xref: /freebsd/sbin/growfs/growfs.c (revision eb6d21b4ca6d668cf89afd99eef7baeafa712197)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 /* ********************************************************** INCLUDES ***** */
53 #include <sys/param.h>
54 #include <sys/disklabel.h>
55 #include <sys/ioctl.h>
56 #include <sys/stat.h>
57 #include <sys/disk.h>
58 
59 #include <stdio.h>
60 #include <paths.h>
61 #include <ctype.h>
62 #include <err.h>
63 #include <fcntl.h>
64 #include <limits.h>
65 #include <stdlib.h>
66 #include <stdint.h>
67 #include <string.h>
68 #include <time.h>
69 #include <unistd.h>
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ffs/fs.h>
72 
73 #include "debug.h"
74 
75 /* *************************************************** GLOBALS & TYPES ***** */
76 #ifdef FS_DEBUG
77 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
78 #endif /* FS_DEBUG */
79 
80 static union {
81 	struct fs	fs;
82 	char	pad[SBLOCKSIZE];
83 } fsun1, fsun2;
84 #define	sblock	fsun1.fs	/* the new superblock */
85 #define	osblock	fsun2.fs	/* the old superblock */
86 
87 /*
88  * Possible superblock locations ordered from most to least likely.
89  */
90 static int sblock_try[] = SBLOCKSEARCH;
91 static ufs2_daddr_t sblockloc;
92 
93 static union {
94 	struct cg	cg;
95 	char	pad[MAXBSIZE];
96 } cgun1, cgun2;
97 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
98 #define	aocg	cgun2.cg	/* an old cylinder group */
99 
100 static char	ablk[MAXBSIZE];	/* a block */
101 
102 static struct csum	*fscs;	/* cylinder summary */
103 
104 union dinode {
105 	struct ufs1_dinode dp1;
106 	struct ufs2_dinode dp2;
107 };
108 #define	DIP(dp, field) \
109 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
110 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
111 #define	DIP_SET(dp, field, val) do { \
112 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
113 		(dp)->dp1.field = (val); \
114 	else \
115 		(dp)->dp2.field = (val); \
116 	} while (0)
117 static ufs2_daddr_t 	inoblk;			/* inode block address */
118 static char		inobuf[MAXBSIZE];	/* inode block */
119 ino_t			maxino;			/* last valid inode */
120 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
121 
122 /*
123  * An array of elements of type struct gfs_bpp describes all blocks to
124  * be relocated in order to free the space needed for the cylinder group
125  * summary for all cylinder groups located in the first cylinder group.
126  */
127 struct gfs_bpp {
128 	ufs2_daddr_t	old;		/* old block number */
129 	ufs2_daddr_t	new;		/* new block number */
130 #define GFS_FL_FIRST	1
131 #define GFS_FL_LAST	2
132 	unsigned int	flags;	/* special handling required */
133 	int	found;		/* how many references were updated */
134 };
135 
136 /* ******************************************************** PROTOTYPES ***** */
137 static void	growfs(int, int, unsigned int);
138 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
139 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
140 static ufs2_daddr_t alloc(void);
141 static int	charsperline(void);
142 static void	usage(void);
143 static int	isblock(struct fs *, unsigned char *, int);
144 static void	clrblock(struct fs *, unsigned char *, int);
145 static void	setblock(struct fs *, unsigned char *, int);
146 static void	initcg(int, time_t, int, unsigned int);
147 static void	updjcg(int, time_t, int, int, unsigned int);
148 static void	updcsloc(time_t, int, int, unsigned int);
149 static struct disklabel	*get_disklabel(int);
150 static void	return_disklabel(int, struct disklabel *, unsigned int);
151 static union dinode *ginode(ino_t, int, int);
152 static void	frag_adjust(ufs2_daddr_t, int);
153 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
154 		    unsigned int);
155 static void	updclst(int);
156 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
157 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
158 		    struct gfs_bpp *, int, int, unsigned int);
159 static void	get_dev_size(int, int *);
160 
161 /* ************************************************************ growfs ***** */
162 /*
163  * Here we actually start growing the file system. We basically read the
164  * cylinder summary from the first cylinder group as we want to update
165  * this on the fly during our various operations. First we handle the
166  * changes in the former last cylinder group. Afterwards we create all new
167  * cylinder groups.  Now we handle the cylinder group containing the
168  * cylinder summary which might result in a relocation of the whole
169  * structure.  In the end we write back the updated cylinder summary, the
170  * new superblock, and slightly patched versions of the super block
171  * copies.
