1 /* 2 * Copyright 2001 The Aerospace Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of The Aerospace Corporation may not be used to endorse or 13 * promote products derived from this software. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD$ 28 */ 29 30 /*- 31 * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc. 32 * All rights reserved. 33 * 34 * This code is derived from software contributed to The NetBSD Foundation 35 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 36 * NASA Ames Research Center. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 48 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 49 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 50 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 51 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 52 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 53 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 54 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 55 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 57 * POSSIBILITY OF SUCH DAMAGE. 58 */ 59 60 #include <sys/param.h> 61 #include <sys/ioctl.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/time.h> 65 66 #include <net/ethernet.h> 67 #include <net/if.h> 68 #include <net/if_dl.h> 69 #include <net/if_types.h> 70 #include <net/if_media.h> 71 #include <net/route.h> 72 73 #include <net80211/ieee80211_ioctl.h> 74 #include <net80211/ieee80211_freebsd.h> 75 #include <net80211/ieee80211_superg.h> 76 #include <net80211/ieee80211_tdma.h> 77 #include <net80211/ieee80211_mesh.h> 78 79 #include <assert.h> 80 #include <ctype.h> 81 #include <err.h> 82 #include <errno.h> 83 #include <fcntl.h> 84 #include <inttypes.h> 85 #include <stdio.h> 86 #include <stdlib.h> 87 #include <string.h> 88 #include <unistd.h> 89 #include <stdarg.h> 90 #include <stddef.h> /* NB: for offsetof */ 91 92 #include "ifconfig.h" 93 #include "regdomain.h" 94 95 #ifndef IEEE80211_FIXED_RATE_NONE 96 #define IEEE80211_FIXED_RATE_NONE 0xff 97 #endif 98 99 /* XXX need these publicly defined or similar */ 100 #ifndef IEEE80211_NODE_AUTH 101 #define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */ 102 #define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */ 103 #define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */ 104 #define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */ 105 #define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */ 106 #define IEEE80211_NODE_HT 0x000040 /* HT enabled */ 107 #define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */ 108 #define IEEE80211_NODE_WPS 0x000100 /* WPS association */ 109 #define IEEE80211_NODE_TSN 0x000200 /* TSN association */ 110 #define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */ 111 #define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */ 112 #define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */ 113 #define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */ 114 #define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */ 115 #define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */ 116 #define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */ 117 #define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */ 118 #define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */ 119 #define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */ 120 #endif 121 122 #define MAXCHAN 1536 /* max 1.5K channels */ 123 124 #define MAXCOL 78 125 static int col; 126 static char spacer; 127 128 static void LINE_INIT(char c); 129 static void LINE_BREAK(void); 130 static void LINE_CHECK(const char *fmt, ...); 131 132 static const char *modename[IEEE80211_MODE_MAX] = { 133 [IEEE80211_MODE_AUTO] = "auto", 134 [IEEE80211_MODE_11A] = "11a", 135 [IEEE80211_MODE_11B] = "11b", 136 [IEEE80211_MODE_11G] = "11g", 137 [IEEE80211_MODE_FH] = "fh", 138 [IEEE80211_MODE_TURBO_A] = "turboA", 139 [IEEE80211_MODE_TURBO_G] = "turboG", 140 [IEEE80211_MODE_STURBO_A] = "sturbo", 141 [IEEE80211_MODE_11NA] = "11na", 142 [IEEE80211_MODE_11NG] = "11ng", 143 [IEEE80211_MODE_HALF] = "half", 144 [IEEE80211_MODE_QUARTER] = "quarter" 145 }; 146 147 static void set80211(int s, int type, int val, int len, void *data); 148 static int get80211(int s, int type, void *data, int len); 149 static int get80211len(int s, int type, void *data, int len, int *plen); 150 static int get80211val(int s, int type, int *val); 151 static const char *get_string(const char *val, const char *sep, 152 u_int8_t *buf, int *lenp); 153 static void print_string(const u_int8_t *buf, int len); 154 static void print_regdomain(const struct ieee80211_regdomain *, int); 155 static void print_channels(int, const struct ieee80211req_chaninfo *, 156 int allchans, int verbose); 157 static void regdomain_makechannels(struct ieee80211_regdomain_req *, 158 const struct ieee80211_devcaps_req *); 159 static const char *mesh_linkstate_string(uint8_t state); 160 161 static struct ieee80211req_chaninfo *chaninfo; 162 static struct ieee80211_regdomain regdomain; 163 static int gotregdomain = 0; 164 static struct ieee80211_roamparams_req roamparams; 165 static int gotroam = 0; 166 static struct ieee80211_txparams_req txparams; 167 static int gottxparams = 0; 168 static struct ieee80211_channel curchan; 169 static int gotcurchan = 0; 170 static struct ifmediareq *ifmr; 171 static int htconf = 0; 172 static int gothtconf = 0; 173 174 static void 175 gethtconf(int s) 176 { 177 if (gothtconf) 178 return; 179 if (get80211val(s, IEEE80211_IOC_HTCONF, &htconf) < 0) 180 warn("unable to get HT configuration information"); 181 gothtconf = 1; 182 } 183 184 /* 185 * Collect channel info from the kernel. We use this (mostly) 186 * to handle mapping between frequency and IEEE channel number. 187 */ 188 static void 189 getchaninfo(int s) 190 { 191 if (chaninfo != NULL) 192 return; 193 chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN)); 194 if (chaninfo == NULL) 195 errx(1, "no space for channel list"); 196 if (get80211(s, IEEE80211_IOC_CHANINFO, chaninfo, 197 IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0) 198 err(1, "unable to get channel information"); 199 ifmr = ifmedia_getstate(s); 200 gethtconf(s); 201 } 202 203 static struct regdata * 204 getregdata(void) 205 { 206 static struct regdata *rdp = NULL; 207 if (rdp == NULL) { 208 rdp = lib80211_alloc_regdata(); 209 if (rdp == NULL) 210 errx(-1, "missing or corrupted regdomain database"); 211 } 212 return rdp; 213 } 214 215 /* 216 * Given the channel at index i with attributes from, 217 * check if there is a channel with attributes to in 218 * the channel table. With suitable attributes this 219 * allows the caller to look for promotion; e.g. from 220 * 11b > 11g. 221 */ 222 static int 223 canpromote(int i, int from, int to) 224 { 225 const struct ieee80211_channel *fc = &chaninfo->ic_chans[i]; 226 int j; 227 228 if ((fc->ic_flags & from) != from) 229 return i; 230 /* NB: quick check exploiting ordering of chans w/ same frequency */ 231 if (i+1 < chaninfo->ic_nchans && 232 chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq && 233 (chaninfo->ic_chans[i+1].ic_flags & to) == to) 234 return i+1; 235 /* brute force search in case channel list is not ordered */ 236 for (j = 0; j < chaninfo->ic_nchans; j++) { 237 const struct ieee80211_channel *tc = &chaninfo->ic_chans[j]; 238 if (j != i && 239 tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to) 240 return j; 241 } 242 return i; 243 } 244 245 /* 246 * Handle channel promotion. When a channel is specified with 247 * only a frequency we want to promote it to the ``best'' channel 248 * available. The channel list has separate entries for 11b, 11g, 249 * 11a, and 11n[ga] channels so specifying a frequency w/o any 250 * attributes requires we upgrade, e.g. from 11b -> 11g. This 251 * gets complicated when the channel is specified on the same 252 * command line with a media request that constrains the available 253 * channe list (e.g. mode 11a); we want to honor that to avoid 254 * confusing behaviour. 255 */ 256 static int 257 promote(int i) 258 { 259 /* 260 * Query the current mode of the interface in case it's 261 * constrained (e.g. to 11a). We must do this carefully 262 * as there may be a pending ifmedia request in which case 263 * asking the kernel will give us the wrong answer. This 264 * is an unfortunate side-effect of the way ifconfig is 265 * structure for modularity (yech). 266 * 267 * NB: ifmr is actually setup in getchaninfo (above); we 268 * assume it's called coincident with to this call so 269 * we have a ``current setting''; otherwise we must pass 270 * the socket descriptor down to here so we can make 271 * the ifmedia_getstate call ourselves. 272 */ 273 int chanmode = ifmr != NULL ? IFM_MODE(ifmr->ifm_current) : IFM_AUTO; 274 275 /* when ambiguous promote to ``best'' */ 276 /* NB: we abitrarily pick HT40+ over HT40- */ 277 if (chanmode != IFM_IEEE80211_11B) 278 i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G); 279 if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) { 280 i = canpromote(i, IEEE80211_CHAN_G, 281 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20); 282 if (htconf & 2) { 283 i = canpromote(i, IEEE80211_CHAN_G, 284 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D); 285 i = canpromote(i, IEEE80211_CHAN_G, 286 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U); 287 } 288 } 289 if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) { 290 i = canpromote(i, IEEE80211_CHAN_A, 291 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20); 292 if (htconf & 2) { 293 i = canpromote(i, IEEE80211_CHAN_A, 294 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D); 295 i = canpromote(i, IEEE80211_CHAN_A, 296 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U); 297 } 298 } 299 return i; 300 } 301 302 static void 303 mapfreq(struct ieee80211_channel *chan, int freq, int flags) 304 { 305 int i; 306 307 for (i = 0; i < chaninfo->ic_nchans; i++) { 308 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 309 310 if (c->ic_freq == freq && (c->ic_flags & flags) == flags) { 311 if (flags == 0) { 312 /* when ambiguous promote to ``best'' */ 313 c = &chaninfo->ic_chans[promote(i)]; 314 } 315 *chan = *c; 316 return; 317 } 318 } 319 errx(1, "unknown/undefined frequency %u/0x%x", freq, flags); 320 } 321 322 static void 323 mapchan(struct ieee80211_channel *chan, int ieee, int flags) 324 { 325 int i; 326 327 for (i = 0; i < chaninfo->ic_nchans; i++) { 328 const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; 329 330 if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) { 331 if (flags == 0) { 332 /* when ambiguous promote to ``best'' */ 333 c = &chaninfo->ic_chans[promote(i)]; 334 } 335 *chan = *c; 336 return; 337 } 338 } 339 errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags); 340 } 341 342 static const struct ieee80211_channel * 343 getcurchan(int s) 344 { 345 if (gotcurchan) 346 return &curchan; 347 if (get80211(s, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) { 348 int val; 349 /* fall back to legacy ioctl */ 350 if (get80211val(s, IEEE80211_IOC_CHANNEL, &val) < 0) 351 err(-1, "cannot figure out current channel"); 352 getchaninfo(s); 353 mapchan(&curchan, val, 0); 354 } 355 gotcurchan = 1; 356 return &curchan; 357 } 358 359 static enum ieee80211_phymode 360 chan2mode(const struct ieee80211_channel *c) 361 { 362 if (IEEE80211_IS_CHAN_HTA(c)) 363 return IEEE80211_MODE_11NA; 364 if (IEEE80211_IS_CHAN_HTG(c)) 365 return IEEE80211_MODE_11NG; 366 if (IEEE80211_IS_CHAN_108A(c)) 367 return IEEE80211_MODE_TURBO_A; 368 if (IEEE80211_IS_CHAN_108G(c)) 369 return IEEE80211_MODE_TURBO_G; 370 if (IEEE80211_IS_CHAN_ST(c)) 371 return IEEE80211_MODE_STURBO_A; 372 if (IEEE80211_IS_CHAN_FHSS(c)) 373 return IEEE80211_MODE_FH; 374 if (IEEE80211_IS_CHAN_HALF(c)) 375 return IEEE80211_MODE_HALF; 376 if (IEEE80211_IS_CHAN_QUARTER(c)) 377 return IEEE80211_MODE_QUARTER; 378 if (IEEE80211_IS_CHAN_A(c)) 379 return IEEE80211_MODE_11A; 380 if (IEEE80211_IS_CHAN_ANYG(c)) 381 return IEEE80211_MODE_11G; 382 if (IEEE80211_IS_CHAN_B(c)) 383 return IEEE80211_MODE_11B; 384 return IEEE80211_MODE_AUTO; 385 } 386 387 static void 388 getroam(int s) 389 { 390 if (gotroam) 391 return; 392 if (get80211(s, IEEE80211_IOC_ROAM, 393 &roamparams, sizeof(roamparams)) < 0) 394 err(1, "unable to get roaming parameters"); 395 gotroam = 1; 396 } 397 398 static void 399 setroam_cb(int s, void *arg) 400 { 401 struct ieee80211_roamparams_req *roam = arg; 402 set80211(s, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam); 403 } 404 405 static void 406 gettxparams(int s) 407 { 408 if (gottxparams) 409 return; 410 if (get80211(s, IEEE80211_IOC_TXPARAMS, 411 &txparams, sizeof(txparams)) < 0) 412 err(1, "unable to get transmit parameters"); 413 gottxparams = 1; 414 } 415 416 static void 417 settxparams_cb(int s, void *arg) 418 { 419 struct ieee80211_txparams_req *txp = arg; 420 set80211(s, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp); 421 } 422 423 static void 424 getregdomain(int s) 425 { 426 if (gotregdomain) 427 return; 428 if (get80211(s, IEEE80211_IOC_REGDOMAIN, 429 ®domain, sizeof(regdomain)) < 0) 430 err(1, "unable to get regulatory domain info"); 431 gotregdomain = 1; 432 } 433 434 static void 435 getdevcaps(int s, struct ieee80211_devcaps_req *dc) 436 { 437 if (get80211(s, IEEE80211_IOC_DEVCAPS, dc, 438 IEEE80211_DEVCAPS_SPACE(dc)) < 0) 439 err(1, "unable to get device capabilities"); 440 } 441 442 static void 443 setregdomain_cb(int s, void *arg) 444 { 445 struct ieee80211_regdomain_req *req; 446 struct ieee80211_regdomain *rd = arg; 447 struct ieee80211_devcaps_req *dc; 448 struct regdata *rdp = getregdata(); 449 450 if (rd->country != NO_COUNTRY) { 451 const struct country *cc; 452 /* 453 * Check current country seting to make sure it's 454 * compatible with the new regdomain. If not, then 455 * override it with any default country for this 456 * SKU. If we cannot arrange a match, then abort. 457 */ 458 cc = lib80211_country_findbycc(rdp, rd->country); 459 if (cc == NULL) 460 errx(1, "unknown ISO country code %d", rd->country); 461 if (cc->rd->sku != rd->regdomain) { 462 const struct regdomain *rp; 463 /* 464 * Check if country is incompatible with regdomain. 465 * To enable multiple regdomains for a country code 466 * we permit a mismatch between the regdomain and 467 * the country's associated regdomain when the 468 * regdomain is setup w/o a default country. For 469 * example, US is bound to the FCC regdomain but 470 * we allow US to be combined with FCC3 because FCC3 471 * has not default country. This allows bogus 472 * combinations like FCC3+DK which are resolved when 473 * constructing the channel list by deferring to the 474 * regdomain to construct the channel list. 475 */ 476 rp = lib80211_regdomain_findbysku(rdp, rd->regdomain); 477 if (rp == NULL) 478 errx(1, "country %s (%s) is not usable with " 479 "regdomain %d", cc->isoname, cc->name, 480 rd->regdomain); 481 else if (rp->cc != NULL && rp->cc != cc) 482 errx(1, "country %s (%s) is not usable with " 483 "regdomain %s", cc->isoname, cc->name, 484 rp->name); 485 } 486 } 487 /* 488 * Fetch the device capabilities and calculate the 489 * full set of netbands for which we request a new 490 * channel list be constructed. Once that's done we 491 * push the regdomain info + channel list to the kernel. 492 */ 493 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 494 if (dc == NULL) 495 errx(1, "no space for device capabilities"); 496 dc->dc_chaninfo.ic_nchans = MAXCHAN; 497 getdevcaps(s, dc); 498 #if 0 499 if (verbose) { 500 printf("drivercaps: 0x%x\n", dc->dc_drivercaps); 501 printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps); 502 printf("htcaps : 0x%x\n", dc->dc_htcaps); 503 memcpy(chaninfo, &dc->dc_chaninfo, 504 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 505 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/); 506 } 507 #endif 508 req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans)); 509 if (req == NULL) 510 errx(1, "no space for regdomain request"); 511 req->rd = *rd; 512 regdomain_makechannels(req, dc); 513 if (verbose) { 514 LINE_INIT(':'); 515 print_regdomain(rd, 1/*verbose*/); 516 LINE_BREAK(); 517 /* blech, reallocate channel list for new data */ 518 if (chaninfo != NULL) 519 free(chaninfo); 520 chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 521 if (chaninfo == NULL) 522 errx(1, "no space for channel list"); 523 memcpy(chaninfo, &req->chaninfo, 524 IEEE80211_CHANINFO_SPACE(&req->chaninfo)); 525 print_channels(s, &req->chaninfo, 1/*allchans*/, 1/*verbose*/); 526 } 527 if (req->chaninfo.ic_nchans == 0) 528 errx(1, "no channels calculated"); 529 set80211(s, IEEE80211_IOC_REGDOMAIN, 0, 530 IEEE80211_REGDOMAIN_SPACE(req), req); 531 free(req); 532 free(dc); 533 } 534 535 static int 536 ieee80211_mhz2ieee(int freq, int flags) 537 { 538 struct ieee80211_channel chan; 539 mapfreq(&chan, freq, flags); 540 return chan.ic_ieee; 541 } 542 543 static int 544 isanyarg(const char *arg) 545 { 546 return (strncmp(arg, "-", 1) == 0 || 547 strncasecmp(arg, "any", 3) == 0 || strncasecmp(arg, "off", 3) == 0); 548 } 549 550 static void 551 set80211ssid(const char *val, int d, int s, const struct afswtch *rafp) 552 { 553 int ssid; 554 int len; 555 u_int8_t data[IEEE80211_NWID_LEN]; 556 557 ssid = 0; 558 len = strlen(val); 559 if (len > 2 && isdigit((int)val[0]) && val[1] == ':') { 560 ssid = atoi(val)-1; 561 val += 2; 562 } 563 564 bzero(data, sizeof(data)); 565 len = sizeof(data); 566 if (get_string(val, NULL, data, &len) == NULL) 567 exit(1); 568 569 set80211(s, IEEE80211_IOC_SSID, ssid, len, data); 570 } 571 572 static void 573 set80211meshid(const char *val, int d, int s, const struct afswtch *rafp) 574 { 575 int len; 576 u_int8_t data[IEEE80211_NWID_LEN]; 577 578 memset(data, 0, sizeof(data)); 579 len = sizeof(data); 580 if (get_string(val, NULL, data, &len) == NULL) 581 exit(1); 582 583 set80211(s, IEEE80211_IOC_MESH_ID, 0, len, data); 584 } 585 586 static void 587 set80211stationname(const char *val, int d, int s, const struct afswtch *rafp) 588 { 589 int len; 590 u_int8_t data[33]; 591 592 bzero(data, sizeof(data)); 593 len = sizeof(data); 594 get_string(val, NULL, data, &len); 595 596 set80211(s, IEEE80211_IOC_STATIONNAME, 0, len, data); 597 } 598 599 /* 600 * Parse a channel specification for attributes/flags. 601 * The syntax is: 602 * freq/xx channel width (5,10,20,40,40+,40-) 603 * freq:mode channel mode (a,b,g,h,n,t,s,d) 604 * 605 * These can be combined in either order; e.g. 2437:ng/40. 606 * Modes are case insensitive. 607 * 608 * The result is not validated here; it's assumed to be 609 * checked against the channel table fetched from the kernel. 