; 2412 printf("\nRegulatory domains:\n"); 2413 LIST_FOREACH(dp, &rdp->domains, next) { 2414 printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " "); 2415 i++; 2416 } 2417 printf("\n"); 2418 } 2419 2420 static void 2421 defaultcountry(const struct regdomain *rd) 2422 { 2423 struct regdata *rdp = getregdata(); 2424 const struct country *cc; 2425 2426 cc = lib80211_country_findbycc(rdp, rd->cc->code); 2427 if (cc == NULL) 2428 errx(1, "internal error, ISO country code %d not " 2429 "defined for regdomain %s", rd->cc->code, rd->name); 2430 regdomain.country = cc->code; 2431 regdomain.isocc[0] = cc->isoname[0]; 2432 regdomain.isocc[1] = cc->isoname[1]; 2433 } 2434 2435 static 2436 DECL_CMD_FUNC(set80211regdomain, val, d) 2437 { 2438 struct regdata *rdp = getregdata(); 2439 const struct regdomain *rd; 2440 2441 rd = lib80211_regdomain_findbyname(rdp, val); 2442 if (rd == NULL) { 2443 char *eptr; 2444 long sku = strtol(val, &eptr, 0); 2445 2446 if (eptr != val) 2447 rd = lib80211_regdomain_findbysku(rdp, sku); 2448 if (eptr == val || rd == NULL) 2449 errx(1, "unknown regdomain %s", val); 2450 } 2451 getregdomain(s); 2452 regdomain.regdomain = rd->sku; 2453 if (regdomain.country == 0 && rd->cc != NULL) { 2454 /* 2455 * No country code setup and there's a default 2456 * one for this regdomain fill it in. 2457 */ 2458 defaultcountry(rd); 2459 } 2460 callback_register(setregdomain_cb, ®domain); 2461 } 2462 2463 static 2464 DECL_CMD_FUNC(set80211country, val, d) 2465 { 2466 struct regdata *rdp = getregdata(); 2467 const struct country *cc; 2468 2469 cc = lib80211_country_findbyname(rdp, val); 2470 if (cc == NULL) { 2471 char *eptr; 2472 long code = strtol(val, &eptr, 0); 2473 2474 if (eptr != val) 2475 cc = lib80211_country_findbycc(rdp, code); 2476 if (eptr == val || cc == NULL) 2477 errx(1, "unknown ISO country code %s", val); 2478 } 2479 getregdomain(s); 2480 regdomain.regdomain = cc->rd->sku; 2481 regdomain.country = cc->code; 2482 regdomain.isocc[0] = cc->isoname[0]; 2483 regdomain.isocc[1] = cc->isoname[1]; 2484 callback_register(setregdomain_cb, ®domain); 2485 } 2486 2487 static void 2488 set80211location(const char *val, int d, int s, const struct afswtch *rafp) 2489 { 2490 getregdomain(s); 2491 regdomain.location = d; 2492 callback_register(setregdomain_cb, ®domain); 2493 } 2494 2495 static void 2496 set80211ecm(const char *val, int d, int s, const struct afswtch *rafp) 2497 { 2498 getregdomain(s); 2499 regdomain.ecm = d; 2500 callback_register(setregdomain_cb, ®domain); 2501 } 2502 2503 static void 2504 LINE_INIT(char c) 2505 { 2506 spacer = c; 2507 if (c == '\t') 2508 col = 8; 2509 else 2510 col = 1; 2511 } 2512 2513 static void 2514 LINE_BREAK(void) 2515 { 2516 if (spacer != '\t') { 2517 printf("\n"); 2518 spacer = '\t'; 2519 } 2520 col = 8; /* 8-col tab */ 2521 } 2522 2523 static void 2524 LINE_CHECK(const char *fmt, ...) 2525 { 2526 char buf[80]; 2527 va_list ap; 2528 int n; 2529 2530 va_start(ap, fmt); 2531 n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap); 2532 va_end(ap); 2533 col += 1+n; 2534 if (col > MAXCOL) { 2535 LINE_BREAK(); 2536 col += n; 2537 } 2538 buf[0] = spacer; 2539 printf("%s", buf); 2540 spacer = ' '; 2541 } 2542 2543 static int 2544 getmaxrate(const uint8_t rates[15], uint8_t nrates) 2545 { 2546 int i, maxrate = -1; 2547 2548 for (i = 0; i < nrates; i++) { 2549 int rate = rates[i] & IEEE80211_RATE_VAL; 2550 if (rate > maxrate) 2551 maxrate = rate; 2552 } 2553 return maxrate / 2; 2554 } 2555 2556 static const char * 2557 getcaps(int capinfo) 2558 { 2559 static char capstring[32]; 2560 char *cp = capstring; 2561 2562 if (capinfo & IEEE80211_CAPINFO_ESS) 2563 *cp++ = 'E'; 2564 if (capinfo & IEEE80211_CAPINFO_IBSS) 2565 *cp++ = 'I'; 2566 if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE) 2567 *cp++ = 'c'; 2568 if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ) 2569 *cp++ = 'C'; 2570 if (capinfo & IEEE80211_CAPINFO_PRIVACY) 2571 *cp++ = 'P'; 2572 if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) 2573 *cp++ = 'S'; 2574 if (capinfo & IEEE80211_CAPINFO_PBCC) 2575 *cp++ = 'B'; 2576 if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY) 2577 *cp++ = 'A'; 2578 if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2579 *cp++ = 's'; 2580 if (capinfo & IEEE80211_CAPINFO_RSN) 2581 *cp++ = 'R'; 2582 if (capinfo & IEEE80211_CAPINFO_DSSSOFDM) 2583 *cp++ = 'D'; 2584 *cp = '\0'; 2585 return capstring; 2586 } 2587 2588 static const char * 2589 getflags(int flags) 2590 { 2591 static char flagstring[32]; 2592 char *cp = flagstring; 2593 2594 if (flags & IEEE80211_NODE_AUTH) 2595 *cp++ = 'A'; 2596 if (flags & IEEE80211_NODE_QOS) 2597 *cp++ = 'Q'; 2598 if (flags & IEEE80211_NODE_ERP) 2599 *cp++ = 'E'; 2600 if (flags & IEEE80211_NODE_PWR_MGT) 2601 *cp++ = 'P'; 2602 if (flags & IEEE80211_NODE_HT) { 2603 *cp++ = 'H'; 2604 if (flags & IEEE80211_NODE_HTCOMPAT) 2605 *cp++ = '+'; 2606 } 2607 if (flags & IEEE80211_NODE_VHT) 2608 *cp++ = 'V'; 2609 if (flags & IEEE80211_NODE_WPS) 2610 *cp++ = 'W'; 2611 if (flags & IEEE80211_NODE_TSN) 2612 *cp++ = 'N'; 2613 if (flags & IEEE80211_NODE_AMPDU_TX) 2614 *cp++ = 'T'; 2615 if (flags & IEEE80211_NODE_AMPDU_RX) 2616 *cp++ = 'R'; 2617 if (flags & IEEE80211_NODE_MIMO_PS) { 2618 *cp++ = 'M'; 2619 if (flags & IEEE80211_NODE_MIMO_RTS) 2620 *cp++ = '+'; 2621 } 2622 if (flags & IEEE80211_NODE_RIFS) 2623 *cp++ = 'I'; 2624 if (flags & IEEE80211_NODE_SGI40) { 2625 *cp++ = 'S'; 2626 if (flags & IEEE80211_NODE_SGI20) 2627 *cp++ = '+'; 2628 } else if (flags & IEEE80211_NODE_SGI20) 2629 *cp++ = 's'; 2630 if (flags & IEEE80211_NODE_AMSDU_TX) 2631 *cp++ = 't'; 2632 if (flags & IEEE80211_NODE_AMSDU_RX) 2633 *cp++ = 'r'; 2634 *cp = '\0'; 2635 return flagstring; 2636 } 2637 2638 static void 2639 printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen) 2640 { 2641 printf("%s", tag); 2642 if (verbose) { 2643 maxlen -= strlen(tag)+2; 2644 if (2*ielen > maxlen) 2645 maxlen--; 2646 printf("<"); 2647 for (; ielen > 0; ie++, ielen--) { 2648 if (maxlen-- <= 0) 2649 break; 2650 printf("%02x", *ie); 2651 } 2652 if (ielen != 0) 2653 printf("-"); 2654 printf(">"); 2655 } 2656 } 2657 2658 #define LE_READ_2(p) \ 2659 ((u_int16_t) \ 2660 ((((const u_int8_t *)(p))[0] ) | \ 2661 (((const u_int8_t *)(p))[1] << 8))) 2662 #define LE_READ_4(p) \ 2663 ((u_int32_t) \ 2664 ((((const u_int8_t *)(p))[0] ) | \ 2665 (((const u_int8_t *)(p))[1] << 8) | \ 2666 (((const u_int8_t *)(p))[2] << 16) | \ 2667 (((const u_int8_t *)(p))[3] << 24))) 2668 2669 /* 2670 * NB: The decoding routines assume a properly formatted ie 2671 * which should be safe as the kernel only retains them 2672 * if they parse ok. 2673 */ 2674 2675 static void 2676 printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2677 { 2678 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2679 static const char *acnames[] = { "BE", "BK", "VO", "VI" }; 2680 const struct ieee80211_wme_param *wme = 2681 (const struct ieee80211_wme_param *) ie; 2682 int i; 2683 2684 printf("%s", tag); 2685 if (!verbose) 2686 return; 2687 printf("<qosinfo 0x%x", wme->param_qosInfo); 2688 ie += offsetof(struct ieee80211_wme_param, params_acParams); 2689 for (i = 0; i < WME_NUM_AC; i++) { 2690 const struct ieee80211_wme_acparams *ac = 2691 &wme->params_acParams[i]; 2692 2693 printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]" 2694 , acnames[i] 2695 , MS(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : "" 2696 , MS(ac->acp_aci_aifsn, WME_PARAM_AIFSN) 2697 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN) 2698 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX) 2699 , LE_READ_2(&ac->acp_txop) 2700 ); 2701 } 2702 printf(">"); 2703 #undef MS 2704 } 2705 2706 static void 2707 printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2708 { 2709 printf("%s", tag); 2710 if (verbose) { 2711 const struct ieee80211_wme_info *wme = 2712 (const struct ieee80211_wme_info *) ie; 2713 printf("<version 0x%x info 0x%x>", 2714 wme->wme_version, wme->wme_info); 2715 } 2716 } 2717 2718 static void 2719 printvhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2720 { 2721 printf("%s", tag); 2722 if (verbose) { 2723 const struct ieee80211_ie_vhtcap *vhtcap = 2724 (const struct ieee80211_ie_vhtcap *) ie; 2725 uint32_t vhtcap_info = LE_READ_4(&vhtcap->vht_cap_info); 2726 2727 printf("<cap 0x%08x", vhtcap_info); 2728 printf(" rx_mcs_map 0x%x", 2729 LE_READ_2(&vhtcap->supp_mcs.rx_mcs_map)); 2730 printf(" rx_highest %d", 2731 LE_READ_2(&vhtcap->supp_mcs.rx_highest) & 0x1fff); 2732 printf(" tx_mcs_map 0x%x", 2733 LE_READ_2(&vhtcap->supp_mcs.tx_mcs_map)); 2734 printf(" tx_highest %d", 2735 LE_READ_2(&vhtcap->supp_mcs.tx_highest) & 0x1fff); 2736 2737 printf(">"); 2738 } 2739 } 2740 2741 static void 2742 printvhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2743 { 2744 printf("%s", tag); 2745 if (verbose) { 2746 const struct ieee80211_ie_vht_operation *vhtinfo = 2747 (const struct ieee80211_ie_vht_operation *) ie; 2748 2749 printf("<chw %d freq1_idx %d freq2_idx %d basic_mcs_set 0x%04x>", 2750 vhtinfo->chan_width, 2751 vhtinfo->center_freq_seg1_idx, 2752 vhtinfo->center_freq_seg2_idx, 2753 LE_READ_2(&vhtinfo->basic_mcs_set)); 2754 } 2755 } 2756 2757 static void 2758 printvhtpwrenv(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2759 { 2760 printf("%s", tag); 2761 static const char *txpwrmap[] = { 2762 "20", 2763 "40", 2764 "80", 2765 "160", 2766 }; 2767 if (verbose) { 2768 const struct ieee80211_ie_vht_txpwrenv *vhtpwr = 2769 (const struct ieee80211_ie_vht_txpwrenv *) ie; 2770 int i, n; 2771 const char *sep = ""; 2772 2773 /* Get count; trim at ielen */ 2774 n = (vhtpwr->tx_info & 2775 IEEE80211_VHT_TXPWRENV_INFO_COUNT_MASK) + 1; 2776 /* Trim at ielen */ 2777 if (n > ielen - 3) 2778 n = ielen - 3; 2779 printf("<tx_info 0x%02x pwr:[", vhtpwr->tx_info); 2780 for (i = 0; i < n; i++) { 2781 printf("%s%s:%.2f", sep, txpwrmap[i], 2782 ((float) ((int8_t) ie[i+3])) / 2.0); 2783 sep = " "; 2784 } 2785 2786 printf("]>"); 2787 } 2788 } 2789 2790 static void 2791 printhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2792 { 2793 printf("%s", tag); 2794 if (verbose) { 2795 const struct ieee80211_ie_htcap *htcap = 2796 (const struct ieee80211_ie_htcap *) ie; 2797 const char *sep; 2798 int i, j; 2799 2800 printf("<cap 0x%x param 0x%x", 2801 LE_READ_2(&htcap->hc_cap), htcap->hc_param); 2802 printf(" mcsset["); 2803 sep = ""; 2804 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2805 if (isset(htcap->hc_mcsset, i)) { 2806 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2807 if (isclr(htcap->hc_mcsset, j)) 2808 break; 2809 j--; 2810 if (i == j) 2811 printf("%s%u", sep, i); 2812 else 2813 printf("%s%u-%u", sep, i, j); 2814 i += j-i; 2815 sep = ","; 2816 } 2817 printf("] extcap 0x%x txbf 0x%x antenna 0x%x>", 2818 LE_READ_2(&htcap->hc_extcap), 2819 LE_READ_4(&htcap->hc_txbf), 2820 htcap->hc_antenna); 2821 } 2822 } 2823 2824 static void 2825 printhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2826 { 2827 printf("%s", tag); 2828 if (verbose) { 2829 const struct ieee80211_ie_htinfo *htinfo = 2830 (const struct ieee80211_ie_htinfo *) ie; 2831 const char *sep; 2832 int i, j; 2833 2834 printf("<ctl %u, %x,%x,%x,%x", htinfo->hi_ctrlchannel, 2835 htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3, 2836 LE_READ_2(&htinfo->hi_byte45)); 2837 printf(" basicmcs["); 2838 sep = ""; 2839 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2840 if (isset(htinfo->hi_basicmcsset, i)) { 2841 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2842 if (isclr(htinfo->hi_basicmcsset, j)) 2843 break; 2844 j--; 2845 if (i == j) 2846 printf("%s%u", sep, i); 2847 else 2848 printf("%s%u-%u", sep, i, j); 2849 i += j-i; 2850 sep = ","; 2851 } 2852 printf("]>"); 2853 } 2854 } 2855 2856 static void 2857 printathie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2858 { 2859 2860 printf("%s", tag); 2861 if (verbose) { 2862 const struct ieee80211_ath_ie *ath = 2863 (const struct ieee80211_ath_ie *)ie; 2864 2865 printf("<"); 