172  */
173 static void
174 growfs(int fsi, int fso, unsigned int Nflag)
175 {
176 	DBG_FUNC("growfs")
177 	int	i;
178 	int	cylno, j;
179 	time_t	utime;
180 	int	width;
181 	char	tmpbuf[100];
182 #ifdef FSIRAND
183 	static int	randinit=0;
184 
185 	DBG_ENTER;
186 
187 	if (!randinit) {
188 		randinit = 1;
189 		srandomdev();
190 	}
191 #else /* not FSIRAND */
192 
193 	DBG_ENTER;
194 
195 #endif /* FSIRAND */
196 	time(&utime);
197 
198 	/*
199 	 * Get the cylinder summary into the memory.
200 	 */
201 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
202 	if(fscs == NULL) {
203 		errx(1, "calloc failed");
204 	}
205 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
206 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
207 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
208 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
209 	}
210 
211 #ifdef FS_DEBUG
212 {
213 	struct csum	*dbg_csp;
214 	int	dbg_csc;
215 	char	dbg_line[80];
216 
217 	dbg_csp=fscs;
218 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
219 		snprintf(dbg_line, sizeof(dbg_line),
220 		    "%d. old csum in old location", dbg_csc);
221 		DBG_DUMP_CSUM(&osblock,
222 		    dbg_line,
223 		    dbg_csp++);
224 	}
225 }
226 #endif /* FS_DEBUG */
227 	DBG_PRINT0("fscs read\n");
228 
229 	/*
230 	 * Do all needed changes in the former last cylinder group.
231 	 */
232 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
233 
234 	/*
235 	 * Dump out summary information about file system.
236 	 */
237 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
238 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
239 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
240 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
241 	    sblock.fs_fsize);
242 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
243 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
244 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
245 	if (sblock.fs_flags & FS_DOSOFTDEP)
246 		printf("\twith soft updates\n");
247 #	undef B2MBFACTOR
248 
249 	/*
250 	 * Now build the cylinders group blocks and
251 	 * then print out indices of cylinder groups.
252 	 */
253 	printf("super-block backups (for fsck -b #) at:\n");
254 	i = 0;
255 	width = charsperline();
256 
257 	/*
258 	 * Iterate for only the new cylinder groups.
259 	 */
260 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
261 		initcg(cylno, utime, fso, Nflag);
262 		j = sprintf(tmpbuf, " %jd%s",
263 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
264 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
265 		if (i + j >= width) {
266 			printf("\n");
267 			i = 0;
268 		}
269 		i += j;
270 		printf("%s", tmpbuf);
271 		fflush(stdout);
272 	}
273 	printf("\n");
274 
275 	/*
276 	 * Do all needed changes in the first cylinder group.
277 	 * allocate blocks in new location
278 	 */
279 	updcsloc(utime, fsi, fso, Nflag);
280 
281 	/*
282 	 * Now write the cylinder summary back to disk.
283 	 */
284 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
285 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
286 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
287 		    (void *)(((char *)fscs) + i), fso, Nflag);
288 	}
289 	DBG_PRINT0("fscs written\n");
290 
291 #ifdef FS_DEBUG
292 {
293 	struct csum	*dbg_csp;
294 	int	dbg_csc;
295 	char	dbg_line[80];
296 
297 	dbg_csp=fscs;
298 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
299 		snprintf(dbg_line, sizeof(dbg_line),
300 		    "%d. new csum in new location", dbg_csc);
301 		DBG_DUMP_CSUM(&sblock,
302 		    dbg_line,
303 		    dbg_csp++);
304 	}
305 }
306 #endif /* FS_DEBUG */
307 
308 	/*
309 	 * Now write the new superblock back to disk.
310 	 */
311 	sblock.fs_time = utime;
312 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
313 	DBG_PRINT0("sblock written\n");
314 	DBG_DUMP_FS(&sblock,
315 	    "new initial sblock");
316 
317 	/*
318 	 * Clean up the dynamic fields in our superblock copies.
319 	 */
320 	sblock.fs_fmod = 0;
321 	sblock.fs_clean = 1;
322 	sblock.fs_ronly = 0;
323 	sblock.fs_cgrotor = 0;
324 	sblock.fs_state = 0;
325 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
326 	sblock.fs_flags &= FS_DOSOFTDEP;
327 
328 	/*
329 	 * XXX
330 	 * The following fields are currently distributed from the superblock
331 	 * to the copies:
332 	 *     fs_minfree
333 	 *     fs_rotdelay
334 	 *     fs_maxcontig
335 	 *     fs_maxbpg
336 	 *     fs_minfree,
337 	 *     fs_optim
338 	 *     fs_flags regarding SOFTPDATES
339 	 *
340 	 * We probably should rather change the summary for the cylinder group
341 	 * statistics here to the value of what would be in there, if the file
342 	 * system were created initially with the new size. Therefor we still
343 	 * need to find an easy way of calculating that.