610 */ 611 static int 612 getchannelflags(const char *val, int freq) 613 { 614 #define _CHAN_HT 0x80000000 615 const char *cp; 616 int flags; 617 618 flags = 0; 619 620 cp = strchr(val, ':'); 621 if (cp != NULL) { 622 for (cp++; isalpha((int) *cp); cp++) { 623 /* accept mixed case */ 624 int c = *cp; 625 if (isupper(c)) 626 c = tolower(c); 627 switch (c) { 628 case 'a': /* 802.11a */ 629 flags |= IEEE80211_CHAN_A; 630 break; 631 case 'b': /* 802.11b */ 632 flags |= IEEE80211_CHAN_B; 633 break; 634 case 'g': /* 802.11g */ 635 flags |= IEEE80211_CHAN_G; 636 break; 637 case 'h': /* ht = 802.11n */ 638 case 'n': /* 802.11n */ 639 flags |= _CHAN_HT; /* NB: private */ 640 break; 641 case 'd': /* dt = Atheros Dynamic Turbo */ 642 flags |= IEEE80211_CHAN_TURBO; 643 break; 644 case 't': /* ht, dt, st, t */ 645 /* dt and unadorned t specify Dynamic Turbo */ 646 if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0) 647 flags |= IEEE80211_CHAN_TURBO; 648 break; 649 case 's': /* st = Atheros Static Turbo */ 650 flags |= IEEE80211_CHAN_STURBO; 651 break; 652 default: 653 errx(-1, "%s: Invalid channel attribute %c\n", 654 val, *cp); 655 } 656 } 657 } 658 cp = strchr(val, '/'); 659 if (cp != NULL) { 660 char *ep; 661 u_long cw = strtoul(cp+1, &ep, 10); 662 663 switch (cw) { 664 case 5: 665 flags |= IEEE80211_CHAN_QUARTER; 666 break; 667 case 10: 668 flags |= IEEE80211_CHAN_HALF; 669 break; 670 case 20: 671 /* NB: this may be removed below */ 672 flags |= IEEE80211_CHAN_HT20; 673 break; 674 case 40: 675 if (ep != NULL && *ep == '+') 676 flags |= IEEE80211_CHAN_HT40U; 677 else if (ep != NULL && *ep == '-') 678 flags |= IEEE80211_CHAN_HT40D; 679 break; 680 default: 681 errx(-1, "%s: Invalid channel width\n", val); 682 } 683 } 684 /* 685 * Cleanup specifications. 686 */ 687 if ((flags & _CHAN_HT) == 0) { 688 /* 689 * If user specified freq/20 or freq/40 quietly remove 690 * HT cw attributes depending on channel use. To give 691 * an explicit 20/40 width for an HT channel you must 692 * indicate it is an HT channel since all HT channels 693 * are also usable for legacy operation; e.g. freq:n/40. 694 */ 695 flags &= ~IEEE80211_CHAN_HT; 696 } else { 697 /* 698 * Remove private indicator that this is an HT channel 699 * and if no explicit channel width has been given 700 * provide the default settings. 701 */ 702 flags &= ~_CHAN_HT; 703 if ((flags & IEEE80211_CHAN_HT) == 0) { 704 struct ieee80211_channel chan; 705 /* 706 * Consult the channel list to see if we can use 707 * HT40+ or HT40- (if both the map routines choose). 708 */ 709 if (freq > 255) 710 mapfreq(&chan, freq, 0); 711 else 712 mapchan(&chan, freq, 0); 713 flags |= (chan.ic_flags & IEEE80211_CHAN_HT); 714 } 715 } 716 return flags; 717 #undef _CHAN_HT 718 } 719 720 static void 721 getchannel(int s, struct ieee80211_channel *chan, const char *val) 722 { 723 int v, flags; 724 char *eptr; 725 726 memset(chan, 0, sizeof(*chan)); 727 if (isanyarg(val)) { 728 chan->ic_freq = IEEE80211_CHAN_ANY; 729 return; 730 } 731 getchaninfo(s); 732 errno = 0; 733 v = strtol(val, &eptr, 10); 734 if (val[0] == '\0' || val == eptr || errno == ERANGE || 735 /* channel may be suffixed with nothing, :flag, or /width */ 736 (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/')) 737 errx(1, "invalid channel specification%s", 738 errno == ERANGE ? " (out of range)" : ""); 739 flags = getchannelflags(val, v); 740 if (v > 255) { /* treat as frequency */ 741 mapfreq(chan, v, flags); 742 } else { 743 mapchan(chan, v, flags); 744 } 745 } 746 747 static void 748 set80211channel(const char *val, int d, int s, const struct afswtch *rafp) 749 { 750 struct ieee80211_channel chan; 751 752 getchannel(s, &chan, val); 753 set80211(s, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan); 754 } 755 756 static void 757 set80211chanswitch(const char *val, int d, int s, const struct afswtch *rafp) 758 { 759 struct ieee80211_chanswitch_req csr; 760 761 getchannel(s, &csr.csa_chan, val); 762 csr.csa_mode = 1; 763 csr.csa_count = 5; 764 set80211(s, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr); 765 } 766 767 static void 768 set80211authmode(const char *val, int d, int s, const struct afswtch *rafp) 769 { 770 int mode; 771 772 if (strcasecmp(val, "none") == 0) { 773 mode = IEEE80211_AUTH_NONE; 774 } else if (strcasecmp(val, "open") == 0) { 775 mode = IEEE80211_AUTH_OPEN; 776 } else if (strcasecmp(val, "shared") == 0) { 777 mode = IEEE80211_AUTH_SHARED; 778 } else if (strcasecmp(val, "8021x") == 0) { 779 mode = IEEE80211_AUTH_8021X; 780 } else if (strcasecmp(val, "wpa") == 0) { 781 mode = IEEE80211_AUTH_WPA; 782 } else { 783 errx(1, "unknown authmode"); 784 } 785 786 set80211(s, IEEE80211_IOC_AUTHMODE, mode, 0, NULL); 787 } 788 789 static void 790 set80211powersavemode(const char *val, int d, int s, const struct afswtch *rafp) 791 { 792 int mode; 793 794 if (strcasecmp(val, "off") == 0) { 795 mode = IEEE80211_POWERSAVE_OFF; 796 } else if (strcasecmp(val, "on") == 0) { 797 mode = IEEE80211_POWERSAVE_ON; 798 } else if (strcasecmp(val, "cam") == 0) { 799 mode = IEEE80211_POWERSAVE_CAM; 800 } else if (strcasecmp(val, "psp") == 0) { 801 mode = IEEE80211_POWERSAVE_PSP; 802 } else if (strcasecmp(val, "psp-cam") == 0) { 803 mode = IEEE80211_POWERSAVE_PSP_CAM; 804 } else { 805 errx(1, "unknown powersavemode"); 806 } 807 808 set80211(s, IEEE80211_IOC_POWERSAVE, mode, 0, NULL); 809 } 810 811 static void 812 set80211powersave(const char *val, int d, int s, const struct afswtch *rafp) 813 { 814 if (d == 0) 815 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF, 816 0, NULL); 817 else 818 set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON, 819 0, NULL); 820 } 821 822 static void 823 set80211powersavesleep(const char *val, int d, int s, const struct afswtch *rafp) 824 { 825 set80211(s, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL); 826 } 827 828 static void 829 set80211wepmode(const char *val, int d, int s, const struct afswtch *rafp) 830 { 831 int mode; 832 833 if (strcasecmp(val, "off") == 0) { 834 mode = IEEE80211_WEP_OFF; 835 } else if (strcasecmp(val, "on") == 0) { 836 mode = IEEE80211_WEP_ON; 837 } else if (strcasecmp(val, "mixed") == 0) { 838 mode = IEEE80211_WEP_MIXED; 839 } else { 840 errx(1, "unknown wep mode"); 841 } 842 843 set80211(s, IEEE80211_IOC_WEP, mode, 0, NULL); 844 } 845 846 static void 847 set80211wep(const char *val, int d, int s, const struct afswtch *rafp) 848 { 849 set80211(s, IEEE80211_IOC_WEP, d, 0, NULL); 850 } 851 852 static int 853 isundefarg(const char *arg) 854 { 855 return (strcmp(arg, "-") == 0 || strncasecmp(arg, "undef", 5) == 0); 856 } 857 858 static void 859 set80211weptxkey(const char *val, int d, int s, const struct afswtch *rafp) 860 { 861 if (isundefarg(val)) 862 set80211(s, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL); 863 else 864 set80211(s, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL); 865 } 866 867 static void 868 set80211wepkey(const char *val, int d, int s, const struct afswtch *rafp) 869 { 870 int key = 0; 871 int len; 872 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 873 874 if (isdigit((int)val[0]) && val[1] == ':') { 875 key = atoi(val)-1; 876 val += 2; 877 } 878 879 bzero(data, sizeof(data)); 880 len = sizeof(data); 881 get_string(val, NULL, data, &len); 882 883 set80211(s, IEEE80211_IOC_WEPKEY, key, len, data); 884 } 885 886 /* 887 * This function is purely a NetBSD compatability interface. The NetBSD 888 * interface is too inflexible, but it's there so we'll support it since 889 * it's not all that hard. 890 */ 891 static void 892 set80211nwkey(const char *val, int d, int s, const struct afswtch *rafp) 893 { 894 int txkey; 895 int i, len; 896 u_int8_t data[IEEE80211_KEYBUF_SIZE]; 897 898 set80211(s, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL); 899 900 if (isdigit((int)val[0]) && val[1] == ':') { 901 txkey = val[0]-'0'-1; 902 val += 2; 903 904 for (i = 0; i < 4; i++) { 905 bzero(data, sizeof(data)); 906 len = sizeof(data); 907 val = get_string(val, ",", data, &len); 908 if (val == NULL) 909 exit(1); 910 911 set80211(s, IEEE80211_IOC_WEPKEY, i, len, data); 912 } 913 } else { 914 bzero(data, sizeof(data)); 915 len = sizeof(data); 916 get_string(val, NULL, data, &len); 917 txkey = 0; 918 919 set80211(s, IEEE80211_IOC_WEPKEY, 0, len, data); 920 921 bzero(data, sizeof(data)); 922 for (i = 1; i < 4; i++) 923 set80211(s, IEEE80211_IOC_WEPKEY, i, 0, data); 924 } 925 926 set80211(s, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL); 927 } 928 929 static void 930 set80211rtsthreshold(const char *val, int d, int s, const struct afswtch *rafp) 931 { 932 set80211(s, IEEE80211_IOC_RTSTHRESHOLD, 933 isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL); 934 } 935 936 static void 937 set80211protmode(const char *val, int d, int s, const struct afswtch *rafp) 938 { 939 int mode; 940 941 if (strcasecmp(val, "off") == 0) { 942 mode = IEEE80211_PROTMODE_OFF; 943 } else if (strcasecmp(val, "cts") == 0) { 944 mode = IEEE80211_PROTMODE_CTS; 945 } else if (strncasecmp(val, "rtscts", 3) == 0) { 946 mode = IEEE80211_PROTMODE_RTSCTS; 947 } else { 948 errx(1, "unknown protection mode"); 949 } 950 951 set80211(s, IEEE80211_IOC_PROTMODE, mode, 0, NULL); 952 } 953 954 static void 955 set80211htprotmode(const char *val, int d, int s, const struct afswtch *rafp) 956 { 957 int mode; 958 959 if (strcasecmp(val, "off") == 0) { 960 mode = IEEE80211_PROTMODE_OFF; 961 } else if (strncasecmp(val, "rts", 3) == 0) { 962 mode = IEEE80211_PROTMODE_RTSCTS; 963 } else { 964 errx(1, "unknown protection mode"); 965 } 966 967 set80211(s, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL); 968 } 969 970 static void 971 set80211txpower(const char *val, int d, int s, const struct afswtch *rafp) 972 { 973 double v = atof(val); 974 int txpow; 975 976 txpow = (int) (2*v); 977 if (txpow != 2*v) 978 errx(-1, "invalid tx power (must be .5 dBm units)"); 979 set80211(s, IEEE80211_IOC_TXPOWER, txpow, 0, NULL); 980 } 981 982 #define IEEE80211_ROAMING_DEVICE 0 983 #define IEEE80211_ROAMING_AUTO 1 984 #define IEEE80211_ROAMING_MANUAL 2 985 986 static void 987 set80211roaming(const char *val, int d, int s, const struct afswtch *rafp) 988 { 989 int mode; 990 991 if (strcasecmp(val, "device") == 0) { 992 mode = IEEE80211_ROAMING_DEVICE; 993 } else if (strcasecmp(val, "auto") == 0) { 994 mode = IEEE80211_ROAMING_AUTO; 995 } else if (strcasecmp(val, "manual") == 0) { 996 mode = IEEE80211_ROAMING_MANUAL; 997 } else { 998 errx(1, "unknown roaming mode"); 999 } 1000 set80211(s, IEEE80211_IOC_ROAMING, mode, 0, NULL); 1001 } 1002 1003 static void 1004 set80211wme(const char *val, int d, int s, const struct afswtch *rafp) 1005 { 1006 set80211(s, IEEE80211_IOC_WME, d, 0, NULL); 1007 } 1008 1009 static void 1010 set80211hidessid(const char *val, int d, int s, const struct afswtch *rafp) 1011 { 1012 set80211(s, IEEE80211_IOC_HIDESSID, d, 0, NULL); 1013 } 1014 1015 static void 1016 set80211apbridge(const char *val, int d, int s, const struct afswtch *rafp) 1017 { 1018 set80211(s, IEEE80211_IOC_APBRIDGE, d, 0, NULL); 1019 } 1020 1021 static void 1022 set80211fastframes(const char *val, int d, int s, const struct afswtch *rafp) 1023 { 1024 set80211(s, IEEE80211_IOC_FF, d, 0, NULL); 1025 } 1026 1027 static void 1028 set80211dturbo(const char *val, int d, int s, const struct afswtch *rafp) 1029 { 1030 set80211(s, IEEE80211_IOC_TURBOP, d, 0, NULL); 1031 } 1032 1033 static void 1034 set80211chanlist(const char *val, int d, int s, const struct afswtch *rafp) 1035 { 1036 struct ieee80211req_chanlist chanlist; 1037 char *temp, *cp, *tp; 1038 1039 temp = malloc(strlen(val) + 1); 1040 if (temp == NULL) 1041 errx(1, "malloc failed"); 1042 strcpy(temp, val); 1043 memset(&chanlist, 0, sizeof(chanlist)); 1044 cp = temp; 1045 for (;;) { 1046 int first, last, f, c; 1047 1048 tp = strchr(cp, ','); 1049 if (tp != NULL) 1050 *tp++ = '\0'; 1051 switch (sscanf(cp, "%u-%u", &first, &last)) { 1052 case 1: 1053 if (first > IEEE80211_CHAN_MAX) 1054 errx(-1, "channel %u out of range, max %u", 1055 first, IEEE80211_CHAN_MAX); 1056 setbit(chanlist.ic_channels, first); 1057 break; 1058 case 2: 1059 if (first > IEEE80211_CHAN_MAX) 1060 errx(-1, "channel %u out of range, max %u", 1061 first, IEEE80211_CHAN_MAX); 1062 if (last > IEEE80211_CHAN_MAX) 1063 errx(-1, "channel %u out of range, max %u", 1064 last, IEEE80211_CHAN_MAX); 1065 if (first > last) 1066 errx(-1, "void channel range, %u > %u", 1067 first, last); 1068 for (f = first; f <= last; f++) 1069 setbit(chanlist.ic_channels, f); 1070 break; 1071 } 1072 if (tp == NULL) 1073 break; 1074 c = *tp; 1075 while (isspace(c)) 1076 tp++; 1077 if (!isdigit(c)) 1078 break; 1079 cp = tp; 1080 } 1081 set80211(s, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist); 1082 } 1083 1084 static void 1085 set80211bssid(const char *val, int d, int s, const struct afswtch *rafp) 1086 { 1087 1088 if (!isanyarg(val)) { 1089 char *temp; 1090 struct sockaddr_dl sdl; 1091 1092 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1093 if (temp == NULL) 1094 errx(1, "malloc failed"); 1095 temp[0] = ':'; 1096 strcpy(temp + 1, val); 1097 sdl.sdl_len = sizeof(sdl); 1098 link_addr(temp, &sdl); 1099 free(temp); 1100 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1101 errx(1, "malformed link-level address"); 1102 set80211(s, IEEE80211_IOC_BSSID, 0, 1103 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1104 } else { 1105 uint8_t zerobssid[IEEE80211_ADDR_LEN]; 1106 memset(zerobssid, 0, sizeof(zerobssid)); 1107 set80211(s, IEEE80211_IOC_BSSID, 0, 1108 IEEE80211_ADDR_LEN, zerobssid); 1109 } 1110 } 1111 1112 static int 1113 getac(const char *ac) 1114 { 1115 if (strcasecmp(ac, "ac_be") == 0 || strcasecmp(ac, "be") == 0) 1116 return WME_AC_BE; 1117 if (strcasecmp(ac, "ac_bk") == 0 || strcasecmp(ac, "bk") == 0) 1118 return WME_AC_BK; 1119 if (strcasecmp(ac, "ac_vi") == 0 || strcasecmp(ac, "vi") == 0) 1120 return WME_AC_VI; 1121 if (strcasecmp(ac, "ac_vo") == 0 || strcasecmp(ac, "vo") == 0) 1122 return WME_AC_VO; 1123 errx(1, "unknown wme access class %s", ac); 1124 } 1125 1126 static 1127 DECL_CMD_FUNC2(set80211cwmin, ac, val) 1128 { 1129 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL); 1130 } 1131 1132 static 1133 DECL_CMD_FUNC2(set80211cwmax, ac, val) 1134 { 1135 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL); 1136 } 1137 1138 static 1139 DECL_CMD_FUNC2(set80211aifs, ac, val) 1140 { 1141 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL); 1142 } 1143 1144 static 1145 DECL_CMD_FUNC2(set80211txoplimit, ac, val) 1146 { 1147 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL); 1148 } 1149 1150 static 1151 DECL_CMD_FUNC(set80211acm, ac, d) 1152 { 1153 set80211(s, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL); 1154 } 1155 static 1156 DECL_CMD_FUNC(set80211noacm, ac, d) 1157 { 1158 set80211(s, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL); 1159 } 1160 1161 static 1162 DECL_CMD_FUNC(set80211ackpolicy, ac, d) 1163 { 1164 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL); 1165 } 1166 static 1167 DECL_CMD_FUNC(set80211noackpolicy, ac, d) 1168 { 1169 set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL); 1170 } 1171 1172 static 1173 DECL_CMD_FUNC2(set80211bsscwmin, ac, val) 1174 { 1175 set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), 1176 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1177 } 1178 1179 static 1180 DECL_CMD_FUNC2(set80211bsscwmax, ac, val) 1181 { 1182 set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), 1183 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1184 } 1185 1186 static 1187 DECL_CMD_FUNC2(set80211bssaifs, ac, val) 1188 { 1189 set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), 1190 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1191 } 1192 1193 static 1194 DECL_CMD_FUNC2(set80211bsstxoplimit, ac, val) 1195 { 1196 set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), 1197 getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); 1198 } 1199 1200 static 1201 DECL_CMD_FUNC(set80211dtimperiod, val, d) 1202 { 1203 set80211(s, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL); 1204 } 1205 1206 static 1207 DECL_CMD_FUNC(set80211bintval, val, d) 1208 { 1209 set80211(s, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL); 1210 } 1211 1212 static void 1213 set80211macmac(int s, int op, const char *val) 1214 { 1215 char *temp; 1216 struct sockaddr_dl sdl; 1217 1218 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1219 if (temp == NULL) 1220 errx(1, "malloc failed"); 1221 temp[0] = ':'; 1222 strcpy(temp + 1, val); 1223 sdl.sdl_len = sizeof(sdl); 1224 link_addr(temp, &sdl); 1225 free(temp); 1226 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1227 errx(1, "malformed link-level address"); 1228 set80211(s, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1229 } 1230 1231 static 1232 DECL_CMD_FUNC(set80211addmac, val, d) 1233 { 1234 set80211macmac(s, IEEE80211_IOC_ADDMAC, val); 1235 } 1236 1237 static 1238 DECL_CMD_FUNC(set80211delmac, val, d) 1239 { 1240 set80211macmac(s, IEEE80211_IOC_DELMAC, val); 1241 } 1242 1243 static 1244 DECL_CMD_FUNC(set80211kickmac, val, d) 1245 { 1246 char *temp; 1247 struct sockaddr_dl sdl; 1248 struct ieee80211req_mlme mlme; 1249 1250 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1251 if (temp == NULL) 1252 errx(1, "malloc failed"); 1253 temp[0] = ':'; 1254 strcpy(temp + 1, val); 1255 sdl.sdl_len = sizeof(sdl); 1256 link_addr(temp, &sdl); 1257 free(temp); 1258 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1259 errx(1, "malformed link-level address"); 1260 memset(&mlme, 0, sizeof(mlme)); 1261 mlme.im_op = IEEE80211_MLME_DEAUTH; 1262 mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE; 1263 memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN); 1264 set80211(s, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme); 1265 } 1266 1267 static 1268 DECL_CMD_FUNC(set80211maccmd, val, d) 1269 { 1270 set80211(s, IEEE80211_IOC_MACCMD, d, 0, NULL); 1271 } 1272 1273 static void 1274 set80211meshrtmac(int s, int req, const char *val) 1275 { 1276 char *temp; 1277 struct sockaddr_dl sdl; 1278 1279 temp = malloc(strlen(val) + 2); /* ':' and '\0' */ 1280 if (temp == NULL) 1281 errx(1, "malloc failed"); 1282 temp[0] = ':'; 1283 strcpy(temp + 1, val); 1284 sdl.sdl_len = sizeof(sdl); 1285 link_addr(temp, &sdl); 1286 free(temp); 1287 if (sdl.sdl_alen != IEEE80211_ADDR_LEN) 1288 errx(1, "malformed link-level address"); 1289 set80211(s, IEEE80211_IOC_MESH_RTCMD, req, 1290 IEEE80211_ADDR_LEN, LLADDR(&sdl)); 1291 } 1292 1293 static 1294 DECL_CMD_FUNC(set80211addmeshrt, val, d) 1295 { 1296 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_ADD, val); 1297 } 1298 1299 static 1300 DECL_CMD_FUNC(set80211delmeshrt, val, d) 1301 { 1302 set80211meshrtmac(s, IEEE80211_MESH_RTCMD_DELETE, val); 1303 } 1304 1305 static 1306 DECL_CMD_FUNC(set80211meshrtcmd, val, d) 1307 { 1308 set80211(s, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL); 1309 } 1310 1311 static 1312 DECL_CMD_FUNC(set80211hwmprootmode, val, d) 1313 { 1314 int mode; 1315 1316 if (strcasecmp(val, "normal") == 0) 1317 mode = IEEE80211_HWMP_ROOTMODE_NORMAL; 1318 else if (strcasecmp(val, "proactive") == 0) 1319 mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE; 1320 else if (strcasecmp(val, "rann") == 0) 1321 mode = IEEE80211_HWMP_ROOTMODE_RANN; 1322 else 1323 mode = IEEE80211_HWMP_ROOTMODE_DISABLED; 1324 set80211(s, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL); 1325 } 1326 1327 static 1328 DECL_CMD_FUNC(set80211hwmpmaxhops, val, d) 1329 { 1330 set80211(s, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL); 1331 } 1332 1333 static void 1334 set80211pureg(const char *val, int d, int s, const struct afswtch *rafp) 1335 { 1336 set80211(s, IEEE80211_IOC_PUREG, d, 0, NULL); 1337 } 1338 1339 static void 1340 set80211quiet(const char *val, int d, int s, const struct afswtch *rafp) 1341 { 1342 set80211(s, IEEE80211_IOC_QUIET, d, 0, NULL); 1343 } 1344 1345 static 1346 DECL_CMD_FUNC(set80211quietperiod, val, d) 1347 { 1348 set80211(s, IEEE80211_IOC_QUIET_PERIOD, atoi(val), 0, NULL); 1349 } 1350 1351 static 1352 DECL_CMD_FUNC(set80211quietcount, val, d) 1353 { 1354 set80211(s, IEEE80211_IOC_QUIET_COUNT, atoi(val), 0, NULL); 1355 } 1356 1357 static 1358 DECL_CMD_FUNC(set80211quietduration, val, d) 1359 { 1360 set80211(s, IEEE80211_IOC_QUIET_DUR, atoi(val), 0, NULL); 1361 } 1362 1363 static 1364 DECL_CMD_FUNC(set80211quietoffset, val, d) 1365 { 1366 set80211(s, IEEE80211_IOC_QUIET_OFFSET, atoi(val), 0, NULL); 1367 } 1368 1369 static void 1370 set80211bgscan(const char *val, int d, int s, const struct afswtch *rafp) 1371 { 1372 set80211(s, IEEE80211_IOC_BGSCAN, d, 0, NULL); 1373 } 1374 1375 static 1376 DECL_CMD_FUNC(set80211bgscanidle, val, d) 1377 { 1378 set80211(s, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL); 1379 } 1380 1381 static 1382 DECL_CMD_FUNC(set80211bgscanintvl, val, d) 1383 { 1384 set80211(s, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL); 1385 } 1386 1387 static 1388 DECL_CMD_FUNC(set80211scanvalid, val, d) 1389 { 1390 set80211(s, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL); 1391 } 1392 1393 /* 1394 * Parse an optional trailing specification of which netbands 1395 * to apply a parameter to. This is basically the same syntax 1396 * as used for channels but you can concatenate to specify 1397 * multiple. For example: 1398 * 14:abg apply to 11a, 11b, and 11g 1399 * 6:ht apply to 11na and 11ng 1400 * We don't make a big effort to catch silly things; this is 1401 * really a convenience mechanism. 