2866 if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME) 2867 printf("DTURBO,"); 2868 if (ath->ath_capability & ATHEROS_CAP_COMPRESSION) 2869 printf("COMP,"); 2870 if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME) 2871 printf("FF,"); 2872 if (ath->ath_capability & ATHEROS_CAP_XR) 2873 printf("XR,"); 2874 if (ath->ath_capability & ATHEROS_CAP_AR) 2875 printf("AR,"); 2876 if (ath->ath_capability & ATHEROS_CAP_BURST) 2877 printf("BURST,"); 2878 if (ath->ath_capability & ATHEROS_CAP_WME) 2879 printf("WME,"); 2880 if (ath->ath_capability & ATHEROS_CAP_BOOST) 2881 printf("BOOST,"); 2882 printf("0x%x>", LE_READ_2(ath->ath_defkeyix)); 2883 } 2884 } 2885 2886 2887 static void 2888 printmeshconf(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) 2889 { 2890 2891 printf("%s", tag); 2892 if (verbose) { 2893 const struct ieee80211_meshconf_ie *mconf = 2894 (const struct ieee80211_meshconf_ie *)ie; 2895 printf("<PATH:"); 2896 if (mconf->conf_pselid == IEEE80211_MESHCONF_PATH_HWMP) 2897 printf("HWMP"); 2898 else 2899 printf("UNKNOWN"); 2900 printf(" LINK:"); 2901 if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME) 2902 printf("AIRTIME"); 2903 else 2904 printf("UNKNOWN"); 2905 printf(" CONGESTION:"); 2906 if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED) 2907 printf("DISABLED"); 2908 else 2909 printf("UNKNOWN"); 2910 printf(" SYNC:"); 2911 if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF) 2912 printf("NEIGHOFF"); 2913 else 2914 printf("UNKNOWN"); 2915 printf(" AUTH:"); 2916 if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED) 2917 printf("DISABLED"); 2918 else 2919 printf("UNKNOWN"); 2920 printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form, 2921 mconf->conf_cap); 2922 } 2923 } 2924 2925 static void 2926 printbssload(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) 2927 { 2928 printf("%s", tag); 2929 if (verbose) { 2930 const struct ieee80211_bss_load_ie *bssload = 2931 (const struct ieee80211_bss_load_ie *) ie; 2932 printf("<sta count %d, chan load %d, aac %d>", 2933 LE_READ_2(&bssload->sta_count), 2934 bssload->chan_load, 2935 bssload->aac); 2936 } 2937 } 2938 2939 static void 2940 printapchanrep(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2941 { 2942 printf("%s", tag); 2943 if (verbose) { 2944 const struct ieee80211_ap_chan_report_ie *ap = 2945 (const struct ieee80211_ap_chan_report_ie *) ie; 2946 const char *sep = ""; 2947 int i; 2948 2949 printf("<class %u, chan:[", ap->i_class); 2950 2951 for (i = 3; i < ielen; i++) { 2952 printf("%s%u", sep, ie[i]); 2953 sep = ","; 2954 } 2955 printf("]>"); 2956 } 2957 } 2958 2959 static const char * 2960 wpa_cipher(const u_int8_t *sel) 2961 { 2962 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2963 u_int32_t w = LE_READ_4(sel); 2964 2965 switch (w) { 2966 case WPA_SEL(WPA_CSE_NULL): 2967 return "NONE"; 2968 case WPA_SEL(WPA_CSE_WEP40): 2969 return "WEP40"; 2970 case WPA_SEL(WPA_CSE_WEP104): 2971 return "WEP104"; 2972 case WPA_SEL(WPA_CSE_TKIP): 2973 return "TKIP"; 2974 case WPA_SEL(WPA_CSE_CCMP): 2975 return "AES-CCMP"; 2976 } 2977 return "?"; /* NB: so 1<< is discarded */ 2978 #undef WPA_SEL 2979 } 2980 2981 static const char * 2982 wpa_keymgmt(const u_int8_t *sel) 2983 { 2984 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2985 u_int32_t w = LE_READ_4(sel); 2986 2987 switch (w) { 2988 case WPA_SEL(WPA_ASE_8021X_UNSPEC): 2989 return "8021X-UNSPEC"; 2990 case WPA_SEL(WPA_ASE_8021X_PSK): 2991 return "8021X-PSK"; 2992 case WPA_SEL(WPA_ASE_NONE): 2993 return "NONE"; 2994 } 2995 return "?"; 2996 #undef WPA_SEL 2997 } 2998 2999 static void 3000 printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3001 { 3002 u_int8_t len = ie[1]; 3003 3004 printf("%s", tag); 3005 if (verbose) { 3006 const char *sep; 3007 int n; 3008 3009 ie += 6, len -= 4; /* NB: len is payload only */ 3010 3011 printf("<v%u", LE_READ_2(ie)); 3012 ie += 2, len -= 2; 3013 3014 printf(" mc:%s", wpa_cipher(ie)); 3015 ie += 4, len -= 4; 3016 3017 /* unicast ciphers */ 3018 n = LE_READ_2(ie); 3019 ie += 2, len -= 2; 3020 sep = " uc:"; 3021 for (; n > 0; n--) { 3022 printf("%s%s", sep, wpa_cipher(ie)); 3023 ie += 4, len -= 4; 3024 sep = "+"; 3025 } 3026 3027 /* key management algorithms */ 3028 n = LE_READ_2(ie); 3029 ie += 2, len -= 2; 3030 sep = " km:"; 3031 for (; n > 0; n--) { 3032 printf("%s%s", sep, wpa_keymgmt(ie)); 3033 ie += 4, len -= 4; 3034 sep = "+"; 3035 } 3036 3037 if (len > 2) /* optional capabilities */ 3038 printf(", caps 0x%x", LE_READ_2(ie)); 3039 printf(">"); 3040 } 3041 } 3042 3043 static const char * 3044 rsn_cipher(const u_int8_t *sel) 3045 { 3046 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 3047 u_int32_t w = LE_READ_4(sel); 3048 3049 switch (w) { 3050 case RSN_SEL(RSN_CSE_NULL): 3051 return "NONE"; 3052 case RSN_SEL(RSN_CSE_WEP40): 3053 return "WEP40"; 3054 case RSN_SEL(RSN_CSE_WEP104): 3055 return "WEP104"; 3056 case RSN_SEL(RSN_CSE_TKIP): 3057 return "TKIP"; 3058 case RSN_SEL(RSN_CSE_CCMP): 3059 return "AES-CCMP"; 3060 case RSN_SEL(RSN_CSE_WRAP): 3061 return "AES-OCB"; 3062 } 3063 return "?"; 3064 #undef WPA_SEL 3065 } 3066 3067 static const char * 3068 rsn_keymgmt(const u_int8_t *sel) 3069 { 3070 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 3071 u_int32_t w = LE_READ_4(sel); 3072 3073 switch (w) { 3074 case RSN_SEL(RSN_ASE_8021X_UNSPEC): 3075 return "8021X-UNSPEC"; 3076 case RSN_SEL(RSN_ASE_8021X_PSK): 3077 return "8021X-PSK"; 3078 case RSN_SEL(RSN_ASE_NONE): 3079 return "NONE"; 3080 } 3081 return "?"; 3082 #undef RSN_SEL 3083 } 3084 3085 static void 3086 printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3087 { 3088 printf("%s", tag); 3089 if (verbose) { 3090 const char *sep; 3091 int n; 3092 3093 ie += 2, ielen -= 2; 3094 3095 printf("<v%u", LE_READ_2(ie)); 3096 ie += 2, ielen -= 2; 3097 3098 printf(" mc:%s", rsn_cipher(ie)); 3099 ie += 4, ielen -= 4; 3100 3101 /* unicast ciphers */ 3102 n = LE_READ_2(ie); 3103 ie += 2, ielen -= 2; 3104 sep = " uc:"; 3105 for (; n > 0; n--) { 3106 printf("%s%s", sep, rsn_cipher(ie)); 3107 ie += 4, ielen -= 4; 3108 sep = "+"; 3109 } 3110 3111 /* key management algorithms */ 3112 n = LE_READ_2(ie); 3113 ie += 2, ielen -= 2; 3114 sep = " km:"; 3115 for (; n > 0; n--) { 3116 printf("%s%s", sep, rsn_keymgmt(ie)); 3117 ie += 4, ielen -= 4; 3118 sep = "+"; 3119 } 3120 3121 if (ielen > 2) /* optional capabilities */ 3122 printf(", caps 0x%x", LE_READ_2(ie)); 3123 /* XXXPMKID */ 3124 printf(">"); 3125 } 3126 } 3127 3128 /* XXX move to a public include file */ 3129 #define IEEE80211_WPS_DEV_PASS_ID 0x1012 3130 #define IEEE80211_WPS_SELECTED_REG 0x1041 3131 #define IEEE80211_WPS_SETUP_STATE 0x1044 3132 #define IEEE80211_WPS_UUID_E 0x1047 3133 #define IEEE80211_WPS_VERSION 0x104a 3134 3135 #define BE_READ_2(p) \ 3136 ((u_int16_t) \ 3137 ((((const u_int8_t *)(p))[1] ) | \ 3138 (((const u_int8_t *)(p))[0] << 8))) 3139 3140 static void 3141 printwpsie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3142 { 3143 u_int8_t len = ie[1]; 3144 3145 printf("%s", tag); 3146 if (verbose) { 3147 static const char *dev_pass_id[] = { 3148 "D", /* Default (PIN) */ 3149 "U", /* User-specified */ 3150 "M", /* Machine-specified */ 3151 "K", /* Rekey */ 3152 "P", /* PushButton */ 3153 "R" /* Registrar-specified */ 3154 }; 3155 int n; 3156 3157 ie +=6, len -= 4; /* NB: len is payload only */ 3158 3159 /* WPS IE in Beacon and Probe Resp frames have different fields */ 3160 printf("<"); 3161 while (len) { 3162 uint16_t tlv_type = BE_READ_2(ie); 3163 uint16_t tlv_len = BE_READ_2(ie + 2); 3164 3165 /* some devices broadcast invalid WPS frames */ 3166 if (tlv_len > len) { 3167 printf("bad frame length tlv_type=0x%02x " 3168 "tlv_len=%d len=%d", tlv_type, tlv_len, 3169 len); 3170 break; 3171 } 3172 3173 ie += 4, len -= 4; 3174 3175 switch (tlv_type) { 3176 case IEEE80211_WPS_VERSION: 3177 printf("v:%d.%d", *ie >> 4, *ie & 0xf); 3178 break; 3179 case IEEE80211_WPS_SETUP_STATE: 3180 /* Only 1 and 2 are valid */ 3181 if (*ie == 0 || *ie >= 3) 3182 printf(" state:B"); 3183 else 3184 printf(" st:%s", *ie == 1 ? "N" : "C"); 3185 break; 3186 case IEEE80211_WPS_SELECTED_REG: 3187 printf(" sel:%s", *ie ? "T" : "F"); 3188 break; 3189 case IEEE80211_WPS_DEV_PASS_ID: 3190 n = LE_READ_2(ie); 3191 if (n < nitems(dev_pass_id)) 3192 printf(" dpi:%s", dev_pass_id[n]); 3193 break; 3194 case IEEE80211_WPS_UUID_E: 3195 printf(" uuid-e:"); 3196 for (n = 0; n < (tlv_len - 1); n++) 3197 printf("%02x-", ie[n]); 3198 printf("%02x", ie[n]); 3199 break; 3200 } 3201 ie += tlv_len, len -= tlv_len; 3202 } 3203 printf(">"); 3204 } 3205 } 3206 3207 static void 3208 printtdmaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3209 { 3210 printf("%s", tag); 3211 if (verbose && ielen >= sizeof(struct ieee80211_tdma_param)) { 3212 const struct ieee80211_tdma_param *tdma = 3213 (const struct ieee80211_tdma_param *) ie; 3214 3215 /* XXX tstamp */ 3216 printf("<v%u slot:%u slotcnt:%u slotlen:%u bintval:%u inuse:0x%x>", 3217 tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt, 3218 LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval, 3219 tdma->tdma_inuse[0]); 3220 } 3221 } 3222 3223 /* 3224 * Copy the ssid string contents into buf, truncating to fit. If the 3225 * ssid is entirely printable then just copy intact. Otherwise convert 3226 * to hexadecimal. If the result is truncated then replace the last 3227 * three characters with "...". 3228 */ 3229 static int 3230 copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len) 3231 { 3232 const u_int8_t *p; 3233 size_t maxlen; 3234 u_int i; 3235 3236 if (essid_len > bufsize) 3237 maxlen = bufsize; 3238 else 3239 maxlen = essid_len; 3240 /* determine printable or not */ 3241 for (i = 0, p = essid; i < maxlen; i++, p++) { 3242 if (*p < ' ' || *p > 0x7e) 3243 break; 3244 } 3245 if (i != maxlen) { /* not printable, print as hex */ 3246 if (bufsize < 3) 3247 return 0; 3248 strlcpy(buf, "0x", bufsize); 3249 bufsize -= 2; 3250 p = essid; 3251 for (i = 0; i < maxlen && bufsize >= 2; i++) { 3252 sprintf(&buf[2+2*i], "%02x", p[i]); 3253 bufsize -= 2; 3254 } 3255 if (i != essid_len) 3256 memcpy(&buf[2+2*i-3], "...", 3); 3257 } else { /* printable, truncate as needed */ 3258 memcpy(buf, essid, maxlen); 3259 if (maxlen != essid_len) 3260 memcpy(&buf[maxlen-3], "...", 3); 3261 } 3262 return maxlen; 3263 } 3264 3265 static void 3266 printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3267 { 3268 char ssid[2*IEEE80211_NWID_LEN+1]; 3269 3270 printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid); 3271 } 3272 3273 static void 3274 printrates(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3275 { 3276 const char *sep; 3277 int i; 3278 3279 printf("%s", tag); 3280 sep = "<"; 3281 for (i = 2; i < ielen; i++) { 3282 printf("%s%s%d", sep, 3283 ie[i] & IEEE80211_RATE_BASIC ? "B" : "", 3284 ie[i] & IEEE80211_RATE_VAL); 3285 sep = ","; 3286 } 3287 printf(">"); 3288 } 3289 3290 static void 3291 printcountry(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 3292 { 3293 const struct ieee80211_country_ie *cie = 3294 (const struct ieee80211_country_ie *) ie; 3295 int i, nbands, schan, nchan; 3296 3297 printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]); 3298 nbands = (cie->len - 3) / sizeof(cie->band[0]); 3299 for (i = 0; i < nbands; i++) { 3300 schan = cie->band[i].schan; 3301 nchan = cie->band[i].nchan; 3302 if (nchan != 1) 3303 printf(" %u-%u,%u", schan, schan + nchan-1, 3304 cie->band[i].maxtxpwr); 3305 else 3306 printf(" %u,%u", schan, cie->band[i].maxtxpwr); 3307 } 3308 printf(">"); 3309 } 3310 3311 static __inline int 3312 iswpaoui(const u_int8_t *frm) 3313 { 3314 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI); 3315 } 3316 3317 static __inline int 3318 iswmeinfo(const u_int8_t *frm) 3319 { 3320 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3321 frm[6] == WME_INFO_OUI_SUBTYPE; 3322 } 3323 3324 static __inline int 3325 iswmeparam(const u_int8_t *frm) 3326 { 3327 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3328 