344 	 * Possibly we can try to read the first superblock copy and apply the
345 	 * "diffed" stats between the old and new superblock by still copying
346 	 * certain parameters onto that.
347 	 */
348 
349 	/*
350 	 * Write out the duplicate super blocks.
351 	 */
352 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
353 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
354 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
355 	}
356 	DBG_PRINT0("sblock copies written\n");
357 	DBG_DUMP_FS(&sblock,
358 	    "new other sblocks");
359 
360 	DBG_LEAVE;
361 	return;
362 }
363 
364 /* ************************************************************ initcg ***** */
365 /*
366  * This creates a new cylinder group structure, for more details please see
367  * the source of newfs(8), as this function is taken over almost unchanged.
368  * As this is never called for the first cylinder group, the special
369  * provisions for that case are removed here.
370  */
371 static void
372 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
373 {
374 	DBG_FUNC("initcg")
375 	static void *iobuf;
376 	long d, dlower, dupper, blkno, start;
377 	ufs2_daddr_t i, cbase, dmax;
378 	struct ufs1_dinode *dp1;
379 	struct ufs2_dinode *dp2;
380 	struct csum *cs;
381 
382 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
383 		errx(37, "panic: cannot allocate I/O buffer");
384 	}
385 	/*
386 	 * Determine block bounds for cylinder group.
387 	 * Allow space for super block summary information in first
388 	 * cylinder group.
389 	 */
390 	cbase = cgbase(&sblock, cylno);
391 	dmax = cbase + sblock.fs_fpg;
392 	if (dmax > sblock.fs_size)
393 		dmax = sblock.fs_size;
394 	dlower = cgsblock(&sblock, cylno) - cbase;
395 	dupper = cgdmin(&sblock, cylno) - cbase;
396 	if (cylno == 0)	/* XXX fscs may be relocated */
397 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
398 	cs = &fscs[cylno];
399 	memset(&acg, 0, sblock.fs_cgsize);
400 	/*
401 	 * Note that we do not set cg_initediblk at all.
402 	 * In this extension of a previous filesystem
403 	 * we have no inodes initialized for the cylinder
404 	 * group at all. The first access to that cylinder
405 	 * group will do the correct initialization.
406 	 */
407 	acg.cg_time = utime;
408 	acg.cg_magic = CG_MAGIC;
409 	acg.cg_cgx = cylno;
410 	acg.cg_niblk = sblock.fs_ipg;
411 	acg.cg_ndblk = dmax - cbase;
412 	if (sblock.fs_contigsumsize > 0)
413 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
414 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
415 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
416 		acg.cg_iusedoff = start;
417 	} else {
418 		acg.cg_old_ncyl = sblock.fs_old_cpg;
419 		acg.cg_old_time = acg.cg_time;
420 		acg.cg_time = 0;
421 		acg.cg_old_niblk = acg.cg_niblk;
422 		acg.cg_niblk = 0;
423 		acg.cg_old_btotoff = start;
424 		acg.cg_old_boff = acg.cg_old_btotoff +
425 		    sblock.fs_old_cpg * sizeof(int32_t);
426 		acg.cg_iusedoff = acg.cg_old_boff +
427 		    sblock.fs_old_cpg * sizeof(u_int16_t);
428 	}
429 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
430 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
431 	if (sblock.fs_contigsumsize > 0) {
432 		acg.cg_clustersumoff =
433 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
434 		acg.cg_clustersumoff -= sizeof(u_int32_t);
435 		acg.cg_clusteroff = acg.cg_clustersumoff +
436 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
437 		acg.cg_nextfreeoff = acg.cg_clusteroff +
438 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
439 	}
440 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
441 		/*
442 		 * This should never happen as we would have had that panic
443 		 * already on file system creation
444 		 */
445 		errx(37, "panic: cylinder group too big");
446 	}
447 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
448 	if (cylno == 0)
449 		for (i = 0; i < ROOTINO; i++) {
450 			setbit(cg_inosused(&acg), i);
451 			acg.cg_cs.cs_nifree--;
452 		}
453 	/*
454 	 * XXX Newfs writes out two blocks of initialized inodes
455 	 *     unconditionally.  Should we check here to make sure that they
456 	 *     were actually written?