1402 */ 1403 static int 1404 getmodeflags(const char *val) 1405 { 1406 const char *cp; 1407 int flags; 1408 1409 flags = 0; 1410 1411 cp = strchr(val, ':'); 1412 if (cp != NULL) { 1413 for (cp++; isalpha((int) *cp); cp++) { 1414 /* accept mixed case */ 1415 int c = *cp; 1416 if (isupper(c)) 1417 c = tolower(c); 1418 switch (c) { 1419 case 'a': /* 802.11a */ 1420 flags |= IEEE80211_CHAN_A; 1421 break; 1422 case 'b': /* 802.11b */ 1423 flags |= IEEE80211_CHAN_B; 1424 break; 1425 case 'g': /* 802.11g */ 1426 flags |= IEEE80211_CHAN_G; 1427 break; 1428 case 'n': /* 802.11n */ 1429 flags |= IEEE80211_CHAN_HT; 1430 break; 1431 case 'd': /* dt = Atheros Dynamic Turbo */ 1432 flags |= IEEE80211_CHAN_TURBO; 1433 break; 1434 case 't': /* ht, dt, st, t */ 1435 /* dt and unadorned t specify Dynamic Turbo */ 1436 if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0) 1437 flags |= IEEE80211_CHAN_TURBO; 1438 break; 1439 case 's': /* st = Atheros Static Turbo */ 1440 flags |= IEEE80211_CHAN_STURBO; 1441 break; 1442 case 'h': /* 1/2-width channels */ 1443 flags |= IEEE80211_CHAN_HALF; 1444 break; 1445 case 'q': /* 1/4-width channels */ 1446 flags |= IEEE80211_CHAN_QUARTER; 1447 break; 1448 default: 1449 errx(-1, "%s: Invalid mode attribute %c\n", 1450 val, *cp); 1451 } 1452 } 1453 } 1454 return flags; 1455 } 1456 1457 #define IEEE80211_CHAN_HTA (IEEE80211_CHAN_HT|IEEE80211_CHAN_5GHZ) 1458 #define IEEE80211_CHAN_HTG (IEEE80211_CHAN_HT|IEEE80211_CHAN_2GHZ) 1459 1460 #define _APPLY(_flags, _base, _param, _v) do { \ 1461 if (_flags & IEEE80211_CHAN_HT) { \ 1462 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1463 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1464 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1465 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1466 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1467 else \ 1468 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1469 } \ 1470 if (_flags & IEEE80211_CHAN_TURBO) { \ 1471 if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ 1472 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1473 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1474 } else if (_flags & IEEE80211_CHAN_5GHZ) \ 1475 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1476 else \ 1477 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1478 } \ 1479 if (_flags & IEEE80211_CHAN_STURBO) \ 1480 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1481 if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1482 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1483 if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1484 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1485 if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1486 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1487 if (_flags & IEEE80211_CHAN_HALF) \ 1488 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1489 if (_flags & IEEE80211_CHAN_QUARTER) \ 1490 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1491 } while (0) 1492 #define _APPLY1(_flags, _base, _param, _v) do { \ 1493 if (_flags & IEEE80211_CHAN_HT) { \ 1494 if (_flags & IEEE80211_CHAN_5GHZ) \ 1495 _base.params[IEEE80211_MODE_11NA]._param = _v; \ 1496 else \ 1497 _base.params[IEEE80211_MODE_11NG]._param = _v; \ 1498 } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A) \ 1499 _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ 1500 else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G) \ 1501 _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ 1502 else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST) \ 1503 _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ 1504 else if (_flags & IEEE80211_CHAN_HALF) \ 1505 _base.params[IEEE80211_MODE_HALF]._param = _v; \ 1506 else if (_flags & IEEE80211_CHAN_QUARTER) \ 1507 _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ 1508 else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ 1509 _base.params[IEEE80211_MODE_11A]._param = _v; \ 1510 else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ 1511 _base.params[IEEE80211_MODE_11G]._param = _v; \ 1512 else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ 1513 _base.params[IEEE80211_MODE_11B]._param = _v; \ 1514 } while (0) 1515 #define _APPLY_RATE(_flags, _base, _param, _v) do { \ 1516 if (_flags & IEEE80211_CHAN_HT) { \ 1517 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1518 } \ 1519 _APPLY(_flags, _base, _param, _v); \ 1520 } while (0) 1521 #define _APPLY_RATE1(_flags, _base, _param, _v) do { \ 1522 if (_flags & IEEE80211_CHAN_HT) { \ 1523 (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ 1524 } \ 1525 _APPLY1(_flags, _base, _param, _v); \ 1526 } while (0) 1527 1528 static 1529 DECL_CMD_FUNC(set80211roamrssi, val, d) 1530 { 1531 double v = atof(val); 1532 int rssi, flags; 1533 1534 rssi = (int) (2*v); 1535 if (rssi != 2*v) 1536 errx(-1, "invalid rssi (must be .5 dBm units)"); 1537 flags = getmodeflags(val); 1538 getroam(s); 1539 if (flags == 0) { /* NB: no flags => current channel */ 1540 flags = getcurchan(s)->ic_flags; 1541 _APPLY1(flags, roamparams, rssi, rssi); 1542 } else 1543 _APPLY(flags, roamparams, rssi, rssi); 1544 callback_register(setroam_cb, &roamparams); 1545 } 1546 1547 static int 1548 getrate(const char *val, const char *tag) 1549 { 1550 double v = atof(val); 1551 int rate; 1552 1553 rate = (int) (2*v); 1554 if (rate != 2*v) 1555 errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag); 1556 return rate; /* NB: returns 2x the specified value */ 1557 } 1558 1559 static 1560 DECL_CMD_FUNC(set80211roamrate, val, d) 1561 { 1562 int rate, flags; 1563 1564 rate = getrate(val, "roam"); 1565 flags = getmodeflags(val); 1566 getroam(s); 1567 if (flags == 0) { /* NB: no flags => current channel */ 1568 flags = getcurchan(s)->ic_flags; 1569 _APPLY_RATE1(flags, roamparams, rate, rate); 1570 } else 1571 _APPLY_RATE(flags, roamparams, rate, rate); 1572 callback_register(setroam_cb, &roamparams); 1573 } 1574 1575 static 1576 DECL_CMD_FUNC(set80211mcastrate, val, d) 1577 { 1578 int rate, flags; 1579 1580 rate = getrate(val, "mcast"); 1581 flags = getmodeflags(val); 1582 gettxparams(s); 1583 if (flags == 0) { /* NB: no flags => current channel */ 1584 flags = getcurchan(s)->ic_flags; 1585 _APPLY_RATE1(flags, txparams, mcastrate, rate); 1586 } else 1587 _APPLY_RATE(flags, txparams, mcastrate, rate); 1588 callback_register(settxparams_cb, &txparams); 1589 } 1590 1591 static 1592 DECL_CMD_FUNC(set80211mgtrate, val, d) 1593 { 1594 int rate, flags; 1595 1596 rate = getrate(val, "mgmt"); 1597 flags = getmodeflags(val); 1598 gettxparams(s); 1599 if (flags == 0) { /* NB: no flags => current channel */ 1600 flags = getcurchan(s)->ic_flags; 1601 _APPLY_RATE1(flags, txparams, mgmtrate, rate); 1602 } else 1603 _APPLY_RATE(flags, txparams, mgmtrate, rate); 1604 callback_register(settxparams_cb, &txparams); 1605 } 1606 1607 static 1608 DECL_CMD_FUNC(set80211ucastrate, val, d) 1609 { 1610 int flags; 1611 1612 gettxparams(s); 1613 flags = getmodeflags(val); 1614 if (isanyarg(val)) { 1615 if (flags == 0) { /* NB: no flags => current channel */ 1616 flags = getcurchan(s)->ic_flags; 1617 _APPLY1(flags, txparams, ucastrate, 1618 IEEE80211_FIXED_RATE_NONE); 1619 } else 1620 _APPLY(flags, txparams, ucastrate, 1621 IEEE80211_FIXED_RATE_NONE); 1622 } else { 1623 int rate = getrate(val, "ucast"); 1624 if (flags == 0) { /* NB: no flags => current channel */ 1625 flags = getcurchan(s)->ic_flags; 1626 _APPLY_RATE1(flags, txparams, ucastrate, rate); 1627 } else 1628 _APPLY_RATE(flags, txparams, ucastrate, rate); 1629 } 1630 callback_register(settxparams_cb, &txparams); 1631 } 1632 1633 static 1634 DECL_CMD_FUNC(set80211maxretry, val, d) 1635 { 1636 int v = atoi(val), flags; 1637 1638 flags = getmodeflags(val); 1639 gettxparams(s); 1640 if (flags == 0) { /* NB: no flags => current channel */ 1641 flags = getcurchan(s)->ic_flags; 1642 _APPLY1(flags, txparams, maxretry, v); 1643 } else 1644 _APPLY(flags, txparams, maxretry, v); 1645 callback_register(settxparams_cb, &txparams); 1646 } 1647 #undef _APPLY_RATE 1648 #undef _APPLY 1649 #undef IEEE80211_CHAN_HTA 1650 #undef IEEE80211_CHAN_HTG 1651 1652 static 1653 DECL_CMD_FUNC(set80211fragthreshold, val, d) 1654 { 1655 set80211(s, IEEE80211_IOC_FRAGTHRESHOLD, 1656 isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL); 1657 } 1658 1659 static 1660 DECL_CMD_FUNC(set80211bmissthreshold, val, d) 1661 { 1662 set80211(s, IEEE80211_IOC_BMISSTHRESHOLD, 1663 isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL); 1664 } 1665 1666 static void 1667 set80211burst(const char *val, int d, int s, const struct afswtch *rafp) 1668 { 1669 set80211(s, IEEE80211_IOC_BURST, d, 0, NULL); 1670 } 1671 1672 static void 1673 set80211doth(const char *val, int d, int s, const struct afswtch *rafp) 1674 { 1675 set80211(s, IEEE80211_IOC_DOTH, d, 0, NULL); 1676 } 1677 1678 static void 1679 set80211dfs(const char *val, int d, int s, const struct afswtch *rafp) 1680 { 1681 set80211(s, IEEE80211_IOC_DFS, d, 0, NULL); 1682 } 1683 1684 static void 1685 set80211shortgi(const char *val, int d, int s, const struct afswtch *rafp) 1686 { 1687 set80211(s, IEEE80211_IOC_SHORTGI, 1688 d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0, 1689 0, NULL); 1690 } 1691 1692 static void 1693 set80211ampdu(const char *val, int d, int s, const struct afswtch *rafp) 1694 { 1695 int ampdu; 1696 1697 if (get80211val(s, IEEE80211_IOC_AMPDU, &du) < 0) 1698 errx(-1, "cannot get AMPDU setting"); 1699 if (d < 0) { 1700 d = -d; 1701 ampdu &= ~d; 1702 } else 1703 ampdu |= d; 1704 set80211(s, IEEE80211_IOC_AMPDU, ampdu, 0, NULL); 1705 } 1706 1707 static 1708 DECL_CMD_FUNC(set80211ampdulimit, val, d) 1709 { 1710 int v; 1711 1712 switch (atoi(val)) { 1713 case 8: 1714 case 8*1024: 1715 v = IEEE80211_HTCAP_MAXRXAMPDU_8K; 1716 break; 1717 case 16: 1718 case 16*1024: 1719 v = IEEE80211_HTCAP_MAXRXAMPDU_16K; 1720 break; 1721 case 32: 1722 case 32*1024: 1723 v = IEEE80211_HTCAP_MAXRXAMPDU_32K; 1724 break; 1725 case 64: 1726 case 64*1024: 1727 v = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1728 break; 1729 default: 1730 errx(-1, "invalid A-MPDU limit %s", val); 1731 } 1732 set80211(s, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL); 1733 } 1734 1735 static 1736 DECL_CMD_FUNC(set80211ampdudensity, val, d) 1737 { 1738 int v; 1739 1740 if (isanyarg(val) || strcasecmp(val, "na") == 0) 1741 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1742 else switch ((int)(atof(val)*4)) { 1743 case 0: 1744 v = IEEE80211_HTCAP_MPDUDENSITY_NA; 1745 break; 1746 case 1: 1747 v = IEEE80211_HTCAP_MPDUDENSITY_025; 1748 break; 1749 case 2: 1750 v = IEEE80211_HTCAP_MPDUDENSITY_05; 1751 break; 1752 case 4: 1753 v = IEEE80211_HTCAP_MPDUDENSITY_1; 1754 break; 1755 case 8: 1756 v = IEEE80211_HTCAP_MPDUDENSITY_2; 1757 break; 1758 case 16: 1759 v = IEEE80211_HTCAP_MPDUDENSITY_4; 1760 break; 1761 case 32: 1762 v = IEEE80211_HTCAP_MPDUDENSITY_8; 1763 break; 1764 case 64: 1765 v = IEEE80211_HTCAP_MPDUDENSITY_16; 1766 break; 1767 default: 1768 errx(-1, "invalid A-MPDU density %s", val); 1769 } 1770 set80211(s, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL); 1771 } 1772 1773 static void 1774 set80211amsdu(const char *val, int d, int s, const struct afswtch *rafp) 1775 { 1776 int amsdu; 1777 1778 if (get80211val(s, IEEE80211_IOC_AMSDU, &amsdu) < 0) 1779 err(-1, "cannot get AMSDU setting"); 1780 if (d < 0) { 1781 d = -d; 1782 amsdu &= ~d; 1783 } else 1784 amsdu |= d; 1785 set80211(s, IEEE80211_IOC_AMSDU, amsdu, 0, NULL); 1786 } 1787 1788 static 1789 DECL_CMD_FUNC(set80211amsdulimit, val, d) 1790 { 1791 set80211(s, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL); 1792 } 1793 1794 static void 1795 set80211puren(const char *val, int d, int s, const struct afswtch *rafp) 1796 { 1797 set80211(s, IEEE80211_IOC_PUREN, d, 0, NULL); 1798 } 1799 1800 static void 1801 set80211htcompat(const char *val, int d, int s, const struct afswtch *rafp) 1802 { 1803 set80211(s, IEEE80211_IOC_HTCOMPAT, d, 0, NULL); 1804 } 1805 1806 static void 1807 set80211htconf(const char *val, int d, int s, const struct afswtch *rafp) 1808 { 1809 set80211(s, IEEE80211_IOC_HTCONF, d, 0, NULL); 1810 htconf = d; 1811 } 1812 1813 static void 1814 set80211dwds(const char *val, int d, int s, const struct afswtch *rafp) 1815 { 1816 set80211(s, IEEE80211_IOC_DWDS, d, 0, NULL); 1817 } 1818 1819 static void 1820 set80211inact(const char *val, int d, int s, const struct afswtch *rafp) 1821 { 1822 set80211(s, IEEE80211_IOC_INACTIVITY, d, 0, NULL); 1823 } 1824 1825 static void 1826 set80211tsn(const char *val, int d, int s, const struct afswtch *rafp) 1827 { 1828 set80211(s, IEEE80211_IOC_TSN, d, 0, NULL); 1829 } 1830 1831 static void 1832 set80211dotd(const char *val, int d, int s, const struct afswtch *rafp) 1833 { 1834 set80211(s, IEEE80211_IOC_DOTD, d, 0, NULL); 1835 } 1836 1837 static void 1838 set80211smps(const char *val, int d, int s, const struct afswtch *rafp) 1839 { 1840 set80211(s, IEEE80211_IOC_SMPS, d, 0, NULL); 1841 } 1842 1843 static void 1844 set80211rifs(const char *val, int d, int s, const struct afswtch *rafp) 1845 { 1846 set80211(s, IEEE80211_IOC_RIFS, d, 0, NULL); 1847 } 1848 1849 static 1850 DECL_CMD_FUNC(set80211tdmaslot, val, d) 1851 { 1852 set80211(s, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL); 1853 } 1854 1855 static 1856 DECL_CMD_FUNC(set80211tdmaslotcnt, val, d) 1857 { 1858 set80211(s, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL); 1859 } 1860 1861 static 1862 DECL_CMD_FUNC(set80211tdmaslotlen, val, d) 1863 { 1864 set80211(s, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL); 1865 } 1866 1867 static 1868 DECL_CMD_FUNC(set80211tdmabintval, val, d) 1869 { 1870 set80211(s, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL); 1871 } 1872 1873 static 1874 DECL_CMD_FUNC(set80211meshttl, val, d) 1875 { 1876 set80211(s, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL); 1877 } 1878 1879 static 1880 DECL_CMD_FUNC(set80211meshforward, val, d) 1881 { 1882 set80211(s, IEEE80211_IOC_MESH_FWRD, atoi(val), 0, NULL); 1883 } 1884 1885 static 1886 DECL_CMD_FUNC(set80211meshpeering, val, d) 1887 { 1888 set80211(s, IEEE80211_IOC_MESH_AP, atoi(val), 0, NULL); 1889 } 1890 1891 static 1892 DECL_CMD_FUNC(set80211meshmetric, val, d) 1893 { 1894 char v[12]; 1895 1896 memcpy(v, val, sizeof(v)); 1897 set80211(s, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v); 1898 } 1899 1900 static 1901 DECL_CMD_FUNC(set80211meshpath, val, d) 1902 { 1903 char v[12]; 1904 1905 memcpy(v, val, sizeof(v)); 1906 set80211(s, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v); 1907 } 1908 1909 static int 1910 regdomain_sort(const void *a, const void *b) 1911 { 1912 #define CHAN_ALL \ 1913 (IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER) 1914 const struct ieee80211_channel *ca = a; 1915 const struct ieee80211_channel *cb = b; 1916 1917 return ca->ic_freq == cb->ic_freq ? 1918 (ca->ic_flags & CHAN_ALL) - (cb->ic_flags & CHAN_ALL) : 1919 ca->ic_freq - cb->ic_freq; 1920 #undef CHAN_ALL 1921 } 1922 1923 static const struct ieee80211_channel * 1924 chanlookup(const struct ieee80211_channel chans[], int nchans, 1925 int freq, int flags) 1926 { 1927 int i; 1928 1929 flags &= IEEE80211_CHAN_ALLTURBO; 1930 for (i = 0; i < nchans; i++) { 1931 const struct ieee80211_channel *c = &chans[i]; 1932 if (c->ic_freq == freq && 1933 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1934 return c; 1935 } 1936 return NULL; 1937 } 1938 1939 static int 1940 chanfind(const struct ieee80211_channel chans[], int nchans, int flags) 1941 { 1942 int i; 1943 1944 for (i = 0; i < nchans; i++) { 1945 const struct ieee80211_channel *c = &chans[i]; 1946 if ((c->ic_flags & flags) == flags) 1947 return 1; 1948 } 1949 return 0; 1950 } 1951 1952 /* 1953 * Check channel compatibility. 1954 */ 1955 static int 1956 checkchan(const struct ieee80211req_chaninfo *avail, int freq, int flags) 1957 { 1958 flags &= ~REQ_FLAGS; 1959 /* 1960 * Check if exact channel is in the calibration table; 1961 * everything below is to deal with channels that we 1962 * want to include but that are not explicitly listed. 1963 */ 1964 if (flags & IEEE80211_CHAN_HT40) { 1965 /* NB: we use an HT40 channel center that matches HT20 */ 1966 flags = (flags &~ IEEE80211_CHAN_HT40) | IEEE80211_CHAN_HT20; 1967 } 1968 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL) 1969 return 1; 1970 if (flags & IEEE80211_CHAN_GSM) { 1971 /* 1972 * XXX GSM frequency mapping is handled in the kernel 1973 * so we cannot find them in the calibration table; 1974 * just accept the channel and the kernel will reject 1975 * the channel list if it's wrong. 1976 */ 1977 return 1; 1978 } 1979 /* 1980 * If this is a 1/2 or 1/4 width channel allow it if a full 1981 * width channel is present for this frequency, and the device 1982 * supports fractional channels on this band. This is a hack 1983 * that avoids bloating the calibration table; it may be better 1984 * by per-band attributes though (we are effectively calculating 1985 * this attribute by scanning the channel list ourself). 