xref: /freebsd/sbin/growfs/growfs.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD$";
52 #endif /* not lint */
53 
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 
60 #include <stdio.h>
61 #include <paths.h>
62 #include <ctype.h>
63 #include <err.h>
64 #include <fcntl.h>
65 #include <stdlib.h>
66 #include <string.h>
67 #include <unistd.h>
68 #include <ufs/ufs/dinode.h>
69 #include <ufs/ffs/fs.h>
70 
71 #include "debug.h"
72 
73 /* *************************************************** GLOBALS & TYPES ***** */
74 #ifdef FS_DEBUG
75 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
76 #endif /* FS_DEBUG */
77 
78 static union {
79 	struct fs	fs;
80 	char	pad[SBSIZE];
81 } fsun1, fsun2;
82 #define	sblock	fsun1.fs	/* the new superblock */
83 #define	osblock	fsun2.fs	/* the old superblock */
84 
85 static union {
86 	struct cg	cg;
87 	char	pad[MAXBSIZE];
88 } cgun1, cgun2;
89 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
90 #define	aocg	cgun2.cg	/* an old cylinder group */
91 
92 static char	ablk[MAXBSIZE];		/* a block */
93 static char	i1blk[MAXBSIZE];	/* some indirect blocks */
94 static char	i2blk[MAXBSIZE];
95 static char	i3blk[MAXBSIZE];
96 
97 	/* where to write back updated blocks */
98 static daddr_t	in_src, i1_src, i2_src, i3_src;
99 
100 	/* what object contains the reference */
101 enum pointer_source {
102 	GFS_PS_INODE,
103 	GFS_PS_IND_BLK_LVL1,
104 	GFS_PS_IND_BLK_LVL2,
105 	GFS_PS_IND_BLK_LVL3
106 };
107 
108 static struct csum	*fscs;		/* cylinder summary */
109 
110 static struct dinode	zino[MAXBSIZE/sizeof(struct dinode)]; /* some inodes */
111 
112 /*
113  * An  array of elements of type struct gfs_bpp describes all blocks  to
114  * be relocated in order to free the space needed for the cylinder group
115  * summary for all cylinder groups located in the first cylinder group.
116  */
117 struct gfs_bpp {
118 	daddr_t	old;		/* old block number */
119 	daddr_t	new;		/* new block number */
120 #define GFS_FL_FIRST	1
121 #define GFS_FL_LAST	2
122 	unsigned int	flags;	/* special handling required */
123 	int	found;		/* how many references were updated */
124 };
125 
126 /* ******************************************************** PROTOTYPES ***** */
127 static void	growfs(int, int, unsigned int);
128 static void	rdfs(daddr_t, size_t, void *, int);
129 static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
130 static daddr_t	alloc(void);
131 static int	charsperline(void);
132 static void	usage(void);
133 static int	isblock(struct fs *, unsigned char *, int);
134 static void	clrblock(struct fs *, unsigned char *, int);
135 static void	setblock(struct fs *, unsigned char *, int);
136 static void	initcg(int, time_t, int, unsigned int);
137 static void	updjcg(int, time_t, int, int, unsigned int);
138 static void	updcsloc(time_t, int, int, unsigned int);
139 static struct disklabel	*get_disklabel(int);
140 static void	return_disklabel(int, struct disklabel *, unsigned int);
141 static struct dinode	*ginode(ino_t, int, int);
142 static void	frag_adjust(daddr_t, int);
143 static void	cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
144     enum pointer_source, int, unsigned int);
145 static void	updclst(int);
146 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
147 
148 /* ************************************************************ growfs ***** */
149 /*
150  * Here  we actually start growing the filesystem. We basically  read  the
151  * cylinder  summary  from the first cylinder group as we want  to  update
152  * this  on  the fly during our various operations. First  we  handle  the
153  * changes in the former last cylinder group. Afterwards we create all new
154  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
155  * cylinder  summary  which  might result in a  relocation  of  the  whole
156  * structure.  In the end we write back the updated cylinder summary,  the
157  * new superblock, and slightly patched versions of the super block
158  * copies.
159  */
160 static void
161 growfs(int fsi, int fso, unsigned int Nflag)
162 {
163 	DBG_FUNC("growfs")
164 	int	i;
165 	int	cylno, j;
166 	time_t	utime;
167 	int	width;
168 	char	tmpbuf[100];
169 #ifdef FSIRAND
170 	static int	randinit=0;
171 
172 	DBG_ENTER;
173 
174 	if (!randinit) {
175 		randinit = 1;
176 		srandomdev();
177 	}
178 #else /* not FSIRAND */
179 
180 	DBG_ENTER;
181 
182 #endif /* FSIRAND */
183 	time(&utime);
184 
185 	/*
186 	 * Get the cylinder summary into the memory.
187 	 */
188 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
189 	if(fscs == NULL) {
190 		errx(1, "calloc failed");
191 	}
192 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
193 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
194 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
195 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
196 	}
197 
198 #ifdef FS_DEBUG
199 {
200 	struct csum	*dbg_csp;
201 	int	dbg_csc;
202 	char	dbg_line[80];
203 
204 	dbg_csp=fscs;
205 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
206 		snprintf(dbg_line, sizeof(dbg_line),
207 		    "%d. old csum in old location", dbg_csc);
208 		DBG_DUMP_CSUM(&osblock,
209 		    dbg_line,
210 		    dbg_csp++);
211 	}
212 }
213 #endif /* FS_DEBUG */
214 	DBG_PRINT0("fscs read\n");
215 
216 	/*
217 	 * Do all needed changes in the former last cylinder group.
218 	 */
219 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
220 
221 	/*
222 	 * Dump out summary information about file system.
223 	 */
224 	printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
225 	    sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
226 	    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
227 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
228 	printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
229 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
230 	    sblock.fs_ncg, sblock.fs_cpg,
231 	    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
232 	    sblock.fs_ipg);
233 #undef B2MBFACTOR
234 
235 	/*
236 	 * Now build the cylinders group blocks and
237 	 * then print out indices of cylinder groups.
238 	 */
239 	printf("super-block backups (for fsck -b #) at:\n");
240 	i = 0;
241 	width = charsperline();
242 
243 	/*
244 	 * Iterate for only the new cylinder groups.
245 	 */
246 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
247 		initcg(cylno, utime, fso, Nflag);
248 		j = sprintf(tmpbuf, " %d%s",
249 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
250 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
251 		if (i + j >= width) {
252 			printf("\n");
253 			i = 0;
254 		}
255 		i += j;
256 		printf("%s", tmpbuf);
257 		fflush(stdout);
258 	}
259 	printf("\n");
260 
261 	/*
262 	 * Do all needed changes in the first cylinder group.
263 	 * allocate blocks in new location
264 	 */
265 	updcsloc(utime, fsi, fso, Nflag);
266 
267 	/*
268 	 * Now write the cylinder summary back to disk.
269 	 */
270 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
271 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
272 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
273 		    (void *)(((char *)fscs) + i), fso, Nflag);
274 	}
275 	DBG_PRINT0("fscs written\n");
276 
277 #ifdef FS_DEBUG
278 {
279 	struct csum	*dbg_csp;
280 	int	dbg_csc;
281 	char	dbg_line[80];
282 
283 	dbg_csp=fscs;
284 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
285 		snprintf(dbg_line, sizeof(dbg_line),
286 		    "%d. new csum in new location", dbg_csc);
287 		DBG_DUMP_CSUM(&sblock,
288 		    dbg_line,
289 		    dbg_csp++);
290 	}
291 }
292 #endif /* FS_DEBUG */
293 
294 	/*
295 	 * Now write the new superblock back to disk.
296 	 */
297 	sblock.fs_time = utime;
298 	wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
299 	    fso, Nflag);
300 	DBG_PRINT0("sblock written\n");
301 	DBG_DUMP_FS(&sblock,
302 	    "new initial sblock");
303 
304 	/*
305 	 * Clean up the dynamic fields in our superblock copies.
306 	 */
307 	sblock.fs_fmod = 0;
308 	sblock.fs_clean = 1;
309 	sblock.fs_ronly = 0;
310 	sblock.fs_cgrotor = 0;
311 	sblock.fs_state = 0;
312 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
313 	sblock.fs_flags &= FS_DOSOFTDEP;
314 
315 	/*
316 	 * XXX
317 	 * The following fields are currently distributed from the  superblock
318 	 * to the copies:
319 	 *     fs_minfree
320 	 *     fs_rotdelay
321 	 *     fs_maxcontig
322 	 *     fs_maxbpg
323 	 *     fs_minfree,
324 	 *     fs_optim
325 	 *     fs_flags regarding SOFTPDATES
326 	 *
327 	 * We probably should rather change the summary for the cylinder group
328 	 * statistics here to the value of what would be in there, if the file
329 	 * system were created initially with the new size. Therefor we  still
330 	 * need to find an easy way of calculating that.
331 	 * Possibly we can try to read the first superblock copy and apply the
332 	 * "diffed" stats between the old and new superblock by still  copying
333 	 * certain parameters onto that.
334 	 */
335 
336 	/*
337 	 * Write out the duplicate super blocks.
338 	 */
339 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
340 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
341 		    (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
342 	}
343 	DBG_PRINT0("sblock copies written\n");
344 	DBG_DUMP_FS(&sblock,
345 	    "new other sblocks");
346 
347 	DBG_LEAVE;
348 	return;
349 }
350 
351 /* ************************************************************ initcg ***** */
352 /*
353  * This creates a new cylinder group structure, for more details please  see
354  * the  source of newfs(8), as this function is taken over almost unchanged.
355  * As  this  is  never called for the  first  cylinder  group,  the  special
356  * provisions for that case are removed here.