457 	 */
458 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
459 		bzero(iobuf, sblock.fs_bsize);
460 		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
461 		     i += sblock.fs_frag) {
462 			dp1 = (struct ufs1_dinode *)iobuf;
463 			dp2 = (struct ufs2_dinode *)iobuf;
464 #ifdef FSIRAND
465 			for (j = 0; j < INOPB(&sblock); j++)
466 				if (sblock.fs_magic == FS_UFS1_MAGIC) {
467 					dp1->di_gen = random();
468 					dp1++;
469 				} else {
470 					dp2->di_gen = random();
471 					dp2++;
472 				}
473 #endif
474 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
475 			    sblock.fs_bsize, iobuf, fso, Nflag);
476 		}
477 	}
478 	if (cylno > 0) {
479 		/*
480 		 * In cylno 0, beginning space is reserved
481 		 * for boot and super blocks.
482 		 */
483 		for (d = 0; d < dlower; d += sblock.fs_frag) {
484 			blkno = d / sblock.fs_frag;
485 			setblock(&sblock, cg_blksfree(&acg), blkno);
486 			if (sblock.fs_contigsumsize > 0)
487 				setbit(cg_clustersfree(&acg), blkno);
488 			acg.cg_cs.cs_nbfree++;
489 		}
490 		sblock.fs_dsize += dlower;
491 	}
492 	sblock.fs_dsize += acg.cg_ndblk - dupper;
493 	if ((i = dupper % sblock.fs_frag)) {
494 		acg.cg_frsum[sblock.fs_frag - i]++;
495 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
496 			setbit(cg_blksfree(&acg), dupper);
497 			acg.cg_cs.cs_nffree++;
498 		}
499 	}
500 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
501 	     d += sblock.fs_frag) {
502 		blkno = d / sblock.fs_frag;
503 		setblock(&sblock, cg_blksfree(&acg), blkno);
504 		if (sblock.fs_contigsumsize > 0)
505 			setbit(cg_clustersfree(&acg), blkno);
506 		acg.cg_cs.cs_nbfree++;
507 	}
508 	if (d < acg.cg_ndblk) {
509 		acg.cg_frsum[acg.cg_ndblk - d]++;
510 		for (; d < acg.cg_ndblk; d++) {
511 			setbit(cg_blksfree(&acg), d);
512 			acg.cg_cs.cs_nffree++;
513 		}
514 	}
515 	if (sblock.fs_contigsumsize > 0) {
516 		int32_t *sump = cg_clustersum(&acg);
517 		u_char *mapp = cg_clustersfree(&acg);
518 		int map = *mapp++;
519 		int bit = 1;
520 		int run = 0;
521 
522 		for (i = 0; i < acg.cg_nclusterblks; i++) {
523 			if ((map & bit) != 0)
524 				run++;
525 			else if (run != 0) {
526 				if (run > sblock.fs_contigsumsize)
527 					run = sblock.fs_contigsumsize;
528 				sump[run]++;
529 				run = 0;
530 			}
531 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
532 				bit <<= 1;
533 			else {
534 				map = *mapp++;
535 				bit = 1;
536 			}
537 		}
538 		if (run != 0) {
539 			if (run > sblock.fs_contigsumsize)
540 				run = sblock.fs_contigsumsize;
541 			sump[run]++;
542 		}
543 	}
544 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
545 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
546 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
547 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
548 	*cs = acg.cg_cs;
549 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
550 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
551 	DBG_DUMP_CG(&sblock,
552 	    "new cg",
553 	    &acg);
554 
555 	DBG_LEAVE;
556 	return;
557 }
558 
559 /* ******************************************************* frag_adjust ***** */
560 /*
561  * Here we add or subtract (sign +1/-1) the available fragments in a given
562  * block to or from the fragment statistics. By subtracting before and adding
563  * after an operation on the free frag map we can easy update the fragment
564  * statistic, which seems to be otherwise a rather complex operation.
565  */
566 static void
567 frag_adjust(ufs2_daddr_t frag, int sign)
568 {
569 	DBG_FUNC("frag_adjust")
570 	int fragsize;
571 	int f;
572 
573 	DBG_ENTER;
574 
575 	fragsize=0;
576 	/*
577 	 * Here frag only needs to point to any fragment in the block we want
578 	 * to examine.
579 	 */
580 	for(f=rounddown(frag, sblock.fs_frag);
581 	    f<roundup(frag+1, sblock.fs_frag);
582 	    f++) {
583 		/*
584 		 * Count contiguous free fragments.