1986 */ 1987 if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0) 1988 return 0; 1989 if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, 1990 flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL) 1991 return 0; 1992 if (flags & IEEE80211_CHAN_HALF) { 1993 return chanfind(avail->ic_chans, avail->ic_nchans, 1994 IEEE80211_CHAN_HALF | 1995 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 1996 } else { 1997 return chanfind(avail->ic_chans, avail->ic_nchans, 1998 IEEE80211_CHAN_QUARTER | 1999 (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); 2000 } 2001 } 2002 2003 static void 2004 regdomain_addchans(struct ieee80211req_chaninfo *ci, 2005 const netband_head *bands, 2006 const struct ieee80211_regdomain *reg, 2007 uint32_t chanFlags, 2008 const struct ieee80211req_chaninfo *avail) 2009 { 2010 const struct netband *nb; 2011 const struct freqband *b; 2012 struct ieee80211_channel *c, *prev; 2013 int freq, hi_adj, lo_adj, channelSep; 2014 uint32_t flags; 2015 2016 hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0; 2017 lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0; 2018 channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40; 2019 LIST_FOREACH(nb, bands, next) { 2020 b = nb->band; 2021 if (verbose) { 2022 printf("%s:", __func__); 2023 printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS); 2024 printb(" bandFlags", nb->flags | b->flags, 2025 IEEE80211_CHAN_BITS); 2026 putchar('\n'); 2027 } 2028 prev = NULL; 2029 for (freq = b->freqStart + lo_adj; 2030 freq <= b->freqEnd + hi_adj; freq += b->chanSep) { 2031 /* 2032 * Construct flags for the new channel. We take 2033 * the attributes from the band descriptions except 2034 * for HT40 which is enabled generically (i.e. +/- 2035 * extension channel) in the band description and 2036 * then constrained according by channel separation. 2037 */ 2038 flags = nb->flags | b->flags; 2039 if (flags & IEEE80211_CHAN_HT) { 2040 /* 2041 * HT channels are generated specially; we're 2042 * called to add HT20, HT40+, and HT40- chan's 2043 * so we need to expand only band specs for 2044 * the HT channel type being added. 2045 */ 2046 if ((chanFlags & IEEE80211_CHAN_HT20) && 2047 (flags & IEEE80211_CHAN_HT20) == 0) { 2048 if (verbose) 2049 printf("%u: skip, not an " 2050 "HT20 channel\n", freq); 2051 continue; 2052 } 2053 if ((chanFlags & IEEE80211_CHAN_HT40) && 2054 (flags & IEEE80211_CHAN_HT40) == 0) { 2055 if (verbose) 2056 printf("%u: skip, not an " 2057 "HT40 channel\n", freq); 2058 continue; 2059 } 2060 /* NB: HT attribute comes from caller */ 2061 flags &= ~IEEE80211_CHAN_HT; 2062 flags |= chanFlags & IEEE80211_CHAN_HT; 2063 } 2064 /* 2065 * Check if device can operate on this frequency. 2066 */ 2067 if (!checkchan(avail, freq, flags)) { 2068 if (verbose) { 2069 printf("%u: skip, ", freq); 2070 printb("flags", flags, 2071 IEEE80211_CHAN_BITS); 2072 printf(" not available\n"); 2073 } 2074 continue; 2075 } 2076 if ((flags & REQ_ECM) && !reg->ecm) { 2077 if (verbose) 2078 printf("%u: skip, ECM channel\n", freq); 2079 continue; 2080 } 2081 if ((flags & REQ_INDOOR) && reg->location == 'O') { 2082 if (verbose) 2083 printf("%u: skip, indoor channel\n", 2084 freq); 2085 continue; 2086 } 2087 if ((flags & REQ_OUTDOOR) && reg->location == 'I') { 2088 if (verbose) 2089 printf("%u: skip, outdoor channel\n", 2090 freq); 2091 continue; 2092 } 2093 if ((flags & IEEE80211_CHAN_HT40) && 2094 prev != NULL && (freq - prev->ic_freq) < channelSep) { 2095 if (verbose) 2096 printf("%u: skip, only %u channel " 2097 "separation, need %d\n", freq, 2098 freq - prev->ic_freq, channelSep); 2099 continue; 2100 } 2101 if (ci->ic_nchans == IEEE80211_CHAN_MAX) { 2102 if (verbose) 2103 printf("%u: skip, channel table full\n", 2104 freq); 2105 break; 2106 } 2107 c = &ci->ic_chans[ci->ic_nchans++]; 2108 memset(c, 0, sizeof(*c)); 2109 c->ic_freq = freq; 2110 c->ic_flags = flags; 2111 if (c->ic_flags & IEEE80211_CHAN_DFS) 2112 c->ic_maxregpower = nb->maxPowerDFS; 2113 else 2114 c->ic_maxregpower = nb->maxPower; 2115 if (verbose) { 2116 printf("[%3d] add freq %u ", 2117 ci->ic_nchans-1, c->ic_freq); 2118 printb("flags", c->ic_flags, IEEE80211_CHAN_BITS); 2119 printf(" power %u\n", c->ic_maxregpower); 2120 } 2121 /* NB: kernel fills in other fields */ 2122 prev = c; 2123 } 2124 } 2125 } 2126 2127 static void 2128 regdomain_makechannels( 2129 struct ieee80211_regdomain_req *req, 2130 const struct ieee80211_devcaps_req *dc) 2131 { 2132 struct regdata *rdp = getregdata(); 2133 const struct country *cc; 2134 const struct ieee80211_regdomain *reg = &req->rd; 2135 struct ieee80211req_chaninfo *ci = &req->chaninfo; 2136 const struct regdomain *rd; 2137 2138 /* 2139 * Locate construction table for new channel list. We treat 2140 * the regdomain/SKU as definitive so a country can be in 2141 * multiple with different properties (e.g. US in FCC+FCC3). 2142 * If no regdomain is specified then we fallback on the country 2143 * code to find the associated regdomain since countries always 2144 * belong to at least one regdomain. 2145 */ 2146 if (reg->regdomain == 0) { 2147 cc = lib80211_country_findbycc(rdp, reg->country); 2148 if (cc == NULL) 2149 errx(1, "internal error, country %d not found", 2150 reg->country); 2151 rd = cc->rd; 2152 } else 2153 rd = lib80211_regdomain_findbysku(rdp, reg->regdomain); 2154 if (rd == NULL) 2155 errx(1, "internal error, regdomain %d not found", 2156 reg->regdomain); 2157 if (rd->sku != SKU_DEBUG) { 2158 /* 2159 * regdomain_addchans incrememnts the channel count for 2160 * each channel it adds so initialize ic_nchans to zero. 2161 * Note that we know we have enough space to hold all possible 2162 * channels because the devcaps list size was used to 2163 * allocate our request. 2164 */ 2165 ci->ic_nchans = 0; 2166 if (!LIST_EMPTY(&rd->bands_11b)) 2167 regdomain_addchans(ci, &rd->bands_11b, reg, 2168 IEEE80211_CHAN_B, &dc->dc_chaninfo); 2169 if (!LIST_EMPTY(&rd->bands_11g)) 2170 regdomain_addchans(ci, &rd->bands_11g, reg, 2171 IEEE80211_CHAN_G, &dc->dc_chaninfo); 2172 if (!LIST_EMPTY(&rd->bands_11a)) 2173 regdomain_addchans(ci, &rd->bands_11a, reg, 2174 IEEE80211_CHAN_A, &dc->dc_chaninfo); 2175 if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) { 2176 regdomain_addchans(ci, &rd->bands_11na, reg, 2177 IEEE80211_CHAN_A | IEEE80211_CHAN_HT20, 2178 &dc->dc_chaninfo); 2179 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2180 regdomain_addchans(ci, &rd->bands_11na, reg, 2181 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U, 2182 &dc->dc_chaninfo); 2183 regdomain_addchans(ci, &rd->bands_11na, reg, 2184 IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D, 2185 &dc->dc_chaninfo); 2186 } 2187 } 2188 if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) { 2189 regdomain_addchans(ci, &rd->bands_11ng, reg, 2190 IEEE80211_CHAN_G | IEEE80211_CHAN_HT20, 2191 &dc->dc_chaninfo); 2192 if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { 2193 regdomain_addchans(ci, &rd->bands_11ng, reg, 2194 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U, 2195 &dc->dc_chaninfo); 2196 regdomain_addchans(ci, &rd->bands_11ng, reg, 2197 IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D, 2198 &dc->dc_chaninfo); 2199 } 2200 } 2201 qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]), 2202 regdomain_sort); 2203 } else 2204 memcpy(ci, &dc->dc_chaninfo, 2205 IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); 2206 } 2207 2208 static void 2209 list_countries(void) 2210 { 2211 struct regdata *rdp = getregdata(); 2212 const struct country *cp; 2213 const struct regdomain *dp; 2214 int i; 2215 2216 i = 0; 2217 printf("\nCountry codes:\n"); 2218 LIST_FOREACH(cp, &rdp->countries, next) { 2219 printf("%2s %-15.15s%s", cp->isoname, 2220 cp->name, ((i+1)%4) == 0 ? "\n" : " "); 2221 i++; 2222 } 2223 i = 0; 2224 printf("\nRegulatory domains:\n"); 2225 LIST_FOREACH(dp, &rdp->domains, next) { 2226 printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " "); 2227 i++; 2228 } 2229 printf("\n"); 2230 } 2231 2232 static void 2233 defaultcountry(const struct regdomain *rd) 2234 { 2235 struct regdata *rdp = getregdata(); 2236 const struct country *cc; 2237 2238 cc = lib80211_country_findbycc(rdp, rd->cc->code); 2239 if (cc == NULL) 2240 errx(1, "internal error, ISO country code %d not " 2241 "defined for regdomain %s", rd->cc->code, rd->name); 2242 regdomain.country = cc->code; 2243 regdomain.isocc[0] = cc->isoname[0]; 2244 regdomain.isocc[1] = cc->isoname[1]; 2245 } 2246 2247 static 2248 DECL_CMD_FUNC(set80211regdomain, val, d) 2249 { 2250 struct regdata *rdp = getregdata(); 2251 const struct regdomain *rd; 2252 2253 rd = lib80211_regdomain_findbyname(rdp, val); 2254 if (rd == NULL) { 2255 char *eptr; 2256 long sku = strtol(val, &eptr, 0); 2257 2258 if (eptr != val) 2259 rd = lib80211_regdomain_findbysku(rdp, sku); 2260 if (eptr == val || rd == NULL) 2261 errx(1, "unknown regdomain %s", val); 2262 } 2263 getregdomain(s); 2264 regdomain.regdomain = rd->sku; 2265 if (regdomain.country == 0 && rd->cc != NULL) { 2266 /* 2267 * No country code setup and there's a default 2268 * one for this regdomain fill it in. 2269 */ 2270 defaultcountry(rd); 2271 } 2272 callback_register(setregdomain_cb, ®domain); 2273 } 2274 2275 static 2276 DECL_CMD_FUNC(set80211country, val, d) 2277 { 2278 struct regdata *rdp = getregdata(); 2279 const struct country *cc; 2280 2281 cc = lib80211_country_findbyname(rdp, val); 2282 if (cc == NULL) { 2283 char *eptr; 2284 long code = strtol(val, &eptr, 0); 2285 2286 if (eptr != val) 2287 cc = lib80211_country_findbycc(rdp, code); 2288 if (eptr == val || cc == NULL) 2289 errx(1, "unknown ISO country code %s", val); 2290 } 2291 getregdomain(s); 2292 regdomain.regdomain = cc->rd->sku; 2293 regdomain.country = cc->code; 2294 regdomain.isocc[0] = cc->isoname[0]; 2295 regdomain.isocc[1] = cc->isoname[1]; 2296 callback_register(setregdomain_cb, ®domain); 2297 } 2298 2299 static void 2300 set80211location(const char *val, int d, int s, const struct afswtch *rafp) 2301 { 2302 getregdomain(s); 2303 regdomain.location = d; 2304 callback_register(setregdomain_cb, ®domain); 2305 } 2306 2307 static void 2308 set80211ecm(const char *val, int d, int s, const struct afswtch *rafp) 2309 { 2310 getregdomain(s); 2311 regdomain.ecm = d; 2312 callback_register(setregdomain_cb, ®domain); 2313 } 2314 2315 static void 2316 LINE_INIT(char c) 2317 { 2318 spacer = c; 2319 if (c == '\t') 2320 col = 8; 2321 else 2322 col = 1; 2323 } 2324 2325 static void 2326 LINE_BREAK(void) 2327 { 2328 if (spacer != '\t') { 2329 printf("\n"); 2330 spacer = '\t'; 2331 } 2332 col = 8; /* 8-col tab */ 2333 } 2334 2335 static void 2336 LINE_CHECK(const char *fmt, ...) 2337 { 2338 char buf[80]; 2339 va_list ap; 2340 int n; 2341 2342 va_start(ap, fmt); 2343 n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap); 2344 va_end(ap); 2345 col += 1+n; 2346 if (col > MAXCOL) { 2347 LINE_BREAK(); 2348 col += n; 2349 } 2350 buf[0] = spacer; 2351 printf("%s", buf); 2352 spacer = ' '; 2353 } 2354 2355 static int 2356 getmaxrate(const uint8_t rates[15], uint8_t nrates) 2357 { 2358 int i, maxrate = -1; 2359 2360 for (i = 0; i < nrates; i++) { 2361 int rate = rates[i] & IEEE80211_RATE_VAL; 2362 if (rate > maxrate) 2363 maxrate = rate; 2364 } 2365 return maxrate / 2; 2366 } 2367 2368 static const char * 2369 getcaps(int capinfo) 2370 { 2371 static char capstring[32]; 2372 char *cp = capstring; 2373 2374 if (capinfo & IEEE80211_CAPINFO_ESS) 2375 *cp++ = 'E'; 2376 if (capinfo & IEEE80211_CAPINFO_IBSS) 2377 *cp++ = 'I'; 2378 if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE) 2379 *cp++ = 'c'; 2380 if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ) 2381 *cp++ = 'C'; 2382 if (capinfo & IEEE80211_CAPINFO_PRIVACY) 2383 *cp++ = 'P'; 2384 if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) 2385 *cp++ = 'S'; 2386 if (capinfo & IEEE80211_CAPINFO_PBCC) 2387 *cp++ = 'B'; 2388 if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY) 2389 *cp++ = 'A'; 2390 if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2391 *cp++ = 's'; 2392 if (capinfo & IEEE80211_CAPINFO_RSN) 2393 *cp++ = 'R'; 2394 if (capinfo & IEEE80211_CAPINFO_DSSSOFDM) 2395 *cp++ = 'D'; 2396 *cp = '\0'; 2397 return capstring; 2398 } 2399 2400 static const char * 2401 getflags(int flags) 2402 { 2403 static char flagstring[32]; 2404 char *cp = flagstring; 2405 2406 if (flags & IEEE80211_NODE_AUTH) 2407 *cp++ = 'A'; 2408 if (flags & IEEE80211_NODE_QOS) 2409 *cp++ = 'Q'; 2410 if (flags & IEEE80211_NODE_ERP) 2411 *cp++ = 'E'; 2412 if (flags & IEEE80211_NODE_PWR_MGT) 2413 *cp++ = 'P'; 2414 if (flags & IEEE80211_NODE_HT) { 2415 *cp++ = 'H'; 2416 if (flags & IEEE80211_NODE_HTCOMPAT) 2417 *cp++ = '+'; 2418 } 2419 if (flags & IEEE80211_NODE_WPS) 2420 *cp++ = 'W'; 2421 if (flags & IEEE80211_NODE_TSN) 2422 *cp++ = 'N'; 2423 if (flags & IEEE80211_NODE_AMPDU_TX) 2424 *cp++ = 'T'; 2425 if (flags & IEEE80211_NODE_AMPDU_RX) 2426 *cp++ = 'R'; 2427 if (flags & IEEE80211_NODE_MIMO_PS) { 2428 *cp++ = 'M'; 2429 if (flags & IEEE80211_NODE_MIMO_RTS) 2430 *cp++ = '+'; 2431 } 2432 if (flags & IEEE80211_NODE_RIFS) 2433 *cp++ = 'I'; 2434 if (flags & IEEE80211_NODE_SGI40) { 2435 *cp++ = 'S'; 2436 if (flags & IEEE80211_NODE_SGI20) 2437 *cp++ = '+'; 2438 } else if (flags & IEEE80211_NODE_SGI20) 2439 *cp++ = 's'; 2440 if (flags & IEEE80211_NODE_AMSDU_TX) 2441 *cp++ = 't'; 2442 if (flags & IEEE80211_NODE_AMSDU_RX) 2443 *cp++ = 'r'; 2444 *cp = '\0'; 2445 return flagstring; 2446 } 2447 2448 static void 2449 printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen) 2450 { 2451 printf("%s", tag); 2452 if (verbose) { 2453 maxlen -= strlen(tag)+2; 2454 if (2*ielen > maxlen) 2455 maxlen--; 2456 printf("<"); 2457 for (; ielen > 0; ie++, ielen--) { 2458 if (maxlen-- <= 0) 2459 break; 2460 printf("%02x", *ie); 2461 } 2462 if (ielen != 0) 2463 printf("-"); 2464 printf(">"); 2465 } 2466 } 2467 2468 #define LE_READ_2(p) \ 2469 ((u_int16_t) \ 2470 ((((const u_int8_t *)(p))[0] ) | \ 2471 (((const u_int8_t *)(p))[1] << 8))) 2472 #define LE_READ_4(p) \ 2473 ((u_int32_t) \ 2474 ((((const u_int8_t *)(p))[0] ) | \ 2475 (((const u_int8_t *)(p))[1] << 8) | \ 2476 (((const u_int8_t *)(p))[2] << 16) | \ 2477 (((const u_int8_t *)(p))[3] << 24))) 2478 2479 /* 2480 * NB: The decoding routines assume a properly formatted ie 2481 * which should be safe as the kernel only retains them 2482 * if they parse ok. 2483 */ 2484 2485 static void 2486 printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2487 { 2488 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 2489 static const char *acnames[] = { "BE", "BK", "VO", "VI" }; 2490 const struct ieee80211_wme_param *wme = 2491 (const struct ieee80211_wme_param *) ie; 2492 int i; 2493 2494 printf("%s", tag); 2495 if (!verbose) 2496 return; 2497 printf("<qosinfo 0x%x", wme->param_qosInfo); 2498 ie += offsetof(struct ieee80211_wme_param, params_acParams); 2499 for (i = 0; i < WME_NUM_AC; i++) { 2500 const struct ieee80211_wme_acparams *ac = 2501 &wme->params_acParams[i]; 2502 2503 printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]" 2504 , acnames[i] 2505 , MS(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : "" 2506 , MS(ac->acp_aci_aifsn, WME_PARAM_AIFSN) 2507 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN) 2508 , MS(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX) 2509 , LE_READ_2(&ac->acp_txop) 2510 ); 2511 } 2512 printf(">"); 2513 #undef MS 2514 } 2515 2516 static void 2517 printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2518 { 2519 printf("%s", tag); 2520 if (verbose) { 2521 const struct ieee80211_wme_info *wme = 2522 (const struct ieee80211_wme_info *) ie; 2523 printf("<version 0x%x info 0x%x>", 2524 wme->wme_version, wme->wme_info); 2525 } 2526 } 2527 2528 static void 2529 printhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2530 { 2531 printf("%s", tag); 2532 if (verbose) { 2533 const struct ieee80211_ie_htcap *htcap = 2534 (const struct ieee80211_ie_htcap *) ie; 2535 const char *sep; 2536 int i, j; 2537 2538 printf("<cap 0x%x param 0x%x", 2539 LE_READ_2(&htcap->hc_cap), htcap->hc_param); 2540 printf(" mcsset["); 2541 sep = ""; 2542 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2543 if (isset(htcap->hc_mcsset, i)) { 2544 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2545 if (isclr(htcap->hc_mcsset, j)) 2546 break; 2547 j--; 2548 if (i == j) 2549 printf("%s%u", sep, i); 2550 else 2551 printf("%s%u-%u", sep, i, j); 2552 i += j-i; 2553 sep = ","; 2554 } 2555 printf("] extcap 0x%x txbf 0x%x antenna 0x%x>", 2556 LE_READ_2(&htcap->hc_extcap), 2557 LE_READ_4(&htcap->hc_txbf), 2558 htcap->hc_antenna); 2559 } 2560 } 2561 2562 static void 2563 printhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2564 { 2565 printf("%s", tag); 2566 if (verbose) { 2567 const struct ieee80211_ie_htinfo *htinfo = 2568 (const struct ieee80211_ie_htinfo *) ie; 2569 const char *sep; 2570 int i, j; 2571 2572 printf("<ctl %u, %x,%x,%x,%x", htinfo->hi_ctrlchannel, 2573 htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3, 2574 LE_READ_2(&htinfo->hi_byte45)); 2575 printf(" basicmcs["); 2576 sep = ""; 2577 for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) 2578 if (isset(htinfo->hi_basicmcsset, i)) { 2579 for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) 2580 if (isclr(htinfo->hi_basicmcsset, j)) 2581 break; 2582 j--; 2583 if (i == j) 2584 printf("%s%u", sep, i); 2585 else 2586 printf("%s%u-%u", sep, i, j); 2587 i += j-i; 2588 sep = ","; 2589 } 2590 printf("]>"); 2591 } 2592 } 2593 2594 static void 2595 printathie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2596 { 2597 2598 printf("%s", tag); 2599 if (verbose) { 2600 const struct ieee80211_ath_ie *ath = 2601 (const struct ieee80211_ath_ie *)ie; 2602 2603 printf("<"); 2604 if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME) 2605 printf("DTURBO,"); 2606 if (ath->ath_capability & ATHEROS_CAP_COMPRESSION) 2607 printf("COMP,"); 2608 if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME) 2609 printf("FF,"); 2610 if (ath->ath_capability & ATHEROS_CAP_XR) 2611 printf("XR,"); 2612 if (ath->ath_capability & ATHEROS_CAP_AR) 2613 printf("AR,"); 2614 if (ath->ath_capability & ATHEROS_CAP_BURST) 2615 printf("BURST,"); 2616 if (ath->ath_capability & ATHEROS_CAP_WME) 2617 printf("WME,"); 2618 if (ath->ath_capability & ATHEROS_CAP_BOOST) 2619 printf("BOOST,"); 2620 printf("0x%x>", LE_READ_2(ath->ath_defkeyix)); 2621 } 2622 } 2623 2624 2625 static void 2626 printmeshconf(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) 2627 { 2628 #define MATCHOUI(field, oui, string) \ 2629 do { \ 2630 if (memcmp(field, oui, 4) == 0) \ 2631 printf("%s", string); \ 2632 } while (0) 2633 2634 printf("%s", tag); 2635 if (verbose) { 2636 const struct ieee80211_meshconf_ie *mconf = 2637 (const struct ieee80211_meshconf_ie *)ie; 2638 printf("<PATH:"); 2639 if (mconf->conf_pselid == IEEE80211_MESHCONF_PATH_HWMP) 2640 printf("HWMP"); 2641 else 2642 printf("UNKNOWN"); 2643 printf(" LINK:"); 2644 if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME) 2645 printf("AIRTIME"); 2646 else 2647 printf("UNKNOWN"); 2648 printf(" CONGESTION:"); 2649 if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED) 2650 printf("DISABLED"); 2651 else 2652 printf("UNKNOWN"); 2653 printf(" SYNC:"); 2654 if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF) 2655 printf("NEIGHOFF"); 2656 else 2657 printf("UNKNOWN"); 2658 printf(" AUTH:"); 2659 if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED) 