357  */
358 static void
359 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
360 {
361 	DBG_FUNC("initcg")
362 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
363 	int i;
364 	struct csum *cs;
365 #ifdef FSIRAND
366 	int j;
367 #endif
368 
369 	DBG_ENTER;
370 
371 	/*
372 	 * Determine block bounds for cylinder group.
373 	 */
374 	cbase = cgbase(&sblock, cylno);
375 	dmax = cbase + sblock.fs_fpg;
376 	if (dmax > sblock.fs_size) {
377 		dmax = sblock.fs_size;
378 	}
379 	dlower = cgsblock(&sblock, cylno) - cbase;
380 	dupper = cgdmin(&sblock, cylno) - cbase;
381 	if (cylno == 0) { /* XXX fscs may be relocated */
382 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
383 	}
384 	cs = fscs + cylno;
385 	memset(&acg, 0, (size_t)sblock.fs_cgsize);
386 	acg.cg_time = utime;
387 	acg.cg_magic = CG_MAGIC;
388 	acg.cg_cgx = cylno;
389 	if (cylno == sblock.fs_ncg - 1) {
390 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
391 	} else {
392 		acg.cg_ncyl = sblock.fs_cpg;
393 	}
394 	acg.cg_niblk = sblock.fs_ipg;
395 	acg.cg_ndblk = dmax - cbase;
396 	if (sblock.fs_contigsumsize > 0) {
397 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
398 	}
399 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
400 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
401 	acg.cg_iusedoff = acg.cg_boff +
402 	    sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
403 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
404 	if (sblock.fs_contigsumsize <= 0) {
405 		acg.cg_nextfreeoff = acg.cg_freeoff +
406 		    howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
407 	} else {
408 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
409 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
410 		    sizeof(u_int32_t);
411 		acg.cg_clustersumoff =
412 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
413 		acg.cg_clusteroff = acg.cg_clustersumoff +
414 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
415 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
416 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
417 	}
418 	if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) {
419 		/*
420 		 * XXX This should never happen as we would have had that panic
421 		 *     already on filesystem creation
422 		 */
423 		errx(37, "panic: cylinder group too big");
424 	}
425 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
426 	if (cylno == 0)
427 		for (i = 0; (size_t)i < ROOTINO; i++) {
428 			setbit(cg_inosused(&acg), i);
429 			acg.cg_cs.cs_nifree--;
430 		}
431 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
432 #ifdef FSIRAND
433 		for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) {
434 			zino[j].di_gen = random();
435 		}
436 #endif
437 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
438 		    (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
439 	}
440 	for (d = 0; d < dlower; d += sblock.fs_frag) {
441 		blkno = d / sblock.fs_frag;
442 		setblock(&sblock, cg_blksfree(&acg), blkno);
443 		if (sblock.fs_contigsumsize > 0) {
444 			setbit(cg_clustersfree(&acg), blkno);
445 		}
446 		acg.cg_cs.cs_nbfree++;
447 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
448 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
449 		    [cbtorpos(&sblock, d)]++;
450 	}
451 	sblock.fs_dsize += dlower;
452 	sblock.fs_dsize += acg.cg_ndblk - dupper;
453 	if ((i = dupper % sblock.fs_frag)) {
454 		acg.cg_frsum[sblock.fs_frag - i]++;
455 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
456 			setbit(cg_blksfree(&acg), dupper);
457 			acg.cg_cs.cs_nffree++;
458 		}
459 	}
460 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
461 		blkno = d / sblock.fs_frag;
462 		setblock(&sblock, cg_blksfree(&acg), blkno);
463 		if (sblock.fs_contigsumsize > 0) {
464 			setbit(cg_clustersfree(&acg), blkno);
465 		}
466 		acg.cg_cs.cs_nbfree++;
467 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
468 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
469 		    [cbtorpos(&sblock, d)]++;
470 		d += sblock.fs_frag;
471 	}
472 	if (d < dmax - cbase) {
473 		acg.cg_frsum[dmax - cbase - d]++;
474 		for (; d < dmax - cbase; d++) {
475 			setbit(cg_blksfree(&acg), d);
476 			acg.cg_cs.cs_nffree++;
477 		}
478 	}
479 	if (sblock.fs_contigsumsize > 0) {
480 		int32_t	*sump = cg_clustersum(&acg);
481 		u_char	*mapp = cg_clustersfree(&acg);
482 		int	map = *mapp++;
483 		int	bit = 1;
484 		int	run = 0;
485 
486 		for (i = 0; i < acg.cg_nclusterblks; i++) {
487 			if ((map & bit) != 0) {
488 				run++;
489 			} else if (run != 0) {
490 				if (run > sblock.fs_contigsumsize) {
491 					run = sblock.fs_contigsumsize;
492 				}
493 				sump[run]++;
494 				run = 0;
495 			}
496 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
497 				bit <<= 1;
498 			} else {
499 				map = *mapp++;
500 				bit = 1;
501 			}
502 		}
503 		if (run != 0) {
504 			if (run > sblock.fs_contigsumsize) {
505 				run = sblock.fs_contigsumsize;
506 			}
507 			sump[run]++;
508 		}
509 	}
510 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
511 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
512 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
513 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
514 	*cs = acg.cg_cs;
515 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
516 	    (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
517 	DBG_DUMP_CG(&sblock,
518 	    "new cg",
519 	    &acg);
520 
521 	DBG_LEAVE;
522 	return;
523 }
524 
525 /* ******************************************************* frag_adjust ***** */
526 /*
527  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
528  * block to or from the fragment statistics. By subtracting before and adding
529  * after  an operation on the free frag map we can easy update  the  fragment
530  * statistic, which seems to be otherwise an rather complex operation.
531  */
532 static void
533 frag_adjust(daddr_t frag, int sign)
534 {
535 	DBG_FUNC("frag_adjust")
536 	int fragsize;
537 	int f;
538 
539 	DBG_ENTER;
540 
541 	fragsize=0;
542 	/*
543 	 * Here frag only needs to point to any fragment in the block we want
544 	 * to examine.
545 	 */
546 	for(f=rounddown(frag, sblock.fs_frag);
547 	    f<roundup(frag+1, sblock.fs_frag);
548 	    f++) {
549 		/*
550 		 * Count contiguos free fragments.
551 		 */
552 		if(isset(cg_blksfree(&acg), f)) {
553 			fragsize++;
554 		} else {
555 			if(fragsize && fragsize<sblock.fs_frag) {
556 				/*
557 				 * We found something in between.
558 				 */
559 				acg.cg_frsum[fragsize]+=sign;
560 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
561 				    fragsize,
562 				    sign);
563 			}
564 			fragsize=0;
565 		}
566 	}
567 	if(fragsize && fragsize<sblock.fs_frag) {
568 		/*
569 		 * We found something.
570 		 */
571 		acg.cg_frsum[fragsize]+=sign;
572 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
573 		    fragsize,
574 		    sign);
575 	}
576 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
577 	    fragsize,
578 	    sign);
579 
580 	DBG_LEAVE;
581 	return;
582 }
583 
584 /* ******************************************************* cond_bl_upd ***** */
585 /*
586  * Here we conditionally update a pointer to a fragment. We check for all
587  * relocated blocks if any of it's fragments is referenced by the current
588  * field,  and update the pointer to the respective fragment in  our  new
589  * block.  If  we find a reference we write back the  block  immediately,
590  * as there is no easy way for our general block reading engine to figure
591  * out if a write back operation is needed.
592  */
593 static void
594 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
595     enum pointer_source source, int fso, unsigned int Nflag)
596 {
597 	DBG_FUNC("cond_bl_upd")
598 	struct gfs_bpp	*f;
599 	char *src;
600 	daddr_t dst=0;
601 
602 	DBG_ENTER;
603 
604 	f=field;
605 	while(f->old) { /* for all old blocks */
606 		if(*block/sblock.fs_frag == f->old) {
607 			/*
608 			 * The fragment is part of the block, so update.
609 			 */
610 			*block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
611 			f->found++;
612 			DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
613 			    f->old,
614 			    f->new,
615 			    *block%sblock.fs_frag);
616 
617 			/* Write the block back to disk immediately */
618 			switch (source) {
619 			case GFS_PS_INODE:
620 				src=ablk;
621 				dst=in_src;
622 				break;
623 			case GFS_PS_IND_BLK_LVL1:
624 				src=i1blk;
625 				dst=i1_src;
626 				break;
627 			case GFS_PS_IND_BLK_LVL2:
628 				src=i2blk;
629 				dst=i2_src;
630 				break;
631 			case GFS_PS_IND_BLK_LVL3:
632 				src=i3blk;
633 				dst=i3_src;
634 				break;
635 			default:	/* error */
636 				src=NULL;
637 				break;
638 			}
639 			if(src) {
640 				/*
641 				 * XXX	If src is not of type inode we have to
642 				 *	implement  copy on write here in  case
643 				 *	of active snapshots.
644 				 */
645 				wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
646 				    fso, Nflag);
647 			}
648 
649 			/*
650 			 * The same block can't be found again in this loop.
651 			 */
652 			break;
653 		}
654 		f++;
655 	}
656 
657 	DBG_LEAVE;
658 	return;
659 }
660 
661 /* ************************************************************ updjcg ***** */
662 /*
663  * Here we do all needed work for the former last cylinder group. It has to be
664  * changed  in  any case, even if the filesystem ended exactly on the  end  of
665  * this  group, as there is some slightly inconsistent handling of the  number
666  * of cylinders in the cylinder group. We start again by reading the  cylinder
667  * group from disk. If the last block was not fully available, we first handle
668  * the  missing  fragments, then we handle all new full blocks  in  that  file
669  * system  and  finally we handle the new last fragmented block  in  the  file
670  * system.  We again have to handle the fragment statistics rotational  layout
671  * tables and cluster summary during all those operations.