585 		 */
586 		if(isset(cg_blksfree(&acg), f)) {
587 			fragsize++;
588 		} else {
589 			if(fragsize && fragsize<sblock.fs_frag) {
590 				/*
591 				 * We found something in between.
592 				 */
593 				acg.cg_frsum[fragsize]+=sign;
594 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
595 				    fragsize,
596 				    sign);
597 			}
598 			fragsize=0;
599 		}
600 	}
601 	if(fragsize && fragsize<sblock.fs_frag) {
602 		/*
603 		 * We found something.
604 		 */
605 		acg.cg_frsum[fragsize]+=sign;
606 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
607 		    fragsize,
608 		    sign);
609 	}
610 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
611 	    fragsize,
612 	    sign);
613 
614 	DBG_LEAVE;
615 	return;
616 }
617 
618 /* ******************************************************* cond_bl_upd ***** */
619 /*
620  * Here we conditionally update a pointer to a fragment. We check for all
621  * relocated blocks if any of its fragments is referenced by the current
622  * field, and update the pointer to the respective fragment in our new
623  * block.  If we find a reference we write back the block immediately,
624  * as there is no easy way for our general block reading engine to figure
625  * out if a write back operation is needed.
626  */
627 static int
628 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
629     unsigned int Nflag)
630 {
631 	DBG_FUNC("cond_bl_upd")
632 	struct gfs_bpp *f;
633 	ufs2_daddr_t src, dst;
634 	int fragnum;
635 	void *ibuf;
636 
637 	DBG_ENTER;
638 
639 	for (f = field; f->old != 0; f++) {
640 		src = *block;
641 		if (fragstoblks(&sblock, src) != f->old)
642 			continue;
643 		/*
644 		 * The fragment is part of the block, so update.
645 		 */
646 		dst = blkstofrags(&sblock, f->new);
647 		fragnum = fragnum(&sblock, src);
648 		*block = dst + fragnum;
649 		f->found++;
650 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
651 		    (intmax_t)f->old,
652 		    (intmax_t)f->new,
653 		    fragnum);
654 
655 		/*
656 		 * Copy the block back immediately.
657 		 *
658 		 * XXX	If src is is from an indirect block we have
659 		 *	to implement copy on write here in case of
660 		 *	active snapshots.
661 		 */
662 		ibuf = malloc(sblock.fs_bsize);
663 		if (!ibuf)
664 			errx(1, "malloc failed");
665 		src -= fragnum;
666 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
667 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
668 		free(ibuf);
669 		/*
670 		 * The same block can't be found again in this loop.
671 		 */
672 		return (1);
673 	}
674 
675 	DBG_LEAVE;
676 	return (0);
677 }
678 
679 /* ************************************************************ updjcg ***** */
680 /*
681  * Here we do all needed work for the former last cylinder group. It has to be
682  * changed in any case, even if the file system ended exactly on the end of
683  * this group, as there is some slightly inconsistent handling of the number
684  * of cylinders in the cylinder group. We start again by reading the cylinder
685  * group from disk. If the last block was not fully available, we first handle
686  * the missing fragments, then we handle all new full blocks in that file
687  * system and finally we handle the new last fragmented block in the file
688  * system.  We again have to handle the fragment statistics rotational layout
689  * tables and cluster summary during all those operations.
690  */
691 static void
692 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
693 {
694 	DBG_FUNC("updjcg")
695 	ufs2_daddr_t	cbase, dmax, dupper;
696 	struct csum	*cs;
697 	int	i,k;
698 	int	j=0;
699 
700 	DBG_ENTER;
701 
702 	/*
703 	 * Read the former last (joining) cylinder group from disk, and make
704 	 * a copy.
705 	 */
706 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
707 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
708 	DBG_PRINT0("jcg read\n");
709 	DBG_DUMP_CG(&sblock,
710 	    "old joining cg",
711 	    &aocg);
712 
713 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
714 
715 	/*
716 	 * If the cylinder group had already its new final size almost
717 	 * nothing is to be done ... except:
718 	 * For some reason the value of cg_ncyl in the last cylinder group has
719 	 * to be zero instead of fs_cpg. As this is now no longer the last
720 	 * cylinder group we have to change that value now to fs_cpg.
721 	 */
722 
723 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
724 		if (sblock.fs_magic == FS_UFS1_MAGIC)
725 			acg.cg_old_ncyl=sblock.fs_old_cpg;
726 
727 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
728 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
729 		DBG_PRINT0("jcg written\n");
730 		DBG_DUMP_CG(&sblock,
731 		    "new joining cg",
732 		    &acg);
733 
734 		DBG_LEAVE;
735 		return;
736 	}
737 
738 	/*
739 	 * Set up some variables needed later.