2660 printf("DISABLED"); 2661 else 2662 printf("UNKNOWN"); 2663 printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form, 2664 mconf->conf_cap); 2665 } 2666 #undef MATCHOUI 2667 } 2668 2669 static const char * 2670 wpa_cipher(const u_int8_t *sel) 2671 { 2672 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2673 u_int32_t w = LE_READ_4(sel); 2674 2675 switch (w) { 2676 case WPA_SEL(WPA_CSE_NULL): 2677 return "NONE"; 2678 case WPA_SEL(WPA_CSE_WEP40): 2679 return "WEP40"; 2680 case WPA_SEL(WPA_CSE_WEP104): 2681 return "WEP104"; 2682 case WPA_SEL(WPA_CSE_TKIP): 2683 return "TKIP"; 2684 case WPA_SEL(WPA_CSE_CCMP): 2685 return "AES-CCMP"; 2686 } 2687 return "?"; /* NB: so 1<< is discarded */ 2688 #undef WPA_SEL 2689 } 2690 2691 static const char * 2692 wpa_keymgmt(const u_int8_t *sel) 2693 { 2694 #define WPA_SEL(x) (((x)<<24)|WPA_OUI) 2695 u_int32_t w = LE_READ_4(sel); 2696 2697 switch (w) { 2698 case WPA_SEL(WPA_ASE_8021X_UNSPEC): 2699 return "8021X-UNSPEC"; 2700 case WPA_SEL(WPA_ASE_8021X_PSK): 2701 return "8021X-PSK"; 2702 case WPA_SEL(WPA_ASE_NONE): 2703 return "NONE"; 2704 } 2705 return "?"; 2706 #undef WPA_SEL 2707 } 2708 2709 static void 2710 printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2711 { 2712 u_int8_t len = ie[1]; 2713 2714 printf("%s", tag); 2715 if (verbose) { 2716 const char *sep; 2717 int n; 2718 2719 ie += 6, len -= 4; /* NB: len is payload only */ 2720 2721 printf("<v%u", LE_READ_2(ie)); 2722 ie += 2, len -= 2; 2723 2724 printf(" mc:%s", wpa_cipher(ie)); 2725 ie += 4, len -= 4; 2726 2727 /* unicast ciphers */ 2728 n = LE_READ_2(ie); 2729 ie += 2, len -= 2; 2730 sep = " uc:"; 2731 for (; n > 0; n--) { 2732 printf("%s%s", sep, wpa_cipher(ie)); 2733 ie += 4, len -= 4; 2734 sep = "+"; 2735 } 2736 2737 /* key management algorithms */ 2738 n = LE_READ_2(ie); 2739 ie += 2, len -= 2; 2740 sep = " km:"; 2741 for (; n > 0; n--) { 2742 printf("%s%s", sep, wpa_keymgmt(ie)); 2743 ie += 4, len -= 4; 2744 sep = "+"; 2745 } 2746 2747 if (len > 2) /* optional capabilities */ 2748 printf(", caps 0x%x", LE_READ_2(ie)); 2749 printf(">"); 2750 } 2751 } 2752 2753 static const char * 2754 rsn_cipher(const u_int8_t *sel) 2755 { 2756 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 2757 u_int32_t w = LE_READ_4(sel); 2758 2759 switch (w) { 2760 case RSN_SEL(RSN_CSE_NULL): 2761 return "NONE"; 2762 case RSN_SEL(RSN_CSE_WEP40): 2763 return "WEP40"; 2764 case RSN_SEL(RSN_CSE_WEP104): 2765 return "WEP104"; 2766 case RSN_SEL(RSN_CSE_TKIP): 2767 return "TKIP"; 2768 case RSN_SEL(RSN_CSE_CCMP): 2769 return "AES-CCMP"; 2770 case RSN_SEL(RSN_CSE_WRAP): 2771 return "AES-OCB"; 2772 } 2773 return "?"; 2774 #undef WPA_SEL 2775 } 2776 2777 static const char * 2778 rsn_keymgmt(const u_int8_t *sel) 2779 { 2780 #define RSN_SEL(x) (((x)<<24)|RSN_OUI) 2781 u_int32_t w = LE_READ_4(sel); 2782 2783 switch (w) { 2784 case RSN_SEL(RSN_ASE_8021X_UNSPEC): 2785 return "8021X-UNSPEC"; 2786 case RSN_SEL(RSN_ASE_8021X_PSK): 2787 return "8021X-PSK"; 2788 case RSN_SEL(RSN_ASE_NONE): 2789 return "NONE"; 2790 } 2791 return "?"; 2792 #undef RSN_SEL 2793 } 2794 2795 static void 2796 printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2797 { 2798 printf("%s", tag); 2799 if (verbose) { 2800 const char *sep; 2801 int n; 2802 2803 ie += 2, ielen -= 2; 2804 2805 printf("<v%u", LE_READ_2(ie)); 2806 ie += 2, ielen -= 2; 2807 2808 printf(" mc:%s", rsn_cipher(ie)); 2809 ie += 4, ielen -= 4; 2810 2811 /* unicast ciphers */ 2812 n = LE_READ_2(ie); 2813 ie += 2, ielen -= 2; 2814 sep = " uc:"; 2815 for (; n > 0; n--) { 2816 printf("%s%s", sep, rsn_cipher(ie)); 2817 ie += 4, ielen -= 4; 2818 sep = "+"; 2819 } 2820 2821 /* key management algorithms */ 2822 n = LE_READ_2(ie); 2823 ie += 2, ielen -= 2; 2824 sep = " km:"; 2825 for (; n > 0; n--) { 2826 printf("%s%s", sep, rsn_keymgmt(ie)); 2827 ie += 4, ielen -= 4; 2828 sep = "+"; 2829 } 2830 2831 if (ielen > 2) /* optional capabilities */ 2832 printf(", caps 0x%x", LE_READ_2(ie)); 2833 /* XXXPMKID */ 2834 printf(">"); 2835 } 2836 } 2837 2838 /* XXX move to a public include file */ 2839 #define IEEE80211_WPS_DEV_PASS_ID 0x1012 2840 #define IEEE80211_WPS_SELECTED_REG 0x1041 2841 #define IEEE80211_WPS_SETUP_STATE 0x1044 2842 #define IEEE80211_WPS_UUID_E 0x1047 2843 #define IEEE80211_WPS_VERSION 0x104a 2844 2845 #define BE_READ_2(p) \ 2846 ((u_int16_t) \ 2847 ((((const u_int8_t *)(p))[1] ) | \ 2848 (((const u_int8_t *)(p))[0] << 8))) 2849 2850 static void 2851 printwpsie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2852 { 2853 #define N(a) (sizeof(a) / sizeof(a[0])) 2854 u_int8_t len = ie[1]; 2855 2856 printf("%s", tag); 2857 if (verbose) { 2858 static const char *dev_pass_id[] = { 2859 "D", /* Default (PIN) */ 2860 "U", /* User-specified */ 2861 "M", /* Machine-specified */ 2862 "K", /* Rekey */ 2863 "P", /* PushButton */ 2864 "R" /* Registrar-specified */ 2865 }; 2866 int n; 2867 2868 ie +=6, len -= 4; /* NB: len is payload only */ 2869 2870 /* WPS IE in Beacon and Probe Resp frames have different fields */ 2871 printf("<"); 2872 while (len) { 2873 uint16_t tlv_type = BE_READ_2(ie); 2874 uint16_t tlv_len = BE_READ_2(ie + 2); 2875 2876 ie += 4, len -= 4; 2877 2878 switch (tlv_type) { 2879 case IEEE80211_WPS_VERSION: 2880 printf("v:%d.%d", *ie >> 4, *ie & 0xf); 2881 break; 2882 case IEEE80211_WPS_SETUP_STATE: 2883 /* Only 1 and 2 are valid */ 2884 if (*ie == 0 || *ie >= 3) 2885 printf(" state:B"); 2886 else 2887 printf(" st:%s", *ie == 1 ? "N" : "C"); 2888 break; 2889 case IEEE80211_WPS_SELECTED_REG: 2890 printf(" sel:%s", *ie ? "T" : "F"); 2891 break; 2892 case IEEE80211_WPS_DEV_PASS_ID: 2893 n = LE_READ_2(ie); 2894 if (n < N(dev_pass_id)) 2895 printf(" dpi:%s", dev_pass_id[n]); 2896 break; 2897 case IEEE80211_WPS_UUID_E: 2898 printf(" uuid-e:"); 2899 for (n = 0; n < (tlv_len - 1); n++) 2900 printf("%02x-", ie[n]); 2901 printf("%02x", ie[n]); 2902 break; 2903 } 2904 ie += tlv_len, len -= tlv_len; 2905 } 2906 printf(">"); 2907 } 2908 #undef N 2909 } 2910 2911 static void 2912 printtdmaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2913 { 2914 printf("%s", tag); 2915 if (verbose && ielen >= sizeof(struct ieee80211_tdma_param)) { 2916 const struct ieee80211_tdma_param *tdma = 2917 (const struct ieee80211_tdma_param *) ie; 2918 2919 /* XXX tstamp */ 2920 printf("<v%u slot:%u slotcnt:%u slotlen:%u bintval:%u inuse:0x%x>", 2921 tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt, 2922 LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval, 2923 tdma->tdma_inuse[0]); 2924 } 2925 } 2926 2927 /* 2928 * Copy the ssid string contents into buf, truncating to fit. If the 2929 * ssid is entirely printable then just copy intact. Otherwise convert 2930 * to hexadecimal. If the result is truncated then replace the last 2931 * three characters with "...". 2932 */ 2933 static int 2934 copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len) 2935 { 2936 const u_int8_t *p; 2937 size_t maxlen; 2938 int i; 2939 2940 if (essid_len > bufsize) 2941 maxlen = bufsize; 2942 else 2943 maxlen = essid_len; 2944 /* determine printable or not */ 2945 for (i = 0, p = essid; i < maxlen; i++, p++) { 2946 if (*p < ' ' || *p > 0x7e) 2947 break; 2948 } 2949 if (i != maxlen) { /* not printable, print as hex */ 2950 if (bufsize < 3) 2951 return 0; 2952 strlcpy(buf, "0x", bufsize); 2953 bufsize -= 2; 2954 p = essid; 2955 for (i = 0; i < maxlen && bufsize >= 2; i++) { 2956 sprintf(&buf[2+2*i], "%02x", p[i]); 2957 bufsize -= 2; 2958 } 2959 if (i != essid_len) 2960 memcpy(&buf[2+2*i-3], "...", 3); 2961 } else { /* printable, truncate as needed */ 2962 memcpy(buf, essid, maxlen); 2963 if (maxlen != essid_len) 2964 memcpy(&buf[maxlen-3], "...", 3); 2965 } 2966 return maxlen; 2967 } 2968 2969 static void 2970 printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2971 { 2972 char ssid[2*IEEE80211_NWID_LEN+1]; 2973 2974 printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid); 2975 } 2976 2977 static void 2978 printrates(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2979 { 2980 const char *sep; 2981 int i; 2982 2983 printf("%s", tag); 2984 sep = "<"; 2985 for (i = 2; i < ielen; i++) { 2986 printf("%s%s%d", sep, 2987 ie[i] & IEEE80211_RATE_BASIC ? "B" : "", 2988 ie[i] & IEEE80211_RATE_VAL); 2989 sep = ","; 2990 } 2991 printf(">"); 2992 } 2993 2994 static void 2995 printcountry(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) 2996 { 2997 const struct ieee80211_country_ie *cie = 2998 (const struct ieee80211_country_ie *) ie; 2999 int i, nbands, schan, nchan; 3000 3001 printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]); 3002 nbands = (cie->len - 3) / sizeof(cie->band[0]); 3003 for (i = 0; i < nbands; i++) { 3004 schan = cie->band[i].schan; 3005 nchan = cie->band[i].nchan; 3006 if (nchan != 1) 3007 printf(" %u-%u,%u", schan, schan + nchan-1, 3008 cie->band[i].maxtxpwr); 3009 else 3010 printf(" %u,%u", schan, cie->band[i].maxtxpwr); 3011 } 3012 printf(">"); 3013 } 3014 3015 /* unaligned little endian access */ 3016 #define LE_READ_4(p) \ 3017 ((u_int32_t) \ 3018 ((((const u_int8_t *)(p))[0] ) | \ 3019 (((const u_int8_t *)(p))[1] << 8) | \ 3020 (((const u_int8_t *)(p))[2] << 16) | \ 3021 (((const u_int8_t *)(p))[3] << 24))) 3022 3023 static __inline int 3024 iswpaoui(const u_int8_t *frm) 3025 { 3026 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI); 3027 } 3028 3029 static __inline int 3030 iswmeinfo(const u_int8_t *frm) 3031 { 3032 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3033 frm[6] == WME_INFO_OUI_SUBTYPE; 3034 } 3035 3036 static __inline int 3037 iswmeparam(const u_int8_t *frm) 3038 { 3039 return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && 3040 frm[6] == WME_PARAM_OUI_SUBTYPE; 3041 } 3042 3043 static __inline int 3044 isatherosoui(const u_int8_t *frm) 3045 { 3046 return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI); 3047 } 3048 3049 static __inline int 3050 istdmaoui(const uint8_t *frm) 3051 { 3052 return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI); 3053 } 3054 3055 static __inline int 3056 iswpsoui(const uint8_t *frm) 3057 { 3058 return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI); 3059 } 3060 3061 static const char * 3062 iename(int elemid) 3063 { 3064 switch (elemid) { 3065 case IEEE80211_ELEMID_FHPARMS: return " FHPARMS"; 3066 case IEEE80211_ELEMID_CFPARMS: return " CFPARMS"; 3067 case IEEE80211_ELEMID_TIM: return " TIM"; 3068 case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS"; 3069 case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE"; 3070 case IEEE80211_ELEMID_PWRCNSTR: return " PWRCNSTR"; 3071 case IEEE80211_ELEMID_PWRCAP: return " PWRCAP"; 3072 case IEEE80211_ELEMID_TPCREQ: return " TPCREQ"; 3073 case IEEE80211_ELEMID_TPCREP: return " TPCREP"; 3074 case IEEE80211_ELEMID_SUPPCHAN: return " SUPPCHAN"; 3075 case IEEE80211_ELEMID_CSA: return " CSA"; 3076 case IEEE80211_ELEMID_MEASREQ: return " MEASREQ"; 3077 case IEEE80211_ELEMID_MEASREP: return " MEASREP"; 3078 case IEEE80211_ELEMID_QUIET: return " QUIET"; 3079 case IEEE80211_ELEMID_IBSSDFS: return " IBSSDFS"; 3080 case IEEE80211_ELEMID_TPC: return " TPC"; 3081 case IEEE80211_ELEMID_CCKM: return " CCKM"; 3082 } 3083 return " ???"; 3084 } 3085 3086 static void 3087 printies(const u_int8_t *vp, int ielen, int maxcols) 3088 { 3089 while (ielen > 0) { 3090 switch (vp[0]) { 3091 case IEEE80211_ELEMID_SSID: 3092 if (verbose) 3093 printssid(" SSID", vp, 2+vp[1], maxcols); 3094 break; 3095 case IEEE80211_ELEMID_RATES: 3096 case IEEE80211_ELEMID_XRATES: 3097 if (verbose) 3098 printrates(vp[0] == IEEE80211_ELEMID_RATES ? 3099 " RATES" : " XRATES", vp, 2+vp[1], maxcols); 3100 break; 3101 case IEEE80211_ELEMID_DSPARMS: 3102 if (verbose) 3103 printf(" DSPARMS<%u>", vp[2]); 3104 break; 3105 case IEEE80211_ELEMID_COUNTRY: 3106 if (verbose) 3107 printcountry(" COUNTRY", vp, 2+vp[1], maxcols); 3108 break; 3109 case IEEE80211_ELEMID_ERP: 3110 if (verbose) 3111 printf(" ERP<0x%x>", vp[2]); 3112 break; 3113 case IEEE80211_ELEMID_VENDOR: 3114 if (iswpaoui(vp)) 3115 printwpaie(" WPA", vp, 2+vp[1], maxcols); 3116 else if (iswmeinfo(vp)) 3117 printwmeinfo(" WME", vp, 2+vp[1], maxcols); 3118 else if (iswmeparam(vp)) 3119 printwmeparam(" WME", vp, 2+vp[1], maxcols); 3120 else if (isatherosoui(vp)) 3121 printathie(" ATH", vp, 2+vp[1], maxcols); 3122 else if (iswpsoui(vp)) 3123 printwpsie(" WPS", vp, 2+vp[1], maxcols); 3124 else if (istdmaoui(vp)) 3125 printtdmaie(" TDMA", vp, 2+vp[1], maxcols); 3126 else if (verbose) 3127 printie(" VEN", vp, 2+vp[1], maxcols); 3128 break; 3129 case IEEE80211_ELEMID_RSN: 3130 printrsnie(" RSN", vp, 2+vp[1], maxcols); 3131 break; 3132 case IEEE80211_ELEMID_HTCAP: 3133 printhtcap(" HTCAP", vp, 2+vp[1], maxcols); 3134 break; 3135 case IEEE80211_ELEMID_HTINFO: 3136 if (verbose) 3137 printhtinfo(" HTINFO", vp, 2+vp[1], maxcols); 3138 break; 3139 case IEEE80211_ELEMID_MESHID: 3140 if (verbose) 3141 printssid(" MESHID", vp, 2+vp[1], maxcols); 3142 break; 3143 case IEEE80211_ELEMID_MESHCONF: 3144 printmeshconf(" MESHCONF", vp, 2+vp[1], maxcols); 3145 break; 3146 default: 3147 if (verbose) 3148 printie(iename(vp[0]), vp, 2+vp[1], maxcols); 3149 break; 3150 } 3151 ielen -= 2+vp[1]; 3152 vp += 2+vp[1]; 3153 } 3154 } 3155 3156 static void 3157 printmimo(const struct ieee80211_mimo_info *mi) 3158 { 3159 /* NB: don't muddy display unless there's something to show */ 3160 if (mi->rssi[0] != 0 || mi->rssi[1] != 0 || mi->rssi[2] != 0) { 3161 /* XXX ignore EVM for now */ 3162 printf(" (rssi %d:%d:%d nf %d:%d:%d)", 3163 mi->rssi[0], mi->rssi[1], mi->rssi[2], 3164 mi->noise[0], mi->noise[1], mi->noise[2]); 3165 } 3166 } 3167 3168 static void 3169 list_scan(int s) 3170 { 3171 uint8_t buf[24*1024]; 3172 char ssid[IEEE80211_NWID_LEN+1]; 3173 const uint8_t *cp; 3174 int len, ssidmax, idlen; 3175 3176 if (get80211len(s, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0) 3177 errx(1, "unable to get scan results"); 3178 if (len < sizeof(struct ieee80211req_scan_result)) 3179 return; 3180 3181 getchaninfo(s); 3182 3183 ssidmax = verbose ? IEEE80211_NWID_LEN - 1 : 14; 3184 printf("%-*.*s %-17.17s %4s %4s %-7s %3s %4s\n" 3185 , ssidmax, ssidmax, "SSID/MESH ID" 3186 , "BSSID" 3187 , "CHAN" 3188 , "RATE" 3189 , " S:N" 3190 , "INT" 3191 , "CAPS" 3192 ); 3193 cp = buf; 3194 do { 3195 const struct ieee80211req_scan_result *sr; 3196 const uint8_t *vp, *idp; 3197 3198 sr = (const struct ieee80211req_scan_result *) cp; 3199 vp = cp + sr->isr_ie_off; 3200 if (sr->isr_meshid_len) { 3201 idp = vp + sr->isr_ssid_len; 3202 idlen = sr->isr_meshid_len; 3203 } else { 3204 idp = vp; 3205 idlen = sr->isr_ssid_len; 3206 } 3207 printf("%-*.*s %s %3d %3dM %3d:%-3d %3d %-4.4s" 3208 , ssidmax 3209 , copy_essid(ssid, ssidmax, idp, idlen) 3210 , ssid 3211 , ether_ntoa((const struct ether_addr *) sr->isr_bssid) 3212 , ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags) 3213 , getmaxrate(sr->isr_rates, sr->isr_nrates) 3214 , (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise 3215 , sr->isr_intval 3216 , getcaps(sr->isr_capinfo) 3217 ); 3218 printies(vp + sr->isr_ssid_len + sr->isr_meshid_len, 3219 sr->isr_ie_len, 24); 3220 printf("\n"); 3221 cp += sr->isr_len, len -= sr->isr_len; 3222 } while (len >= sizeof(struct ieee80211req_scan_result)); 3223 } 3224 3225 static void 3226 scan_and_wait(int s) 3227 { 3228 struct ieee80211_scan_req sr; 3229 struct ieee80211req ireq; 3230 int sroute; 3231 3232 sroute = socket(PF_ROUTE, SOCK_RAW, 0); 3233 if (sroute < 0) { 3234 perror("socket(PF_ROUTE,SOCK_RAW)"); 3235 return; 3236 } 3237 (void) memset(&ireq, 0, sizeof(ireq)); 3238 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 3239 ireq.i_type = IEEE80211_IOC_SCAN_REQ; 3240 3241 memset(&sr, 0, sizeof(sr)); 3242 sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE 3243 | IEEE80211_IOC_SCAN_BGSCAN 3244 | IEEE80211_IOC_SCAN_NOPICK 3245 | IEEE80211_IOC_SCAN_ONCE; 3246 sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER; 3247 sr.sr_nssid = 0; 3248 3249 ireq.i_data = &sr; 3250 ireq.i_len = sizeof(sr); 3251 /* 3252 * NB: only root can trigger a scan so ignore errors. Also ignore 3253 * possible errors from net80211, even if no new scan could be 3254 * started there might still be a valid scan cache. 3255 */ 3256 if (ioctl(s, SIOCS80211, &ireq) == 0) { 3257 char buf[2048]; 3258 struct if_announcemsghdr *ifan; 3259 struct rt_msghdr *rtm; 3260 3261 do { 3262 if (read(sroute, buf, sizeof(buf)) < 0) { 3263 perror("read(PF_ROUTE)"); 3264 break; 3265 } 3266 rtm = (struct rt_msghdr *) buf; 3267 if (rtm->rtm_version != RTM_VERSION) 3268 break; 3269 ifan = (struct if_announcemsghdr *) rtm; 3270 } while (rtm->rtm_type != RTM_IEEE80211 || 3271 ifan->ifan_what != RTM_IEEE80211_SCAN); 3272 } 3273 close(sroute); 3274 } 3275 3276 static 3277 DECL_CMD_FUNC(set80211scan, val, d) 3278 { 3279 scan_and_wait(s); 3280 list_scan(s); 3281 } 3282 3283 static enum ieee80211_opmode get80211opmode(int s); 3284 3285 static int 3286 gettxseq(const struct ieee80211req_sta_info *si) 3287 { 3288 int i, txseq; 3289 3290 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3291 return si->isi_txseqs[0]; 3292 /* XXX not right but usually what folks want */ 3293 txseq = 0; 3294 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3295 if (si->isi_txseqs[i] > txseq) 3296 txseq = si->isi_txseqs[i]; 3297 return txseq; 3298 } 3299 3300 static int 3301 getrxseq(const struct ieee80211req_sta_info *si) 3302 { 3303 int i, rxseq; 3304 3305 if ((si->isi_state & IEEE80211_NODE_QOS) == 0) 3306 return si->isi_rxseqs[0]; 3307 /* XXX not right but usually what folks want */ 3308 rxseq = 0; 3309 for (i = 0; i < IEEE80211_TID_SIZE; i++) 3310 if (si->isi_rxseqs[i] > rxseq) 3311 rxseq = si->isi_rxseqs[i]; 3312 return rxseq; 3313 } 3314 3315 static void 3316 list_stations(int s) 3317 { 3318 union { 3319 struct ieee80211req_sta_req req; 3320 uint8_t buf[24*1024]; 3321 } u; 3322 enum ieee80211_opmode opmode = get80211opmode(s); 3323 const uint8_t *cp; 3324 int len; 3325 3326 /* broadcast address =>'s get all stations */ 3327 (void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN); 3328 if (opmode == IEEE80211_M_STA) { 3329 /* 3330 * Get information about the associated AP. 3331 */ 3332 (void) get80211(s, IEEE80211_IOC_BSSID, 3333 u.req.is_u.macaddr, IEEE80211_ADDR_LEN); 3334 } 3335 if (get80211len(s, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0) 3336 errx(1, "unable to get station information"); 3337 if (len < sizeof(struct ieee80211req_sta_info)) 3338 return; 3339 3340 getchaninfo(s); 3341 3342 if (opmode == IEEE80211_M_MBSS) 3343 printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n" 3344 , "ADDR" 3345 , "CHAN" 3346 , "LOCAL" 3347 , "PEER" 3348 , "STATE" 3349 , "RATE" 3350 , "RSSI" 3351 , "IDLE" 3352 , "TXSEQ" 3353 , "RXSEQ" 3354 ); 3355 else 3356 printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-7s\n" 3357 , "ADDR" 3358 , "AID" 3359 , "CHAN" 3360 , "RATE" 3361 , "RSSI" 3362 , "IDLE" 3363 , "TXSEQ" 3364 , "RXSEQ" 3365 , "CAPS" 3366 , "FLAG" 3367 ); 3368 cp = (const uint8_t *) u.req.info; 3369 do { 3370 const struct ieee80211req_sta_info *si; 3371 3372 si = (const struct ieee80211req_sta_info *) cp; 3373 if (si->isi_len < sizeof(*si)) 3374 break; 3375 if (opmode == IEEE80211_M_MBSS) 3376 printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d" 3377 , ether_ntoa((const struct ether_addr*) 3378 si->isi_macaddr) 3379 , ieee80211_mhz2ieee(si->isi_freq, 3380 si->isi_flags) 3381 , si->isi_localid 3382 , si->isi_peerid 3383 , mesh_linkstate_string(si->isi_peerstate) 3384 , si->isi_txmbps/2 3385 , si->isi_rssi/2. 