672  */
673 static void
674 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
675 {
676 	DBG_FUNC("updjcg")
677 	daddr_t	cbase, dmax, dupper;
678 	struct csum	*cs;
679 	int	i,k;
680 	int	j=0;
681 
682 	DBG_ENTER;
683 
684 	/*
685 	 * Read the former last (joining) cylinder group from disk, and make
686 	 * a copy.
687 	 */
688 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
689 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
690 	DBG_PRINT0("jcg read\n");
691 	DBG_DUMP_CG(&sblock,
692 	    "old joining cg",
693 	    &aocg);
694 
695 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
696 
697 	/*
698 	 * If  the  cylinder  group had already it's  new  final  size  almost
699 	 * nothing is to be done ... except:
700 	 * For some reason the value of cg_ncyl in the last cylinder group has
701 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
702 	 * cylinder group we have to change that value now to fs_cpg.
703 	 */
704 
705 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
706 		acg.cg_ncyl=sblock.fs_cpg;
707 
708 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
709 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
710 		DBG_PRINT0("jcg written\n");
711 		DBG_DUMP_CG(&sblock,
712 		    "new joining cg",
713 		    &acg);
714 
715 		DBG_LEAVE;
716 		return;
717 	}
718 
719 	/*
720 	 * Set up some variables needed later.
721 	 */
722 	cbase = cgbase(&sblock, cylno);
723 	dmax = cbase + sblock.fs_fpg;
724 	if (dmax > sblock.fs_size)
725 		dmax = sblock.fs_size;
726 	dupper = cgdmin(&sblock, cylno) - cbase;
727 	if (cylno == 0) { /* XXX fscs may be relocated */
728 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
729 	}
730 
731 	/*
732 	 * Set pointer to the cylinder summary for our cylinder group.
733 	 */
734 	cs = fscs + cylno;
735 
736 	/*
737 	 * Touch the cylinder group, update all fields in the cylinder group as
738 	 * needed, update the free space in the superblock.
739 	 */
740 	acg.cg_time = utime;
741 	if (cylno == sblock.fs_ncg - 1) {
742 		/*
743 		 * This is still the last cylinder group.
744 		 */
745 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
746 	} else {
747 		acg.cg_ncyl = sblock.fs_cpg;
748 	}
749 	DBG_PRINT4("jcg dbg: %d %u %d %u\n",
750 	    cylno,
751 	    sblock.fs_ncg,
752 	    acg.cg_ncyl,
753 	    sblock.fs_cpg);
754 	acg.cg_ndblk = dmax - cbase;
755 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
756 	if (sblock.fs_contigsumsize > 0) {
757 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
758 	}
759 
760 	/*
761 	 * Now  we have to update the free fragment bitmap for our new  free
762 	 * space.  There again we have to handle the fragmentation and  also
763 	 * the  rotational  layout tables and the cluster summary.  This  is
764 	 * also  done per fragment for the first new block if the  old  file
765 	 * system end was not on a block boundary, per fragment for the  new
766 	 * last block if the new file system end is not on a block boundary,
767 	 * and per block for all space in between.
768 	 *
769 	 * Handle the first new block here if it was partially available
770 	 * before.
771 	 */
772 	if(osblock.fs_size % sblock.fs_frag) {
773 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
774 			/*
775 			 * The new space is enough to fill at least this
776 			 * block
777 			 */
778 			j=0;
779 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
780 			    i>=osblock.fs_size-cbase;
781 			    i--) {
782 				setbit(cg_blksfree(&acg), i);
783 				acg.cg_cs.cs_nffree++;
784 				j++;
785 			}
786 
787 			/*
788 			 * Check  if the fragment just created could join  an
789 			 * already existing fragment at the former end of the
790 			 * file system.
791 			 */
792 			if(isblock(&sblock, cg_blksfree(&acg),
793 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
794 			    sblock.fs_frag))) {
795 				/*
796 				 * The block is now completely available
797 				 */
798 				DBG_PRINT0("block was\n");
799 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
800 				acg.cg_cs.cs_nbfree++;
801 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
802 				k=rounddown(osblock.fs_size-cbase,
803 				    sblock.fs_frag);
804 				cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
805 				cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
806 		   		    [cbtorpos(&sblock, k)]++;
807 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
808 			} else {
809 				/*
810 				 * Lets rejoin a possible partially growed
811 				 * fragment.
812 				 */
813 				k=0;
814 				while(isset(cg_blksfree(&acg), i) &&
815 				    (i>=rounddown(osblock.fs_size-cbase,
816 				    sblock.fs_frag))) {
817 					i--;
818 					k++;
819 				}
820 				if(k) {
821 					acg.cg_frsum[k]--;
822 				}
823 				acg.cg_frsum[k+j]++;
824 			}
825 		} else {
826 			/*
827 			 * We only grow by some fragments within this last
828 			 * block.
829 			 */
830 			for(i=sblock.fs_size-cbase-1;
831 				i>=osblock.fs_size-cbase;
832 				i--) {
833 				setbit(cg_blksfree(&acg), i);
834 				acg.cg_cs.cs_nffree++;
835 				j++;
836 			}
837 			/*
838 			 * Lets rejoin a possible partially growed fragment.
839 			 */
840 			k=0;
841 			while(isset(cg_blksfree(&acg), i) &&
842 			    (i>=rounddown(osblock.fs_size-cbase,
843 			    sblock.fs_frag))) {
844 				i--;
845 				k++;
846 			}
847 			if(k) {
848 				acg.cg_frsum[k]--;
849 			}
850 			acg.cg_frsum[k+j]++;
851 		}
852 	}
853 
854 	/*
855 	 * Handle all new complete blocks here.
856 	 */
857 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
858 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
859 	    i+=sblock.fs_frag) {
860 		j = i / sblock.fs_frag;
861 		setblock(&sblock, cg_blksfree(&acg), j);
862 		updclst(j);
863 		acg.cg_cs.cs_nbfree++;
864 		cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
865 		cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
866 		    [cbtorpos(&sblock, i)]++;
867 	}
868 
869 	/*
870 	 * Handle the last new block if there are stll some new fragments left.
871 	 * Here  we don't have to bother about the cluster summary or the  even
872 	 * the rotational layout table.
873 	 */
874 	if (i < (dmax - cbase)) {
875 		acg.cg_frsum[dmax - cbase - i]++;
876 		for (; i < dmax - cbase; i++) {
877 			setbit(cg_blksfree(&acg), i);
878 			acg.cg_cs.cs_nffree++;
879 		}
880 	}
881 
882 	sblock.fs_cstotal.cs_nffree +=
883 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
884 	sblock.fs_cstotal.cs_nbfree +=
885 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
886 	/*
887 	 * The following statistics are not changed here:
888 	 *     sblock.fs_cstotal.cs_ndir
889 	 *     sblock.fs_cstotal.cs_nifree
890 	 * As the statistics for this cylinder group are ready, copy it to
891 	 * the summary information array.
892 	 */
893 	*cs = acg.cg_cs;
894 
895 	/*
896 	 * Write the updated "joining" cylinder group back to disk.
897 	 */
898 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
899 	    (void *)&acg, fso, Nflag);
900 	DBG_PRINT0("jcg written\n");
901 	DBG_DUMP_CG(&sblock,
902 	    "new joining cg",
903 	    &acg);
904 
905 	DBG_LEAVE;
906 	return;
907 }
908 
909 /* ********************************************************** updcsloc ***** */
910 /*
911  * Here  we update the location of the cylinder summary. We have  two  possible
912  * ways of growing the cylinder summary.
913  * (1)	We can try to grow the summary in the current location, and  relocate
914  *	possibly used blocks within the current cylinder group.
915  * (2)	Alternatively we can relocate the whole cylinder summary to the first
916  *	new completely empty cylinder group. Once the cylinder summary is  no
917  *	longer in the beginning of the first cylinder group you should  never
918  *	use  a version of fsck which is not aware of the possibility to  have
919  *	this structure in a non standard place.
920  * Option (1) is considered to be less intrusive to the structure of the  file-
921  * system. So we try to stick to that whenever possible. If there is not enough
922  * space  in the cylinder group containing the cylinder summary we have to  use
923  * method  (2). In case of active snapshots in the filesystem we  probably  can
924  * completely avoid implementing copy on write if we stick to method (2) only.
925  */
926 static void
927 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
928 {
929 	DBG_FUNC("updcsloc")
930 	struct csum	*cs;
931 	int	ocscg, ncscg;
932 	int	blocks;
933 	daddr_t	cbase, dupper, odupper, d, f, g;
934 	int	ind;
935 	int	cylno, inc;
936 	struct gfs_bpp	*bp;
937 	int	i, l;
938 	int	lcs=0;
939 	int	block;
940 
941 	DBG_ENTER;
942 
943 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
944 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
945 		/*
946 		 * No new fragment needed.
947 		 */
948 		DBG_LEAVE;
949 		return;
950 	}
951 	ocscg=dtog(&osblock, osblock.fs_csaddr);
952 	cs=fscs+ocscg;
953 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
954 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
955 
956 	/*
957 	 * Read original cylinder group from disk, and make a copy.
958 	 * XXX	If Nflag is set in some very rare cases we now miss
959 	 *	some changes done in updjcg by reading the unmodified
960 	 *	block from disk.
961 	 */
962 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
963 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
964 	DBG_PRINT0("oscg read\n");
965 	DBG_DUMP_CG(&sblock,
966 	    "old summary cg",
967 	    &aocg);
968 
969 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
970 
971 	/*
972 	 * Touch the cylinder group, set up local variables needed later
973 	 * and update the superblock.
974 	 */
975 	acg.cg_time = utime;
976 
977 	/*
978 	 * XXX	In the case of having active snapshots we may need much more
979 	 *	blocks for the copy on write. We need each block twice,  and
980 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
981 	 *	references.