frm[6] == WME_PARAM_OUI_SUBTYPE; 3329 } 3330 3331 static __inline int 3332 isatherosoui(const u_int8_t *frm) 3333 { 3334 return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI); 3335 } 3336 3337 static __inline int 3338 istdmaoui(const uint8_t *frm) 3339 { 3340 return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI); 3341 } 3342 3343 static __inline int 3344 iswpsoui(const uint8_t *frm) 3345 { 3346 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI); 3347 } 3348 3349 static const char * 3350 iename(int elemid) 3351 { 3352 switch (elemid) { 3353 case IEEE80211_ELEMID_FHPARMS: return " FHPARMS"; 3354 case IEEE80211_ELEMID_CFPARMS: return " CFPARMS"; 3355 case IEEE80211_ELEMID_TIM: return " TIM"; 3356 case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS"; 3357 case IEEE80211_ELEMID_BSSLOAD: return " BSSLOAD"; 3358 case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE"; 3359 case IEEE80211_ELEMID_PWRCNSTR: return " PWRCNSTR"; 3360 case IEEE80211_ELEMID_PWRCAP: return " PWRCAP"; 3361 case IEEE80211_ELEMID_TPCREQ: return " TPCREQ"; 3362 case IEEE80211_ELEMID_TPCREP: return " TPCREP"; 3363 case IEEE80211_ELEMID_SUPPCHAN: return " SUPPCHAN"; 3364 case IEEE80211_ELEMID_CSA: return " CSA"; 3365 case IEEE80211_ELEMID_MEASREQ: return " MEASREQ"; 3366 case IEEE80211_ELEMID_MEASREP: return " MEASREP"; 3367 case IEEE80211_ELEMID_QUIET: return " QUIET"; 3368 case IEEE80211_ELEMID_IBSSDFS: return " IBSSDFS"; 3369 case IEEE80211_ELEMID_TPC: return " TPC"; 3370 case IEEE80211_ELEMID_CCKM: return " CCKM"; 3371 } 3372 return " ???"; 3373 } 3374 3375 static void 3376 printies(const u_int8_t *vp, int ielen, int maxcols) 3377 { 3378 while (ielen > 0) { 3379 switch (vp[0]) { 3380 case IEEE80211_ELEMID_SSID: 3381 if (verbose) 3382 printssid(" SSID", vp, 2+vp[1], maxcols); 3383 break; 3384 case IEEE80211_ELEMID_RATES: 3385 case IEEE80211_ELEMID_XRATES: 3386 if (verbose) 3387 printrates(vp[0] == IEEE80211_ELEMID_RATES ? 3388 " RATES" : " XRATES", vp, 2+vp[1], maxcols); 3389 break; 3390 case IEEE80211_ELEMID_DSPARMS: 3391 if (verbose) 3392 printf(" DSPARMS<%u>", vp[2]); 3393 break; 3394 case IEEE80211_ELEMID_COUNTRY: 3395 if (verbose) 3396 printcountry(" COUNTRY", vp, 2+vp[1], maxcols); 3397 break; 3398 case IEEE80211_ELEMID_ERP: 3399 if (verbose) 3400 printf(" ERP<0x%x>", vp[2]); 3401 break; 3402 case IEEE80211_ELEMID_VENDOR: 3403 if (iswpaoui(vp)) 3404 printwpaie(" WPA", vp, 2+vp[1], maxcols); 3405 else if (iswmeinfo(vp)) 3406 printwmeinfo(" WME", vp, 2+vp[1], maxcols); 3407 else if (iswmeparam(vp)) 3408 printwmeparam(" WME", vp, 2+vp[1], maxcols); 3409 else if (isatherosoui(vp)) 3410 printathie(" ATH", vp, 2+vp[1], maxcols); 3411 else if (iswpsoui(vp)) 3412 printwpsie(" WPS", vp, 2+vp[1], maxcols); 3413 else if (istdmaoui(vp)) 3414 printtdmaie(" TDMA", vp, 2+vp[1], maxcols); 3415 else if (verbose) 3416 printie(" VEN", vp, 2+vp[1], maxcols); 3417 break; 3418 case IEEE80211_ELEMID_RSN: 3419 printrsnie(" RSN", vp, 2+vp[1], maxcols); 3420 break; 3421 case IEEE80211_ELEMID_HTCAP: 3422 printhtcap(" HTCAP", vp, 2+vp[1], maxcols); 3423 break; 3424 case IEEE80211_ELEMID_HTINFO: 3425 if (verbose) 3426 printhtinfo(" HTINFO", vp, 2+vp[1], maxcols); 3427 break; 3428 case IEEE80211_ELEMID_MESHID: 3429 if (verbose) 3430 printssid(" MESHID", vp, 2+vp[1], maxcols); 3431 break; 3432 case IEEE80211_ELEMID_MESHCONF: 3433 printmeshconf(" MESHCONF", vp, 2+vp[1], maxcols); 3434 break; 3435 case IEEE80211_ELEMID_VHT_CAP: 3436 printvhtcap(" VHTCAP", vp, 2+vp[1], maxcols); 3437 break; 3438 case IEEE80211_ELEMID_VHT_OPMODE: 3439 printvhtinfo(" VHTOPMODE", vp, 2+vp[1], maxcols); 3440 break; 3441 case IEEE80211_ELEMID_VHT_PWR_ENV: 3442 printvhtpwrenv(" VHTPWRENV", vp, 2+vp[1], maxcols); 3443 break; 3444 case IEEE80211_ELEMID_BSSLOAD: 3445 printbssload(" BSSLOAD", vp, 2+vp[1], maxcols); 3446 break; 3447 case IEEE80211_ELEMID_APCHANREP: 3448 printapchanrep(" APCHANREP", vp, 2+vp[1], maxcols); 3449 break; 3450 default: 3451 if (verbose) 3452 printie(iename(vp[0]), vp, 2+vp[1], maxcols); 3453 break; 3454 } 3455 ielen -= 2+vp[1]; 3456 vp += 2+vp[1]; 3457 } 3458 } 3459 3460 static void 3461 printmimo(const struct ieee80211_mimo_info *mi) 3462 { 3463 int i; 3464 int r = 0; 3465 3466 for (i = 0; i < IEEE80211_MAX_CHAINS; i++) { 3467 if (mi->ch[i].rssi != 0) { 3468 r = 1; 3469 break; 3470 } 3471 } 3472 3473 /* NB: don't muddy display unless there's something to show */ 3474 if (r == 0) 3475 return; 3476 3477 /* XXX TODO: ignore EVM; secondary channels for now */ 3478 printf(" (rssi %.1f:%.1f:%.1f:%.1f nf %d:%d:%d:%d)", 3479 mi->ch[0].rssi[0] / 2.0, 3480 mi->ch[1].rssi[0] / 2.0, 3481 mi->ch[2].rssi[0] / 2.0, 3482 mi->ch[3].rssi[0] / 2.0, 3483 mi->ch[0].noise[0], 3484 mi->ch[1].noise[0], 3485 mi->ch[2].noise[0], 3486 mi->ch[3].noise[0]); 3487 } 3488 3489 static void 3490 list_scan(int s) 3491 { 3492 uint8_t buf[24*1024]; 3493 char ssid[IEEE80211_NWID_LEN+1]; 3494 const uint8_t *cp; 3495 int len, ssidmax, idlen; 3496 3497 if (get80211len(s, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0) 3498 errx(1, "unable to get scan results"); 3499 if (len < sizeof(struct ieee80211req_scan_result)) 3500 return; 3501 3502 getchaninfo(s); 3503 3504 ssidmax = verbose ? IEEE80211_NWID_LEN : 14; 3505 printf("%-*.*s %-17.17s %4s %4s %-7s %3s %4s\n" 3506 , ssidmax, ssidmax, "SSID/MESH ID" 3507 , "BSSID" 3508 , "CHAN" 3509 , "RATE" 3510 , " S:N" 3511 , "INT" 3512 , "CAPS" 3513 ); 3514 cp = buf; 3515 do { 3516 const struct ieee80211req_scan_result *sr; 3517 const uint8_t *vp, *idp; 3518 3519 sr = (const struct ieee80211req_scan_result *) cp; 3520 vp = cp + sr->isr_ie_off; 3521 if (sr->isr_meshid_len) { 3522 idp = vp + sr->isr_ssid_len; 3523 idlen = sr->isr_meshid_len; 3524 } else { 3525 idp = vp; 3526 idlen = sr->isr_ssid_len; 3527 } 3528 printf("%-*.*s %s %3d %3dM %4d:%-4d %4d %-4.4s" 3529 , ssidmax 3530 , copy_essid(ssid, ssidmax, idp, idlen) 3531 , ssid 3532 , ether_ntoa((const struct ether_addr *) sr->isr_bssid) 3533 , ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags) 3534 , getmaxrate(sr->isr_rates, sr->isr_nrates) 3535 , (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise 3536 , sr->isr_intval 3537 , getcaps(sr->isr_capinfo) 3538 ); 3539 printies(vp + sr->isr_ssid_len + sr->isr_meshid_len, 3540 sr->isr_ie_len, 24); 3541 printf("\n"); 3542 cp += sr->isr_len, len -= sr->isr_len; 3543 } while (len >= sizeof(struct ieee80211req_scan_result)); 3544 } 3545 3546 static void 3547 scan_and_wait(int s) 3548 { 3549 struct ieee80211_scan_req sr; 3550 struct ieee80211req ireq; 3551 int sroute; 3552 3553 sroute = socket(PF_ROUTE, SOCK_RAW, 0); 3554 if (sroute < 0) { 3555 perror("socket(PF_ROUTE,SOCK_RAW)"); 3556 return; 3557 } 3558 (void) memset(&ireq, 0, sizeof(ireq)); 3559 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 3560 ireq.i_type = IEEE80211_IOC_SCAN_REQ; 3561 3562 memset(&sr, 0, sizeof(sr)); 3563 sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE 3564 | IEEE80211_IOC_SCAN_BGSCAN 3565 | IEEE80211_IOC_SCAN_NOPICK 3566 | IEEE80211_IOC_SCAN_ONCE; 3567 sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER; 3568 sr.sr_nssid = 0; 3569 3570 ireq.i_data = &sr; 3571 ireq.i_len = sizeof(sr); 3572 /* 3573 * NB: only root can trigger a scan so ignore errors. Also ignore 3574 * possible errors from net80211, even if no new scan could be 3575 * started there might still be a valid scan cache. 3576 */ 3577 if (ioctl(s, SIOCS80211, &ireq) == 0) { 3578 char buf[2048]; 3579 struct if_announcemsghdr *ifan; 3580 struct rt_msghdr *rtm; 3581 3582 do { 3583 if (read(sroute, buf, sizeof(buf)) < 0) { 3584 perror("read(PF_ROUTE)"); 3585 break; 3586 } 3587 rtm = (struct rt_msghdr *) buf; 3588 if (rtm->rtm_version != RTM_VERSION) 3589 break; 3590 ifan = (struct if_announcemsghdr *) rtm; 3591 } while (rtm->rtm_type != RTM_IEEE80211 || 3592 ifan->ifan_what != RTM_IEEE80211_SCAN); 3593 } 3594 close(sroute); 3595 } 3596 3597 static 3598 DECL_CMD_FUNC(set80211scan, val, d) 3599 { 3600 scan_and_wait(s); 3601 list_scan(s); 3602 } 3603 3604 static enum ieee80211_opmode get80211opmode(int s); 3605 3606 static int 3607 gettxseq(const struct ieee80211req_sta_info *si) 3608 { 3609 int i, txseq; 3610 3611 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3612 return si->isi_txseqs[0]; 3613 /* XXX not right but usually what folks want */ 3614 txseq = 0; 3615 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3616 if (si->isi_txseqs[i] > txseq) 3617 txseq = si->isi_txseqs[i]; 3618 return txseq; 3619 } 3620 3621 static int 3622 getrxseq(const struct ieee80211req_sta_info *si) 3623 { 3624 int i, rxseq; 3625 3626 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3627 return si->isi_rxseqs[0]; 3628 /* XXX not right but usually what folks want */ 3629 rxseq = 0; 3630 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3631 if (si->isi_rxseqs[i] > rxseq) 3632 rxseq = si->isi_rxseqs[i]; 3633 return rxseq; 3634 } 3635 3636 static void 3637 list_stations(int s) 3638 { 3639 union { 3640 struct ieee80211req_sta_req req; 3641 uint8_t buf[24*1024]; 3642 } u; 3643 enum ieee80211_opmode opmode = get80211opmode(s); 3644 const uint8_t *cp; 3645 int len; 3646 3647 /* broadcast address =>'s get all stations */ 3648 (void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN); 3649 if (opmode == IEEE80211_M_STA) { 3650 /* 3651 * Get information about the associated AP. 3652 */ 3653 (void) get80211(s, IEEE80211_IOC_BSSID, 3654 u.req.is_u.macaddr, IEEE80211_ADDR_LEN); 3655 } 3656 if (get80211len(s, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0) 3657 errx(1, "unable to get station information"); 3658 if (len < sizeof(struct ieee80211req_sta_info)) 3659 return; 3660 3661 getchaninfo(s); 3662 3663 if (opmode == IEEE80211_M_MBSS) 3664 printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n" 3665 , "ADDR" 3666 , "CHAN" 3667 , "LOCAL" 3668 , "PEER" 3669 , "STATE" 3670 , "RATE" 3671 , "RSSI" 3672 , "IDLE" 3673 , "TXSEQ" 3674 , "RXSEQ" 3675 ); 3676 else 3677 printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-7s\n" 3678 , "ADDR" 3679 , "AID" 3680 , "CHAN" 3681 , "RATE" 3682 , "RSSI" 3683 , "IDLE" 3684 , "TXSEQ" 3685 , "RXSEQ" 3686 , "CAPS" 3687 , "FLAG" 3688 ); 3689 cp = (const uint8_t *) u.req.info; 3690 do { 3691 const struct ieee80211req_sta_info *si; 3692 3693 si = (const struct ieee80211req_sta_info *) cp; 3694 if (si->isi_len < sizeof(*si)) 3695 break; 3696 if (opmode == IEEE80211_M_MBSS) 3697 printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d" 3698 , ether_ntoa((const struct ether_addr*) 3699 si->isi_macaddr) 3700 , ieee80211_mhz2ieee(si->isi_freq, 3701 si->isi_flags) 3702 , si->isi_localid 3703 , si->isi_peerid 3704 , mesh_linkstate_string(si->isi_peerstate) 3705 , si->isi_txmbps/2 3706 , si->isi_rssi/2. 3707 , si->isi_inact 3708 , gettxseq(si) 3709 , getrxseq(si) 3710 ); 3711 else 3712 printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-7.7s" 3713 , ether_ntoa((const struct ether_addr*) 3714 si->isi_macaddr) 3715 , IEEE80211_AID(si->isi_associd) 3716 , ieee80211_mhz2ieee(si->isi_freq, 3717 si->isi_flags) 3718 , si->isi_txmbps/2 3719 , si->isi_rssi/2. 