740 	 */
741 	cbase = cgbase(&sblock, cylno);
742 	dmax = cbase + sblock.fs_fpg;
743 	if (dmax > sblock.fs_size)
744 		dmax = sblock.fs_size;
745 	dupper = cgdmin(&sblock, cylno) - cbase;
746 	if (cylno == 0) { /* XXX fscs may be relocated */
747 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
748 	}
749 
750 	/*
751 	 * Set pointer to the cylinder summary for our cylinder group.
752 	 */
753 	cs = fscs + cylno;
754 
755 	/*
756 	 * Touch the cylinder group, update all fields in the cylinder group as
757 	 * needed, update the free space in the superblock.
758 	 */
759 	acg.cg_time = utime;
760 	if (cylno == sblock.fs_ncg - 1) {
761 		/*
762 		 * This is still the last cylinder group.
763 		 */
764 		if (sblock.fs_magic == FS_UFS1_MAGIC)
765 			acg.cg_old_ncyl =
766 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
767 	} else {
768 		acg.cg_old_ncyl = sblock.fs_old_cpg;
769 	}
770 	DBG_PRINT2("jcg dbg: %d %u",
771 	    cylno,
772 	    sblock.fs_ncg);
773 #ifdef FS_DEBUG
774 	if (sblock.fs_magic == FS_UFS1_MAGIC)
775 		DBG_PRINT2("%d %u",
776 		    acg.cg_old_ncyl,
777 		    sblock.fs_old_cpg);
778 #endif
779 	DBG_PRINT0("\n");
780 	acg.cg_ndblk = dmax - cbase;
781 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
782 	if (sblock.fs_contigsumsize > 0) {
783 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
784 	}
785 
786 	/*
787 	 * Now we have to update the free fragment bitmap for our new free
788 	 * space.  There again we have to handle the fragmentation and also
789 	 * the rotational layout tables and the cluster summary.  This is
790 	 * also done per fragment for the first new block if the old file
791 	 * system end was not on a block boundary, per fragment for the new
792 	 * last block if the new file system end is not on a block boundary,
793 	 * and per block for all space in between.
794 	 *
795 	 * Handle the first new block here if it was partially available
796 	 * before.
797 	 */
798 	if(osblock.fs_size % sblock.fs_frag) {
799 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
800 			/*
801 			 * The new space is enough to fill at least this
802 			 * block
803 			 */
804 			j=0;
805 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
806 			    i>=osblock.fs_size-cbase;
807 			    i--) {
808 				setbit(cg_blksfree(&acg), i);
809 				acg.cg_cs.cs_nffree++;
810 				j++;
811 			}
812 
813 			/*
814 			 * Check if the fragment just created could join an
815 			 * already existing fragment at the former end of the
816 			 * file system.
817 			 */
818 			if(isblock(&sblock, cg_blksfree(&acg),
819 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
820 			    sblock.fs_frag))) {
821 				/*
822 				 * The block is now completely available.
823 				 */
824 				DBG_PRINT0("block was\n");
825 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
826 				acg.cg_cs.cs_nbfree++;
827 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
828 				k=rounddown(osblock.fs_size-cbase,
829 				    sblock.fs_frag);
830 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
831 			} else {
832 				/*
833 				 * Lets rejoin a possible partially growed
834 				 * fragment.
835 				 */
836 				k=0;
837 				while(isset(cg_blksfree(&acg), i) &&
838 				    (i>=rounddown(osblock.fs_size-cbase,
839 				    sblock.fs_frag))) {
840 					i--;
841 					k++;
842 				}
843 				if(k) {
844 					acg.cg_frsum[k]--;
845 				}
846 				acg.cg_frsum[k+j]++;
847 			}
848 		} else {
849 			/*
850 			 * We only grow by some fragments within this last
851 			 * block.
852 			 */
853 			for(i=sblock.fs_size-cbase-1;
854 				i>=osblock.fs_size-cbase;
855 				i--) {
856 				setbit(cg_blksfree(&acg), i);
857 				acg.cg_cs.cs_nffree++;
858 				j++;
859 			}
860 			/*
861 			 * Lets rejoin a possible partially growed fragment.