982 	 */
983 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
984 		/*
985 		 * There  is  not enough space in the old cylinder  group  to
986 		 * relocate  all blocks as needed, so we relocate  the  whole
987 		 * cylinder  group summary to a new group. We try to use  the
988 		 * first complete new cylinder group just created. Within the
989 		 * cylinder  group we allign the area immediately  after  the
990 		 * cylinder  group  information location in order  to  be  as
991 		 * close as possible to the original implementation of ffs.
992 		 *
993 		 * First  we have to make sure we'll find enough space in  the
994 		 * new  cylinder  group. If not, then we  currently  give  up.
995 		 * We  start  with freeing everything which was  used  by  the
996 		 * fragments of the old cylinder summary in the current group.
997 		 * Now  we write back the group meta data, read in the  needed
998 		 * meta data from the new cylinder group, and start allocating
999 		 * within  that  group. Here we can assume, the  group  to  be
1000 		 * completely empty. Which makes the handling of fragments and
1001 		 * clusters a lot easier.
1002 		 */
1003 		DBG_TRC;
1004 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1005 			errx(2, "panic: not enough space");
1006 		}
1007 
1008 		/*
1009 		 * Point "d" to the first fragment not used by the cylinder
1010 		 * summary.
1011 		 */
1012 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1013 
1014 		/*
1015 		 * Set up last cluster size ("lcs") already here. Calculate
1016 		 * the size for the trailing cluster just behind where  "d"
1017 		 * points to.
1018 		 */
1019 		if(sblock.fs_contigsumsize > 0) {
1020 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1021 			    lcs=0; lcs<sblock.fs_contigsumsize;
1022 			    block++, lcs++) {
1023 				if(isclr(cg_clustersfree(&acg), block)){
1024 					break;
1025 				}
1026 			}
1027 		}
1028 
1029 		/*
1030 		 * Point "d" to the last frag used by the cylinder summary.
1031 		 */
1032 		d--;
1033 
1034 		DBG_PRINT1("d=%d\n",
1035 		    d);
1036 		if((d+1)%sblock.fs_frag) {
1037 			/*
1038 			 * The end of the cylinder summary is not a complete
1039 			 * block.
1040 			 */
1041 			DBG_TRC;
1042 			frag_adjust(d%sblock.fs_fpg, -1);
1043 			for(; (d+1)%sblock.fs_frag; d--) {
1044 				DBG_PRINT1("d=%d\n",
1045 				    d);
1046 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1047 				acg.cg_cs.cs_nffree++;
1048 				sblock.fs_cstotal.cs_nffree++;
1049 			}
1050 			/*
1051 			 * Point  "d" to the last fragment of the  last
1052 			 * (incomplete) block of the clinder summary.
1053 			 */
1054 			d++;
1055 			frag_adjust(d%sblock.fs_fpg, 1);
1056 
1057 			if(isblock(&sblock, cg_blksfree(&acg),
1058 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1059 				DBG_PRINT1("d=%d\n",
1060 				    d);
1061 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1062 				acg.cg_cs.cs_nbfree++;
1063 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1064 				sblock.fs_cstotal.cs_nbfree++;
1065 				cg_blktot(&acg)[cbtocylno(&sblock,
1066 				    d%sblock.fs_fpg)]++;
1067 				cg_blks(&sblock, &acg, cbtocylno(&sblock,
1068 				    d%sblock.fs_fpg))[cbtorpos(&sblock,
1069 				    d%sblock.fs_fpg)]++;
1070 				if(sblock.fs_contigsumsize > 0) {
1071 					setbit(cg_clustersfree(&acg),
1072 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1073 					if(lcs < sblock.fs_contigsumsize) {
1074 						if(lcs) {
1075 							cg_clustersum(&acg)
1076 							    [lcs]--;
1077 						}
1078 						lcs++;
1079 						cg_clustersum(&acg)[lcs]++;
1080 					}
1081 				}
1082 			}
1083 			/*
1084 			 * Point "d" to the first fragment of the block before
1085 			 * the last incomplete block.
1086 			 */
1087 			d--;
1088 		}
1089 
1090 		DBG_PRINT1("d=%d\n",
1091 		    d);
1092 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1093 		    d-=sblock.fs_frag) {
1094 			DBG_TRC;
1095 			DBG_PRINT1("d=%d\n",
1096 			    d);
1097 			setblock(&sblock, cg_blksfree(&acg),
1098 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1099 			acg.cg_cs.cs_nbfree++;
1100 			sblock.fs_cstotal.cs_nbfree++;
1101 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1102 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1103 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1104 			    d%sblock.fs_fpg)]++;
1105 			if(sblock.fs_contigsumsize > 0) {
1106 				setbit(cg_clustersfree(&acg),
1107 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1108 				/*
1109 				 * The last cluster size is already set up.
1110 				 */
1111 				if(lcs < sblock.fs_contigsumsize) {
1112 					if(lcs) {
1113 						cg_clustersum(&acg)[lcs]--;
1114 					}
1115 					lcs++;
1116 					cg_clustersum(&acg)[lcs]++;
1117 				}
1118 			}
1119 		}
1120 		*cs = acg.cg_cs;
1121 
1122 		/*
1123 		 * Now write the former cylinder group containing the cylinder
1124 		 * summary back to disk.
1125 		 */
1126 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1127 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1128 		DBG_PRINT0("oscg written\n");
1129 		DBG_DUMP_CG(&sblock,
1130 		    "old summary cg",
1131 		    &acg);
1132 
1133 		/*
1134 		 * Find the beginning of the new cylinder group containing the
1135 		 * cylinder summary.
1136 		 */
1137 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1138 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1139 		cs=fscs+ncscg;
1140 
1141 
1142 		/*
1143 		 * If Nflag is specified, we would now read random data instead
1144 		 * of an empty cg structure from disk. So we can't simulate that
1145 		 * part for now.
1146 		 */
1147 		if(Nflag) {
1148 			DBG_PRINT0("nscg update skipped\n");
1149 			DBG_LEAVE;
1150 			return;
1151 		}
1152 
1153 		/*
1154 		 * Read the future cylinder group containing the cylinder
1155 		 * summary from disk, and make a copy.
1156 		 */
1157 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1158 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1159 		DBG_PRINT0("nscg read\n");
1160 		DBG_DUMP_CG(&sblock,
1161 		    "new summary cg",
1162 		    &aocg);
1163 
1164 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1165 
1166 		/*
1167 		 * Allocate all complete blocks used by the new cylinder
1168 		 * summary.
1169 		 */
1170 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1171 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1172 		    d+=sblock.fs_frag) {
1173 			clrblock(&sblock, cg_blksfree(&acg),
1174 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1175 			acg.cg_cs.cs_nbfree--;
1176 			sblock.fs_cstotal.cs_nbfree--;
1177 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1178 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1179 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1180 			    d%sblock.fs_fpg)]--;
1181 			if(sblock.fs_contigsumsize > 0) {
1182 				clrbit(cg_clustersfree(&acg),
1183 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1184 			}
1185 		}
1186 
1187 		/*
1188 		 * Allocate all fragments used by the cylinder summary in the
1189 		 * last block.
1190 		 */
1191 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1192 			for(; d-sblock.fs_csaddr<
1193 			    sblock.fs_cssize/sblock.fs_fsize;
1194 			    d++) {
1195 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1196 				acg.cg_cs.cs_nffree--;
1197 				sblock.fs_cstotal.cs_nffree--;
1198 			}
1199 			acg.cg_cs.cs_nbfree--;
1200 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1201 			sblock.fs_cstotal.cs_nbfree--;
1202 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1203 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1204 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1205 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1206 			    d%sblock.fs_fpg)]--;
1207 			if(sblock.fs_contigsumsize > 0) {
1208 				clrbit(cg_clustersfree(&acg),
1209 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1210 			}
1211 
1212 			frag_adjust(d%sblock.fs_fpg, +1);
1213 		}
1214 		/*
1215 		 * XXX	Handle the cluster statistics here in the case  this
1216 		 *	cylinder group is now almost full, and the remaining
1217 		 *	space is less then the maximum cluster size. This is
1218 		 *	probably not needed, as you would hardly find a file
1219 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1220 		 *	space right behind the cylinder group information in
1221 		 *	any new cylinder group.
1222 		 */
1223 
1224 		/*
1225 		 * Update our statistics in the cylinder summary.
1226 		 */
1227 		*cs = acg.cg_cs;
1228 
1229 		/*
1230 		 * Write the new cylinder group containing the cylinder summary
1231 		 * back to disk.
1232 		 */
1233 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1234 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1235 		DBG_PRINT0("nscg written\n");
1236 		DBG_DUMP_CG(&sblock,
1237 		    "new summary cg",
1238 		    &acg);
1239 
1240 		DBG_LEAVE;
1241 		return;
1242 	}
1243 	/*
1244 	 * We have got enough of space in the current cylinder group, so we
1245 	 * can relocate just a few blocks, and let the summary  information
1246 	 * grow in place where it is right now.
1247 	 */
1248 	DBG_TRC;
1249 
1250 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1251 	dupper = sblock.fs_csaddr - cbase +
1252 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1253 	odupper = osblock.fs_csaddr - cbase +
1254 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1255 
1256 	sblock.fs_dsize -= dupper-odupper;
1257 
1258 	/*
1259 	 * Allocate the space for the array of blocks to be relocated.
1260 	 */
1261  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1262 	    sizeof(struct gfs_bpp));
1263 	if(bp == NULL) {
1264 		errx(1, "malloc failed");
1265 	}
1266 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1267 	    sizeof(struct gfs_bpp));
1268 
1269 	/*
1270 	 * Lock all new frags needed for the cylinder group summary. This  is
1271 	 * done per fragment in the first and last block of the new  required
1272 	 * area, and per block for all other blocks.
1273 	 *
1274 	 * Handle the first new  block here (but only if some fragments where
1275 	 * already used for the cylinder summary).