3720 , si->isi_inact 3721 , gettxseq(si) 3722 , getrxseq(si) 3723 , getcaps(si->isi_capinfo) 3724 , getflags(si->isi_state) 3725 ); 3726 printies(cp + si->isi_ie_off, si->isi_ie_len, 24); 3727 printmimo(&si->isi_mimo); 3728 printf("\n"); 3729 cp += si->isi_len, len -= si->isi_len; 3730 } while (len >= sizeof(struct ieee80211req_sta_info)); 3731 } 3732 3733 static const char * 3734 mesh_linkstate_string(uint8_t state) 3735 { 3736 static const char *state_names[] = { 3737 [0] = "IDLE", 3738 [1] = "OPEN-TX", 3739 [2] = "OPEN-RX", 3740 [3] = "CONF-RX", 3741 [4] = "ESTAB", 3742 [5] = "HOLDING", 3743 }; 3744 3745 if (state >= nitems(state_names)) { 3746 static char buf[10]; 3747 snprintf(buf, sizeof(buf), "#%u", state); 3748 return buf; 3749 } else 3750 return state_names[state]; 3751 } 3752 3753 static const char * 3754 get_chaninfo(const struct ieee80211_channel *c, int precise, 3755 char buf[], size_t bsize) 3756 { 3757 buf[0] = '\0'; 3758 if (IEEE80211_IS_CHAN_FHSS(c)) 3759 strlcat(buf, " FHSS", bsize); 3760 if (IEEE80211_IS_CHAN_A(c)) 3761 strlcat(buf, " 11a", bsize); 3762 else if (IEEE80211_IS_CHAN_ANYG(c)) 3763 strlcat(buf, " 11g", bsize); 3764 else if (IEEE80211_IS_CHAN_B(c)) 3765 strlcat(buf, " 11b", bsize); 3766 if (IEEE80211_IS_CHAN_HALF(c)) 3767 strlcat(buf, "/10MHz", bsize); 3768 if (IEEE80211_IS_CHAN_QUARTER(c)) 3769 strlcat(buf, "/5MHz", bsize); 3770 if (IEEE80211_IS_CHAN_TURBO(c)) 3771 strlcat(buf, " Turbo", bsize); 3772 if (precise) { 3773 /* XXX should make VHT80U, VHT80D */ 3774 if (IEEE80211_IS_CHAN_VHT80(c) && 3775 IEEE80211_IS_CHAN_HT40D(c)) 3776 strlcat(buf, " vht/80-", bsize); 3777 else if (IEEE80211_IS_CHAN_VHT80(c) && 3778 IEEE80211_IS_CHAN_HT40U(c)) 3779 strlcat(buf, " vht/80+", bsize); 3780 else if (IEEE80211_IS_CHAN_VHT80(c)) 3781 strlcat(buf, " vht/80", bsize); 3782 else if (IEEE80211_IS_CHAN_VHT40D(c)) 3783 strlcat(buf, " vht/40-", bsize); 3784 else if (IEEE80211_IS_CHAN_VHT40U(c)) 3785 strlcat(buf, " vht/40+", bsize); 3786 else if (IEEE80211_IS_CHAN_VHT20(c)) 3787 strlcat(buf, " vht/20", bsize); 3788 else if (IEEE80211_IS_CHAN_HT20(c)) 3789 strlcat(buf, " ht/20", bsize); 3790 else if (IEEE80211_IS_CHAN_HT40D(c)) 3791 strlcat(buf, " ht/40-", bsize); 3792 else if (IEEE80211_IS_CHAN_HT40U(c)) 3793 strlcat(buf, " ht/40+", bsize); 3794 } else { 3795 if (IEEE80211_IS_CHAN_VHT(c)) 3796 strlcat(buf, " vht", bsize); 3797 else if (IEEE80211_IS_CHAN_HT(c)) 3798 strlcat(buf, " ht", bsize); 3799 } 3800 return buf; 3801 } 3802 3803 static void 3804 print_chaninfo(const struct ieee80211_channel *c, int verb) 3805 { 3806 char buf[14]; 3807 3808 if (verb) 3809 printf("Channel %3u : %u%c%c%c%c%c MHz%-14.14s", 3810 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3811 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3812 IEEE80211_IS_CHAN_DFS(c) ? 'D' : ' ', 3813 IEEE80211_IS_CHAN_RADAR(c) ? 'R' : ' ', 3814 IEEE80211_IS_CHAN_CWINT(c) ? 'I' : ' ', 3815 IEEE80211_IS_CHAN_CACDONE(c) ? 'C' : ' ', 3816 get_chaninfo(c, verb, buf, sizeof(buf))); 3817 else 3818 printf("Channel %3u : %u%c MHz%-14.14s", 3819 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3820 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3821 get_chaninfo(c, verb, buf, sizeof(buf))); 3822 3823 } 3824 3825 static int 3826 chanpref(const struct ieee80211_channel *c) 3827 { 3828 if (IEEE80211_IS_CHAN_VHT160(c)) 3829 return 80; 3830 if (IEEE80211_IS_CHAN_VHT80_80(c)) 3831 return 75; 3832 if (IEEE80211_IS_CHAN_VHT80(c)) 3833 return 70; 3834 if (IEEE80211_IS_CHAN_VHT40(c)) 3835 return 60; 3836 if (IEEE80211_IS_CHAN_VHT20(c)) 3837 return 50; 3838 if (IEEE80211_IS_CHAN_HT40(c)) 3839 return 40; 3840 if (IEEE80211_IS_CHAN_HT20(c)) 3841 return 30; 3842 if (IEEE80211_IS_CHAN_HALF(c)) 3843 return 10; 3844 if (IEEE80211_IS_CHAN_QUARTER(c)) 3845 return 5; 3846 if (IEEE80211_IS_CHAN_TURBO(c)) 3847 return 25; 3848 if (IEEE80211_IS_CHAN_A(c)) 3849 return 20; 3850 if (IEEE80211_IS_CHAN_G(c)) 3851 return 20; 3852 if (IEEE80211_IS_CHAN_B(c)) 3853 return 15; 3854 if (IEEE80211_IS_CHAN_PUREG(c)) 3855 return 15; 3856 return 0; 3857 } 3858 3859 static void 3860 print_channels(int s, const struct ieee80211req_chaninfo *chans, 3861 int allchans, int verb) 3862 { 3863 struct ieee80211req_chaninfo *achans; 3864 uint8_t reported[IEEE80211_CHAN_BYTES]; 3865 const struct ieee80211_channel *c; 3866 int i, half; 3867 3868 achans = malloc(IEEE80211_CHANINFO_SPACE(chans)); 3869 if (achans == NULL) 3870 errx(1, "no space for active channel list"); 3871 achans->ic_nchans = 0; 3872 memset(reported, 0, sizeof(reported)); 3873 if (!allchans) { 3874 struct ieee80211req_chanlist active; 3875 3876 if (get80211(s, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0) 3877 errx(1, "unable to get active channel list"); 3878 for (i = 0; i < chans->ic_nchans; i++) { 3879 c = &chans->ic_chans[i]; 3880 if (!isset(active.ic_channels, c->ic_ieee)) 3881 continue; 3882 /* 3883 * Suppress compatible duplicates unless 3884 * verbose. The kernel gives us it's 3885 * complete channel list which has separate 3886 * entries for 11g/11b and 11a/turbo. 3887 */ 3888 if (isset(reported, c->ic_ieee) && !verb) { 3889 /* XXX we assume duplicates are adjacent */ 3890 achans->ic_chans[achans->ic_nchans-1] = *c; 3891 } else { 3892 achans->ic_chans[achans->ic_nchans++] = *c; 3893 setbit(reported, c->ic_ieee); 3894 } 3895 } 3896 } else { 3897 for (i = 0; i < chans->ic_nchans; i++) { 3898 c = &chans->ic_chans[i]; 3899 /* suppress duplicates as above */ 3900 if (isset(reported, c->ic_ieee) && !verb) { 3901 /* XXX we assume duplicates are adjacent */ 3902 struct ieee80211_channel *a = 3903 &achans->ic_chans[achans->ic_nchans-1]; 3904 if (chanpref(c) > chanpref(a)) 3905 *a = *c; 3906 } else { 3907 achans->ic_chans[achans->ic_nchans++] = *c; 3908 setbit(reported, c->ic_ieee); 3909 } 3910 } 3911 } 3912 half = achans->ic_nchans / 2; 3913 if (achans->ic_nchans % 2) 3914 half++; 3915 3916 for (i = 0; i < achans->ic_nchans / 2; i++) { 3917 print_chaninfo(&achans->ic_chans[i], verb); 3918 print_chaninfo(&achans->ic_chans[half+i], verb); 3919 printf("\n"); 3920 } 3921 if (achans->ic_nchans % 2) { 3922 print_chaninfo(&achans->ic_chans[i], verb); 3923 printf("\n"); 3924 } 3925 free(achans); 3926 } 3927 3928 static void 3929 list_channels(int s, int allchans) 3930 { 3931 getchaninfo(s); 3932 print_channels(s, chaninfo, allchans, verbose); 3933 } 3934 3935 static void 3936 print_txpow(const struct ieee80211_channel *c) 3937 { 3938 printf("Channel %3u : %u MHz %3.1f reg %2d ", 3939 c->ic_ieee, c->ic_freq, 3940 c->ic_maxpower/2., c->ic_maxregpower); 3941 } 3942 3943 static void 3944 print_txpow_verbose(const struct ieee80211_channel *c) 3945 { 3946 print_chaninfo(c, 1); 3947 printf("min %4.1f dBm max %3.1f dBm reg %2d dBm", 3948 c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower); 3949 /* indicate where regulatory cap limits power use */ 3950 if (c->ic_maxpower > 2*c->ic_maxregpower) 3951 printf(" <"); 3952 } 3953 3954 static void 3955 list_txpow(int s) 3956 { 3957 struct ieee80211req_chaninfo *achans; 3958 uint8_t reported[IEEE80211_CHAN_BYTES]; 3959 struct ieee80211_channel *c, *prev; 3960 int i, half; 3961 3962 getchaninfo(s); 3963 achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo)); 3964 if (achans == NULL) 3965 errx(1, "no space for active channel list"); 3966 achans->ic_nchans = 0; 3967 memset(reported, 0, sizeof(reported)); 3968 for (i = 0; i < chaninfo->ic_nchans; i++) { 3969 c = &chaninfo->ic_chans[i]; 3970 /* suppress duplicates as above */ 3971 if (isset(reported, c->ic_ieee) && !verbose) { 3972 /* XXX we assume duplicates are adjacent */ 3973 assert(achans->ic_nchans > 0); 3974 prev = &achans->ic_chans[achans->ic_nchans-1]; 3975 /* display highest power on channel */ 3976 if (c->ic_maxpower > prev->ic_maxpower) 3977 *prev = *c; 3978 } else { 3979 achans->ic_chans[achans->ic_nchans++] = *c; 3980 setbit(reported, c->ic_ieee); 3981 } 3982 } 3983 if (!verbose) { 3984 half = achans->ic_nchans / 2; 3985 if (achans->ic_nchans % 2) 3986 half++; 3987 3988 for (i = 0; i < achans->ic_nchans / 2; i++) { 3989 print_txpow(&achans->ic_chans[i]); 3990 print_txpow(&achans->ic_chans[half+i]); 3991 printf("\n"); 3992 } 3993 if (achans->ic_nchans % 2) { 3994 print_txpow(&achans->ic_chans[i]); 3995 printf("\n"); 3996 } 3997 } else { 3998 for (i = 0; i < achans->ic_nchans; i++) { 3999 print_txpow_verbose(&achans->ic_chans[i]); 4000 printf("\n"); 4001 } 4002 } 4003 free(achans); 4004 } 4005 4006 static void 4007 list_keys(int s) 4008 { 4009 } 4010 4011 static void 4012 list_capabilities(int s) 4013 { 4014 struct ieee80211_devcaps_req *dc; 4015 4016 if (verbose) 4017 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 4018 else 4019 dc = malloc(IEEE80211_DEVCAPS_SIZE(1)); 4020 if (dc == NULL) 4021 errx(1, "no space for device capabilities"); 4022 dc->dc_chaninfo.ic_nchans = verbose ? MAXCHAN : 1; 4023 getdevcaps(s, dc); 4024 printb("drivercaps", dc->dc_drivercaps, IEEE80211_C_BITS); 4025 if (dc->dc_cryptocaps != 0 || verbose) { 4026 putchar('\n'); 4027 printb("cryptocaps", dc->dc_cryptocaps, IEEE80211_CRYPTO_BITS); 4028 } 4029 if (dc->dc_htcaps != 0 || verbose) { 4030 putchar('\n'); 4031 printb("htcaps", dc->dc_htcaps, IEEE80211_HTCAP_BITS); 4032 } 4033 if (dc->dc_vhtcaps != 0 || verbose) { 4034 putchar('\n'); 4035 printb("vhtcaps", dc->dc_vhtcaps, IEEE80211_VHTCAP_BITS); 4036 } 4037 4038 putchar('\n'); 4039 if (verbose) { 4040 chaninfo = &dc->dc_chaninfo; /* XXX */ 4041 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, verbose); 4042 } 4043 free(dc); 4044 } 4045 4046 static int 4047 get80211wme(int s, int param, int ac, int *val) 4048 { 4049 struct ieee80211req ireq; 4050 4051 (void) memset(&ireq, 0, sizeof(ireq)); 4052 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 4053 ireq.i_type = param; 4054 ireq.i_len = ac; 4055 if (ioctl(s, SIOCG80211, &ireq) < 0) { 4056 warn("cannot get WME parameter %d, ac %d%s", 4057 param, ac & IEEE80211_WMEPARAM_VAL, 4058 ac & IEEE80211_WMEPARAM_BSS ? " (BSS)" : ""); 4059 return -1; 4060 } 4061 *val = ireq.i_val; 4062 return 0; 4063 } 4064 4065 static void 4066 list_wme_aci(int s, const char *tag, int ac) 4067 { 4068 int val; 4069 4070 printf("\t%s", tag); 4071 4072 /* show WME BSS parameters */ 4073 if (get80211wme(s, IEEE80211_IOC_WME_CWMIN, ac, &val) != -1) 4074 printf(" cwmin %2u", val); 4075 if (get80211wme(s, IEEE80211_IOC_WME_CWMAX, ac, &val) != -1) 4076 printf(" cwmax %2u", val); 4077 if (get80211wme(s, IEEE80211_IOC_WME_AIFS, ac, &val) != -1) 4078 printf(" aifs %2u", val); 4079 if (get80211wme(s, IEEE80211_IOC_WME_TXOPLIMIT, ac, &val) != -1) 4080 printf(" txopLimit %3u", val); 4081 if (get80211wme(s, IEEE80211_IOC_WME_ACM, ac, &val) != -1) { 4082 if (val) 4083 printf(" acm"); 4084 else if (verbose) 4085 printf(" -acm"); 4086 } 4087 /* !BSS only */ 4088 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 4089 if (get80211wme(s, IEEE80211_IOC_WME_ACKPOLICY, ac, &val) != -1) { 4090 if (!val) 4091 printf(" -ack"); 4092 else if (verbose) 4093 printf(" ack"); 4094 } 4095 } 4096 printf("\n"); 4097 } 4098 4099 static void 4100 list_wme(int s) 4101 { 4102 static const char *acnames[] = { "AC_BE", "AC_BK", "AC_VI", "AC_VO" }; 4103 int ac; 4104 4105 if (verbose) { 4106 /* display both BSS and local settings */ 4107 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) { 4108 again: 4109 if (ac & IEEE80211_WMEPARAM_BSS) 4110 list_wme_aci(s, " ", ac); 4111 else 4112 list_wme_aci(s, acnames[ac], ac); 4113 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 4114 ac |= IEEE80211_WMEPARAM_BSS; 4115 goto again; 4116 } else 4117 ac &= ~IEEE80211_WMEPARAM_BSS; 4118 } 4119 } else { 4120 /* display only channel settings */ 4121 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) 4122 list_wme_aci(s, acnames[ac], ac); 4123 } 4124 } 4125 4126 static void 4127 list_roam(int s) 4128 { 4129 const struct ieee80211_roamparam *rp; 4130 int mode; 4131 4132 getroam(s); 4133 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 4134 rp = &roamparams.params[mode]; 4135 if (rp->rssi == 0 && rp->rate == 0) 4136 continue; 4137 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 4138 if (rp->rssi & 1) 4139 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm MCS %2u ", 4140 modename[mode], rp->rssi/2, 4141 rp->rate &~ IEEE80211_RATE_MCS); 4142 else 4143 LINE_CHECK("roam:%-7.7s rssi %4udBm MCS %2u ", 4144 modename[mode], rp->rssi/2, 4145 rp->rate &~ IEEE80211_RATE_MCS); 4146 } else { 4147 if (rp->rssi & 1) 4148 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm rate %2u Mb/s", 4149 modename[mode], rp->rssi/2, rp->rate/2); 4150 else 4151 LINE_CHECK("roam:%-7.7s rssi %4udBm rate %2u Mb/s", 4152 modename[mode], rp->rssi/2, rp->rate/2); 4153 } 4154 } 4155 } 4156 4157 static void 4158 list_txparams(int s) 4159 { 4160 const struct ieee80211_txparam *tp; 4161 int mode; 4162 4163 