3386 , si->isi_inact 3387 , gettxseq(si) 3388 , getrxseq(si) 3389 ); 3390 else 3391 printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-7.7s" 3392 , ether_ntoa((const struct ether_addr*) 3393 si->isi_macaddr) 3394 , IEEE80211_AID(si->isi_associd) 3395 , ieee80211_mhz2ieee(si->isi_freq, 3396 si->isi_flags) 3397 , si->isi_txmbps/2 3398 , si->isi_rssi/2. 3399 , si->isi_inact 3400 , gettxseq(si) 3401 , getrxseq(si) 3402 , getcaps(si->isi_capinfo) 3403 , getflags(si->isi_state) 3404 ); 3405 printies(cp + si->isi_ie_off, si->isi_ie_len, 24); 3406 printmimo(&si->isi_mimo); 3407 printf("\n"); 3408 cp += si->isi_len, len -= si->isi_len; 3409 } while (len >= sizeof(struct ieee80211req_sta_info)); 3410 } 3411 3412 static const char * 3413 mesh_linkstate_string(uint8_t state) 3414 { 3415 #define N(a) (sizeof(a) / sizeof(a[0])) 3416 static const char *state_names[] = { 3417 [0] = "IDLE", 3418 [1] = "OPEN-TX", 3419 [2] = "OPEN-RX", 3420 [3] = "CONF-RX", 3421 [4] = "ESTAB", 3422 [5] = "HOLDING", 3423 }; 3424 3425 if (state >= N(state_names)) { 3426 static char buf[10]; 3427 snprintf(buf, sizeof(buf), "#%u", state); 3428 return buf; 3429 } else 3430 return state_names[state]; 3431 #undef N 3432 } 3433 3434 static const char * 3435 get_chaninfo(const struct ieee80211_channel *c, int precise, 3436 char buf[], size_t bsize) 3437 { 3438 buf[0] = '\0'; 3439 if (IEEE80211_IS_CHAN_FHSS(c)) 3440 strlcat(buf, " FHSS", bsize); 3441 if (IEEE80211_IS_CHAN_A(c)) 3442 strlcat(buf, " 11a", bsize); 3443 else if (IEEE80211_IS_CHAN_ANYG(c)) 3444 strlcat(buf, " 11g", bsize); 3445 else if (IEEE80211_IS_CHAN_B(c)) 3446 strlcat(buf, " 11b", bsize); 3447 if (IEEE80211_IS_CHAN_HALF(c)) 3448 strlcat(buf, "/10MHz", bsize); 3449 if (IEEE80211_IS_CHAN_QUARTER(c)) 3450 strlcat(buf, "/5MHz", bsize); 3451 if (IEEE80211_IS_CHAN_TURBO(c)) 3452 strlcat(buf, " Turbo", bsize); 3453 if (precise) { 3454 if (IEEE80211_IS_CHAN_HT20(c)) 3455 strlcat(buf, " ht/20", bsize); 3456 else if (IEEE80211_IS_CHAN_HT40D(c)) 3457 strlcat(buf, " ht/40-", bsize); 3458 else if (IEEE80211_IS_CHAN_HT40U(c)) 3459 strlcat(buf, " ht/40+", bsize); 3460 } else { 3461 if (IEEE80211_IS_CHAN_HT(c)) 3462 strlcat(buf, " ht", bsize); 3463 } 3464 return buf; 3465 } 3466 3467 static void 3468 print_chaninfo(const struct ieee80211_channel *c, int verb) 3469 { 3470 char buf[14]; 3471 3472 if (verb) 3473 printf("Channel %3u : %u%c%c%c%c%c MHz%-14.14s", 3474 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3475 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3476 IEEE80211_IS_CHAN_DFS(c) ? 'D' : ' ', 3477 IEEE80211_IS_CHAN_RADAR(c) ? 'R' : ' ', 3478 IEEE80211_IS_CHAN_CWINT(c) ? 'I' : ' ', 3479 IEEE80211_IS_CHAN_CACDONE(c) ? 'C' : ' ', 3480 get_chaninfo(c, verb, buf, sizeof(buf))); 3481 else 3482 printf("Channel %3u : %u%c MHz%-14.14s", 3483 ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, 3484 IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', 3485 get_chaninfo(c, verb, buf, sizeof(buf))); 3486 3487 } 3488 3489 static int 3490 chanpref(const struct ieee80211_channel *c) 3491 { 3492 if (IEEE80211_IS_CHAN_HT40(c)) 3493 return 40; 3494 if (IEEE80211_IS_CHAN_HT20(c)) 3495 return 30; 3496 if (IEEE80211_IS_CHAN_HALF(c)) 3497 return 10; 3498 if (IEEE80211_IS_CHAN_QUARTER(c)) 3499 return 5; 3500 if (IEEE80211_IS_CHAN_TURBO(c)) 3501 return 25; 3502 if (IEEE80211_IS_CHAN_A(c)) 3503 return 20; 3504 if (IEEE80211_IS_CHAN_G(c)) 3505 return 20; 3506 if (IEEE80211_IS_CHAN_B(c)) 3507 return 15; 3508 if (IEEE80211_IS_CHAN_PUREG(c)) 3509 return 15; 3510 return 0; 3511 } 3512 3513 static void 3514 print_channels(int s, const struct ieee80211req_chaninfo *chans, 3515 int allchans, int verb) 3516 { 3517 struct ieee80211req_chaninfo *achans; 3518 uint8_t reported[IEEE80211_CHAN_BYTES]; 3519 const struct ieee80211_channel *c; 3520 int i, half; 3521 3522 achans = malloc(IEEE80211_CHANINFO_SPACE(chans)); 3523 if (achans == NULL) 3524 errx(1, "no space for active channel list"); 3525 achans->ic_nchans = 0; 3526 memset(reported, 0, sizeof(reported)); 3527 if (!allchans) { 3528 struct ieee80211req_chanlist active; 3529 3530 if (get80211(s, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0) 3531 errx(1, "unable to get active channel list"); 3532 for (i = 0; i < chans->ic_nchans; i++) { 3533 c = &chans->ic_chans[i]; 3534 if (!isset(active.ic_channels, c->ic_ieee)) 3535 continue; 3536 /* 3537 * Suppress compatible duplicates unless 3538 * verbose. The kernel gives us it's 3539 * complete channel list which has separate 3540 * entries for 11g/11b and 11a/turbo. 3541 */ 3542 if (isset(reported, c->ic_ieee) && !verb) { 3543 /* XXX we assume duplicates are adjacent */ 3544 achans->ic_chans[achans->ic_nchans-1] = *c; 3545 } else { 3546 achans->ic_chans[achans->ic_nchans++] = *c; 3547 setbit(reported, c->ic_ieee); 3548 } 3549 } 3550 } else { 3551 for (i = 0; i < chans->ic_nchans; i++) { 3552 c = &chans->ic_chans[i]; 3553 /* suppress duplicates as above */ 3554 if (isset(reported, c->ic_ieee) && !verb) { 3555 /* XXX we assume duplicates are adjacent */ 3556 struct ieee80211_channel *a = 3557 &achans->ic_chans[achans->ic_nchans-1]; 3558 if (chanpref(c) > chanpref(a)) 3559 *a = *c; 3560 } else { 3561 achans->ic_chans[achans->ic_nchans++] = *c; 3562 setbit(reported, c->ic_ieee); 3563 } 3564 } 3565 } 3566 half = achans->ic_nchans / 2; 3567 if (achans->ic_nchans % 2) 3568 half++; 3569 3570 for (i = 0; i < achans->ic_nchans / 2; i++) { 3571 print_chaninfo(&achans->ic_chans[i], verb); 3572 print_chaninfo(&achans->ic_chans[half+i], verb); 3573 printf("\n"); 3574 } 3575 if (achans->ic_nchans % 2) { 3576 print_chaninfo(&achans->ic_chans[i], verb); 3577 printf("\n"); 3578 } 3579 free(achans); 3580 } 3581 3582 static void 3583 list_channels(int s, int allchans) 3584 { 3585 getchaninfo(s); 3586 print_channels(s, chaninfo, allchans, verbose); 3587 } 3588 3589 static void 3590 print_txpow(const struct ieee80211_channel *c) 3591 { 3592 printf("Channel %3u : %u MHz %3.1f reg %2d ", 3593 c->ic_ieee, c->ic_freq, 3594 c->ic_maxpower/2., c->ic_maxregpower); 3595 } 3596 3597 static void 3598 print_txpow_verbose(const struct ieee80211_channel *c) 3599 { 3600 print_chaninfo(c, 1); 3601 printf("min %4.1f dBm max %3.1f dBm reg %2d dBm", 3602 c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower); 3603 /* indicate where regulatory cap limits power use */ 3604 if (c->ic_maxpower > 2*c->ic_maxregpower) 3605 printf(" <"); 3606 } 3607 3608 static void 3609 list_txpow(int s) 3610 { 3611 struct ieee80211req_chaninfo *achans; 3612 uint8_t reported[IEEE80211_CHAN_BYTES]; 3613 struct ieee80211_channel *c, *prev; 3614 int i, half; 3615 3616 getchaninfo(s); 3617 achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo)); 3618 if (achans == NULL) 3619 errx(1, "no space for active channel list"); 3620 achans->ic_nchans = 0; 3621 memset(reported, 0, sizeof(reported)); 3622 for (i = 0; i < chaninfo->ic_nchans; i++) { 3623 c = &chaninfo->ic_chans[i]; 3624 /* suppress duplicates as above */ 3625 if (isset(reported, c->ic_ieee) && !verbose) { 3626 /* XXX we assume duplicates are adjacent */ 3627 prev = &achans->ic_chans[achans->ic_nchans-1]; 3628 /* display highest power on channel */ 3629 if (c->ic_maxpower > prev->ic_maxpower) 3630 *prev = *c; 3631 } else { 3632 achans->ic_chans[achans->ic_nchans++] = *c; 3633 setbit(reported, c->ic_ieee); 3634 } 3635 } 3636 if (!verbose) { 3637 half = achans->ic_nchans / 2; 3638 if (achans->ic_nchans % 2) 3639 half++; 3640 3641 for (i = 0; i < achans->ic_nchans / 2; i++) { 3642 print_txpow(&achans->ic_chans[i]); 3643 print_txpow(&achans->ic_chans[half+i]); 3644 printf("\n"); 3645 } 3646 if (achans->ic_nchans % 2) { 3647 print_txpow(&achans->ic_chans[i]); 3648 printf("\n"); 3649 } 3650 } else { 3651 for (i = 0; i < achans->ic_nchans; i++) { 3652 print_txpow_verbose(&achans->ic_chans[i]); 3653 printf("\n"); 3654 } 3655 } 3656 free(achans); 3657 } 3658 3659 static void 3660 list_keys(int s) 3661 { 3662 } 3663 3664 #define IEEE80211_C_BITS \ 3665 "\20\1STA\002803ENCAP\7FF\10TURBOP\11IBSS\12PMGT" \ 3666 "\13HOSTAP\14AHDEMO\15SWRETRY\16TXPMGT\17SHSLOT\20SHPREAMBLE" \ 3667 "\21MONITOR\22DFS\23MBSS\30WPA1\31WPA2\32BURST\33WME\34WDS\36BGSCAN" \ 3668 "\37TXFRAG\40TDMA" 3669 3670 static void 3671 list_capabilities(int s) 3672 { 3673 struct ieee80211_devcaps_req *dc; 3674 3675 if (verbose) 3676 dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); 3677 else 3678 dc = malloc(IEEE80211_DEVCAPS_SIZE(1)); 3679 if (dc == NULL) 3680 errx(1, "no space for device capabilities"); 3681 dc->dc_chaninfo.ic_nchans = verbose ? MAXCHAN : 1; 3682 getdevcaps(s, dc); 3683 printb("drivercaps", dc->dc_drivercaps, IEEE80211_C_BITS); 3684 if (dc->dc_cryptocaps != 0 || verbose) { 3685 putchar('\n'); 3686 printb("cryptocaps", dc->dc_cryptocaps, IEEE80211_CRYPTO_BITS); 3687 } 3688 if (dc->dc_htcaps != 0 || verbose) { 3689 putchar('\n'); 3690 printb("htcaps", dc->dc_htcaps, IEEE80211_HTCAP_BITS); 3691 } 3692 putchar('\n'); 3693 if (verbose) { 3694 chaninfo = &dc->dc_chaninfo; /* XXX */ 3695 print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, verbose); 3696 } 3697 free(dc); 3698 } 3699 3700 static int 3701 get80211wme(int s, int param, int ac, int *val) 3702 { 3703 struct ieee80211req ireq; 3704 3705 (void) memset(&ireq, 0, sizeof(ireq)); 3706 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 3707 ireq.i_type = param; 3708 ireq.i_len = ac; 3709 if (ioctl(s, SIOCG80211, &ireq) < 0) { 3710 warn("cannot get WME parameter %d, ac %d%s", 3711 param, ac & IEEE80211_WMEPARAM_VAL, 3712 ac & IEEE80211_WMEPARAM_BSS ? " (BSS)" : ""); 3713 return -1; 3714 } 3715 *val = ireq.i_val; 3716 return 0; 3717 } 3718 3719 static void 3720 list_wme_aci(int s, const char *tag, int ac) 3721 { 3722 int val; 3723 3724 printf("\t%s", tag); 3725 3726 /* show WME BSS parameters */ 3727 if (get80211wme(s, IEEE80211_IOC_WME_CWMIN, ac, &val) != -1) 3728 printf(" cwmin %2u", val); 3729 if (get80211wme(s, IEEE80211_IOC_WME_CWMAX, ac, &val) != -1) 3730 printf(" cwmax %2u", val); 3731 if (get80211wme(s, IEEE80211_IOC_WME_AIFS, ac, &val) != -1) 3732 printf(" aifs %2u", val); 3733 if (get80211wme(s, IEEE80211_IOC_WME_TXOPLIMIT, ac, &val) != -1) 3734 printf(" txopLimit %3u", val); 3735 if (get80211wme(s, IEEE80211_IOC_WME_ACM, ac, &val) != -1) { 3736 if (val) 3737 printf(" acm"); 3738 else if (verbose) 3739 printf(" -acm"); 3740 } 3741 /* !BSS only */ 3742 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 3743 if (get80211wme(s, IEEE80211_IOC_WME_ACKPOLICY, ac, &val) != -1) { 3744 if (!val) 3745 printf(" -ack"); 3746 else if (verbose) 3747 printf(" ack"); 3748 } 3749 } 3750 printf("\n"); 3751 } 3752 3753 static void 3754 list_wme(int s) 3755 { 3756 static const char *acnames[] = { "AC_BE", "AC_BK", "AC_VI", "AC_VO" }; 3757 int ac; 3758 3759 if (verbose) { 3760 /* display both BSS and local settings */ 3761 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) { 3762 again: 3763 if (ac & IEEE80211_WMEPARAM_BSS) 3764 list_wme_aci(s, " ", ac); 3765 else 3766 list_wme_aci(s, acnames[ac], ac); 3767 if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { 3768 ac |= IEEE80211_WMEPARAM_BSS; 3769 goto again; 3770 } else 3771 ac &= ~IEEE80211_WMEPARAM_BSS; 3772 } 3773 } else { 3774 /* display only channel settings */ 3775 for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) 3776 list_wme_aci(s, acnames[ac], ac); 3777 } 3778 } 3779 3780 static void 3781 list_roam(int s) 3782 { 3783 const struct ieee80211_roamparam *rp; 3784 int mode; 3785 3786 getroam(s); 3787 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 3788 rp = &roamparams.params[mode]; 3789 if (rp->rssi == 0 && rp->rate == 0) 3790 continue; 3791 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 3792 if (rp->rssi & 1) 3793 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm MCS %2u ", 3794 modename[mode], rp->rssi/2, 3795 rp->rate &~ IEEE80211_RATE_MCS); 3796 else 3797 LINE_CHECK("roam:%-7.7s rssi %4udBm MCS %2u ", 3798 modename[mode], rp->rssi/2, 3799 rp->rate &~ IEEE80211_RATE_MCS); 3800 } else { 3801 if (rp->rssi & 1) 3802 LINE_CHECK("roam:%-7.7s rssi %2u.5dBm rate %2u Mb/s", 3803 modename[mode], rp->rssi/2, rp->rate/2); 3804 else 3805 LINE_CHECK("roam:%-7.7s rssi %4udBm rate %2u Mb/s", 3806 modename[mode], rp->rssi/2, rp->rate/2); 3807 } 3808 } 3809 } 3810 3811 static void 3812 list_txparams(int s) 3813 { 3814 const struct ieee80211_txparam *tp; 3815 int mode; 3816 3817 gettxparams(s); 3818 for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { 3819 tp = &txparams.params[mode]; 3820 if (tp->mgmtrate == 0 && tp->mcastrate == 0) 3821 continue; 3822 if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) { 3823 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 3824 LINE_CHECK("%-7.7s ucast NONE mgmt %2u MCS " 3825 "mcast %2u MCS maxretry %u", 3826 modename[mode], 3827 tp->mgmtrate &~ IEEE80211_RATE_MCS, 3828 tp->mcastrate &~ IEEE80211_RATE_MCS, 3829 tp->maxretry); 3830 else 3831 LINE_CHECK("%-7.7s ucast %2u MCS mgmt %2u MCS " 3832 "mcast %2u MCS maxretry %u", 3833 modename[mode], 3834 tp->ucastrate &~ IEEE80211_RATE_MCS, 3835 tp->mgmtrate &~ IEEE80211_RATE_MCS, 3836 tp->mcastrate &~ IEEE80211_RATE_MCS, 3837 tp->maxretry); 3838 } else { 3839 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 3840 LINE_CHECK("%-7.7s ucast NONE mgmt %2u Mb/s " 3841 "mcast %2u Mb/s maxretry %u", 3842 modename[mode], 3843 tp->mgmtrate/2, 3844 tp->mcastrate/2, tp->maxretry); 3845 else 3846 LINE_CHECK("%-7.7s ucast %2u Mb/s mgmt %2u Mb/s " 3847 "mcast %2u Mb/s maxretry %u", 3848 modename[mode], 3849 tp->ucastrate/2, tp->mgmtrate/2, 3850 tp->mcastrate/2, tp->maxretry); 3851 } 3852 } 3853 } 3854 3855 static void 3856 printpolicy(int policy) 3857 { 3858 switch (policy) { 3859 case IEEE80211_MACCMD_POLICY_OPEN: 3860 printf("policy: open\n"); 3861 break; 3862 case IEEE80211_MACCMD_POLICY_ALLOW: 3863 printf("policy: allow\n"); 3864 break; 3865 case IEEE80211_MACCMD_POLICY_DENY: 3866 printf("policy: deny\n"); 3867 break; 3868 case IEEE80211_MACCMD_POLICY_RADIUS: 3869 printf("policy: radius\n"); 3870 break; 3871 default: 3872 printf("policy: unknown (%u)\n", policy); 3873 break; 3874 } 3875 } 3876 3877 static void 3878 list_mac(int s) 3879 { 3880 struct ieee80211req ireq; 3881 struct ieee80211req_maclist *acllist; 3882 int i, nacls, policy, len; 3883 uint8_t *data; 3884 char c; 3885 3886 (void) memset(&ireq, 0, sizeof(ireq)); 3887 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); /* XXX ?? */ 3888 ireq.i_type = IEEE80211_IOC_MACCMD; 3889 ireq.i_val = IEEE80211_MACCMD_POLICY; 3890 if (ioctl(s, SIOCG80211, &ireq) < 0) { 3891 if (errno == EINVAL) { 3892 printf("No acl policy loaded\n"); 3893 return; 3894 } 3895 err(1, "unable to get mac policy"); 3896 } 3897 policy = ireq.i_val; 3898 if (policy == IEEE80211_MACCMD_POLICY_OPEN) { 3899 c = '*'; 3900 } else if (policy == IEEE80211_MACCMD_POLICY_ALLOW) { 3901 c = '+'; 3902 } else if (policy == IEEE80211_MACCMD_POLICY_DENY) { 3903 c = '-'; 3904 } else if (policy == IEEE80211_MACCMD_POLICY_RADIUS) { 3905 c = 'r'; /* NB: should never have entries */ 3906 } else { 3907 printf("policy: unknown (%u)\n", policy); 3908 c = '?'; 3909 } 3910 if (verbose || c == '?') 3911 printpolicy(policy); 3912 3913 ireq.i_val = IEEE80211_MACCMD_LIST; 3914 ireq.i_len = 0; 3915 if (ioctl(s, SIOCG80211, &ireq) < 0) 3916 err(1, "unable to get mac acl list size"); 3917 if (ireq.i_len == 0) { /* NB: no acls */ 3918 if (!(verbose || c == '?')) 3919 printpolicy(policy); 3920 return; 3921 } 3922 len = ireq.i_len; 3923 3924 data = malloc(len); 3925 if (data == NULL) 3926 err(1, "out of memory for acl list"); 3927 3928 ireq.i_data = data; 3929 if (ioctl(s, SIOCG80211, &ireq) < 0) 3930 err(1, "unable to get mac acl list"); 3931 nacls = len / sizeof(*acllist); 3932 acllist = (struct ieee80211req_maclist *) data; 3933 for (i = 0; i < nacls; i++) 3934 printf("%c%s\n", c, ether_ntoa( 3935 (const struct ether_addr *) acllist[i].ml_macaddr)); 3936 free(data); 3937 } 3938 3939 static void 3940 print_regdomain(const struct ieee80211_regdomain *reg, int verb) 3941 { 3942 if ((reg->regdomain != 0 && 3943 reg->regdomain != reg->country) || verb) { 3944 const struct regdomain *rd = 3945 lib80211_regdomain_findbysku(getregdata(), reg->regdomain); 3946 if (rd == NULL) 3947 LINE_CHECK("regdomain %d", reg->regdomain); 3948 else 3949 LINE_CHECK("regdomain %s", rd->name); 3950 } 3951 if (reg->country != 0 || verb) { 3952 const struct country *cc = 3953 lib80211_country_findbycc(getregdata(), reg->country); 3954 if (cc == NULL) 3955 LINE_CHECK("country %d", reg->country); 3956 else 3957 LINE_CHECK("country %s", cc->isoname); 3958 } 3959 if (reg->location == 'I') 3960 LINE_CHECK("indoor"); 3961 else if (reg->location == 'O') 3962 LINE_CHECK("outdoor"); 3963 else if (verb) 3964 LINE_CHECK("anywhere"); 3965 if (reg->ecm) 3966 LINE_CHECK("ecm"); 3967 else if (verb) 3968 LINE_CHECK("-ecm"); 3969 } 3970 3971 static void 3972 list_regdomain(int s, int channelsalso) 3973 { 3974 getregdomain(s); 3975 if (channelsalso) { 3976 getchaninfo(s); 3977 spacer = ':'; 3978 print_regdomain(®domain, 1); 3979 LINE_BREAK(); 3980 print_channels(s, chaninfo, 1/*allchans*/, 1/*verbose*/); 3981 } else 3982 print_regdomain(®domain, verbose); 3983 } 3984 3985 static void 3986 list_mesh(int s) 3987 { 3988 struct ieee80211req ireq; 3989 struct ieee80211req_mesh_route routes[128]; 3990 struct ieee80211req_mesh_route *rt; 3991 3992 (void) memset(&ireq, 0, sizeof(ireq)); 3993 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 3994 ireq.i_type = IEEE80211_IOC_MESH_RTCMD; 3995 ireq.i_val = IEEE80211_MESH_RTCMD_LIST; 3996 ireq.i_data = &routes; 3997 ireq.i_len = sizeof(routes); 3998 if (ioctl(s, SIOCG80211, &ireq) < 0) 3999 err(1, "unable to get the Mesh routing table"); 4000 4001 printf("%-17.17s %-17.17s %4s %4s %4s %6s %s\n" 4002 , "DEST" 4003 , "NEXT HOP" 4004 , "HOPS" 4005 , "METRIC" 4006 , "LIFETIME" 4007 , "MSEQ" 4008 , "FLAGS"); 4009 4010 for (rt = &routes[0]; rt - &routes[0] < ireq.i_len / sizeof(*rt); rt++){ 4011 printf("%s ", 4012 ether_ntoa((const struct ether_addr *)rt->imr_dest)); 4013 printf("%s %4u %4u %6u %6u %c%c\n", 4014 ether_ntoa((const struct ether_addr *)rt->imr_nexthop), 4015 rt->imr_nhops, rt->imr_metric, rt->imr_lifetime, 4016 rt->imr_lastmseq, 4017 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_VALID) ? 4018 'V' : '!', 4019 (rt->imr_flags & IEEE80211_MESHRT_FLAGS_PROXY) ? 