1276 	 */
1277 	ind=0;
1278 	frag_adjust(odupper, -1);
1279 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1280 		DBG_PRINT1("scg first frag check loop d=%d\n",
1281 		    d);
1282 		if(isclr(cg_blksfree(&acg), d)) {
1283 			if (!ind) {
1284 				bp[ind].old=d/sblock.fs_frag;
1285 				bp[ind].flags|=GFS_FL_FIRST;
1286 				if(roundup(d, sblock.fs_frag) >= dupper) {
1287 					bp[ind].flags|=GFS_FL_LAST;
1288 				}
1289 				ind++;
1290 			}
1291 		} else {
1292 			clrbit(cg_blksfree(&acg), d);
1293 			acg.cg_cs.cs_nffree--;
1294 			sblock.fs_cstotal.cs_nffree--;
1295 		}
1296 		/*
1297 		 * No cluster handling is needed here, as there was at least
1298 		 * one  fragment in use by the cylinder summary in  the  old
1299 		 * file system.
1300 		 * No block-free counter handling here as this block was not
1301 		 * a free block.
1302 		 */
1303 	}
1304 	frag_adjust(odupper, 1);
1305 
1306 	/*
1307 	 * Handle all needed complete blocks here.
1308 	 */
1309 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1310 		DBG_PRINT1("scg block check loop d=%d\n",
1311 		    d);
1312 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1313 			for(f=d; f<d+sblock.fs_frag; f++) {
1314 				if(isset(cg_blksfree(&aocg), f)) {
1315 					acg.cg_cs.cs_nffree--;
1316 					sblock.fs_cstotal.cs_nffree--;
1317 				}
1318 			}
1319 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1320 			bp[ind].old=d/sblock.fs_frag;
1321 			ind++;
1322 		} else {
1323 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1324 			acg.cg_cs.cs_nbfree--;
1325 			sblock.fs_cstotal.cs_nbfree--;
1326 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1327 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1328 			    [cbtorpos(&sblock, d)]--;
1329 			if(sblock.fs_contigsumsize > 0) {
1330 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1331 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1332 				    lcs<sblock.fs_contigsumsize;
1333 				    l++, lcs++ ) {
1334 					if(isclr(cg_clustersfree(&acg),l)){
1335 						break;
1336 					}
1337 				}
1338 				if(lcs < sblock.fs_contigsumsize) {
1339 					cg_clustersum(&acg)[lcs+1]--;
1340 					if(lcs) {
1341 						cg_clustersum(&acg)[lcs]++;
1342 					}
1343 				}
1344 			}
1345 		}
1346 		/*
1347 		 * No fragment counter handling is needed here, as this finally
1348 		 * doesn't change after the relocation.
1349 		 */
1350 	}
1351 
1352 	/*
1353 	 * Handle all fragments needed in the last new affected block.
1354 	 */
1355 	if(d<dupper) {
1356 		frag_adjust(dupper-1, -1);
1357 
1358 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1359 			acg.cg_cs.cs_nbfree--;
1360 			sblock.fs_cstotal.cs_nbfree--;
1361 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1362 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1363 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1364 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1365 			    [cbtorpos(&sblock, d)]--;
1366 			if(sblock.fs_contigsumsize > 0) {
1367 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1368 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1369 				    lcs<sblock.fs_contigsumsize;
1370 				    l++, lcs++ ) {
1371 					if(isclr(cg_clustersfree(&acg),l)){
1372 						break;
1373 					}
1374 				}
1375 				if(lcs < sblock.fs_contigsumsize) {
1376 					cg_clustersum(&acg)[lcs+1]--;
1377 					if(lcs) {
1378 						cg_clustersum(&acg)[lcs]++;
1379 					}
1380 				}
1381 			}
1382 		}
1383 
1384 		for(; d<dupper; d++) {
1385 			DBG_PRINT1("scg second frag check loop d=%d\n",
1386 			    d);
1387 			if(isclr(cg_blksfree(&acg), d)) {
1388 				bp[ind].old=d/sblock.fs_frag;
1389 				bp[ind].flags|=GFS_FL_LAST;
1390 			} else {
1391 				clrbit(cg_blksfree(&acg), d);
1392 				acg.cg_cs.cs_nffree--;
1393 				sblock.fs_cstotal.cs_nffree--;
1394 			}
1395 		}
1396 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1397 			ind++;
1398 		}
1399 		frag_adjust(dupper-1, 1);
1400 	}
1401 
1402 	/*
1403 	 * If we found a block to relocate just do so.
1404 	 */
1405 	if(ind) {
1406 		for(i=0; i<ind; i++) {
1407 			if(!bp[i].old) { /* no more blocks listed */
1408 				/*
1409 				 * XXX	A relative blocknumber should not be
1410 				 *	zero,   which  is   not   explicitly
1411 				 *	guaranteed by our code.
1412 				 */
1413 				break;
1414 			}
1415 			/*
1416 			 * Allocate a complete block in the same (current)
1417 			 * cylinder group.
1418 			 */
1419 			bp[i].new=alloc()/sblock.fs_frag;
1420 
1421 			/*
1422 			 * There is no frag_adjust() needed for the new block
1423 			 * as it will have no fragments yet :-).
1424 			 */
1425 			for(f=bp[i].old*sblock.fs_frag,
1426 			    g=bp[i].new*sblock.fs_frag;
1427 			    f<(bp[i].old+1)*sblock.fs_frag;
1428 			    f++, g++) {
1429 				if(isset(cg_blksfree(&aocg), f)) {
1430 					setbit(cg_blksfree(&acg), g);
1431 					acg.cg_cs.cs_nffree++;
1432 					sblock.fs_cstotal.cs_nffree++;
1433 				}
1434 			}
1435 
1436 			/*
1437 			 * Special handling is required if this was the  first
1438 			 * block. We have to consider the fragments which were
1439 			 * used by the cylinder summary in the original  block
1440 			 * which  re to be free in the copy of our  block.  We
1441 			 * have  to be careful if this first block happens  to
1442 			 * be also the last block to be relocated.
1443 			 */
1444 			if(bp[i].flags & GFS_FL_FIRST) {
1445 				for(f=bp[i].old*sblock.fs_frag,
1446 				    g=bp[i].new*sblock.fs_frag;
1447 				    f<odupper;
1448 				    f++, g++) {
1449 					setbit(cg_blksfree(&acg), g);
1450 					acg.cg_cs.cs_nffree++;
1451 					sblock.fs_cstotal.cs_nffree++;
1452 				}
1453 				if(!(bp[i].flags & GFS_FL_LAST)) {
1454 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1455 				}
1456 
1457 			}
1458 
1459 			/*
1460 			 * Special handling is required if this is the last
1461 			 * block to be relocated.
1462 			 */
1463 			if(bp[i].flags & GFS_FL_LAST) {
1464 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1465 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1466 				for(f=dupper;
1467 				    f<roundup(dupper, sblock.fs_frag);
1468 				    f++) {
1469 					if(isclr(cg_blksfree(&acg), f)) {
1470 						setbit(cg_blksfree(&acg), f);
1471 						acg.cg_cs.cs_nffree++;
1472 						sblock.fs_cstotal.cs_nffree++;
1473 					}
1474 				}
1475 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1476 			}
1477 
1478 			/*
1479 			 * !!! Attach the cylindergroup offset here.
1480 			 */
1481 			bp[i].old+=cbase/sblock.fs_frag;
1482 			bp[i].new+=cbase/sblock.fs_frag;
1483 
1484 			/*
1485 			 * Copy the content of the block.
1486 			 */
1487 			/*
1488 			 * XXX	Here we will have to implement a copy on write
1489 			 *	in the case we have any active snapshots.
1490 			 */
1491 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1492 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1493 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1494 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1495 			DBG_DUMP_HEX(&sblock,
1496 			    "copied full block",
1497 			    (unsigned char *)&ablk);
1498 
1499 			DBG_PRINT2("scg (%d->%d) block relocated\n",
1500 			    bp[i].old,
1501 			    bp[i].new);
1502 		}
1503 
1504 		/*
1505 		 * Now we have to update all references to any fragment which
1506 		 * belongs  to any block relocated. We iterate now  over  all
1507 		 * cylinder  groups,  within those over all non  zero  length
1508 		 * inodes.
1509 		 */
1510 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1511 			DBG_PRINT1("scg doing cg (%d)\n",
1512 			    cylno);
1513 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1514 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1515 			}
1516 		}
1517 
1518 		/*
1519 		 * All inodes are checked, now make sure the number of
1520 		 * references found make sense.
1521 		 */
1522 		for(i=0; i<ind; i++) {
1523 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1524 				warnx("error: %d refs found for block %d.",
1525 				    bp[i].found, bp[i].old);
1526 			}
1527 
1528 		}
1529 	}
1530 	/*
1531 	 * The following statistics are not changed here:
1532 	 *     sblock.fs_cstotal.cs_ndir
1533 	 *     sblock.fs_cstotal.cs_nifree
1534 	 * The following statistics were already updated on the fly:
1535 	 *     sblock.fs_cstotal.cs_nffree
1536 	 *     sblock.fs_cstotal.cs_nbfree
1537 	 * As the statistics for this cylinder group are ready, copy it to
1538 	 * the summary information array.
1539 	 */
1540 
1541 	*cs = acg.cg_cs;
1542 
1543 	/*
1544 	 * Write summary cylinder group back to disk.
1545 	 */
1546 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1547 	    (void *)&acg, fso, Nflag);
1548 	DBG_PRINT0("scg written\n");
1549 	DBG_DUMP_CG(&sblock,
1550 	    "new summary cg",
1551 	    &acg);
1552 
1553 	DBG_LEAVE;
1554 	return;
1555 }
1556 
1557 /* ************************************************************** rdfs ***** */
1558 /*
1559  * Here we read some block(s) from disk.