gettxparams(s); 4164 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 4165 tp = &txparams.params[mode]; 4166 if (tp->mgmtrate == 0 && tp->mcastrate == 0) 4167 continue; 4168 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 4169 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 4170 LINE_CHECK("%-7.7s ucast NONE mgmt %2u MCS " 4171 "mcast %2u MCS maxretry %u", 4172 modename[mode], 4173 tp->mgmtrate &~ IEEE80211_RATE_MCS, 4174 tp->mcastrate &~ IEEE80211_RATE_MCS, 4175 tp->maxretry); 4176 else 4177 LINE_CHECK("%-7.7s ucast %2u MCS mgmt %2u MCS " 4178 "mcast %2u MCS maxretry %u", 4179 modename[mode], 4180 tp->ucastrate &~ IEEE80211_RATE_MCS, 4181 tp->mgmtrate &~ IEEE80211_RATE_MCS, 4182 tp->mcastrate &~ IEEE80211_RATE_MCS, 4183 tp->maxretry); 4184 } else { 4185 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 4186 LINE_CHECK("%-7.7s ucast NONE mgmt %2u Mb/s " 4187 "mcast %2u Mb/s maxretry %u", 4188 modename[mode], 4189 tp->mgmtrate/2, 4190 tp->mcastrate/2, tp->maxretry); 4191 else 4192 LINE_CHECK("%-7.7s ucast %2u Mb/s mgmt %2u Mb/s " 4193 "mcast %2u Mb/s maxretry %u", 4194 modename[mode], 4195 tp->ucastrate/2, tp->mgmtrate/2, 4196 tp->mcastrate/2, tp->maxretry); 4197 } 4198 } 4199 } 4200 4201 static void 4202 printpolicy(int policy) 4203 { 4204 switch (policy) { 4205 case IEEE80211_MACCMD_POLICY_OPEN: 4206 printf("policy: open\n"); 4207 break; 4208 case IEEE80211_MACCMD_POLICY_ALLOW: 4209 printf("policy: allow\n"); 4210 break; 4211 case IEEE80211_MACCMD_POLICY_DENY: 4212 printf("policy: deny\n"); 4213 break; 4214 case IEEE80211_MACCMD_POLICY_RADIUS: 4215 printf("policy: radius\n"); 4216 break; 4217 default: 4218 printf("policy: unknown (%u)\n", policy); 4219 break; 4220 } 4221 } 4222 4223 static void 4224 list_mac(int s) 4225 { 4226 struct ieee80211req ireq; 4227 struct ieee80211req_maclist *acllist; 4228 int i, nacls, policy, len; 4229 uint8_t *data; 4230 char c; 4231 4232 (void) memset(&ireq, 0, sizeof(ireq)); 4233 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); /* XXX ?? */ 4234 ireq.i_type = IEEE80211_IOC_MACCMD; 4235 ireq.i_val = IEEE80211_MACCMD_POLICY; 4236 if (ioctl(s, SIOCG80211, &ireq) < 0) { 4237 if (errno == EINVAL) { 4238 printf("No acl policy loaded\n"); 4239 return; 4240 } 4241 err(1, "unable to get mac policy"); 4242 } 4243 policy = ireq.i_val; 4244 if (policy == IEEE80211_MACCMD_POLICY_OPEN) { 4245 c = '*'; 4246 } else if (policy == IEEE80211_MACCMD_POLICY_ALLOW) { 4247 c = '+'; 4248 } else if (policy == IEEE80211_MACCMD_POLICY_DENY) { 4249 c = '-'; 4250 } else if (policy == IEEE80211_MACCMD_POLICY_RADIUS) { 4251 c = 'r'; /* NB: should never have entries */ 4252 } else { 4253 printf("policy: unknown (%u)\n", policy); 4254 c = '?'; 4255 } 4256 if (verbose || c == '?') 4257 printpolicy(policy); 4258 4259 ireq.i_val = IEEE80211_MACCMD_LIST; 4260 ireq.i_len = 0; 4261 if (ioctl(s, SIOCG80211, &ireq) < 0) 4262 err(1, "unable to get mac acl list size"); 4263 if (ireq.i_len == 0) { /* NB: no acls */ 4264 if (!(verbose || c == '?')) 4265 printpolicy(policy); 4266 return; 4267 } 4268 len = ireq.i_len; 4269 4270 data = malloc(len); 4271 if (data == NULL) 4272 err(1, "out of memory for acl list"); 4273 4274 ireq.i_data = data; 4275 if (ioctl(s, SIOCG80211, &ireq) < 0) 4276 err(1, "unable to get mac acl list"); 4277 nacls = len / sizeof(*acllist); 4278 acllist = (struct ieee80211req_maclist *) data; 4279 for (i = 0; i < nacls; i++) 4280 printf("%c%s\n", c, ether_ntoa( 4281 (const struct ether_addr *) acllist[i].ml_macaddr)); 4282 free(data); 4283 } 4284 4285 static void 4286 print_regdomain(const struct ieee80211_regdomain *reg, int verb) 4287 { 4288 if ((reg->regdomain != 0 && 4289 reg->regdomain != reg->country) || verb) { 4290 const struct regdomain *rd = 4291 lib80211_regdomain_findbysku(getregdata(), reg->regdomain); 4292 if (rd == NULL) 4293 LINE_CHECK("regdomain %d", reg->regdomain); 4294 else 4295 LINE_CHECK("regdomain %s", rd->name); 4296 } 4297 if (reg->country != 0 || verb) { 4298 const struct country *cc = 4299 lib80211_country_findbycc(getregdata(), reg->country); 4300 if (cc == NULL) 4301 LINE_CHECK("country %d", reg->country); 4302 else 4303 LINE_CHECK("country %s", cc->isoname); 4304 } 4305 if (reg->location == 'I') 4306 LINE_CHECK("indoor"); 4307 else if (reg->location == 'O') 4308 LINE_CHECK("outdoor"); 4309 else if (verb) 4310 LINE_CHECK("anywhere"); 4311 if (reg->ecm) 4312 LINE_CHECK("ecm"); 4313 else if (verb) 4314 LINE_CHECK("-ecm"); 4315 } 4316 4317 static void 4318 list_regdomain(int s, int channelsalso) 4319 { 4320 getregdomain(s); 4321 if (channelsalso) { 4322 getchaninfo(s); 4323 spacer = ':'; 4324 print_regdomain(®domain, 1); 4325 LINE_BREAK(); 4326 print_channels(s, chaninfo, 1/*allchans*/, 1/*verbose*/); 4327 } else 4328 print_regdomain(®domain, verbose); 4329 } 4330 4331 static void 4332 list_mesh(int s) 4333 { 4334 struct ieee80211req ireq; 4335 struct ieee80211req_mesh_route routes[128]; 4336 struct ieee80211req_mesh_route *rt; 4337 4338 (void) memset(&ireq, 0, sizeof(ireq)); 4339 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 4340 ireq.i_type = IEEE80211_IOC_MESH_RTCMD; 4341 ireq.i_val = IEEE80211_MESH_RTCMD_LIST; 4342 ireq.i_data = &routes; 4343 ireq.i_len = sizeof(routes); 4344 if (ioctl(s, SIOCG80211, &ireq) < 0) 4345 err(1, "unable to get the Mesh routing table"); 4346 4347 printf("%-17.17s %-17.17s %4s %4s %4s %6s %s\n" 4348 , "DEST" 4349 , "NEXT HOP" 4350 , "HOPS" 4351 , "METRIC" 4352 , "LIFETIME" 4353 , "MSEQ" 4354 , "FLAGS"); 4355 4356 for (rt = &routes[0]; rt - &routes[0] < ireq.i_len / sizeof(*rt); rt++){ 4357 printf("%s ", 4358 ether_ntoa((const struct ether_addr *)rt->imr_dest)); 4359 printf("%s %4u %4u %6u %6u %c%c\n", 4360 ether_ntoa((const struct ether_addr *)rt->imr_nexthop), 4361 rt->imr_nhops, rt->imr_metric, rt->imr_lifetime, 4362 rt->imr_lastmseq, 4363 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_DISCOVER) ? 4364 'D' : 4365 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_VALID) ? 4366 'V' : '!', 4367 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_PROXY) ? 4368 'P' : 4369 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_GATE) ? 4370 'G' :' '); 4371 } 4372 } 4373 4374 static 4375 DECL_CMD_FUNC(set80211list, arg, d) 4376 { 4377 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 4378 4379 LINE_INIT('\t'); 4380 4381 if (iseq(arg, "sta")) 4382 list_stations(s); 4383 else if (iseq(arg, "scan") || iseq(arg, "ap")) 4384 list_scan(s); 4385 else if (iseq(arg, "chan") || iseq(arg, "freq")) 4386 list_channels(s, 1); 4387 else if (iseq(arg, "active")) 4388 list_channels(s, 0); 4389 else if (iseq(arg, "keys")) 4390 list_keys(s); 4391 else if (iseq(arg, "caps")) 4392 list_capabilities(s); 4393 else if (iseq(arg, "wme") || iseq(arg, "wmm")) 4394 list_wme(s); 4395 else if (iseq(arg, "mac")) 4396 list_mac(s); 4397 else if (iseq(arg, "txpow")) 4398 list_txpow(s); 4399 else if (iseq(arg, "roam")) 4400 list_roam(s); 4401 else if (iseq(arg, "txparam") || iseq(arg, "txparm")) 4402 list_txparams(s); 4403 else if (iseq(arg, "regdomain")) 4404 list_regdomain(s, 1); 4405 else if (iseq(arg, "countries")) 4406 list_countries(); 4407 else if (iseq(arg, "mesh")) 4408 list_mesh(s); 4409 else 4410 errx(1, "Don't know how to list %s for %s", arg, name); 4411 LINE_BREAK(); 4412 #undef iseq 4413 } 4414 4415 static enum ieee80211_opmode 4416 get80211opmode(int s) 4417 { 4418 struct ifmediareq ifmr; 4419 4420 (void) memset(&ifmr, 0, sizeof(ifmr)); 4421 (void) strlcpy(ifmr.ifm_name, name, sizeof(ifmr.ifm_name)); 4422 4423 if (ioctl(s, SIOCGIFMEDIA, (caddr_t)&ifmr) >= 0) { 4424 if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) { 4425 if (ifmr.ifm_current & IFM_FLAG0) 4426 return IEEE80211_M_AHDEMO; 4427 else 4428 return IEEE80211_M_IBSS; 4429 } 4430 if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP) 4431 return IEEE80211_M_HOSTAP; 4432 if (ifmr.ifm_current & IFM_IEEE80211_IBSS) 4433 return IEEE80211_M_IBSS; 4434 if (ifmr.ifm_current & IFM_IEEE80211_MONITOR) 4435 return IEEE80211_M_MONITOR; 4436 if (ifmr.ifm_current & IFM_IEEE80211_MBSS) 4437 return IEEE80211_M_MBSS; 4438 } 4439 return IEEE80211_M_STA; 4440 } 4441 4442 #if 0 4443 static void 4444 printcipher(int s, struct ieee80211req *ireq, int keylenop) 4445 { 4446 switch (ireq->i_val) { 4447 case IEEE80211_CIPHER_WEP: 4448 ireq->i_type = keylenop; 4449 if (ioctl(s, SIOCG80211, ireq) != -1) 4450 printf("WEP-%s", 4451 ireq->i_len <= 5 ? "40" : 4452 ireq->i_len <= 13 ? "104" : "128"); 4453 else 4454 printf("WEP"); 4455 break; 4456 case IEEE80211_CIPHER_TKIP: 4457 printf("TKIP"); 4458 break; 4459 case IEEE80211_CIPHER_AES_OCB: 4460 printf("AES-OCB"); 4461 break; 4462 case IEEE80211_CIPHER_AES_CCM: 4463 printf("AES-CCM"); 4464 break; 4465 case IEEE80211_CIPHER_CKIP: 4466 printf("CKIP"); 4467 break; 4468 case IEEE80211_CIPHER_NONE: 4469 printf("NONE"); 4470 break; 4471 default: 4472 printf("UNKNOWN (0x%x)", ireq->i_val); 4473 break; 4474 } 4475 } 4476 #endif 4477 4478 static void 4479 printkey(const struct ieee80211req_key *ik) 4480 { 4481 static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE]; 4482 u_int keylen = ik->ik_keylen; 4483 int printcontents; 4484 4485 printcontents = printkeys && 4486 (memcmp(ik->ik_keydata, zerodata, keylen) != 0 || verbose); 4487 if (printcontents) 4488 LINE_BREAK(); 4489 switch (ik->ik_type) { 4490 case IEEE80211_CIPHER_WEP: 4491 /* compatibility */ 4492 LINE_CHECK("wepkey %u:%s", ik->ik_keyix+1, 4493 keylen <= 5 ? "40-bit" : 4494 keylen <= 13 ? "104-bit" : "128-bit"); 4495 break; 4496 case IEEE80211_CIPHER_TKIP: 4497 if (keylen > 128/8) 4498 keylen -= 128/8; /* ignore MIC for now */ 4499 LINE_CHECK("TKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4500 break; 4501 case IEEE80211_CIPHER_AES_OCB: 4502 LINE_CHECK("AES-OCB %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4503 break; 4504 case IEEE80211_CIPHER_AES_CCM: 4505 LINE_CHECK("AES-CCM %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4506 break; 4507 case IEEE80211_CIPHER_CKIP: 4508 LINE_CHECK("CKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4509 break; 4510 case IEEE80211_CIPHER_NONE: 4511 LINE_CHECK("NULL %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4512 break; 4513 default: 4514 LINE_CHECK("UNKNOWN (0x%x) %u:%u-bit", 4515 ik->ik_type, ik->ik_keyix+1, 8*keylen); 4516 break; 4517 } 4518 if (printcontents) { 4519 u_int i; 4520 4521 printf(" <"); 4522 for (i = 0; i < keylen; i++) 4523 printf("%02x", ik->ik_keydata[i]); 4524 printf(">"); 4525 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4526 (ik->ik_keyrsc != 0 || verbose)) 4527 printf(" rsc %ju", (uintmax_t)ik->ik_keyrsc); 4528 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4529 (ik->ik_keytsc != 0 || verbose)) 4530 printf(" tsc %ju", (uintmax_t)ik->ik_keytsc); 4531 if (ik->ik_flags != 0 && verbose) { 4532 const char *sep = " "; 4533 4534 if (ik->ik_flags & IEEE80211_KEY_XMIT) 4535 printf("%stx", sep), sep = "+"; 4536 if (ik->ik_flags & IEEE80211_KEY_RECV) 4537 printf("%srx", sep), sep = "+"; 4538 if (ik->ik_flags & IEEE80211_KEY_DEFAULT) 4539 printf("%sdef", sep), sep = "+"; 4540 } 4541 LINE_BREAK(); 4542 } 4543 } 4544 4545 static void 4546 printrate(const char *tag, int v, int defrate, int defmcs) 4547 { 4548 if ((v & IEEE80211_RATE_MCS) == 0) { 4549 if (v != defrate) { 4550 if (v & 1) 4551 LINE_CHECK("%s %d.5", tag, v/2); 4552 else 4553 LINE_CHECK("%s %d", tag, v/2); 4554 } 4555 } else { 4556 if (v != defmcs) 4557 LINE_CHECK("%s %d", tag, v &~ 0x80); 4558 } 4559 } 4560 4561 static int 4562 getid(int s, int ix, void *data, size_t len, int *plen, int mesh) 4563 { 4564 struct ieee80211req ireq; 4565 4566 (void) memset(&ireq, 0, sizeof(ireq)); 4567 (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); 4568 ireq.i_type = (!mesh) ? IEEE80211_IOC_SSID : IEEE80211_IOC_MESH_ID; 4569 ireq.i_val = ix; 4570 ireq.i_data = data; 4571 ireq.i_len = len; 4572 if (ioctl(s, SIOCG80211, &ireq) < 0) 4573 return -1; 4574 *plen = ireq.i_len; 4575 return 0; 4576 } 4577 4578 static void 4579 ieee80211_status(int s) 4580 { 4581 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 4582 enum ieee80211_opmode opmode = get80211opmode(s); 4583 int i, num, wpa, wme, bgscan, bgscaninterval, val, len, wepmode; 4584 uint8_t data[32]; 4585 const struct ieee80211_channel *c; 4586 const struct ieee80211_roamparam *rp; 4587 const struct ieee80211_txparam *tp; 4588 4589 if (getid(s, -1, data, sizeof(data), &len, 0) < 0) { 4590 /* If we can't get the SSID, this isn't an 802.11 device. */ 4591 return; 4592 } 4593 4594 /* 4595 * Invalidate cached state so printing status for multiple 4596 * if's doesn't reuse the first interfaces' cached state. 