862 			 */
863 			k=0;
864 			while(isset(cg_blksfree(&acg), i) &&
865 			    (i>=rounddown(osblock.fs_size-cbase,
866 			    sblock.fs_frag))) {
867 				i--;
868 				k++;
869 			}
870 			if(k) {
871 				acg.cg_frsum[k]--;
872 			}
873 			acg.cg_frsum[k+j]++;
874 		}
875 	}
876 
877 	/*
878 	 * Handle all new complete blocks here.
879 	 */
880 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
881 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
882 	    i+=sblock.fs_frag) {
883 		j = i / sblock.fs_frag;
884 		setblock(&sblock, cg_blksfree(&acg), j);
885 		updclst(j);
886 		acg.cg_cs.cs_nbfree++;
887 	}
888 
889 	/*
890 	 * Handle the last new block if there are stll some new fragments left.
891 	 * Here we don't have to bother about the cluster summary or the even
892 	 * the rotational layout table.
893 	 */
894 	if (i < (dmax - cbase)) {
895 		acg.cg_frsum[dmax - cbase - i]++;
896 		for (; i < dmax - cbase; i++) {
897 			setbit(cg_blksfree(&acg), i);
898 			acg.cg_cs.cs_nffree++;
899 		}
900 	}
901 
902 	sblock.fs_cstotal.cs_nffree +=
903 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
904 	sblock.fs_cstotal.cs_nbfree +=
905 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
906 	/*
907 	 * The following statistics are not changed here:
908 	 *     sblock.fs_cstotal.cs_ndir
909 	 *     sblock.fs_cstotal.cs_nifree
910 	 * As the statistics for this cylinder group are ready, copy it to
911 	 * the summary information array.
912 	 */
913 	*cs = acg.cg_cs;
914 
915 	/*
916 	 * Write the updated "joining" cylinder group back to disk.
917 	 */
918 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
919 	    (void *)&acg, fso, Nflag);
920 	DBG_PRINT0("jcg written\n");
921 	DBG_DUMP_CG(&sblock,
922 	    "new joining cg",
923 	    &acg);
924 
925 	DBG_LEAVE;
926 	return;
927 }
928 
929 /* ********************************************************** updcsloc ***** */
930 /*
931  * Here we update the location of the cylinder summary. We have two possible
932  * ways of growing the cylinder summary.
933  * (1)	We can try to grow the summary in the current location, and relocate
934  *	possibly used blocks within the current cylinder group.
935  * (2)	Alternatively we can relocate the whole cylinder summary to the first
936  *	new completely empty cylinder group. Once the cylinder summary is no
937  *	longer in the beginning of the first cylinder group you should never
938  *	use a version of fsck which is not aware of the possibility to have
939  *	this structure in a non standard place.
940  * Option (1) is considered to be less intrusive to the structure of the file-
941  * system. So we try to stick to that whenever possible. If there is not enough
942  * space in the cylinder group containing the cylinder summary we have to use
943  * method (2). In case of active snapshots in the file system we probably can
944  * completely avoid implementing copy on write if we stick to method (2) only.
945  */
946 static void
947 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
948 {
949 	DBG_FUNC("updcsloc")
950 	struct csum	*cs;
951 	int	ocscg, ncscg;
952 	int	blocks;
953 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
954 	int	ind;
955 	int	cylno, inc;
956 	struct gfs_bpp	*bp;
957 	int	i, l;
958 	int	lcs=0;
959 	int	block;
960 
961 	DBG_ENTER;
962 
963 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
964 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
965 		/*
966 		 * No new fragment needed.
967 		 */
968 		DBG_LEAVE;
969 		return;
970 	}
971 	ocscg=dtog(&osblock, osblock.fs_csaddr);
972 	cs=fscs+ocscg;
973 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
974 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
975 
976 	/*
977 	 * Read original cylinder group from disk, and make a copy.
978 	 * XXX	If Nflag is set in some very rare cases we now miss
979 	 *	some changes done in updjcg by reading the unmodified
980 	 *	block from disk.
981 	 */
982 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
983 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
984 	DBG_PRINT0("oscg read\n");
985 	DBG_DUMP_CG(&sblock,
986 	    "old summary cg",
987 	    &aocg);
988 
989 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
990 
991 	/*
992 	 * Touch the cylinder group, set up local variables needed later
993 	 * and update the superblock.
994 	 */
995 	acg.cg_time = utime;
996 
997 	/*
998 	 * XXX	In the case of having active snapshots we may need much more
999 	 *	blocks for the copy on write. We need each block twice, and
1000 	 *	also up to 8*3 blocks for indirect blocks for all possible
1001 	 *	references.