1560  */
1561 static void
1562 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1563 {
1564 	DBG_FUNC("rdfs")
1565 	ssize_t	n;
1566 
1567 	DBG_ENTER;
1568 
1569 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1570 		err(33, "rdfs: seek error: %ld", (long)bno);
1571 	}
1572 	n = read(fsi, bf, size);
1573 	if (n != (ssize_t)size) {
1574 		err(34, "rdfs: read error: %ld", (long)bno);
1575 	}
1576 
1577 	DBG_LEAVE;
1578 	return;
1579 }
1580 
1581 /* ************************************************************** wtfs ***** */
1582 /*
1583  * Here we write some block(s) to disk.
1584  */
1585 static void
1586 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1587 {
1588 	DBG_FUNC("wtfs")
1589 	ssize_t	n;
1590 
1591 	DBG_ENTER;
1592 
1593 	if (Nflag) {
1594 		DBG_LEAVE;
1595 		return;
1596 	}
1597 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1598 		err(35, "wtfs: seek error: %ld", (long)bno);
1599 	}
1600 	n = write(fso, bf, size);
1601 	if (n != (ssize_t)size) {
1602 		err(36, "wtfs: write error: %ld", (long)bno);
1603 	}
1604 
1605 	DBG_LEAVE;
1606 	return;
1607 }
1608 
1609 /* ************************************************************* alloc ***** */
1610 /*
1611  * Here we allocate a free block in the current cylinder group. It is assumed,
1612  * that  acg contains the current cylinder group. As we may take a block  from
1613  * somewhere in the filesystem we have to handle cluster summary here.
1614  */
1615 static daddr_t
1616 alloc(void)
1617 {
1618 	DBG_FUNC("alloc")
1619 	daddr_t	d, blkno;
1620 	int	lcs1, lcs2;
1621 	int	l;
1622 	int	csmin, csmax;
1623 	int	dlower, dupper, dmax;
1624 
1625 	DBG_ENTER;
1626 
1627 	if (acg.cg_magic != CG_MAGIC) {
1628 		warnx("acg: bad magic number");
1629 		DBG_LEAVE;
1630 		return (0);
1631 	}
1632 	if (acg.cg_cs.cs_nbfree == 0) {
1633 		warnx("error: cylinder group ran out of space");
1634 		DBG_LEAVE;
1635 		return (0);
1636 	}
1637 	/*
1638 	 * We start seeking for free blocks only from the space available after
1639 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1640 	 * block here which we have to relocate a couple of seconds later again
1641 	 * again, and we are not prepared to to this anyway.
1642 	 */
1643 	blkno=-1;
1644 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1645 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1646 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1647 	if (dmax > sblock.fs_size) {
1648 		dmax = sblock.fs_size;
1649 	}
1650 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1651 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1652 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1653 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1654 	    dlower,
1655 	    dupper,
1656 	    dmax);
1657 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1658 	    csmin,
1659 	    csmax);
1660 
1661 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1662 		if(d>=csmin && d<=csmax) {
1663 			continue;
1664 		}
1665 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1666 		    d))) {
1667 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1668 			break;
1669 		}
1670 	}
1671 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1672 		if(d>=csmin && d<=csmax) {
1673 			continue;
1674 		}
1675 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1676 		    d))) {
1677 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1678 			break;
1679 		}
1680 	}
1681 	if(blkno==-1) {
1682 		warnx("internal error: couldn't find promised block in cg");
1683 		DBG_LEAVE;
1684 		return (0);
1685 	}
1686 
1687 	/*
1688 	 * This is needed if the block was found already in the first loop.
1689 	 */
1690 	d=blkstofrags(&sblock, blkno);
1691 
1692 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1693 	if (sblock.fs_contigsumsize > 0) {
1694 		/*
1695 		 * Handle the cluster allocation bitmap.
1696 		 */
1697 		clrbit(cg_clustersfree(&acg), blkno);
1698 		/*
1699 		 * We  possibly have split a cluster here, so we have  to  do
1700 		 * recalculate the sizes of the remaining cluster halves now,
1701 		 * and use them for updating the cluster summary information.
1702 		 *
1703 		 * Lets start with the blocks before our allocated block ...
1704 		 */
1705 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1706 		    l--, lcs1++ ) {
1707 			if(isclr(cg_clustersfree(&acg),l)){
1708 				break;
1709 			}
1710 		}
1711 		/*
1712 		 * ... and continue with the blocks right after our allocated
1713 		 * block.
1714 		 */
1715 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1716 		    l++, lcs2++ ) {
1717 			if(isclr(cg_clustersfree(&acg),l)){
1718 				break;
1719 			}
1720 		}
1721 
1722 		/*
1723 		 * Now update all counters.
1724 		 */
1725 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1726 		if(lcs1) {
1727 			cg_clustersum(&acg)[lcs1]++;
1728 		}
1729 		if(lcs2) {
1730 			cg_clustersum(&acg)[lcs2]++;
1731 		}
1732 	}
1733 	/*
1734 	 * Update all statistics based on blocks.
1735 	 */
1736 	acg.cg_cs.cs_nbfree--;
1737 	sblock.fs_cstotal.cs_nbfree--;
1738 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1739 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1740 
1741 	DBG_LEAVE;
1742 	return (d);
1743 }
1744 
1745 /* *********************************************************** isblock ***** */
1746 /*
1747  * Here  we check if all frags of a block are free. For more details  again
1748  * please see the source of newfs(8), as this function is taken over almost
1749  * unchanged.
1750  */
1751 static int
1752 isblock(struct fs *fs, unsigned char *cp, int h)
1753 {
1754 	DBG_FUNC("isblock")
1755 	unsigned char	mask;
1756 
1757 	DBG_ENTER;
1758 
1759 	switch (fs->fs_frag) {
1760 	case 8:
1761 		DBG_LEAVE;
1762 		return (cp[h] == 0xff);
1763 	case 4:
1764 		mask = 0x0f << ((h & 0x1) << 2);
1765 		DBG_LEAVE;
1766 		return ((cp[h >> 1] & mask) == mask);
1767 	case 2:
1768 		mask = 0x03 << ((h & 0x3) << 1);
1769 		DBG_LEAVE;
1770 		return ((cp[h >> 2] & mask) == mask);
1771 	case 1:
1772 		mask = 0x01 << (h & 0x7);
1773 		DBG_LEAVE;
1774 		return ((cp[h >> 3] & mask) == mask);
1775 	default:
1776 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1777 		DBG_LEAVE;
1778 		return (0);
1779 	}
1780 }
1781 
1782 /* ********************************************************** clrblock ***** */
1783 /*
1784  * Here we allocate a complete block in the block map. For more details again
1785  * please  see the source of newfs(8), as this function is taken over  almost
1786  * unchanged.
1787  */
1788 static void
1789 clrblock(struct fs *fs, unsigned char *cp, int h)
1790 {
1791 	DBG_FUNC("clrblock")
1792 
1793 	DBG_ENTER;
1794 
1795 	switch ((fs)->fs_frag) {
1796 	case 8:
1797 		cp[h] = 0;
1798 		break;
1799 	case 4:
1800 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1801 		break;
1802 	case 2:
1803 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1804 		break;
1805 	case 1:
1806 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1807 		break;
1808 	default:
1809 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1810 		break;
1811 	}
1812 
1813 	DBG_LEAVE;
1814 	return;
1815 }
1816 
1817 /* ********************************************************** setblock ***** */
1818 /*
1819  * Here we free a complete block in the free block map. For more details again
1820  * please  see the source of newfs(8), as this function is taken  over  almost
1821  * unchanged.
1822  */
1823 static void
1824 setblock(struct fs *fs, unsigned char *cp, int h)
1825 {
1826 	DBG_FUNC("setblock")
1827 
1828 	DBG_ENTER;
1829 
1830 	switch (fs->fs_frag) {
1831 	case 8:
1832 		cp[h] = 0xff;
1833 		break;
1834 	case 4:
1835 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1836 		break;
1837 	case 2:
1838 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1839 		break;
1840 	case 1:
1841 		cp[h >> 3] |= (0x01 << (h & 0x7));
1842 		break;
1843 	default:
1844 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1845 		break;
1846 	}
1847 
1848 	DBG_LEAVE;
1849 	return;
1850 }
1851 
1852 /* ************************************************************ ginode ***** */
1853 /*
1854  * This function provides access to an individual inode. We find out in which
1855  * block  the  requested inode is located, read it from disk if  needed,  and
1856  * return  the pointer into that block. We maintain a cache of one  block  to
1857  * not  read the same block again and again if we iterate linearly  over  all
1858  * inodes.
1859  */
1860 static struct dinode *
1861 ginode(ino_t inumber, int fsi, int cg)
1862 {
1863 	DBG_FUNC("ginode")
1864 	ufs_daddr_t	iblk;
1865 	static ino_t	startinum=0;	/* first inode in cached block */
1866 	struct dinode	*pi;
1867 
1868 	DBG_ENTER;
1869 
1870 	pi=(struct dinode *)(void *)ablk;
1871 	inumber+=(cg * sblock.fs_ipg);
1872 	if (startinum == 0 || inumber < startinum ||
1873 	    inumber >= startinum + INOPB(&sblock)) {
1874 		/*
1875 		 * The block needed is not cached, so we have to read it from
1876 		 * disk now.
1877 		 */
1878 		iblk = ino_to_fsba(&sblock, inumber);
1879 		in_src=fsbtodb(&sblock, iblk);
1880 		rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1881 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1882 	}
1883 
1884 	DBG_LEAVE;
1885 	return (&(pi[inumber % INOPB(&sblock)]));
1886 }
1887 
1888 /* ****************************************************** charsperline ***** */
1889 /*
1890  * Figure out how many lines our current terminal has. For more details again
1891  * please  see the source of newfs(8), as this function is taken over  almost
1892  * unchanged.