4597 */ 4598 gotcurchan = 0; 4599 gotroam = 0; 4600 gottxparams = 0; 4601 gothtconf = 0; 4602 gotregdomain = 0; 4603 4604 printf("\t"); 4605 if (opmode == IEEE80211_M_MBSS) { 4606 printf("meshid "); 4607 getid(s, 0, data, sizeof(data), &len, 1); 4608 print_string(data, len); 4609 } else { 4610 if (get80211val(s, IEEE80211_IOC_NUMSSIDS, &num) < 0) 4611 num = 0; 4612 printf("ssid "); 4613 if (num > 1) { 4614 for (i = 0; i < num; i++) { 4615 if (getid(s, i, data, sizeof(data), &len, 0) >= 0 && len > 0) { 4616 printf(" %d:", i + 1); 4617 print_string(data, len); 4618 } 4619 } 4620 } else 4621 print_string(data, len); 4622 } 4623 c = getcurchan(s); 4624 if (c->ic_freq != IEEE80211_CHAN_ANY) { 4625 char buf[14]; 4626 printf(" channel %d (%u MHz%s)", c->ic_ieee, c->ic_freq, 4627 get_chaninfo(c, 1, buf, sizeof(buf))); 4628 } else if (verbose) 4629 printf(" channel UNDEF"); 4630 4631 if (get80211(s, IEEE80211_IOC_BSSID, data, IEEE80211_ADDR_LEN) >= 0 && 4632 (memcmp(data, zerobssid, sizeof(zerobssid)) != 0 || verbose)) 4633 printf(" bssid %s", ether_ntoa((struct ether_addr *)data)); 4634 4635 if (get80211len(s, IEEE80211_IOC_STATIONNAME, data, sizeof(data), &len) != -1) { 4636 printf("\n\tstationname "); 4637 print_string(data, len); 4638 } 4639 4640 spacer = ' '; /* force first break */ 4641 LINE_BREAK(); 4642 4643 list_regdomain(s, 0); 4644 4645 wpa = 0; 4646 if (get80211val(s, IEEE80211_IOC_AUTHMODE, &val) != -1) { 4647 switch (val) { 4648 case IEEE80211_AUTH_NONE: 4649 LINE_CHECK("authmode NONE"); 4650 break; 4651 case IEEE80211_AUTH_OPEN: 4652 LINE_CHECK("authmode OPEN"); 4653 break; 4654 case IEEE80211_AUTH_SHARED: 4655 LINE_CHECK("authmode SHARED"); 4656 break; 4657 case IEEE80211_AUTH_8021X: 4658 LINE_CHECK("authmode 802.1x"); 4659 break; 4660 case IEEE80211_AUTH_WPA: 4661 if (get80211val(s, IEEE80211_IOC_WPA, &wpa) < 0) 4662 wpa = 1; /* default to WPA1 */ 4663 switch (wpa) { 4664 case 2: 4665 LINE_CHECK("authmode WPA2/802.11i"); 4666 break; 4667 case 3: 4668 LINE_CHECK("authmode WPA1+WPA2/802.11i"); 4669 break; 4670 default: 4671 LINE_CHECK("authmode WPA"); 4672 break; 4673 } 4674 break; 4675 case IEEE80211_AUTH_AUTO: 4676 LINE_CHECK("authmode AUTO"); 4677 break; 4678 default: 4679 LINE_CHECK("authmode UNKNOWN (0x%x)", val); 4680 break; 4681 } 4682 } 4683 4684 if (wpa || verbose) { 4685 if (get80211val(s, IEEE80211_IOC_WPS, &val) != -1) { 4686 if (val) 4687 LINE_CHECK("wps"); 4688 else if (verbose) 4689 LINE_CHECK("-wps"); 4690 } 4691 if (get80211val(s, IEEE80211_IOC_TSN, &val) != -1) { 4692 if (val) 4693 LINE_CHECK("tsn"); 4694 else if (verbose) 4695 LINE_CHECK("-tsn"); 4696 } 4697 if (ioctl(s, IEEE80211_IOC_COUNTERMEASURES, &val) != -1) { 4698 if (val) 4699 LINE_CHECK("countermeasures"); 4700 else if (verbose) 4701 LINE_CHECK("-countermeasures"); 4702 } 4703 #if 0 4704 /* XXX not interesting with WPA done in user space */ 4705 ireq.i_type = IEEE80211_IOC_KEYMGTALGS; 4706 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4707 } 4708 4709 ireq.i_type = IEEE80211_IOC_MCASTCIPHER; 4710 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4711 LINE_CHECK("mcastcipher "); 4712 printcipher(s, &ireq, IEEE80211_IOC_MCASTKEYLEN); 4713 spacer = ' '; 4714 } 4715 4716 ireq.i_type = IEEE80211_IOC_UCASTCIPHER; 4717 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4718 LINE_CHECK("ucastcipher "); 4719 printcipher(s, &ireq, IEEE80211_IOC_UCASTKEYLEN); 4720 } 4721 4722 if (wpa & 2) { 4723 ireq.i_type = IEEE80211_IOC_RSNCAPS; 4724 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4725 LINE_CHECK("RSN caps 0x%x", ireq.i_val); 4726 spacer = ' '; 4727 } 4728 } 4729 4730 ireq.i_type = IEEE80211_IOC_UCASTCIPHERS; 4731 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4732 } 4733 #endif 4734 } 4735 4736 if (get80211val(s, IEEE80211_IOC_WEP, &wepmode) != -1 && 4737 wepmode != IEEE80211_WEP_NOSUP) { 4738 4739 switch (wepmode) { 4740 case IEEE80211_WEP_OFF: 4741 LINE_CHECK("privacy OFF"); 4742 break; 4743 case IEEE80211_WEP_ON: 4744 LINE_CHECK("privacy ON"); 4745 break; 4746 case IEEE80211_WEP_MIXED: 4747 LINE_CHECK("privacy MIXED"); 4748 break; 4749 default: 4750 LINE_CHECK("privacy UNKNOWN (0x%x)", wepmode); 4751 break; 4752 } 4753 4754 /* 4755 * If we get here then we've got WEP support so we need 4756 * to print WEP status. 4757 */ 4758 4759 if (get80211val(s, IEEE80211_IOC_WEPTXKEY, &val) < 0) { 4760 warn("WEP support, but no tx key!"); 4761 goto end; 4762 } 4763 if (val != -1) 4764 LINE_CHECK("deftxkey %d", val+1); 4765 else if (wepmode != IEEE80211_WEP_OFF || verbose) 4766 LINE_CHECK("deftxkey UNDEF"); 4767 4768 if (get80211val(s, IEEE80211_IOC_NUMWEPKEYS, &num) < 0) { 4769 warn("WEP support, but no NUMWEPKEYS support!"); 4770 goto end; 4771 } 4772 4773 for (i = 0; i < num; i++) { 4774 struct ieee80211req_key ik; 4775 4776 memset(&ik, 0, sizeof(ik)); 4777 ik.ik_keyix = i; 4778 if (get80211(s, IEEE80211_IOC_WPAKEY, &ik, sizeof(ik)) < 0) { 4779 warn("WEP support, but can get keys!"); 4780 goto end; 4781 } 4782 if (ik.ik_keylen != 0) { 4783 if (verbose) 4784 LINE_BREAK(); 4785 printkey(&ik); 4786 } 4787 } 4788 end: 4789 ; 4790 } 4791 4792 if (get80211val(s, IEEE80211_IOC_POWERSAVE, &val) != -1 && 4793 val != IEEE80211_POWERSAVE_NOSUP ) { 4794 if (val != IEEE80211_POWERSAVE_OFF || verbose) { 4795 switch (val) { 4796 case IEEE80211_POWERSAVE_OFF: 4797 LINE_CHECK("powersavemode OFF"); 4798 break; 4799 case IEEE80211_POWERSAVE_CAM: 4800 LINE_CHECK("powersavemode CAM"); 4801 break; 4802 case IEEE80211_POWERSAVE_PSP: 4803 LINE_CHECK("powersavemode PSP"); 4804 break; 4805 case IEEE80211_POWERSAVE_PSP_CAM: 4806 LINE_CHECK("powersavemode PSP-CAM"); 4807 break; 4808 } 4809 if (get80211val(s, IEEE80211_IOC_POWERSAVESLEEP, &val) != -1) 4810 LINE_CHECK("powersavesleep %d", val); 4811 } 4812 } 4813 4814 if (get80211val(s, IEEE80211_IOC_TXPOWER, &val) != -1) { 4815 if (val & 1) 4816 LINE_CHECK("txpower %d.5", val/2); 4817 else 4818 LINE_CHECK("txpower %d", val/2); 4819 } 4820 if (verbose) { 4821 if (get80211val(s, IEEE80211_IOC_TXPOWMAX, &val) != -1) 4822 LINE_CHECK("txpowmax %.1f", val/2.); 4823 } 4824 4825 if (get80211val(s, IEEE80211_IOC_DOTD, &val) != -1) { 4826 if (val) 4827 LINE_CHECK("dotd"); 4828 else if (verbose) 4829 LINE_CHECK("-dotd"); 4830 } 4831 4832 if (get80211val(s, IEEE80211_IOC_RTSTHRESHOLD, &val) != -1) { 4833 if (val != IEEE80211_RTS_MAX || verbose) 4834 LINE_CHECK("rtsthreshold %d", val); 4835 } 4836 4837 if (get80211val(s, IEEE80211_IOC_FRAGTHRESHOLD, &val) != -1) { 4838 if (val != IEEE80211_FRAG_MAX || verbose) 4839 LINE_CHECK("fragthreshold %d", val); 4840 } 4841 if (opmode == IEEE80211_M_STA || verbose) { 4842 if (get80211val(s, IEEE80211_IOC_BMISSTHRESHOLD, &val) != -1) { 4843 if (val != IEEE80211_HWBMISS_MAX || verbose) 4844 LINE_CHECK("bmiss %d", val); 4845 } 4846 } 4847 4848 if (!verbose) { 4849 gettxparams(s); 4850 tp = &txparams.params[chan2mode(c)]; 4851 printrate("ucastrate", tp->ucastrate, 4852 IEEE80211_FIXED_RATE_NONE, IEEE80211_FIXED_RATE_NONE); 4853 printrate("mcastrate", tp->mcastrate, 2*1, 4854 IEEE80211_RATE_MCS|0); 4855 printrate("mgmtrate", tp->mgmtrate, 2*1, 4856 IEEE80211_RATE_MCS|0); 4857 if (tp->maxretry != 6) /* XXX */ 4858 LINE_CHECK("maxretry %d", tp->maxretry); 4859 } else { 4860 LINE_BREAK(); 4861 list_txparams(s); 4862 } 4863 4864 bgscaninterval = -1; 4865 (void) get80211val(s, IEEE80211_IOC_BGSCAN_INTERVAL, &bgscaninterval); 4866 4867 if (get80211val(s, IEEE80211_IOC_SCANVALID, &val) != -1) { 4868 if (val != bgscaninterval || verbose) 4869 LINE_CHECK("scanvalid %u", val); 4870 } 4871 4872 bgscan = 0; 4873 if (get80211val(s, IEEE80211_IOC_BGSCAN, &bgscan) != -1) { 4874 if (bgscan) 4875 LINE_CHECK("bgscan"); 4876 else if (verbose) 4877 LINE_CHECK("-bgscan"); 4878 } 4879 if (bgscan || verbose) { 4880 if (bgscaninterval != -1) 4881 LINE_CHECK("bgscanintvl %u", bgscaninterval); 4882 if (get80211val(s, IEEE80211_IOC_BGSCAN_IDLE, &val) != -1) 4883 LINE_CHECK("bgscanidle %u", val); 4884 if (!verbose) { 4885 getroam(s); 4886 rp = &roamparams.params[chan2mode(c)]; 4887 if (rp->rssi & 1) 4888 LINE_CHECK("roam:rssi %u.5", rp->rssi/2); 4889 else 4890 LINE_CHECK("roam:rssi %u", rp->rssi/2); 4891 LINE_CHECK("roam:rate %u", rp->rate/2); 4892 } else { 4893 LINE_BREAK(); 4894 list_roam(s); 4895 LINE_BREAK(); 4896 } 4897 } 4898 4899 if (IEEE80211_IS_CHAN_ANYG(c) || verbose) { 4900 if (get80211val(s, IEEE80211_IOC_PUREG, &val) != -1) { 4901 if (val) 4902 LINE_CHECK("pureg"); 4903 else if (verbose) 4904 LINE_CHECK("-pureg"); 4905 } 4906 if (get80211val(s, IEEE80211_IOC_PROTMODE, &val) != -1) { 4907 switch (val) { 4908 case IEEE80211_PROTMODE_OFF: 4909 LINE_CHECK("protmode OFF"); 4910 break; 4911 case IEEE80211_PROTMODE_CTS: 4912 LINE_CHECK("protmode CTS"); 4913 break; 4914 case IEEE80211_PROTMODE_RTSCTS: 4915 LINE_CHECK("protmode RTSCTS"); 4916 break; 4917 default: 4918 LINE_CHECK("protmode UNKNOWN (0x%x)", val); 4919 break; 4920 } 4921 } 4922 } 4923 4924 if (IEEE80211_IS_CHAN_HT(c) || verbose) { 4925 gethtconf(s); 4926 switch (htconf & 3) { 4927 case 0: 4928 case 2: 4929 LINE_CHECK("-ht"); 4930 break; 4931 case 1: 4932 LINE_CHECK("ht20"); 4933 break; 4934 case 3: 4935 if (verbose) 4936 LINE_CHECK("ht"); 4937 break; 4938 } 4939 if (get80211val(s, IEEE80211_IOC_HTCOMPAT, &val) != -1) { 4940 if (!val) 4941 LINE_CHECK("-htcompat"); 4942 else if (verbose) 4943 LINE_CHECK("htcompat"); 4944 } 4945 if (get80211val(s, IEEE80211_IOC_AMPDU, &val) != -1) { 4946 switch (val) { 4947 case 0: 4948 LINE_CHECK("-ampdu"); 4949 break; 4950 case 1: 4951 LINE_CHECK("ampdutx -ampdurx"); 4952 break; 4953 case 2: 4954 LINE_CHECK("-ampdutx ampdurx"); 4955 break; 4956 case 3: 4957 if (verbose) 4958 LINE_CHECK("ampdu"); 4959 break; 4960 } 4961 } 4962 /* XXX 11ac density/size is different */ 4963 if (get80211val(s, IEEE80211_IOC_AMPDU_LIMIT, &val) != -1) { 4964 switch (val) { 4965 case IEEE80211_HTCAP_MAXRXAMPDU_8K: 4966 LINE_CHECK("ampdulimit 8k"); 4967 break; 4968 case IEEE80211_HTCAP_MAXRXAMPDU_16K: 4969 LINE_CHECK("ampdulimit 16k"); 4970 break; 4971 case IEEE80211_HTCAP_MAXRXAMPDU_32K: 4972 LINE_CHECK("ampdulimit 32k"); 4973 break; 4974 case IEEE80211_HTCAP_MAXRXAMPDU_64K: 4975 LINE_CHECK("ampdulimit 64k"); 4976 break; 4977 } 4978 } 4979 /* XXX 11ac density/size is different */ 4980 if (get80211val(s, IEEE80211_IOC_AMPDU_DENSITY, &val) != -1) { 4981 switch (val) { 4982 case IEEE80211_HTCAP_MPDUDENSITY_NA: 4983 if (verbose) 4984 LINE_CHECK("ampdudensity NA"); 4985 break; 4986 case IEEE80211_HTCAP_MPDUDENSITY_025: 4987 LINE_CHECK("ampdudensity .25"); 4988 break; 4989 case IEEE80211_HTCAP_MPDUDENSITY_05: 4990 LINE_CHECK("ampdudensity .5"); 4991 break; 4992 case IEEE80211_HTCAP_MPDUDENSITY_1: 4993 LINE_CHECK("ampdudensity 1"); 4994 break; 4995 case IEEE80211_HTCAP_MPDUDENSITY_2: 4996 LINE_CHECK("ampdudensity 2"); 4997 break; 4998 case IEEE80211_HTCAP_MPDUDENSITY_4: 4999 LINE_CHECK("ampdudensity 4"); 5000 break; 5001 case IEEE80211_HTCAP_MPDUDENSITY_8: 5002 LINE_CHECK("ampdudensity 8"); 5003 break; 5004 case IEEE80211_HTCAP_MPDUDENSITY_16: 5005 LINE_CHECK("ampdudensity 16"); 5006 break; 5007 } 5008 } 5009 if (get80211val(s, IEEE80211_IOC_AMSDU, &val) != -1) { 5010 switch (val) { 5011 case 0: 5012 LINE_CHECK("-amsdu"); 5013 break; 5014 case 1: 5015 LINE_CHECK("amsdutx -amsdurx"); 5016 break; 5017 case 2: 5018 LINE_CHECK("-amsdutx