4020 'P' : ' '); 4021 } 4022 } 4023 4024 static 4025 DECL_CMD_FUNC(set80211list, arg, d) 4026 { 4027 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 4028 4029 LINE_INIT('\t'); 4030 4031 if (iseq(arg, "sta")) 4032 list_stations(s); 4033 else if (iseq(arg, "scan") || iseq(arg, "ap")) 4034 list_scan(s); 4035 else if (iseq(arg, "chan") || iseq(arg, "freq")) 4036 list_channels(s, 1); 4037 else if (iseq(arg, "active")) 4038 list_channels(s, 0); 4039 else if (iseq(arg, "keys")) 4040 list_keys(s); 4041 else if (iseq(arg, "caps")) 4042 list_capabilities(s); 4043 else if (iseq(arg, "wme") || iseq(arg, "wmm")) 4044 list_wme(s); 4045 else if (iseq(arg, "mac")) 4046 list_mac(s); 4047 else if (iseq(arg, "txpow")) 4048 list_txpow(s); 4049 else if (iseq(arg, "roam")) 4050 list_roam(s); 4051 else if (iseq(arg, "txparam") || iseq(arg, "txparm")) 4052 list_txparams(s); 4053 else if (iseq(arg, "regdomain")) 4054 list_regdomain(s, 1); 4055 else if (iseq(arg, "countries")) 4056 list_countries(); 4057 else if (iseq(arg, "mesh")) 4058 list_mesh(s); 4059 else 4060 errx(1, "Don't know how to list %s for %s", arg, name); 4061 LINE_BREAK(); 4062 #undef iseq 4063 } 4064 4065 static enum ieee80211_opmode 4066 get80211opmode(int s) 4067 { 4068 struct ifmediareq ifmr; 4069 4070 (void) memset(&ifmr, 0, sizeof(ifmr)); 4071 (void) strncpy(ifmr.ifm_name, name, sizeof(ifmr.ifm_name)); 4072 4073 if (ioctl(s, SIOCGIFMEDIA, (caddr_t)&ifmr) >= 0) { 4074 if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) { 4075 if (ifmr.ifm_current & IFM_FLAG0) 4076 return IEEE80211_M_AHDEMO; 4077 else 4078 return IEEE80211_M_IBSS; 4079 } 4080 if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP) 4081 return IEEE80211_M_HOSTAP; 4082 if (ifmr.ifm_current & IFM_IEEE80211_MONITOR) 4083 return IEEE80211_M_MONITOR; 4084 if (ifmr.ifm_current & IFM_IEEE80211_MBSS) 4085 return IEEE80211_M_MBSS; 4086 } 4087 return IEEE80211_M_STA; 4088 } 4089 4090 #if 0 4091 static void 4092 printcipher(int s, struct ieee80211req *ireq, int keylenop) 4093 { 4094 switch (ireq->i_val) { 4095 case IEEE80211_CIPHER_WEP: 4096 ireq->i_type = keylenop; 4097 if (ioctl(s, SIOCG80211, ireq) != -1) 4098 printf("WEP-%s", 4099 ireq->i_len <= 5 ? "40" : 4100 ireq->i_len <= 13 ? "104" : "128"); 4101 else 4102 printf("WEP"); 4103 break; 4104 case IEEE80211_CIPHER_TKIP: 4105 printf("TKIP"); 4106 break; 4107 case IEEE80211_CIPHER_AES_OCB: 4108 printf("AES-OCB"); 4109 break; 4110 case IEEE80211_CIPHER_AES_CCM: 4111 printf("AES-CCM"); 4112 break; 4113 case IEEE80211_CIPHER_CKIP: 4114 printf("CKIP"); 4115 break; 4116 case IEEE80211_CIPHER_NONE: 4117 printf("NONE"); 4118 break; 4119 default: 4120 printf("UNKNOWN (0x%x)", ireq->i_val); 4121 break; 4122 } 4123 } 4124 #endif 4125 4126 static void 4127 printkey(const struct ieee80211req_key *ik) 4128 { 4129 static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE]; 4130 int keylen = ik->ik_keylen; 4131 int printcontents; 4132 4133 printcontents = printkeys && 4134 (memcmp(ik->ik_keydata, zerodata, keylen) != 0 || verbose); 4135 if (printcontents) 4136 LINE_BREAK(); 4137 switch (ik->ik_type) { 4138 case IEEE80211_CIPHER_WEP: 4139 /* compatibility */ 4140 LINE_CHECK("wepkey %u:%s", ik->ik_keyix+1, 4141 keylen <= 5 ? "40-bit" : 4142 keylen <= 13 ? "104-bit" : "128-bit"); 4143 break; 4144 case IEEE80211_CIPHER_TKIP: 4145 if (keylen > 128/8) 4146 keylen -= 128/8; /* ignore MIC for now */ 4147 LINE_CHECK("TKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4148 break; 4149 case IEEE80211_CIPHER_AES_OCB: 4150 LINE_CHECK("AES-OCB %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4151 break; 4152 case IEEE80211_CIPHER_AES_CCM: 4153 LINE_CHECK("AES-CCM %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4154 break; 4155 case IEEE80211_CIPHER_CKIP: 4156 LINE_CHECK("CKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4157 break; 4158 case IEEE80211_CIPHER_NONE: 4159 LINE_CHECK("NULL %u:%u-bit", ik->ik_keyix+1, 8*keylen); 4160 break; 4161 default: 4162 LINE_CHECK("UNKNOWN (0x%x) %u:%u-bit", 4163 ik->ik_type, ik->ik_keyix+1, 8*keylen); 4164 break; 4165 } 4166 if (printcontents) { 4167 int i; 4168 4169 printf(" <"); 4170 for (i = 0; i < keylen; i++) 4171 printf("%02x", ik->ik_keydata[i]); 4172 printf(">"); 4173 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4174 (ik->ik_keyrsc != 0 || verbose)) 4175 printf(" rsc %ju", (uintmax_t)ik->ik_keyrsc); 4176 if (ik->ik_type != IEEE80211_CIPHER_WEP && 4177 (ik->ik_keytsc != 0 || verbose)) 4178 printf(" tsc %ju", (uintmax_t)ik->ik_keytsc); 4179 if (ik->ik_flags != 0 && verbose) { 4180 const char *sep = " "; 4181 4182 if (ik->ik_flags & IEEE80211_KEY_XMIT) 4183 printf("%stx", sep), sep = "+"; 4184 if (ik->ik_flags & IEEE80211_KEY_RECV) 4185 printf("%srx", sep), sep = "+"; 4186 if (ik->ik_flags & IEEE80211_KEY_DEFAULT) 4187 printf("%sdef", sep), sep = "+"; 4188 } 4189 LINE_BREAK(); 4190 } 4191 } 4192 4193 static void 4194 printrate(const char *tag, int v, int defrate, int defmcs) 4195 { 4196 if ((v & IEEE80211_RATE_MCS) == 0) { 4197 if (v != defrate) { 4198 if (v & 1) 4199 LINE_CHECK("%s %d.5", tag, v/2); 4200 else 4201 LINE_CHECK("%s %d", tag, v/2); 4202 } 4203 } else { 4204 if (v != defmcs) 4205 LINE_CHECK("%s %d", tag, v &~ 0x80); 4206 } 4207 } 4208 4209 static int 4210 getid(int s, int ix, void *data, size_t len, int *plen, int mesh) 4211 { 4212 struct ieee80211req ireq; 4213 4214 (void) memset(&ireq, 0, sizeof(ireq)); 4215 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4216 ireq.i_type = (!mesh) ? IEEE80211_IOC_SSID : IEEE80211_IOC_MESH_ID; 4217 ireq.i_val = ix; 4218 ireq.i_data = data; 4219 ireq.i_len = len; 4220 if (ioctl(s, SIOCG80211, &ireq) < 0) 4221 return -1; 4222 *plen = ireq.i_len; 4223 return 0; 4224 } 4225 4226 static void 4227 ieee80211_status(int s) 4228 { 4229 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 4230 enum ieee80211_opmode opmode = get80211opmode(s); 4231 int i, num, wpa, wme, bgscan, bgscaninterval, val, len, wepmode; 4232 uint8_t data[32]; 4233 const struct ieee80211_channel *c; 4234 const struct ieee80211_roamparam *rp; 4235 const struct ieee80211_txparam *tp; 4236 4237 if (getid(s, -1, data, sizeof(data), &len, 0) < 0) { 4238 /* If we can't get the SSID, this isn't an 802.11 device. */ 4239 return; 4240 } 4241 4242 /* 4243 * Invalidate cached state so printing status for multiple 4244 * if's doesn't reuse the first interfaces' cached state. 4245 */ 4246 gotcurchan = 0; 4247 gotroam = 0; 4248 gottxparams = 0; 4249 gothtconf = 0; 4250 gotregdomain = 0; 4251 4252 printf("\t"); 4253 if (opmode == IEEE80211_M_MBSS) { 4254 printf("meshid "); 4255 getid(s, 0, data, sizeof(data), &len, 1); 4256 print_string(data, len); 4257 } else { 4258 if (get80211val(s, IEEE80211_IOC_NUMSSIDS, &num) < 0) 4259 num = 0; 4260 printf("ssid "); 4261 if (num > 1) { 4262 for (i = 0; i < num; i++) { 4263 if (getid(s, i, data, sizeof(data), &len, 0) >= 0 && len > 0) { 4264 printf(" %d:", i + 1); 4265 print_string(data, len); 4266 } 4267 } 4268 } else 4269 print_string(data, len); 4270 } 4271 c = getcurchan(s); 4272 if (c->ic_freq != IEEE80211_CHAN_ANY) { 4273 char buf[14]; 4274 printf(" channel %d (%u MHz%s)", c->ic_ieee, c->ic_freq, 4275 get_chaninfo(c, 1, buf, sizeof(buf))); 4276 } else if (verbose) 4277 printf(" channel UNDEF"); 4278 4279 if (get80211(s, IEEE80211_IOC_BSSID, data, IEEE80211_ADDR_LEN) >= 0 && 4280 (memcmp(data, zerobssid, sizeof(zerobssid)) != 0 || verbose)) 4281 printf(" bssid %s", ether_ntoa((struct ether_addr *)data)); 4282 4283 if (get80211len(s, IEEE80211_IOC_STATIONNAME, data, sizeof(data), &len) != -1) { 4284 printf("\n\tstationname "); 4285 print_string(data, len); 4286 } 4287 4288 spacer = ' '; /* force first break */ 4289 LINE_BREAK(); 4290 4291 list_regdomain(s, 0); 4292 4293 wpa = 0; 4294 if (get80211val(s, IEEE80211_IOC_AUTHMODE, &val) != -1) { 4295 switch (val) { 4296 case IEEE80211_AUTH_NONE: 4297 LINE_CHECK("authmode NONE"); 4298 break; 4299 case IEEE80211_AUTH_OPEN: 4300 LINE_CHECK("authmode OPEN"); 4301 break; 4302 case IEEE80211_AUTH_SHARED: 4303 LINE_CHECK("authmode SHARED"); 4304 break; 4305 case IEEE80211_AUTH_8021X: 4306 LINE_CHECK("authmode 802.1x"); 4307 break; 4308 case IEEE80211_AUTH_WPA: 4309 if (get80211val(s, IEEE80211_IOC_WPA, &wpa) < 0) 4310 wpa = 1; /* default to WPA1 */ 4311 switch (wpa) { 4312 case 2: 4313 LINE_CHECK("authmode WPA2/802.11i"); 4314 break; 4315 case 3: 4316 LINE_CHECK("authmode WPA1+WPA2/802.11i"); 4317 break; 4318 default: 4319 LINE_CHECK("authmode WPA"); 4320 break; 4321 } 4322 break; 4323 case IEEE80211_AUTH_AUTO: 4324 LINE_CHECK("authmode AUTO"); 4325 break; 4326 default: 4327 LINE_CHECK("authmode UNKNOWN (0x%x)", val); 4328 break; 4329 } 4330 } 4331 4332 if (wpa || verbose) { 4333 if (get80211val(s, IEEE80211_IOC_WPS, &val) != -1) { 4334 if (val) 4335 LINE_CHECK("wps"); 4336 else if (verbose) 4337 LINE_CHECK("-wps"); 4338 } 4339 if (get80211val(s, IEEE80211_IOC_TSN, &val) != -1) { 4340 if (val) 4341 LINE_CHECK("tsn"); 4342 else if (verbose) 4343 LINE_CHECK("-tsn"); 4344 } 4345 if (ioctl(s, IEEE80211_IOC_COUNTERMEASURES, &val) != -1) { 4346 if (val) 4347 LINE_CHECK("countermeasures"); 4348 else if (verbose) 4349 LINE_CHECK("-countermeasures"); 4350 } 4351 #if 0 4352 /* XXX not interesting with WPA done in user space */ 4353 ireq.i_type = IEEE80211_IOC_KEYMGTALGS; 4354 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4355 } 4356 4357 ireq.i_type = IEEE80211_IOC_MCASTCIPHER; 4358 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4359 LINE_CHECK("mcastcipher "); 4360 printcipher(s, &ireq, IEEE80211_IOC_MCASTKEYLEN); 4361 spacer = ' '; 4362 } 4363 4364 ireq.i_type = IEEE80211_IOC_UCASTCIPHER; 4365 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4366 LINE_CHECK("ucastcipher "); 4367 printcipher(s, &ireq, IEEE80211_IOC_UCASTKEYLEN); 4368 } 4369 4370 if (wpa & 2) { 4371 ireq.i_type = IEEE80211_IOC_RSNCAPS; 4372 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4373 LINE_CHECK("RSN caps 0x%x", ireq.i_val); 4374 spacer = ' '; 4375 } 4376 } 4377 4378 ireq.i_type = IEEE80211_IOC_UCASTCIPHERS; 4379 if (ioctl(s, SIOCG80211, &ireq) != -1) { 4380 } 4381 #endif 4382 } 4383 4384 if (get80211val(s, IEEE80211_IOC_WEP, &wepmode) != -1 && 4385 wepmode != IEEE80211_WEP_NOSUP) { 4386 int firstkey; 4387 4388 switch (wepmode) { 4389 case IEEE80211_WEP_OFF: 4390 LINE_CHECK("privacy OFF"); 4391 break; 4392 case IEEE80211_WEP_ON: 4393 LINE_CHECK("privacy ON"); 4394 break; 4395 case IEEE80211_WEP_MIXED: 4396 LINE_CHECK("privacy MIXED"); 4397 break; 4398 default: 4399 LINE_CHECK("privacy UNKNOWN (0x%x)", wepmode); 4400 break; 4401 } 4402 4403 /* 4404 * If we get here then we've got WEP support so we need 4405 * to print WEP status. 4406 */ 4407 4408 if (get80211val(s, IEEE80211_IOC_WEPTXKEY, &val) < 0) { 4409 warn("WEP support, but no tx key!"); 4410 goto end; 4411 } 4412 if (val != -1) 4413 LINE_CHECK("deftxkey %d", val+1); 4414 else if (wepmode != IEEE80211_WEP_OFF || verbose) 4415 LINE_CHECK("deftxkey UNDEF"); 4416 4417 if (get80211val(s, IEEE80211_IOC_NUMWEPKEYS, &num) < 0) { 4418 warn("WEP support, but no NUMWEPKEYS support!"); 4419 goto end; 4420 } 4421 4422 firstkey = 1; 4423 for (i = 0; i < num; i++) { 4424 struct ieee80211req_key ik; 4425 4426 memset(&ik, 0, sizeof(ik)); 4427 ik.ik_keyix = i; 4428 if (get80211(s, IEEE80211_IOC_WPAKEY, &ik, sizeof(ik)) < 0) { 4429 warn("WEP support, but can get keys!"); 4430 goto end; 4431 } 4432 if (ik.ik_keylen != 0) { 4433 if (verbose) 4434 LINE_BREAK(); 4435 printkey(&ik); 4436 firstkey = 0; 4437 } 4438 } 4439 end: 4440 ; 4441 } 4442 4443 if (get80211val(s, IEEE80211_IOC_POWERSAVE, &val) != -1 && 4444 val != IEEE80211_POWERSAVE_NOSUP ) { 4445 if (val != IEEE80211_POWERSAVE_OFF || verbose) { 4446 switch (val) { 4447 case IEEE80211_POWERSAVE_OFF: 4448 LINE_CHECK("powersavemode OFF"); 4449 break; 4450 case IEEE80211_POWERSAVE_CAM: 4451 LINE_CHECK("powersavemode CAM"); 4452 break; 4453 case IEEE80211_POWERSAVE_PSP: 4454 LINE_CHECK("powersavemode PSP"); 4455 break; 4456 case IEEE80211_POWERSAVE_PSP_CAM: 4457 LINE_CHECK("powersavemode PSP-CAM"); 4458 break; 4459 } 4460 if (get80211val(s, IEEE80211_IOC_POWERSAVESLEEP, &val) != -1) 4461 LINE_CHECK("powersavesleep %d", val); 4462 } 4463 } 4464 4465 if (get80211val(s, IEEE80211_IOC_TXPOWER, &val) != -1) { 4466 if (val & 1) 4467 LINE_CHECK("txpower %d.5", val/2); 4468 else 4469 LINE_CHECK("txpower %d", val/2); 4470 } 4471 if (verbose) { 4472 if (get80211val(s, IEEE80211_IOC_TXPOWMAX, &val) != -1) 4473 LINE_CHECK("txpowmax %.1f", val/2.); 4474 } 4475 4476 if (get80211val(s, IEEE80211_IOC_DOTD, &val) != -1) { 4477 if (val) 4478 LINE_CHECK("dotd"); 4479 else if (verbose) 4480 LINE_CHECK("-dotd"); 4481 } 4482 4483 if (get80211val(s, IEEE80211_IOC_RTSTHRESHOLD, &val) != -1) { 4484 if (val != IEEE80211_RTS_MAX || verbose) 4485 LINE_CHECK("rtsthreshold %d", val); 4486 } 4487 4488 if (get80211val(s, IEEE80211_IOC_FRAGTHRESHOLD, &val) != -1) { 4489 if (val != IEEE80211_FRAG_MAX || verbose) 4490 LINE_CHECK("fragthreshold %d", val); 4491 } 4492 if (opmode == IEEE80211_M_STA || verbose) { 4493 if (get80211val(s, IEEE80211_IOC_BMISSTHRESHOLD, &val) != -1) { 4494 if (val != IEEE80211_HWBMISS_MAX || verbose) 4495 LINE_CHECK("bmiss %d", val); 4496 } 4497 } 4498 4499 if (!verbose) { 4500 gettxparams(s); 4501 tp = &txparams.params[chan2mode(c)]; 4502 printrate("ucastrate", tp->ucastrate, 4503 IEEE80211_FIXED_RATE_NONE, IEEE80211_FIXED_RATE_NONE); 4504 printrate("mcastrate", tp->mcastrate, 2*1, 4505 IEEE80211_RATE_MCS|0); 4506 printrate("mgmtrate", tp->mgmtrate, 2*1, 4507 IEEE80211_RATE_MCS|0); 4508 if (tp->maxretry != 6) /* XXX */ 4509 LINE_CHECK("maxretry %d", tp->maxretry); 4510 } else { 4511 LINE_BREAK(); 4512 list_txparams(s); 4513 } 4514 4515 bgscaninterval = -1; 4516 (void) get80211val(s, IEEE80211_IOC_BGSCAN_INTERVAL, &bgscaninterval); 4517 4518 if (get80211val(s, IEEE80211_IOC_SCANVALID, &val) != -1) { 4519 if (val != bgscaninterval || verbose) 4520 LINE_CHECK("scanvalid %u", val); 4521 } 4522 4523 bgscan = 0; 4524 if (get80211val(s, IEEE80211_IOC_BGSCAN, &bgscan) != -1) { 4525 if (bgscan) 4526 LINE_CHECK("bgscan"); 4527 else if (verbose) 4528 LINE_CHECK("-bgscan"); 4529 } 4530 if (bgscan || verbose) { 4531 if (bgscaninterval != -1) 4532 LINE_CHECK("bgscanintvl %u", bgscaninterval); 4533 if (get80211val(s, IEEE80211_IOC_BGSCAN_IDLE, &val) != -1) 4534 LINE_CHECK("bgscanidle %u", val); 4535 if (!verbose) { 4536 getroam(s); 4537 rp = &roamparams.params[chan2mode(c)]; 4538 if (rp->rssi & 1) 4539 LINE_CHECK("roam:rssi %u.5", rp->rssi/2); 4540 else 4541 LINE_CHECK("roam:rssi %u", rp->rssi/2); 4542 LINE_CHECK("roam:rate %u", rp->rate/2); 4543 } else { 4544 LINE_BREAK(); 4545 list_roam(s); 4546 LINE_BREAK(); 4547 } 4548 } 4549 4550 if (IEEE80211_IS_CHAN_ANYG(c) || verbose) { 4551 if (get80211val(s, IEEE80211_IOC_PUREG, &val) != -1) { 4552 if (val) 4553 LINE_CHECK("pureg"); 4554 else if (verbose) 4555 LINE_CHECK("-pureg"); 4556 } 4557 if (get80211val(s, IEEE80211_IOC_PROTMODE, &val) != -1) { 4558 switch (val) { 4559 case IEEE80211_PROTMODE_OFF: 4560 LINE_CHECK("protmode OFF"); 4561 break; 4562 case IEEE80211_PROTMODE_CTS: 4563 LINE_CHECK("protmode CTS"); 4564 break; 4565 case IEEE80211_PROTMODE_RTSCTS: 4566 LINE_CHECK("protmode RTSCTS"); 4567 break; 4568 default: 4569 LINE_CHECK("protmode UNKNOWN (0x%x)", val); 4570 break; 4571 } 4572 } 4573 } 4574 4575 if (IEEE80211_IS_CHAN_HT(c) || verbose) { 4576 gethtconf(s); 4577 switch (htconf & 3) { 4578 case 0: 4579 case 2: 4580 LINE_CHECK("-ht"); 4581 break; 4582 case 1: 4583 LINE_CHECK("ht20"); 4584 break; 4585 case 3: 4586 if (verbose) 4587 LINE_CHECK("ht"); 4588 break; 4589 } 4590 if (get80211val(s, IEEE80211_IOC_HTCOMPAT, &val) != -1) { 4591 if (!val) 4592 LINE_CHECK("-htcompat"); 4593 else if (verbose) 4594 LINE_CHECK("htcompat"); 4595 } 4596 if (get80211val(s, IEEE80211_IOC_AMPDU, &val) != -1) { 4597 switch (val) { 4598 case 0: 4599 LINE_CHECK("-ampdu"); 4600 break; 4601 case 1: 4602 LINE_CHECK("ampdutx -ampdurx"); 4603 break; 4604 case 2: 4605 LINE_CHECK("-ampdutx ampdurx"); 4606 break; 4607 case 3: 4608 if (verbose) 4609 LINE_CHECK("ampdu"); 4610 break; 4611 } 4612 } 4613 if (get80211val(s, IEEE80211_IOC_AMPDU_LIMIT, &val) != -1) { 4614 switch (val) { 4615 case IEEE80211_HTCAP_MAXRXAMPDU_8K: 4616 LINE_CHECK("ampdulimit 8k"); 4617 break; 4618 case IEEE80211_HTCAP_MAXRXAMPDU_16K: 4619 LINE_CHECK("ampdulimit 16k"); 4620 break; 4621 case IEEE80211_HTCAP_MAXRXAMPDU_32K: 4622 LINE_CHECK("ampdulimit 32k"); 4623 break; 4624 case IEEE80211_HTCAP_MAXRXAMPDU_64K: 4625 LINE_CHECK("ampdulimit 64k"); 4626 break; 4627 } 4628 } 4629 if (get80211val(s, IEEE80211_IOC_AMPDU_DENSITY, &val) != -1) { 4630 switch (val) { 4631 case IEEE80211_HTCAP_MPDUDENSITY_NA: 4632 if (verbose) 4633 LINE_CHECK("ampdudensity NA"); 4634 break; 4635 case IEEE80211_HTCAP_MPDUDENSITY_025: 4636 LINE_CHECK("ampdudensity .25"); 4637 break; 4638 case IEEE80211_HTCAP_MPDUDENSITY_05: 4639 LINE_CHECK("ampdudensity .5"); 4640 break; 4641 case IEEE80211_HTCAP_MPDUDENSITY_1: 4642 LINE_CHECK("ampdudensity 1"); 4643 break; 4644 case IEEE80211_HTCAP_MPDUDENSITY_2: 4645 LINE_CHECK("ampdudensity 2"); 4646 break; 4647 case IEEE80211_HTCAP_MPDUDENSITY_4: 4648 LINE_CHECK("ampdudensity 4"); 4649 break; 4650 case IEEE80211_HTCAP_MPDUDENSITY_8: 4651 LINE_CHECK("ampdudensity 8"); 4652 break; 4653 case IEEE80211_HTCAP_MPDUDENSITY_16: 4654 LINE_CHECK("ampdudensity 16"); 4655 break; 4656 } 4657 } 4658 if (get80211val(s, IEEE80211_IOC_AMSDU, &val) != -1) { 4659 switch (val) { 4660 case 0: 4661 LINE_CHECK("-amsdu"); 4662 break; 4663 case 1: 4664 LINE_CHECK("amsdutx -amsdurx"); 4665 break; 4666 case 2: 4667 LINE_CHECK("-amsdutx amsdurx"); 4668 break; 4669 case 3: 4670 if (verbose) 4671 LINE_CHECK("amsdu"); 4672 break; 4673 } 4674 } 4675 /* XXX amsdu limit */ 4676 if (get80211val(s, IEEE80211_IOC_SHORTGI, &val) != -1) { 4677 if (val) 4678 LINE_CHECK("shortgi"); 4679 else if (verbose) 4680 LINE_CHECK("-shortgi"); 4681 } 4682 if (get80211val(s, IEEE80211_IOC_HTPROTMODE, &val) != -1) { 4683 if (val == IEEE80211_PROTMODE_OFF) 4684 LINE_CHECK("htprotmode OFF"); 4685 else if (val != IEEE80211_PROTMODE_RTSCTS) 4686 LINE_CHECK("htprotmode UNKNOWN (0x%x)", val); 4687 else if (verbose) 4688 LINE_CHECK("htprotmode RTSCTS"); 4689 } 4690 if (get80211val(s, IEEE80211_IOC_PUREN, &val) != -1) { 4691 if (val) 4692 LINE_CHECK("puren"); 4693 else if (verbose) 4694 LINE_CHECK("-puren"); 4695 } 4696 if (get80211val(s, IEEE80211_IOC_SMPS, &val) != -1) { 4697 if (val == IEEE80211_HTCAP_SMPS_DYNAMIC) 4698 LINE_CHECK("smpsdyn"); 4699 else if (val == IEEE80211_HTCAP_SMPS_ENA) 4700 LINE_CHECK("smps"); 4701 else if (verbose) 4702 LINE_CHECK("-smps"); 4703 } 4704 if (get80211val(s, IEEE80211_IOC_RIFS, &val) != -1) { 4705 if (val) 4706 LINE_CHECK("rifs"); 4707 else if (verbose) 4708 LINE_CHECK("-rifs"); 4709 } 4710 } 4711 4712 if (get80211val(s, IEEE80211_IOC_WME, &wme) != -1) { 4713 if (wme) 4714 LINE_CHECK("wme"); 4715 else if (verbose) 4716 LINE_CHECK("-wme"); 4717 } else 4718 wme = 0; 4719 4720 if (get80211val(s, IEEE80211_IOC_BURST, &val) != -1) { 4721 if (val) 4722 LINE_CHECK("burst"); 4723 else if (verbose) 4724 LINE_CHECK("-burst"); 4725 } 4726 4727 if (get80211val(s, IEEE80211_IOC_FF, &val) != -1) { 4728 if (val) 4729 LINE_CHECK("ff"); 4730 else if (verbose) 4731 LINE_CHECK("-ff"); 4732 } 4733 if (get80211val(s, IEEE80211_IOC_TURBOP, &val) != -1) { 4734 if (val) 4735 LINE_CHECK("dturbo"); 4736 else if (verbose) 4737 LINE_CHECK("-dturbo"); 4738 } 4739 if (get80211val(s, IEEE80211_IOC_DWDS, &val) != -1) { 4740 if (val) 4741 LINE_CHECK("dwds"); 4742 else if (verbose) 4743 LINE_CHECK("-dwds"); 4744 } 4745 4746 if (opmode == IEEE80211_M_HOSTAP) { 4747 if (get80211val(s, IEEE80211_IOC_HIDESSID, &val) != -1) { 4748 if (val) 4749 LINE_CHECK("hidessid"); 4750 else if (verbose) 4751 LINE_CHECK("-hidessid"); 4752 } 4753 if (get80211val(s, IEEE80211_IOC_APBRIDGE, &val) != -1) { 4754 if (!val) 4755 LINE_CHECK("-apbridge"); 4756 else if (verbose) 4757 LINE_CHECK("apbridge"); 4758 } 4759 if (get80211val(s, IEEE80211_IOC_DTIM_PERIOD, &val) != -1) 4760 LINE_CHECK("dtimperiod %u", val); 4761 4762 if (get80211val(s, IEEE80211_IOC_DOTH, &val) != -1) { 4763 if (!val) 4764 LINE_CHECK("-doth"); 4765 else if (verbose) 4766 LINE_CHECK("doth"); 4767 } 4768 if (get80211val(s, IEEE80211_IOC_DFS, &val) != -1) { 4769 if (!val) 4770 LINE_CHECK("-dfs"); 4771 else if (verbose) 4772 LINE_CHECK("dfs"); 4773 } 4774 if (get80211val(s, IEEE80211_IOC_INACTIVITY, &val) != -1) { 4775 if (!val) 4776 LINE_CHECK("-inact"); 4777 else if (verbose) 4778 LINE_CHECK("inact"); 4779 } 4780 } else { 4781 if (get80211val(s, IEEE80211_IOC_ROAMING, &val) != -1) { 4782 if (val != IEEE80211_ROAMING_AUTO || verbose) { 4783 switch (val) { 4784 case IEEE80211_ROAMING_DEVICE: 4785 LINE_CHECK("roaming DEVICE"); 4786 break; 4787 case IEEE80211_ROAMING_AUTO: 4788 LINE_CHECK("roaming AUTO"); 4789 break; 4790 case IEEE80211_ROAMING_MANUAL: 4791 LINE_CHECK("roaming MANUAL"); 4792 break; 4793 default: 4794 LINE_CHECK("roaming UNKNOWN (0x%x)", 4795 val); 4796 break; 4797 } 4798 } 4799 } 4800 } 4801 4802 if (opmode == IEEE80211_M_AHDEMO) { 4803 if (get80211val(s, IEEE80211_IOC_TDMA_SLOT, &val) != -1) 4804 LINE_CHECK("tdmaslot %u", val); 4805 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTCNT, &val) != -1) 4806 LINE_CHECK("tdmaslotcnt %u", val); 4807 if (get80211val(s, IEEE80211_IOC_TDMA_SLOTLEN, &val) != -1) 4808 LINE_CHECK("tdmaslotlen %u", val); 4809 if (get80211val(s, IEEE80211_IOC_TDMA_BINTERVAL, &val) != -1) 4810 LINE_CHECK("tdmabintval %u", val); 4811 } else if (get80211val(s, IEEE80211_IOC_BEACON_INTERVAL, &val) != -1) { 4812 /* XXX default define not visible */ 4813 if (val != 100 || verbose) 4814 LINE_CHECK("bintval %u", val); 4815 } 4816 4817 if (wme && verbose) { 4818 LINE_BREAK(); 4819 list_wme(s); 4820 } 4821 4822 if (opmode == IEEE80211_M_MBSS) { 4823 if (get80211val(s, IEEE80211_IOC_MESH_TTL, &val) != -1) { 4824 LINE_CHECK("meshttl %u", val); 4825 } 4826 if (get80211val(s, IEEE80211_IOC_MESH_AP, &val) != -1) { 4827 if (val) 4828 LINE_CHECK("meshpeering"); 4829 else 4830 LINE_CHECK("-meshpeering"); 4831 } 4832 if (get80211val(s, IEEE80211_IOC_MESH_FWRD, &val) != -1) { 4833 if (val) 4834 LINE_CHECK("meshforward"); 4835 else 4836 LINE_CHECK("-meshforward"); 4837 } 4838 if (get80211len(s, IEEE80211_IOC_MESH_PR_METRIC, data, 12, 4839 &len) != -1) { 4840 data[len] = '\0'; 4841 LINE_CHECK("meshmetric %s", data); 4842 } 4843 if (get80211len(s, IEEE80211_IOC_MESH_PR_PATH, data, 12, 4844 &len) != -1) { 4845 data[len] = '\0'; 4846 LINE_CHECK("meshpath %s", data); 4847 } 4848 if (get80211val(s, IEEE80211_IOC_HWMP_ROOTMODE, &val) != -1) { 4849 switch (val) { 4850 case IEEE80211_HWMP_ROOTMODE_DISABLED: 4851 LINE_CHECK("hwmprootmode DISABLED"); 4852 break; 4853 case IEEE80211_HWMP_ROOTMODE_NORMAL: 4854 LINE_CHECK("hwmprootmode NORMAL"); 4855 break; 4856 case IEEE80211_HWMP_ROOTMODE_PROACTIVE: 4857 LINE_CHECK("hwmprootmode PROACTIVE"); 4858 break; 4859 case IEEE80211_HWMP_ROOTMODE_RANN: 4860 LINE_CHECK("hwmprootmode RANN"); 4861 break; 4862 default: 4863 LINE_CHECK("hwmprootmode UNKNOWN(%d)", val); 4864 break; 4865 } 4866 } 4867 if (get80211val(s, IEEE80211_IOC_HWMP_MAXHOPS, &val) != -1) { 4868 LINE_CHECK("hwmpmaxhops %u", val); 4869 } 4870 } 4871 4872 LINE_BREAK(); 4873 } 4874 4875 static int 4876 get80211(int s, int type, void *data, int len) 4877 { 4878 struct ieee80211req ireq; 4879 4880 (void) memset(&ireq, 0, sizeof(ireq)); 4881 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4882 ireq.i_type = type; 4883 ireq.i_data = data; 4884 ireq.i_len = len; 4885 return ioctl(s, SIOCG80211, &ireq); 4886 } 4887 4888 static int 4889 get80211len(int s, int type, void *data, int len, int *plen) 4890 { 4891 struct ieee80211req ireq; 4892 4893 (void) memset(&ireq, 0, sizeof(ireq)); 4894 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4895 ireq.i_type = type; 4896 ireq.i_len = len; 4897 assert(ireq.i_len == len); /* NB: check for 16-bit truncation */ 4898 ireq.i_data = data; 4899 if (ioctl(s, SIOCG80211, &ireq) < 0) 4900 return -1; 4901 *plen = ireq.i_len; 4902 return 0; 4903 } 4904 4905 static int 4906 get80211val(int s, int type, int *val) 4907 { 4908 struct ieee80211req ireq; 4909 4910 (void) memset(&ireq, 0, sizeof(ireq)); 4911 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4912 ireq.i_type = type; 4913 if (ioctl(s, SIOCG80211, &ireq) < 0) 4914 return -1; 4915 *val = ireq.i_val; 4916 return 0; 4917 } 4918 4919 static void 4920 set80211(int s, int type, int val, int len, void *data) 4921 { 4922 struct ieee80211req ireq; 4923 4924 (void) memset(&ireq, 0, sizeof(ireq)); 4925 (void) strncpy(ireq.i_name, name, sizeof(ireq.i_name)); 4926 ireq.i_type = type; 4927 ireq.i_val = val; 4928 ireq.i_len = len; 4929 assert(ireq.i_len == len); /* NB: check for 16-bit truncation */ 4930 ireq.i_data = data; 4931 if (ioctl(s, SIOCS80211, &ireq) < 0) 4932 err(1, "SIOCS80211"); 4933 } 4934 4935 static const char * 4936 get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp) 4937 { 4938 int len; 4939 int hexstr; 4940 u_int8_t *p; 4941 4942 len = *lenp; 4943 p = buf; 4944 hexstr = (val[0] == '0' && tolower((u_char)val[1]) == 'x'); 4945 if (hexstr) 4946 val += 2; 4947 for (;;) { 4948 if (*val == '\0') 4949 break; 4950 if (sep != NULL && strchr(sep, *val) != NULL) { 4951 val++; 4952 break; 4953 } 4954 if (hexstr) { 4955 if (!isxdigit((u_char)val[0])) { 4956 warnx("bad hexadecimal digits"); 4957 return NULL; 4958 } 4959 if (!isxdigit((u_char)val[1])) { 4960 warnx("odd count hexadecimal digits"); 4961 return NULL; 4962 } 4963 } 4964 if (p >= buf + len) { 4965 if (hexstr) 4966 warnx("hexadecimal digits too long"); 4967 else 4968 warnx("string too long"); 4969 return NULL; 4970 } 4971 if (hexstr) { 4972 #define tohex(x) (isdigit(x) ? (x) - '0' : tolower(x) - 'a' + 10) 4973 *p++ = (tohex((u_char)val[0]) << 4) | 4974 tohex((u_char)val[1]); 4975 #undef tohex 4976 val += 2; 4977 } else 4978 *p++ = *val++; 4979 } 4980 len = p - buf; 4981 /* The string "-" is treated as the empty string. */ 4982 if (!hexstr && len == 1 && buf[0] == '-') { 4983 len = 0; 4984 memset(buf, 0, *lenp); 4985 } else if (len < *lenp) 4986 memset(p, 0, *lenp - len); 4987 *lenp = len; 4988 return val; 4989 } 4990 4991 static void 4992 print_string(const u_int8_t *buf, int len) 4993 { 4994 int i; 4995 int hasspc; 4996 4997 i = 0; 4998 hasspc = 0; 4999 for (; i < len; i++) { 5000 if (!isprint(buf[i]) && buf[i] != '\0') 5001 break; 5002 if (isspace(buf[i])) 5003 hasspc++; 5004 } 5005 if (i == len) { 5006 if (hasspc || len == 0 || buf[0] == '\0') 5007 printf("\"%.*s\"", len, buf); 5008 else 5009 printf("%.*s", len, buf); 5010 } else { 5011 printf("0x"); 5012 for (i = 0; i < len; i++) 5013 printf("%02x", buf[i]); 5014 } 5015 } 5016 5017 /* 5018 * Virtual AP cloning support. 5019 */ 5020 static struct ieee80211_clone_params params = { 5021 .icp_opmode = IEEE80211_M_STA, /* default to station mode */ 5022 }; 5023 5024 static void 5025 wlan_create(int s, struct ifreq *ifr) 5026 { 5027 static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; 5028 5029 if (params.icp_parent[0] == '\0') 5030 errx(1, "must specify a parent device (wlandev) when creating " 5031 "a wlan device"); 5032 if (params.icp_opmode == IEEE80211_M_WDS && 5033 memcmp(params.icp_bssid, zerobssid, sizeof(zerobssid)) == 0) 5034 errx(1, "no bssid specified for WDS (use wlanbssid)"); 5035 ifr->ifr_data = (caddr_t) ¶ms; 5036 if (ioctl(s, SIOCIFCREATE2, ifr) < 0) 5037 err(1, "SIOCIFCREATE2"); 5038 } 5039 5040 static 5041 DECL_CMD_FUNC(set80211clone_wlandev, arg, d) 5042 { 5043 strlcpy(params.icp_parent, arg, IFNAMSIZ); 5044 } 5045 5046 static 5047 DECL_CMD_FUNC(set80211clone_wlanbssid, arg, d) 5048 { 5049 const struct ether_addr *ea; 5050 5051 ea = ether_aton(arg); 5052 if (ea == NULL) 5053 errx(1, "%s: cannot parse bssid", arg); 5054 memcpy(params.icp_bssid, ea->octet, IEEE80211_ADDR_LEN); 5055 } 5056 5057 static 5058 DECL_CMD_FUNC(set80211clone_wlanaddr, arg, d) 5059 { 5060 const struct ether_addr *ea; 5061 5062 ea = ether_aton(arg); 5063 if (ea == NULL) 5064 errx(1, "%s: cannot parse address", arg); 5065 memcpy(params.icp_macaddr, ea->octet, IEEE80211_ADDR_LEN); 5066 params.icp_flags |= IEEE80211_CLONE_MACADDR; 5067 } 5068 5069 static 5070 DECL_CMD_FUNC(set80211clone_wlanmode, arg, d) 5071 { 5072 #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) 5073 if (iseq(arg, "sta")) 5074 params.icp_opmode = IEEE80211_M_STA; 5075 else if (iseq(arg, "ahdemo") || iseq(arg, "adhoc-demo")) 5076 params.icp_opmode = IEEE80211_M_AHDEMO; 5077 else if (iseq(arg, "ibss") || iseq(arg, "adhoc")) 5078 params.icp_opmode = IEEE80211_M_IBSS; 5079 else if (iseq(arg, "ap") || iseq(arg, "host")) 5080 params.icp_opmode = IEEE80211_M_HOSTAP; 5081 else if (iseq(arg, "wds")) 5082 params.icp_opmode = IEEE80211_M_WDS; 5083 else if (iseq(arg, "monitor")) 5084 params.icp_opmode = IEEE80211_M_MONITOR; 5085 else if (iseq(arg, "tdma")) { 5086 params.icp_opmode = IEEE80211_M_AHDEMO; 5087 params.icp_flags |= IEEE80211_CLONE_TDMA; 5088 } else if (iseq(arg, "mesh") || iseq(arg, "mp")) /* mesh point */ 5089 params.icp_opmode = IEEE80211_M_MBSS; 5090 else 5091 errx(1, "Don't know to create %s for %s", arg, name); 5092 #undef iseq 5093 } 5094 5095 static void 5096 set80211clone_beacons(const char *val, int d, int s, const struct afswtch *rafp) 5097 { 5098 /* NB: inverted sense */ 5099 if (d) 5100 params.icp_flags &= ~IEEE80211_CLONE_NOBEACONS; 5101 else 5102 params.icp_flags |= IEEE80211_CLONE_NOBEACONS; 5103 } 5104 5105 static void 5106 set80211clone_bssid(const char *val, int d, int s, const struct afswtch *rafp) 5107 { 5108 if (d) 5109 params.icp_flags |= IEEE80211_CLONE_BSSID; 5110 else 5111 params.icp_flags &= ~IEEE80211_CLONE_BSSID; 5112 } 5113 5114 static void 5115 set80211clone_wdslegacy(const char *val, int d, int s, const struct afswtch *rafp) 5116 { 5117 if (d) 5118 params.icp_flags |= IEEE80211_CLONE_WDSLEGACY; 5119 else 5120 params.icp_flags &= ~IEEE80211_CLONE_WDSLEGACY; 5121 } 5122 5123 static struct cmd ieee80211_cmds[] = { 5124 DEF_CMD_ARG("ssid", set80211ssid), 5125 DEF_CMD_ARG("nwid", set80211ssid), 5126 DEF_CMD_ARG("meshid", set80211meshid), 5127 DEF_CMD_ARG("stationname", set80211stationname), 5128 DEF_CMD_ARG("station", set80211stationname), /* BSD/OS */ 5129 DEF_CMD_ARG("channel", set80211channel), 5130 DEF_CMD_ARG("authmode", set80211authmode), 5131 DEF_CMD_ARG("powersavemode", set80211powersavemode), 5132 DEF_CMD("powersave", 1, set80211powersave), 5133 DEF_CMD("-powersave", 0, set80211powersave), 5134 DEF_CMD_ARG("powersavesleep", set80211powersavesleep), 5135 DEF_CMD_ARG("wepmode", set80211wepmode), 5136 DEF_CMD("wep", 1, set80211wep), 5137 DEF_CMD("-wep", 0, set80211wep), 5138 DEF_CMD_ARG("deftxkey", set80211weptxkey), 5139 DEF_CMD_ARG("weptxkey", set80211weptxkey), 5140 DEF_CMD_ARG("wepkey", set80211wepkey), 5141 DEF_CMD_ARG("nwkey", set80211nwkey), /* NetBSD */ 5142 DEF_CMD("-nwkey", 0, set80211wep), /* NetBSD */ 5143 DEF_CMD_ARG("rtsthreshold", set80211rtsthreshold), 5144 DEF_CMD_ARG("protmode", set80211protmode), 5145 DEF_CMD_ARG("txpower", set80211txpower), 5146 DEF_CMD_ARG("roaming", set80211roaming), 5147 DEF_CMD("wme", 1, set80211wme), 5148 DEF_CMD("-wme", 0, set80211wme), 5149 DEF_CMD("wmm", 1, set80211wme), 5150 DEF_CMD("-wmm", 0, set80211wme), 5151 DEF_CMD("hidessid", 1, set80211hidessid), 5152 DEF_CMD("-hidessid", 0, set80211hidessid), 5153 DEF_CMD("apbridge", 1, set80211apbridge), 5154 DEF_CMD("-apbridge", 0, set80211apbridge), 5155 DEF_CMD_ARG("chanlist", set80211chanlist), 5156 DEF_CMD_ARG("bssid", set80211bssid), 5157 DEF_CMD_ARG("ap", set80211bssid), 5158 DEF_CMD("scan", 0, set80211scan), 5159 DEF_CMD_ARG("list", set80211list), 5160 DEF_CMD_ARG2("cwmin", set80211cwmin), 5161 DEF_CMD_ARG2("cwmax", set80211cwmax), 5162 DEF_CMD_ARG2("aifs", set80211aifs), 5163 DEF_CMD_ARG2("txoplimit", set80211txoplimit), 5164 DEF_CMD_ARG("acm", set80211acm), 5165 DEF_CMD_ARG("-acm", set80211noacm), 5166 DEF_CMD_ARG("ack", set80211ackpolicy), 5167 DEF_CMD_ARG("-ack", set80211noackpolicy), 5168 DEF_CMD_ARG2("bss:cwmin", set80211bsscwmin), 5169 DEF_CMD_ARG2("bss:cwmax", set80211bsscwmax), 5170 DEF_CMD_ARG2("bss:aifs", set80211bssaifs), 5171 DEF_CMD_ARG2("bss:txoplimit", set80211bsstxoplimit), 5172 DEF_CMD_ARG("dtimperiod", set80211dtimperiod), 5173 DEF_CMD_ARG("bintval", set80211bintval), 5174 DEF_CMD("mac:open", IEEE80211_MACCMD_POLICY_OPEN, set80211maccmd), 5175 DEF_CMD("mac:allow", IEEE80211_MACCMD_POLICY_ALLOW, set80211maccmd), 5176 DEF_CMD("mac:deny", IEEE80211_MACCMD_POLICY_DENY, set80211maccmd), 5177 DEF_CMD("mac:radius", IEEE80211_MACCMD_POLICY_RADIUS, set80211maccmd), 5178 DEF_CMD("mac:flush", IEEE80211_MACCMD_FLUSH, set80211maccmd), 5179 DEF_CMD("mac:detach", IEEE80211_MACCMD_DETACH, set80211maccmd), 5180 DEF_CMD_ARG("mac:add", set80211addmac), 5181 DEF_CMD_ARG("mac:del", set80211delmac), 5182 DEF_CMD_ARG("mac:kick", set80211kickmac), 5183 DEF_CMD("pureg", 1, set80211pureg), 5184 DEF_CMD("-pureg", 0, set80211pureg), 5185 DEF_CMD("ff", 1, set80211fastframes), 5186 DEF_CMD("-ff", 0, set80211fastframes), 5187 DEF_CMD("dturbo", 1, set80211dturbo), 5188 DEF_CMD("-dturbo", 0, set80211dturbo), 5189 DEF_CMD("bgscan", 1, set80211bgscan), 5190 DEF_CMD("-bgscan", 0, set80211bgscan), 5191 DEF_CMD_ARG("bgscanidle", set80211bgscanidle), 5192 DEF_CMD_ARG("bgscanintvl", set80211bgscanintvl), 5193 DEF_CMD_ARG("scanvalid", set80211scanvalid), 5194 DEF_CMD("quiet", 1, set80211quiet), 5195 DEF_CMD("-quiet", 0, set80211quiet), 5196 DEF_CMD_ARG("quiet_count", set80211quietcount), 5197 DEF_CMD_ARG("quiet_period", set80211quietperiod), 5198 DEF_CMD_ARG("quiet_dur", set80211quietduration), 5199 DEF_CMD_ARG("quiet_offset", set80211quietoffset), 5200 DEF_CMD_ARG("roam:rssi", set80211roamrssi), 5201 DEF_CMD_ARG("roam:rate", set80211roamrate), 5202 DEF_CMD_ARG("mcastrate", set80211mcastrate), 5203 DEF_CMD_ARG("ucastrate", set80211ucastrate), 5204 DEF_CMD_ARG("mgtrate", set80211mgtrate), 5205 DEF_CMD_ARG("mgmtrate", set80211mgtrate), 5206 DEF_CMD_ARG("maxretry", set80211maxretry), 5207 DEF_CMD_ARG("fragthreshold", set80211fragthreshold), 5208 DEF_CMD("burst", 1, set80211burst), 5209 DEF_CMD("-burst", 0, set80211burst), 5210 DEF_CMD_ARG("bmiss", set80211bmissthreshold), 5211 DEF_CMD_ARG("bmissthreshold", set80211bmissthreshold), 5212 DEF_CMD("shortgi", 1, set80211shortgi), 5213 DEF_CMD("-shortgi", 0, set80211shortgi), 5214 DEF_CMD("ampdurx", 2, set80211ampdu), 5215 DEF_CMD("-ampdurx", -2, set80211ampdu), 5216 DEF_CMD("ampdutx", 1, set80211ampdu), 5217 DEF_CMD("-ampdutx", -1, set80211ampdu), 5218 DEF_CMD("ampdu", 3, set80211ampdu), /* NB: tx+rx */ 5219 DEF_CMD("-ampdu", -3, set80211ampdu), 5220 DEF_CMD_ARG("ampdulimit", set80211ampdulimit), 5221 DEF_CMD_ARG("ampdudensity", set80211ampdudensity), 5222 DEF_CMD("amsdurx", 2, set80211amsdu), 5223 DEF_CMD("-amsdurx", -2, set80211amsdu), 5224 DEF_CMD("amsdutx", 1, set80211amsdu), 5225 DEF_CMD("-amsdutx", -1, set80211amsdu), 5226 DEF_CMD("amsdu", 3, set80211amsdu), /* NB: tx+rx */ 5227 DEF_CMD("-amsdu", -3, set80211amsdu), 5228 DEF_CMD_ARG("amsdulimit", set80211amsdulimit), 5229 DEF_CMD("puren", 1, set80211puren), 5230 DEF_CMD("-puren", 0, set80211puren), 5231 DEF_CMD("doth", 1, set80211doth), 5232 DEF_CMD("-doth", 0, set80211doth), 5233 DEF_CMD("dfs", 1, set80211dfs), 5234 DEF_CMD("-dfs", 0, set80211dfs), 5235 DEF_CMD("htcompat", 1, set80211htcompat), 5236 DEF_CMD("-htcompat", 0, set80211htcompat), 5237 DEF_CMD("dwds", 1, set80211dwds), 5238 DEF_CMD("-dwds", 0, set80211dwds), 5239 DEF_CMD("inact", 1, set80211inact), 5240 DEF_CMD("-inact", 0, set80211inact), 5241 DEF_CMD("tsn", 1, set80211tsn), 5242 DEF_CMD("-tsn", 0, set80211tsn), 5243 DEF_CMD_ARG("regdomain", set80211regdomain), 5244 DEF_CMD_ARG("country", set80211country), 5245 DEF_CMD("indoor", 'I', set80211location), 5246 DEF_CMD("-indoor", 'O', set80211location), 5247 DEF_CMD("outdoor", 'O', set80211location), 5248 DEF_CMD("-outdoor", 'I', set80211location), 5249 DEF_CMD("anywhere", ' ', set80211location), 5250 DEF_CMD("ecm", 1, set80211ecm), 5251 DEF_CMD("-ecm", 0, set80211ecm), 5252 DEF_CMD("dotd", 1, set80211dotd), 5253 DEF_CMD("-dotd", 0, set80211dotd), 5254 DEF_CMD_ARG("htprotmode", set80211htprotmode), 5255 DEF_CMD("ht20", 1, set80211htconf), 5256 DEF_CMD("-ht20", 0, set80211htconf), 5257 DEF_CMD("ht40", 3, set80211htconf), /* NB: 20+40 */ 5258 DEF_CMD("-ht40", 0, set80211htconf), 5259 DEF_CMD("ht", 3, set80211htconf), /* NB: 20+40 */ 5260 DEF_CMD("-ht", 0, set80211htconf), 5261 DEF_CMD("rifs", 1, set80211rifs), 5262 DEF_CMD("-rifs", 0, set80211rifs), 5263 DEF_CMD("smps", IEEE80211_HTCAP_SMPS_ENA, set80211smps), 5264 DEF_CMD("smpsdyn", IEEE80211_HTCAP_SMPS_DYNAMIC, set80211smps), 5265 DEF_CMD("-smps", IEEE80211_HTCAP_SMPS_OFF, set80211smps), 5266 /* XXX for testing */ 5267 DEF_CMD_ARG("chanswitch", set80211chanswitch), 5268 5269 DEF_CMD_ARG("tdmaslot", set80211tdmaslot), 5270 DEF_CMD_ARG("tdmaslotcnt", set80211tdmaslotcnt), 5271 DEF_CMD_ARG("tdmaslotlen", set80211tdmaslotlen), 5272 DEF_CMD_ARG("tdmabintval", set80211tdmabintval), 5273 5274 DEF_CMD_ARG("meshttl", set80211meshttl), 5275 DEF_CMD("meshforward", 1, set80211meshforward), 5276 DEF_CMD("-meshforward", 0, set80211meshforward), 5277 DEF_CMD("meshpeering", 1, set80211meshpeering), 5278 DEF_CMD("-meshpeering", 0, set80211meshpeering), 5279 DEF_CMD_ARG("meshmetric", set80211meshmetric), 5280 DEF_CMD_ARG("meshpath", set80211meshpath), 5281 DEF_CMD("meshrt:flush", IEEE80211_MESH_RTCMD_FLUSH, set80211meshrtcmd), 5282 DEF_CMD_ARG("meshrt:add", set80211addmeshrt), 5283 DEF_CMD_ARG("meshrt:del", set80211delmeshrt), 5284 DEF_CMD_ARG("hwmprootmode", set80211hwmprootmode), 5285 DEF_CMD_ARG("hwmpmaxhops", set80211hwmpmaxhops), 5286 5287 /* vap cloning support */ 5288 DEF_CLONE_CMD_ARG("wlanaddr", set80211clone_wlanaddr), 5289 DEF_CLONE_CMD_ARG("wlanbssid", set80211clone_wlanbssid), 5290 DEF_CLONE_CMD_ARG("wlandev", set80211clone_wlandev), 5291 DEF_CLONE_CMD_ARG("wlanmode", set80211clone_wlanmode), 5292 DEF_CLONE_CMD("beacons", 1, set80211clone_beacons), 5293 DEF_CLONE_CMD("-beacons", 0, set80211clone_beacons), 5294 DEF_CLONE_CMD("bssid", 1, set80211clone_bssid), 5295 DEF_CLONE_CMD("-bssid", 0, set80211clone_bssid), 5296 DEF_CLONE_CMD("wdslegacy", 1, set80211clone_wdslegacy), 5297 DEF_CLONE_CMD("-wdslegacy", 0, set80211clone_wdslegacy), 5298 }; 5299 static struct afswtch af_ieee80211 = { 5300 .af_name = "af_ieee80211", 5301 .af_af = AF_UNSPEC, 5302 .af_other_status = ieee80211_status, 5303 }; 5304 5305 static __constructor void 5306 ieee80211_ctor(void) 5307 { 5308 #define N(a) (sizeof(a) / sizeof(a[0])) 5309 int i; 5310 5311 for (i = 0; i < N(ieee80211_cmds); i++) 5312 cmd_register(&ieee80211_cmds[i]); 5313 af_register(&af_ieee80211); 5314 clone_setdefcallback("wlan", wlan_create); 5315 #undef N 5316 } 5317