1893  */
1894 static int
1895 charsperline(void)
1896 {
1897 	DBG_FUNC("charsperline")
1898 	int	columns;
1899 	char	*cp;
1900 	struct winsize	ws;
1901 
1902 	DBG_ENTER;
1903 
1904 	columns = 0;
1905 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1906 		columns = ws.ws_col;
1907 	}
1908 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1909 		columns = atoi(cp);
1910 	}
1911 	if (columns == 0) {
1912 		columns = 80;	/* last resort */
1913 	}
1914 
1915 	DBG_LEAVE;
1916 	return columns;
1917 }
1918 
1919 /* ************************************************************** main ***** */
1920 /*
1921  * growfs(8)  is a utility which allows to increase the size of  an  existing
1922  * ufs filesystem. Currently this can only be done on unmounted file  system.
1923  * It  recognizes some command line options to specify the new desired  size,
1924  * and  it does some basic checkings. The old file system size is  determined
1925  * and  after some more checks like we can really access the new  last  block
1926  * on the disk etc. we calculate the new parameters for the superblock. After
1927  * having  done  this we just call growfs() which will do  the  work.  Before
1928  * we finish the only thing left is to update the disklabel.
1929  * We still have to provide support for snapshots. Therefore we first have to
1930  * understand  what data structures are always replicated in the snapshot  on
1931  * creation,  for all other blocks we touch during our procedure, we have  to
1932  * keep the old blocks unchanged somewhere available for the snapshots. If we
1933  * are lucky, then we only have to handle our blocks to be relocated in  that
1934  * way.
1935  * Also  we  have to consider in what order we actually update  the  critical
1936  * data structures of the filesystem to make sure, that in case of a disaster
1937  * fsck(8) is still able to restore any lost data.
1938  * The  foreseen last step then will be to provide for growing  even  mounted
1939  * file  systems. There we have to extend the mount() system call to  provide
1940  * userland access to the file system locking facility.
1941  */
1942 int
1943 main(int argc, char **argv)
1944 {
1945 	DBG_FUNC("main")
1946 	char	*device, *special, *cp;
1947 	char	ch;
1948 	unsigned int	size=0;
1949 	size_t	len;
1950 	unsigned int	Nflag=0;
1951 	int	ExpertFlag=0;
1952 	struct stat	st;
1953 	struct disklabel	*lp;
1954 	struct partition	*pp;
1955 	int	fsi,fso;
1956 	char	reply[5];
1957 #ifdef FSMAXSNAP
1958 	int	j;
1959 #endif /* FSMAXSNAP */
1960 
1961 	DBG_ENTER;
1962 
1963 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1964 		switch(ch) {
1965 		case 'N':
1966 			Nflag=1;
1967 			break;
1968 		case 's':
1969 			size=(size_t)atol(optarg);
1970 			if(size<1) {
1971 				usage();
1972 			}
1973 			break;
1974 		case 'v': /* for compatibility to newfs */
1975 			break;
1976 		case 'y':
1977 			ExpertFlag=1;
1978 			break;
1979 		case '?':
1980 			/* FALLTHROUGH */
1981 		default:
1982 			usage();
1983 		}
1984 	}
1985 	argc -= optind;
1986 	argv += optind;
1987 
1988 	if(argc != 1) {
1989 		usage();
1990 	}
1991 	device=*argv;
1992 
1993 	/*
1994 	 * Now try to guess the (raw)device name.
1995 	 */
1996 	if (0 == strrchr(device, '/')) {
1997 		/*
1998 		 * No path prefix was given, so try in that order:
1999 		 *     /dev/r%s
2000 		 *     /dev/%s
2001 		 *     /dev/vinum/r%s
2002 		 *     /dev/vinum/%s.
2003 		 *
2004 		 * FreeBSD now doesn't distinguish between raw and  block
2005 		 * devices any longer, but it should still work this way.
2006 		 */
2007 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2008 		special=(char *)malloc(len);
2009 		if(special == NULL) {
2010 			errx(1, "malloc failed");
2011 		}
2012 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2013 		if (stat(special, &st) == -1) {
2014 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2015 			if (stat(special, &st) == -1) {
2016 				snprintf(special, len, "%svinum/r%s",
2017 				    _PATH_DEV, device);
2018 				if (stat(special, &st) == -1) {
2019 					/* For now this is the 'last resort' */
2020 					snprintf(special, len, "%svinum/%s",
2021 					    _PATH_DEV, device);
2022 				}
2023 			}
2024 		}
2025 		device = special;
2026 	}
2027 
2028 	/*
2029 	 * Try to access our devices for writing ...
2030 	 */
2031 	if (Nflag) {
2032 		fso = -1;
2033 	} else {
2034 		fso = open(device, O_WRONLY);
2035 		if (fso < 0) {
2036 			err(1, "%s", device);
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * ... and reading.
2042 	 */
2043 	fsi = open(device, O_RDONLY);
2044 	if (fsi < 0) {
2045 		err(1, "%s", device);
2046 	}
2047 
2048 	/*
2049 	 * Try  to read a label and gess the slice if not  specified.  This
2050 	 * code  should guess the right thing and avaid to bother the  user
2051 	 * user with the task of specifying the option -v on vinum volumes.
2052 	 */
2053 	cp=device+strlen(device)-1;
2054 	lp = get_disklabel(fsi);
2055 	if(lp->d_type == DTYPE_VINUM) {
2056 		pp = &lp->d_partitions[0];
2057 	} else if (isdigit(*cp)) {
2058 		pp = &lp->d_partitions[2];
2059 	} else if (*cp>='a' && *cp<='h') {
2060 		pp = &lp->d_partitions[*cp - 'a'];
2061 	} else {
2062 		errx(1, "unknown device");
2063 	}
2064 
2065 	/*
2066 	 * Check if that partition looks suited for growing a file system.
2067 	 */
2068 	if (pp->p_size < 1) {
2069 		errx(1, "partition is unavailable");
2070 	}
2071 	if (pp->p_fstype != FS_BSDFFS) {
2072 		errx(1, "partition not 4.2BSD");
2073 	}
2074 
2075 	/*
2076 	 * Read the current superblock, and take a backup.
2077 	 */
2078 	rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2079 	    fsi);
2080 	if (osblock.fs_magic != FS_MAGIC) {
2081 		errx(1, "superblock not recognized");
2082 	}
2083 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2084 
2085 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2086 	DBG_DUMP_FS(&sblock,
2087 	    "old sblock");
2088 
2089 	/*
2090 	 * Determine size to grow to. Default to the full size specified in
2091 	 * the disk label.
2092 	 */
2093 	sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2094 	if (size != 0) {
2095 		if (size > pp->p_size){
2096 			errx(1, "There is not enough space (%d < %d)",
2097 			    pp->p_size, size);
2098 		}
2099 		sblock.fs_size = dbtofsb(&osblock, size);
2100 	}
2101 
2102 	/*
2103 	 * Are we really growing ?
2104 	 */
2105 	if(osblock.fs_size >= sblock.fs_size) {
2106 		errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2107 		    sblock.fs_size);
2108 	}
2109 
2110 
2111 #ifdef FSMAXSNAP
2112 	/*
2113 	 * Check if we find an active snapshot.
2114 	 */
2115 	if(ExpertFlag == 0) {
2116 		for(j=0; j<FSMAXSNAP; j++) {
2117 			if(sblock.fs_snapinum[j]) {
2118 				errx(1, "active snapshot found in filesystem\n"
2119 				    "	please remove all snapshots before "
2120 				    "using growfs\n");
2121 			}
2122 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2123 				break;
2124 			}
2125 		}
2126 	}
2127 #endif
2128 
2129 	if (ExpertFlag == 0 && Nflag == 0) {
2130 		printf("We strongly recommend you to make a backup "
2131 		    "before growing the Filesystem\n\n"
2132 		    " Did you backup your data (Yes/No) ? ");
2133 		fgets(reply, (int)sizeof(reply), stdin);
2134 		if (strcmp(reply, "Yes\n")){
2135 			printf("\n Nothing done \n");
2136 			exit (0);
2137 		}
2138 	}
2139 
2140 	printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2141 
2142 	/*
2143 	 * Try to access our new last block in the filesystem. Even if we
2144 	 * later on realize we have to abort our operation, on that block
2145 	 * there should be no data, so we can't destroy something yet.
2146 	 */
2147 	wtfs((daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2148 	    Nflag);
2149 
2150 	/*
2151 	 * Now calculate new superblock values and check for reasonable
2152 	 * bound for new file system size:
2153 	 *     fs_size:    is derived from label or user input
2154 	 *     fs_dsize:   should get updated in the routines creating or
2155 	 *                 updating the cylinder groups on the fly
2156 	 *     fs_cstotal: should get updated in the routines creating or
2157 	 *                 updating the cylinder groups
2158 	 */
2159 
2160 	/*
2161 	 * Update the number of cylinders in the filesystem.
2162 	 */
2163 	sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2164 	if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2165 		sblock.fs_ncyl++;
2166 	}
2167 
2168 	/*
2169 	 * Update the number of cylinder groups in the filesystem.
2170 	 */
2171 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2172 	if (sblock.fs_ncyl % sblock.fs_cpg) {
2173 		sblock.fs_ncg++;
2174 	}
2175 
2176 	if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2177 	    sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2178 	    cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2179 	    (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2180 		/*
2181 		 * The space in the new last cylinder group is too small,
2182 		 * so revert back.
2183 		 */
2184 		sblock.fs_ncg--;
2185 #if 1 /* this is a bit more safe */
2186 		sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2187 #else
2188 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2189 #endif
2190 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2191 		printf( "Warning: %d sector(s) cannot be allocated.\n",
2192 		    (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2193 		    NSPF(&sblock));
2194 		sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2195 	}
2196 
2197 	/*
2198 	 * Update the space for the cylinder group summary information in the
2199 	 * respective cylinder group data area.