amsdurx"); 5019 break; 5020 case 3: 5021 if (verbose) 5022 LINE_CHECK("amsdu"); 5023 break; 5024 } 5025 } 5026 /* XXX amsdu limit */ 5027 if (get80211val(s, IEEE80211_IOC_SHORTGI, &val) != -1) { 5028 if (val) 5029 LINE_CHECK("shortgi"); 5030 else if (verbose) 5031 LINE_CHECK("-shortgi"); 5032 } 5033 if (get80211val(s, IEEE80211_IOC_HTPROTMODE, &val) != -1) { 5034 if (val == IEEE80211_PROTMODE_OFF) 5035 LINE_CHECK("htprotmode OFF"); 5036 else if (val != IEEE80211_PROTMODE_RTSCTS) 5037 LINE_CHECK("htprotmode UNKNOWN (0x%x)", val); 5038 else if (verbose) 5039 LINE_CHECK("htprotmode RTSCTS"); 5040 } 5041 if (get80211val(s, IEEE80211_IOC_PUREN, &val) != -1) { 5042 if (val) 5043 LINE_CHECK("puren"); 5044 else if (verbose) 5045 LINE_CHECK("-puren"); 5046 } 5047 if (get80211val(s, IEEE80211_IOC_SMPS, &val) != -1) { 5048 if (val == IEEE80211_HTCAP_SMPS_DYNAMIC) 5049 LINE_CHECK("smpsdyn"); 5050 else if (val == IEEE80211_HTCAP_SMPS_ENA) 5051 LINE_CHECK("smps"); 5052 else if (verbose) 5053 LINE_CHECK("-smps"); 5054 } 5055 if (get80211val(s, IEEE80211_IOC_RIFS, &val) != -1) { 5056 if (val) 5057 LINE_CHECK("rifs"); 5058 else if (verbose) 5059 LINE_CHECK("-rifs"); 5060 } 5061 5062 /* XXX VHT STBC? */ 5063 if (get80211val(s, IEEE80211_IOC_STBC, &val) != -1) { 5064 switch (val) { 5065 case 0: 5066 LINE_CHECK("-stbc"); 5067 break; 5068 case 1: 5069 LINE_CHECK("stbctx -stbcrx"); 5070 break; 5071 case 2: 5072 LINE_CHECK("-stbctx stbcrx"); 5073 break; 5074 case 3: 5075 if (verbose) 5076 LINE_CHECK("stbc"); 5077 break; 5078 } 5079 } 5080 if (get80211val(s, IEEE80211_IOC_LDPC, &val) != -1) { 5081 switch (val) { 5082 case 0: 5083 LINE_CHECK("-ldpc"); 5084 break; 5085 case 1: 5086 LINE_CHECK("ldpctx -ldpcrx"); 5087 break; 5088 case 2: 5089 LINE_CHECK("-ldpctx ldpcrx"); 5090 break; 5091 case 3: 5092 if (verbose) 5093 LINE_CHECK("ldpc"); 5094 break; 5095 } 5096 } 5097 } 5098 5099 if (IEEE80211_IS_CHAN_VHT(c) || verbose) { 5100 getvhtconf(s); 5101 if (vhtconf & 0x1) 5102 LINE_CHECK("vht"); 5103 else 5104 LINE_CHECK("-vht"); 5105 if (vhtconf & 0x2) 5106 LINE_CHECK("vht40"); 5107 else 5108 LINE_CHECK("-vht40"); 5109 if (vhtconf & 0x4) 5110 LINE_CHECK("vht80"); 5111 else 5112 LINE_CHECK("-vht80"); 5113 if (vhtconf & 0x8) 5114 LINE_CHECK("vht80p80"); 5115 else 5116 LINE_CHECK("-vht80p80"); 5117 if (vhtconf & 0x10) 5118 LINE_CHECK("vht160"); 5119 else 5120 LINE_CHECK("-vht160"); 5121 } 5122 5123 if (get80211val(s, IEEE80211_IOC_WME, &wme) != -1) { 5124 if (wme) 5125 LINE_CHECK("wme"); 5126 else if (verbose) 5127 LINE_CHECK("-wme"); 5128 } else 5129 wme = 0; 5130 5131 if (get80211val(s, IEEE80211_IOC_BURST, &val) != -1) { 5132 if (val) 5133 LINE_CHECK("burst"); 5134 else if (verbose) 5135 LINE_CHECK("-burst"); 5136 } 5137 5138 if (get80211val(s, IEEE80211_IOC_FF, &val) != -1) { 5139 if (val) 5140 LINE_CHECK("ff"); 5141 else if (verbose) 5142 LINE_CHECK("-ff"); 5143 } 5144 if (get80211val(s, IEEE80211_IOC_TURBOP, &val) != -1) { 5145 if (val) 5146 LINE_CHECK("dturbo"); 5147 else if (verbose) 5148 LINE_CHECK("-dturbo"); 5149 } 5150 if (get80211val(s, IEEE80211_IOC_DWDS, &val) != -1) { 5151 if (val) 5152 LINE_CHECK("dwds"); 5153 else if (verbose) 5154 LINE_CHECK("-dwds"); 5155 } 5156 5157 if (opmode == IEEE80211_M_HOSTAP) { 5158 if (get80211val(s, IEEE80211_IOC_HIDESSID, &val) != -1) { 5159 if (val) 5160 LINE_CHECK("hidessid"); 5161 else if (verbose) 5162 LINE_CHECK("-hidessid"); 5163 } 5164 if (get80211val(s, IEEE80211_IOC_APBRIDGE, &val) != -1) { 5165 if (!val) 5166 LINE_CHECK("-apbridge"); 5167 else if (verbose) 5168 LINE_CHECK("apbridge"); 5169 } 5170 if (get80211val(s, IEEE80211_IOC_DTIM_PERIOD, &val) != -1) 5171 LINE_CHECK("dtimperiod %u", val); 5172 5173 if (get80211val(s, IEEE80211_IOC_DOTH, &val) != -1) { 5174 if (!val) 5175 LINE_CHECK("-doth"); 5176 else if (verbose) 5177 LINE_CHECK("doth"); 5178 } 5179 if (get80211val(s, IEEE80211_IOC_DFS, &val) != -1) { 5180 if (!val) 5181 LINE_CHECK("-dfs"); 5182 else if (verbose) 5183 LINE_CHECK("dfs"); 5184 } 5185 if (get80211val(s, IEEE80211_IOC_INACTIVITY, &val) != -1) { 5186 if (!val) 5187 LINE_CHECK("-inact"); 5188 else if (verbose) 5189 LINE_CHECK("inact"); 5190 } 5191 } else { 5192 if (get80211val(s, IEEE80211_IOC_ROAMING, &val) != -1) { 5193 if (val != IEEE80211_ROAMING_AUTO || verbose) { 5194 switch (val) { 5195 case IEEE80211_ROAMING_DEVICE: 5196 LINE_CHECK("roaming DEVICE"); 5197 break; 5198 case IEEE80211_ROAMING_AUTO: 5199 LINE_CHECK("roaming AUTO"); 5200 break; 5201 case IEEE80211_ROAMING_MANUAL: 5202 LINE_CHECK("roaming MANUAL"); 5203 break; 5204 default: 5205 LINE_CHECK("roaming UNKNOWN (0x%x)", 5206 val); 5207 break; 5208 } 5209 } 5210 } 5211 } 5212 5213 if (opmode == IEEE80211_M_AHDEMO) { 5214 if (get80211val(s, IEEE80211_IOC_TDMA_SLOT, &val) != -1) 5215 LINE_CHECK("tdmaslot %u", val); 5216 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTCNT, &val) != -1) 5217 LINE_CHECK("tdmaslotcnt %u", val); 5218 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTLEN, &val) != -1) 5219 LINE_CHECK("tdmaslotlen %u", val); 5220 if (get80211val(s, IEEE80211_IOC_TDMA_BINTERVAL, &val) != -1) 5221 LINE_CHECK("tdmabintval %u", val); 5222 } else if (get80211val(s, IEEE80211_IOC_BEACON_INTERVAL, &val) != -1) { 5223 /* XXX default define not visible */ 5224 if (val != 100 || verbose) 5225 LINE_CHECK("bintval %u", val); 5226 } 5227 5228 if (wme && verbose) { 5229 LINE_BREAK(); 5230 list_wme(s); 5231 } 5232 5233 if (opmode == IEEE80211_M_MBSS) { 5234 if (get80211val(s, IEEE80211_IOC_MESH_TTL, &val) != -1) { 5235 LINE_CHECK("meshttl %u", val); 5236 } 5237 if (get80211val(s, IEEE80211_IOC_MESH_AP, &val) != -1) { 5238 if (val) 5239 LINE_CHECK("meshpeering"); 5240 else 5241 LINE_CHECK("-meshpeering"); 5242 } 5243 if (get80211val(s, IEEE80211_IOC_MESH_FWRD, &val) != -1) { 5244 if (val) 5245 LINE_CHECK("meshforward"); 5246 else 5247 LINE_CHECK("-meshforward"); 5248 } 5249 if (get80211val(s, IEEE80211_IOC_MESH_GATE, &val) != -1) { 5250 if (val) 5251 LINE_CHECK("meshgate"); 5252 else 5253 LINE_CHECK("-meshgate"); 5254 } 5255 if (get80211len(s, IEEE80211_IOC_MESH_PR_METRIC, data, 12, 5256 &len) != -1) { 5257 data[len] = '\0'; 5258 LINE_CHECK("meshmetric %s", data); 5259 } 5260 if (get80211len(s, IEEE80211_IOC_MESH_PR_PATH, data, 12, 5261 &len) != -1) { 5262 data[len] = '\0'; 5263 LINE_CHECK("meshpath %s", data); 5264 } 5265 if (get80211val(s, IEEE80211_IOC_HWMP_ROOTMODE, &val) != -1) { 5266 switch (val) { 5267 case IEEE80211_HWMP_ROOTMODE_DISABLED: 5268 LINE_CHECK("hwmprootmode DISABLED"); 5269 break; 5270 case IEEE80211_HWMP_ROOTMODE_NORMAL: 5271 LINE_CHECK("hwmprootmode NORMAL"); 5272 break; 5273 case IEEE80211_HWMP_ROOTMODE_PROACTIVE: 5274 LINE_CHECK("hwmprootmode PROACTIVE"); 5275 break; 5276 case IEEE80211_HWMP_ROOTMODE_RANN: 5277 LINE_CHECK("hwmprootmode RANN"); 5278 break; 5279 default: 5280 LINE_CHECK("hwmprootmode UNKNOWN(%d)", val); 5281 break; 5282 } 5283 } 5284 if (get80211val(s, IEEE80211_IOC_HWMP_MAXHOPS, &val) != -1) { 5285 LINE_CHECK("hwmpmaxhops %u", val); 5286 } 5287 } 5288 5289 LINE_BREAK(); 5290 } 5291 5292 static int 5293 get80211(int s, int type, void *data, int len) 5294 { 5295 5296 return (lib80211_get80211(s, name, type, data, len)); 5297 } 5298 5299 static int 5300 get80211len(int s, int type, void *data, int len, int *plen) 5301 { 5302 5303 return (lib80211_get80211len(s, name, type, data, len, plen)); 5304 } 5305 5306 static int 5307 get80211val(int s, int type, int *val) 5308 { 5309 5310 return (lib80211_get80211val(s, name, type, val)); 5311 } 5312 5313 static void 5314 set80211(int s, int type, int val, int len, void *data) 5315 { 5316 int ret; 5317 5318 ret = lib80211_set80211(s, name, type, val, len, data); 5319 if (ret < 0) 5320 err(1, "SIOCS80211"); 5321 } 5322 5323 static const char * 5324 get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp) 5325 { 5326 int len; 5327 int hexstr; 5328 u_int8_t *p; 5329 5330 len = *lenp; 5331 p = buf; 5332 hexstr = (val[0] == '0' && tolower((u_char)val[1]) == 'x'); 5333 if (hexstr) 5334 val += 2; 5335 for (;;) { 5336 if (*val == '\0') 5337 break; 5338 if (sep != NULL && strchr(sep, *val) != NULL) { 5339 val++; 5340 break; 5341 } 5342 if (hexstr) { 5343 if (!isxdigit((u_char)val[0])) { 5344 warnx("bad hexadecimal digits"); 5345 return NULL; 5346 } 5347 if (!isxdigit((u_char)val[1])) { 5348 warnx("odd count hexadecimal digits"); 5349 return NULL; 5350 } 5351 } 5352 if (p >= buf + len) { 5353 if (hexstr) 5354 warnx("hexadecimal digits too long"); 5355 else 5356 warnx("string too long"); 5357 return NULL; 5358 } 5359 if (hexstr) { 5360 #define tohex(x) (isdigit(x) ? (x) - '0' : tolower(x) - 'a' + 10) 5361 *p++ = (tohex((u_char)val[0]) << 4) | 5362 tohex((u_char)val[1]); 5363 #undef tohex 5364 val += 2; 5365 } else 5366 *p++ = *val++; 5367 } 5368 len = p - buf; 5369 /* The string "-" is treated as the empty string. */ 5370 if (!hexstr && len == 1 && buf[0] == '-') { 5371 len = 0; 5372 memset(buf, 0, *lenp); 5373 } else if (len < *lenp) 5374 memset(p, 0, *lenp - len); 5375 *lenp = len; 5376 return val; 5377 } 5378 5379 static void 5380 print_string(const u_int8_t *buf, int len) 5381 { 5382 int i; 5383 int hasspc; 5384 5385 i = 0; 5386 hasspc = 0; 5387 for (; i < len; i++) { 5388 if (!isprint(buf[i]) && buf[i] != '\0') 5389 break; 5390 if (isspace(buf[i])) 5391 hasspc++; 5392 } 5393 if (i == len) { 5394 if (hasspc || len == 0 || buf[0] == '\0') 5395 printf("\"%.*s\"", len, buf); 5396 else 5397 printf("%.*s", len, buf); 5398 } else { 5399 printf("0x"); 5400 for (i = 0; i < len; i++) 5401 printf("%02x", buf[i]); 5402 } 5403 } 5404 5405 static void 5406 setdefregdomain(int s) 5407 { 5408 struct regdata *rdp = getregdata(); 5409 const struct regdomain *rd; 5410 5411 /* Check if regdomain/country was already set by a previous call. */ 5412 /* XXX is it possible? */ 5413 if (regdomain.regdomain != 0 || 5414 regdomain.country != CTRY_DEFAULT) 5415 return; 5416 5417 getregdomain(s); 5418 5419 /* Check if it was already set by the driver. */ 5420 if (regdomain.regdomain != 0 || 5421 regdomain.country != CTRY_DEFAULT) 5422 return; 5423 5424 /* Set FCC/US as default. */ 5425 rd = lib80211_regdomain_findbysku(rdp, SKU_FCC); 5426 if (rd == NULL) 5427 errx(1, "FCC regdomain was not found"); 5428 5429 regdomain.regdomain = rd->sku; 5430 if (rd->cc != NULL) 5431 defaultcountry(rd); 5432 5433 /* Send changes to net80211. */ 5434 setregdomain_cb(s, ®domain); 5435 5436 /* Cleanup (so it can be overriden by subsequent parameters). */ 5437 regdomain.regdomain = 0; 5438 regdomain.country = CTRY_DEFAULT; 5439 regdomain.isocc[0] = 0; 5440 regdomain.isocc[1] = 0; 5441 } 5442 5443 /* 5444 * Virtual AP cloning support. 5445 */ 5446 static struct ieee80211_clone_params params = { 5447 .icp_opmode = IEEE80211_M_STA, /* default to station mode */ 5448 }; 5449 5450 static void 5451 wlan_create(int s, struct ifreq *ifr) 5452 { 5453 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 5454 char orig_name[IFNAMSIZ]; 5455 5456 if (params.icp_parent[0] == '\0') 5457 errx(1, "must specify a parent device (wlandev) when creating " 5458 "a wlan device"); 5459 if (params.icp_opmode == IEEE80211_M_WDS && 5460 memcmp(params.icp_bssid, zerobssid, sizeof(zerobssid)) == 0) 5461 errx(1, "no bssid specified for WDS (use wlanbssid)"); 5462 ifr->ifr_data = (caddr_t) ¶ms; 5463 if (ioctl(s, SIOCIFCREATE2, ifr) < 0) 5464 err(1, "SIOCIFCREATE2"); 5465 5466 /* XXX preserve original name for ifclonecreate(). */ 5467 strlcpy(orig_name, name, sizeof(orig_name)); 5468 strlcpy(name, ifr->ifr_name, sizeof(name)); 5469 5470 setdefregdomain(s); 5471 5472 strlcpy(name, orig_name, sizeof(name)); 5473 } 5474 5475 static 5476 DECL_CMD_FUNC(set80211clone_wlandev, arg, d) 5477 { 5478 strlcpy(params.icp_parent, arg, IFNAMSIZ); 5479 } 5480 5481 static 5482 DECL_CMD_FUNC(set80211clone_wlanbssid, arg, d) 5483 { 5484 const struct ether_addr *ea; 5485 5486 ea = ether_aton(arg); 5487 if (ea == NULL) 5488 errx(1, "%s: cannot parse bssid", arg); 5489 memcpy(params.icp_bssid, ea->octet, IEEE80211_ADDR_LEN); 5490 } 5491 5492 static 5493 DECL_CMD_FUNC(set80211clone_wlanaddr, arg, d) 5494 { 5495 const struct ether_addr *ea; 5496 5497 ea = ether_aton(arg); 5498 if (ea == NULL) 5499 errx(1, "%s: cannot parse address", arg); 5500 memcpy(params.icp_macaddr, ea->octet, IEEE80211_ADDR_LEN); 5501 params.icp_flags |= IEEE80211_CLONE_MACADDR; 5502 } 5503 5504 static 5505 DECL_CMD_FUNC(set80211clone_wlanmode, arg, d) 5506 { 5507 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 5508 if (iseq(arg, "sta")) 5509 params.icp_opmode = IEEE80211_M_STA; 5510 else if (iseq(arg, "ahdemo") || iseq(arg, "adhoc-demo")) 5511 params.icp_opmode = IEEE80211_M_AHDEMO; 5512 else if (iseq(arg, "ibss") || iseq(arg, "adhoc")) 5513 params.icp_opmode = IEEE80211_M_IBSS; 5514 else if (iseq(arg, "ap") || iseq(arg, "host")) 5515 params.icp_opmode = IEEE80211_M_HOSTAP; 5516 else if (iseq(arg, "wds")) 5517 params.icp_opmode = IEEE80211_M_WDS; 5518 else if (iseq(arg, "monitor")) 5519 params.icp_opmode = IEEE80211_M_MONITOR; 5520 else if (iseq(arg, "tdma")) { 5521 params.icp_opmode = IEEE80211_M_AHDEMO; 5522 params.icp_flags |= IEEE80211_CLONE_TDMA; 5523 } else if (iseq(arg, "mesh") || iseq(arg, "mp")) /* mesh point */ 5524 params.icp_opmode = IEEE80211_M_MBSS; 5525 else 5526 errx(1, "Don't know to create %s for %s", arg, name); 5527 #undef iseq 5528 } 5529 5530 static void 5531 set80211clone_beacons(const char *val, int d, int s, const struct afswtch *rafp) 5532 { 5533 /* NB: inverted sense */ 5534 if (d) 5535 params.icp_flags &= ~IEEE80211_CLONE_NOBEACONS; 5536 else 5537 params.icp_flags |= IEEE80211_CLONE_NOBEACONS; 5538 } 5539 5540 static void 5541 set80211clone_bssid(const char *val, int d, int s, const struct afswtch *rafp) 5542 { 5543 if (d) 5544 params.icp_flags |= IEEE80211_CLONE_BSSID; 5545 else 5546 params.icp_flags &= ~IEEE80211_CLONE_BSSID; 5547 } 5548 5549 static void 5550 set80211clone_wdslegacy(const char *val, int d, int s, const struct afswtch *rafp) 5551 { 5552 if (d) 5553 params.icp_flags |= IEEE80211_CLONE_WDSLEGACY; 5554 else 5555 params.icp_flags &= ~IEEE80211_CLONE_WDSLEGACY; 5556 } 5557 5558 static struct cmd ieee80211_cmds[] = { 5559 DEF_CMD_ARG("ssid", set80211ssid), 5560 DEF_CMD_ARG("nwid", set80211ssid), 5561 DEF_CMD_ARG("meshid", set80211meshid), 5562 DEF_CMD_ARG("stationname", set80211stationname), 5563 DEF_CMD_ARG("station", set80211stationname), /* BSD/OS */ 5564 DEF_CMD_ARG("channel", set80211channel), 5565 DEF_CMD_ARG("authmode", set80211authmode), 5566 DEF_CMD_ARG("powersavemode", set80211powersavemode), 5567 DEF_CMD("powersave", 1, set80211powersave), 5568 DEF_CMD("-powersave", 0, set80211powersave), 5569 DEF_CMD_ARG("powersavesleep", set80211powersavesleep), 5570 DEF_CMD_ARG("wepmode", set80211wepmode), 5571 DEF_CMD("wep", 1, set80211wep), 5572 DEF_CMD("-wep", 0, set80211wep), 5573 DEF_CMD_ARG("deftxkey", set80211weptxkey), 5574 DEF_CMD_ARG("weptxkey", set80211weptxkey), 5575 DEF_CMD_ARG("wepkey", set80211wepkey), 5576 DEF_CMD_ARG("nwkey", set80211nwkey), /* NetBSD */ 5577 DEF_CMD("-nwkey", 0, set80211wep), /* NetBSD */ 5578 DEF_CMD_ARG("rtsthreshold", set80211rtsthreshold), 5579 DEF_CMD_ARG("protmode", set80211protmode), 5580 DEF_CMD_ARG("txpower", set80211txpower), 5581 DEF_CMD_ARG("roaming", set80211roaming), 5582 DEF_CMD("wme", 1, set80211wme), 5583 DEF_CMD("-wme", 0, set80211wme), 5584 DEF_CMD("wmm", 1, set80211wme), 5585 DEF_CMD("-wmm", 0, set80211wme), 5586 DEF_CMD("hidessid", 1, set80211hidessid), 5587 DEF_CMD("-hidessid", 0, set80211hidessid), 5588 DEF_CMD("apbridge", 1, set80211apbridge), 5589 DEF_CMD("-apbridge", 0, set80211apbridge), 5590 DEF_CMD_ARG("chanlist", set80211chanlist), 5591 DEF_CMD_ARG("bssid", set80211bssid), 5592 DEF_CMD_ARG("ap", set80211bssid), 5593 DEF_CMD("scan", 0, set80211scan), 5594 DEF_CMD_ARG("list", set80211list), 5595 DEF_CMD_ARG2("cwmin", set80211cwmin), 5596 DEF_CMD_ARG2("cwmax", set80211cwmax), 5597 DEF_CMD_ARG2("aifs", set80211aifs), 5598 DEF_CMD_ARG2("txoplimit", set80211txoplimit), 5599 DEF_CMD_ARG("acm", set80211acm), 5600 DEF_CMD_ARG("-acm", set80211noacm), 5601 DEF_CMD_ARG("ack", set80211ackpolicy), 5602 DEF_CMD_ARG("-ack", set80211noackpolicy), 5603 DEF_CMD_ARG2("bss:cwmin", set80211bsscwmin), 5604 DEF_CMD_ARG2("bss:cwmax", set80211bsscwmax), 5605 DEF_CMD_ARG2("bss:aifs", set80211bssaifs), 5606 DEF_CMD_ARG2("bss:txoplimit", set80211bsstxoplimit), 5607 DEF_CMD_ARG("dtimperiod", set80211dtimperiod), 5608 DEF_CMD_ARG("bintval", set80211bintval), 5609 DEF_CMD("mac:open", IEEE80211_MACCMD_POLICY_OPEN, set80211maccmd), 5610 DEF_CMD("mac:allow", IEEE80211_MACCMD_POLICY_ALLOW, set80211maccmd), 5611 DEF_CMD("mac:deny", IEEE80211_MACCMD_POLICY_DENY, set80211maccmd), 5612 DEF_CMD("mac:radius", IEEE80211_MACCMD_POLICY_RADIUS, set80211maccmd), 5613 DEF_CMD("mac:flush", IEEE80211_MACCMD_FLUSH, set80211maccmd), 5614 DEF_CMD("mac:detach", IEEE80211_MACCMD_DETACH, set80211maccmd), 5615 DEF_CMD_ARG("mac:add", set80211addmac), 5616 DEF_CMD_ARG("mac:del", set80211delmac), 5617 DEF_CMD_ARG("mac:kick", set80211kickmac), 5618 DEF_CMD("pureg", 1, set80211pureg), 5619 DEF_CMD("-pureg", 0, set80211pureg), 5620 DEF_CMD("ff", 1, set80211fastframes), 5621 DEF_CMD("-ff", 0, set80211fastframes), 5622 DEF_CMD("dturbo", 1, set80211dturbo), 5623 DEF_CMD("-dturbo", 0, set80211dturbo), 5624 DEF_CMD("bgscan", 1, set80211bgscan), 5625 DEF_CMD("-bgscan", 0, set80211bgscan), 5626 DEF_CMD_ARG("bgscanidle", set80211bgscanidle), 5627 DEF_CMD_ARG("bgscanintvl", set80211bgscanintvl), 5628 DEF_CMD_ARG("scanvalid", set80211scanvalid), 5629 DEF_CMD("quiet", 1, set80211quiet), 5630 DEF_CMD("-quiet", 0, set80211quiet), 5631 DEF_CMD_ARG("quiet_count", set80211quietcount), 5632 DEF_CMD_ARG("quiet_period", set80211quietperiod), 5633 DEF_CMD_ARG("quiet_duration", set80211quietduration), 5634 DEF_CMD_ARG("quiet_offset", set80211quietoffset), 5635 DEF_CMD_ARG("roam:rssi", set80211roamrssi), 5636 DEF_CMD_ARG("roam:rate", set80211roamrate), 5637 DEF_CMD_ARG("mcastrate", set80211mcastrate), 5638 DEF_CMD_ARG("ucastrate", set80211ucastrate), 5639 DEF_CMD_ARG("mgtrate", set80211mgtrate), 5640 DEF_CMD_ARG("mgmtrate", set80211mgtrate), 5641 DEF_CMD_ARG("maxretry", set80211maxretry), 5642 DEF_CMD_ARG("fragthreshold", set80211fragthreshold), 5643 DEF_CMD("burst", 1, set80211burst), 5644 DEF_CMD("-burst", 0, set80211burst), 5645 DEF_CMD_ARG("bmiss", set80211bmissthreshold), 5646 DEF_CMD_ARG("bmissthreshold", set80211bmissthreshold), 5647 DEF_CMD("shortgi", 1, set80211shortgi), 5648 DEF_CMD("-shortgi", 0, set80211shortgi), 5649 DEF_CMD("ampdurx", 2, set80211ampdu), 5650 DEF_CMD("-ampdurx", -2, set80211ampdu), 5651 DEF_CMD("ampdutx", 1, set80211ampdu), 5652 DEF_CMD("-ampdutx", -1, set80211ampdu), 5653 DEF_CMD("ampdu", 3, set80211ampdu), /* NB: tx+rx */ 5654 DEF_CMD("-ampdu", -3, set80211ampdu), 5655 DEF_CMD_ARG("ampdulimit", set80211ampdulimit), 5656 DEF_CMD_ARG("ampdudensity", set80211ampdudensity), 5657 DEF_CMD("amsdurx", 2, set80211amsdu), 5658 DEF_CMD("-amsdurx", -2, set80211amsdu), 5659 DEF_CMD("amsdutx", 1, set80211amsdu), 5660 DEF_CMD("-amsdutx", -1, set80211amsdu), 5661 DEF_CMD("amsdu", 3, set80211amsdu), /* NB: tx+rx */ 5662 DEF_CMD("-amsdu", -3, set80211amsdu), 5663 DEF_CMD_ARG("amsdulimit", set80211amsdulimit), 5664 DEF_CMD("stbcrx", 2, set80211stbc), 5665 DEF_CMD("-stbcrx", -2, set80211stbc), 5666 DEF_CMD("stbctx", 1, set80211stbc), 5667 DEF_CMD("-stbctx", -1, set80211stbc), 5668 DEF_CMD("stbc", 3, set80211stbc), /* NB: tx+rx */ 5669 DEF_CMD("-stbc", -3, set80211stbc), 5670 DEF_CMD("ldpcrx", 2, set80211ldpc), 5671 DEF_CMD("-ldpcrx", -2, set80211ldpc), 5672 DEF_CMD("ldpctx", 1, set80211ldpc), 5673 DEF_CMD("-ldpctx", -1, set80211ldpc), 5674 DEF_CMD("ldpc", 3, set80211ldpc), /* NB: tx+rx */ 5675 DEF_CMD("-ldpc", -3, set80211ldpc), 5676 DEF_CMD("puren", 1, set80211puren), 5677 DEF_CMD("-puren", 0, set80211puren), 5678 DEF_CMD("doth", 1, set80211doth), 5679 DEF_CMD("-doth", 0, set80211doth), 5680 DEF_CMD("dfs", 1, set80211dfs), 5681 DEF_CMD("-dfs", 0, set80211dfs), 5682 DEF_CMD("htcompat", 1, set80211htcompat), 5683 DEF_CMD("-htcompat", 0, set80211htcompat), 5684 DEF_CMD("dwds", 1, set80211dwds), 5685 DEF_CMD("-dwds", 0, set80211dwds), 5686 DEF_CMD("inact", 1, set80211inact), 5687 DEF_CMD("-inact", 0, set80211inact), 5688 DEF_CMD("tsn", 1, set80211tsn), 5689 DEF_CMD("-tsn", 0, set80211tsn), 5690 DEF_CMD_ARG("regdomain", set80211regdomain), 5691 DEF_CMD_ARG("country", set80211country), 5692 DEF_CMD("indoor", 'I', set80211location), 5693 DEF_CMD("-indoor", 'O', set80211location), 5694 DEF_CMD("outdoor", 'O', set80211location), 5695 DEF_CMD("-outdoor", 'I', set80211location), 5696 DEF_CMD("anywhere", ' ', set80211location), 5697 DEF_CMD("ecm", 1, set80211ecm), 5698 DEF_CMD("-ecm", 0, set80211ecm), 5699 DEF_CMD("dotd", 1, set80211dotd), 5700 DEF_CMD("-dotd", 0, set80211dotd), 5701 DEF_CMD_ARG("htprotmode", set80211htprotmode), 5702 DEF_CMD("ht20", 1, set80211htconf), 5703 DEF_CMD("-ht20", 0, set80211htconf), 5704 DEF_CMD("ht40", 3, set80211htconf), /* NB: 20+40 */ 5705 DEF_CMD("-ht40", 0, set80211htconf), 5706 DEF_CMD("ht", 3, set80211htconf), /* NB: 20+40 */ 5707 DEF_CMD("-ht", 0, set80211htconf), 5708 DEF_CMD("vht", 1, set80211vhtconf), 5709 DEF_CMD("-vht", 0, set80211vhtconf), 5710 DEF_CMD("vht40", 2, set80211vhtconf), 5711 DEF_CMD("-vht40", -2, set80211vhtconf), 5712 DEF_CMD("vht80", 4, set80211vhtconf), 5713 DEF_CMD("-vht80", -4, set80211vhtconf), 5714 DEF_CMD("vht80p80", 8, set80211vhtconf), 5715 DEF_CMD("-vht80p80", -8, set80211vhtconf), 5716 DEF_CMD("vht160", 16, set80211vhtconf), 5717 DEF_CMD("-vht160", -16, set80211vhtconf), 5718 DEF_CMD("rifs", 1, set80211rifs), 5719 DEF_CMD("-rifs", 0, set80211rifs), 5720 DEF_CMD("smps", IEEE80211_HTCAP_SMPS_ENA, set80211smps), 5721 DEF_CMD("smpsdyn", IEEE80211_HTCAP_SMPS_DYNAMIC, set80211smps), 5722 DEF_CMD("-smps", IEEE80211_HTCAP_SMPS_OFF, set80211smps), 5723 /* XXX for testing */ 5724 DEF_CMD_ARG("chanswitch", set80211chanswitch), 5725 5726 DEF_CMD_ARG("tdmaslot", set80211tdmaslot), 5727 DEF_CMD_ARG("tdmaslotcnt", set80211tdmaslotcnt), 5728 DEF_CMD_ARG("tdmaslotlen", set80211tdmaslotlen), 5729 DEF_CMD_ARG("tdmabintval", set80211tdmabintval), 5730 5731 DEF_CMD_ARG("meshttl", set80211meshttl), 5732 DEF_CMD("meshforward", 1, set80211meshforward), 5733 DEF_CMD("-meshforward", 0, set80211meshforward), 5734 DEF_CMD("meshgate", 1, set80211meshgate), 5735 DEF_CMD("-meshgate", 0, set80211meshgate), 5736 DEF_CMD("meshpeering", 1, set80211meshpeering), 5737 DEF_CMD("-meshpeering", 0, set80211meshpeering), 5738 DEF_CMD_ARG("meshmetric", set80211meshmetric), 5739 DEF_CMD_ARG("meshpath", set80211meshpath), 5740 DEF_CMD("meshrt:flush", IEEE80211_MESH_RTCMD_FLUSH, set80211meshrtcmd), 5741 DEF_CMD_ARG("meshrt:add", set80211addmeshrt), 5742 DEF_CMD_ARG("meshrt:del", set80211delmeshrt), 5743 DEF_CMD_ARG("hwmprootmode", set80211hwmprootmode), 5744 DEF_CMD_ARG("hwmpmaxhops", set80211hwmpmaxhops), 5745 5746 /* vap cloning support */ 5747 DEF_CLONE_CMD_ARG("wlanaddr", set80211clone_wlanaddr), 5748 DEF_CLONE_CMD_ARG("wlanbssid", set80211clone_wlanbssid), 5749 DEF_CLONE_CMD_ARG("wlandev", set80211clone_wlandev), 5750 DEF_CLONE_CMD_ARG("wlanmode", set80211clone_wlanmode), 5751 DEF_CLONE_CMD("beacons", 1, set80211clone_beacons), 5752 DEF_CLONE_CMD("-beacons", 0, set80211clone_beacons), 5753 DEF_CLONE_CMD("bssid", 1, set80211clone_bssid), 5754 DEF_CLONE_CMD("-bssid", 0, set80211clone_bssid), 5755 DEF_CLONE_CMD("wdslegacy", 1, set80211clone_wdslegacy), 5756 DEF_CLONE_CMD("-wdslegacy", 0, set80211clone_wdslegacy), 5757 }; 5758 static struct afswtch af_ieee80211 = { 5759 .af_name = "af_ieee80211", 5760 .af_af = AF_UNSPEC, 5761 .af_other_status = ieee80211_status, 5762 }; 5763 5764 static __constructor void 5765 ieee80211_ctor(void) 5766 { 5767 int i; 5768 5769 for (i = 0; i < nitems(ieee80211_cmds); i++) 5770 cmd_register(&ieee80211_cmds[i]); 5771 af_register(&af_ieee80211); 5772 clone_setdefcallback("wlan", wlan_create); 5773 } 5774