2200 	 */
2201 	sblock.fs_cssize =
2202 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2203 
2204 	if(osblock.fs_size >= sblock.fs_size) {
2205 		errx(1, "not enough new space");
2206 	}
2207 
2208 	DBG_PRINT0("sblock calculated\n");
2209 
2210 	/*
2211 	 * Ok, everything prepared, so now let's do the tricks.
2212 	 */
2213 	growfs(fsi, fso, Nflag);
2214 
2215 	/*
2216 	 * Update the disk label.
2217 	 */
2218 	pp->p_fsize = sblock.fs_fsize;
2219 	pp->p_frag = sblock.fs_frag;
2220 	pp->p_cpg = sblock.fs_cpg;
2221 
2222 	return_disklabel(fso, lp, Nflag);
2223 	DBG_PRINT0("label rewritten\n");
2224 
2225 	close(fsi);
2226 	if(fso>-1) close(fso);
2227 
2228 	DBG_CLOSE;
2229 
2230 	DBG_LEAVE;
2231 	return 0;
2232 }
2233 
2234 /* ************************************************** return_disklabel ***** */
2235 /*
2236  * Write the updated disklabel back to disk.
2237  */
2238 static void
2239 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2240 {
2241 	DBG_FUNC("return_disklabel")
2242 	u_short	sum;
2243 	u_short	*ptr;
2244 
2245 	DBG_ENTER;
2246 
2247 	if(!lp) {
2248 		DBG_LEAVE;
2249 		return;
2250 	}
2251 	if(!Nflag) {
2252 		lp->d_checksum=0;
2253 		sum = 0;
2254 		ptr=(u_short *)lp;
2255 
2256 		/*
2257 		 * recalculate checksum
2258 		 */
2259 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2260 			sum ^= *ptr++;
2261 		}
2262 		lp->d_checksum=sum;
2263 
2264 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2265 			errx(1, "DIOCWDINFO failed");
2266 		}
2267 	}
2268 	free(lp);
2269 
2270 	DBG_LEAVE;
2271 	return ;
2272 }
2273 
2274 /* ***************************************************** get_disklabel ***** */
2275 /*
2276  * Read the disklabel from disk.
2277  */
2278 static struct disklabel *
2279 get_disklabel(int fd)
2280 {
2281 	DBG_FUNC("get_disklabel")
2282 	static struct	disklabel *lab;
2283 
2284 	DBG_ENTER;
2285 
2286 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2287 	if (!lab) {
2288 		errx(1, "malloc failed");
2289 	}
2290 	if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2291 		errx(1, "DIOCGDINFO failed");
2292 	}
2293 
2294 	DBG_LEAVE;
2295 	return (lab);
2296 }
2297 
2298 
2299 /* ************************************************************* usage ***** */
2300 /*
2301  * Dump a line of usage.
2302  */
2303 static void
2304 usage(void)
2305 {
2306 	DBG_FUNC("usage")
2307 
2308 	DBG_ENTER;
2309 
2310 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2311 
2312 	DBG_LEAVE;
2313 	exit(1);
2314 }
2315 
2316 /* *********************************************************** updclst ***** */
2317 /*
2318  * This updates most paramters and the bitmap related to cluster. We have to
2319  * assume, that sblock, osblock, acg are set up.
2320  */
2321 static void
2322 updclst(int block)
2323 {
2324 	DBG_FUNC("updclst")
2325 	static int	lcs=0;
2326 
2327 	DBG_ENTER;
2328 
2329 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2330 		return;
2331 	}
2332 	/*
2333 	 * update cluster allocation map
2334 	 */
2335 	setbit(cg_clustersfree(&acg), block);
2336 
2337 	/*
2338 	 * update cluster summary table
2339 	 */
2340 	if(!lcs) {
2341 		/*
2342 		 * calculate size for the trailing cluster
2343 		 */
2344 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2345 			if(isclr(cg_clustersfree(&acg), block)){
2346 				break;
2347 			}
2348 		}
2349 	}
2350 	if(lcs < sblock.fs_contigsumsize) {
2351 		if(lcs) {
2352 			cg_clustersum(&acg)[lcs]--;
2353 		}
2354 		lcs++;
2355 		cg_clustersum(&acg)[lcs]++;
2356 	}
2357 
2358 	DBG_LEAVE;
2359 	return;
2360 }
2361 
2362 /* *********************************************************** updrefs ***** */
2363 /*
2364  * This updates all references to relocated blocks for the given inode.  The
2365  * inode is given as number within the cylinder group, and the number of the
2366  * cylinder group.
2367  */
2368 static void
2369 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2370     Nflag)
2371 {
2372 	DBG_FUNC("updrefs")
2373 	unsigned int	ictr, ind2ctr, ind3ctr;
2374 	ufs_daddr_t	*iptr, *ind2ptr, *ind3ptr;
2375 	struct dinode	*ino;
2376 	int	remaining_blocks;
2377 
2378 	DBG_ENTER;
2379 
2380 	/*
2381 	 * XXX We should skip unused inodes even from beeing read from disk
2382 	 *     here by using the bitmap.
2383 	 */
2384 	ino=ginode(in, fsi, cg);
2385 	if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2386 	    (ino->di_mode & IFMT)==IFLNK)) {
2387 		DBG_LEAVE;
2388 		return; /* only check DIR, FILE, LINK */
2389 	}
2390 	if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2391 		DBG_LEAVE;
2392 		return;	/* skip short symlinks */
2393 	}
2394 	if(!ino->di_size) {
2395 		DBG_LEAVE;
2396 		return;	/* skip empty file */
2397 	}
2398 	if(!ino->di_blocks) {
2399 		DBG_LEAVE;
2400 		return;	/* skip empty swiss cheesy file or old fastlink */
2401 	}
2402 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2403 	    in,
2404 	    cg);
2405 
2406 	/*
2407 	 * Start checking all direct blocks.
2408 	 */
2409 	remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2410 	for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2411 	    ictr++) {
2412 		iptr=&(ino->di_db[ictr]);
2413 		if(*iptr) {
2414 			cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2415 		}
2416 	}
2417 	DBG_PRINT0("~~scg direct blocks checked\n");
2418 
2419 	remaining_blocks-=NDADDR;
2420 	if(remaining_blocks<0) {
2421 		DBG_LEAVE;
2422 		return;
2423 	}
2424 	if(ino->di_ib[0]) {
2425 		/*
2426 		 * Start checking first indirect block
2427 		 */
2428 		cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2429 		i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2430 		rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2431 		for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2432 		    sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2433 		    ictr++) {
2434 			iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2435 			if(*iptr) {
2436 				cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2437 				    fso, Nflag);
2438 			}
2439 		}
2440 	}
2441 	DBG_PRINT0("scg indirect_1 blocks checked\n");
2442 
2443 	remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2444 	if(remaining_blocks<0) {
2445 		DBG_LEAVE;
2446 		return;
2447 	}
2448 	if(ino->di_ib[1]) {
2449 		/*
2450 		 * Start checking second indirect block
2451 		 */
2452 		cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2453 		i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2454 		rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2455 		for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2456 		    sizeof(ufs_daddr_t)); ind2ctr++) {
2457 			ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2458 			if(!*ind2ptr) {
2459 				continue;
2460 			}
2461 			cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2462 			    Nflag);
2463 			i1_src=fsbtodb(&sblock, *ind2ptr);
2464 			rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2465 			    fsi);
2466 			for(ictr=0; ictr<MIN(howmany((unsigned int)
2467 			    sblock.fs_bsize, sizeof(ufs_daddr_t)),
2468 			    (unsigned int)remaining_blocks); ictr++) {
2469 				iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2470 				if(*iptr) {
2471 					cond_bl_upd(iptr, bp,
2472 					    GFS_PS_IND_BLK_LVL1, fso, Nflag);
2473 				}
2474 			}
2475 		}
2476 	}
2477 	DBG_PRINT0("scg indirect_2 blocks checked\n");
2478 
2479 #define SQUARE(a) ((a)*(a))
2480 	remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2481 #undef SQUARE
2482 	if(remaining_blocks<0) {
2483 		DBG_LEAVE;
2484 		return;
2485 	}
2486 
2487 	if(ino->di_ib[2]) {
2488 		/*
2489 		 * Start checking third indirect block
2490 		 */
2491 		cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2492 		i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2493 		rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2494 		for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2495 		    sizeof(ufs_daddr_t)); ind3ctr ++) {
2496 			ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2497 			if(!*ind3ptr) {
2498 				continue;
2499 			}
2500 			cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2501 			    Nflag);
2502 			i2_src=fsbtodb(&sblock, *ind3ptr);
2503 			rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2504 			    fsi);
2505 			for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2506 			    sizeof(ufs_daddr_t)); ind2ctr ++) {
2507 				ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2508 				    [ind2ctr];
2509 				if(!*ind2ptr) {
2510 					continue;
2511 				}
2512 				cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2513 				    fso, Nflag);
2514 				i1_src=fsbtodb(&sblock, *ind2ptr);
2515 				rdfs(i1_src, (size_t)sblock.fs_bsize,
2516 				    (void *)&i1blk, fsi);
2517 				for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2518 				    sizeof(ufs_daddr_t)),
2519 				    (unsigned int)remaining_blocks); ictr++) {
2520 					iptr=&((ufs_daddr_t *)(void *)&i1blk)
2521 					    [ictr];
2522 					if(*iptr) {
2523 						cond_bl_upd(iptr, bp,
2524 						    GFS_PS_IND_BLK_LVL1, fso,
2525 						    Nflag);
2526 					}
2527 				}
2528 			}
2529 		}
2530 	}
2531 
2532 	DBG_PRINT0("scg indirect_3 blocks checked\n");
2533 
2534 	DBG_LEAVE;
2535 	return;
2536 }
2537 
2538