1002 	 */
1003 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
1004 		/*
1005 		 * There is not enough space in the old cylinder group to
1006 		 * relocate all blocks as needed, so we relocate the whole
1007 		 * cylinder group summary to a new group. We try to use the
1008 		 * first complete new cylinder group just created. Within the
1009 		 * cylinder group we align the area immediately after the
1010 		 * cylinder group information location in order to be as
1011 		 * close as possible to the original implementation of ffs.
1012 		 *
1013 		 * First we have to make sure we'll find enough space in the
1014 		 * new cylinder group. If not, then we currently give up.
1015 		 * We start with freeing everything which was used by the
1016 		 * fragments of the old cylinder summary in the current group.
1017 		 * Now we write back the group meta data, read in the needed
1018 		 * meta data from the new cylinder group, and start allocating
1019 		 * within that group. Here we can assume, the group to be
1020 		 * completely empty. Which makes the handling of fragments and
1021 		 * clusters a lot easier.
1022 		 */
1023 		DBG_TRC;
1024 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1025 			errx(2, "panic: not enough space");
1026 		}
1027 
1028 		/*
1029 		 * Point "d" to the first fragment not used by the cylinder
1030 		 * summary.
1031 		 */
1032 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1033 
1034 		/*
1035 		 * Set up last cluster size ("lcs") already here. Calculate
1036 		 * the size for the trailing cluster just behind where "d"
1037 		 * points to.
1038 		 */
1039 		if(sblock.fs_contigsumsize > 0) {
1040 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1041 			    lcs=0; lcs<sblock.fs_contigsumsize;
1042 			    block++, lcs++) {
1043 				if(isclr(cg_clustersfree(&acg), block)){
1044 					break;
1045 				}
1046 			}
1047 		}
1048 
1049 		/*
1050 		 * Point "d" to the last frag used by the cylinder summary.
1051 		 */
1052 		d--;
1053 
1054 		DBG_PRINT1("d=%jd\n",
1055 		    (intmax_t)d);
1056 		if((d+1)%sblock.fs_frag) {
1057 			/*
1058 			 * The end of the cylinder summary is not a complete
1059 			 * block.
1060 			 */
1061 			DBG_TRC;
1062 			frag_adjust(d%sblock.fs_fpg, -1);
1063 			for(; (d+1)%sblock.fs_frag; d--) {
1064 				DBG_PRINT1("d=%jd\n",
1065 				    (intmax_t)d);
1066 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1067 				acg.cg_cs.cs_nffree++;
1068 				sblock.fs_cstotal.cs_nffree++;
1069 			}
1070 			/*
1071 			 * Point "d" to the last fragment of the last
1072 			 * (incomplete) block of the cylinder summary.
1073 			 */
1074 			d++;
1075 			frag_adjust(d%sblock.fs_fpg, 1);
1076 
1077 			if(isblock(&sblock, cg_blksfree(&acg),
1078 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1079 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1080 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1081 				acg.cg_cs.cs_nbfree++;
1082 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1083 				sblock.fs_cstotal.cs_nbfree++;
1084 				if(sblock.fs_contigsumsize > 0) {
1085 					setbit(cg_clustersfree(&acg),
1086 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1087 					if(lcs < sblock.fs_contigsumsize) {
1088 						if(lcs) {
1089 							cg_clustersum(&acg)
1090 							    [lcs]--;
1091 						}
1092 						lcs++;
1093 						cg_clustersum(&acg)[lcs]++;
1094 					}
1095 				}
1096 			}
1097 			/*
1098 			 * Point "d" to the first fragment of the block before
1099 			 * the last incomplete block.
1100 			 */
1101 			d--;
1102 		}
1103 
1104 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1105 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1106 		    d-=sblock.fs_frag) {
1107 			DBG_TRC;
1108 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1109 			setblock(&sblock, cg_blksfree(&acg),
1110 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1111 			acg.cg_cs.cs_nbfree++;
1112 			sblock.fs_cstotal.cs_nbfree++;
1113 			if(sblock.fs_contigsumsize > 0) {
1114 				setbit(cg_clustersfree(&acg),
1115 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1116 				/*
1117 				 * The last cluster size is already set up.
1118 				 */
1119 				if(lcs < sblock.fs_contigsumsize) {
1120 					if(lcs) {
1121 						cg_clustersum(&acg)[lcs]--;
1122 					}
1123 					lcs++;
1124 					cg_clustersum(&acg)[lcs]++;
1125 				}
1126 			}
1127 		}
1128 		*cs = acg.cg_cs;
1129 
1130 		/*
1131 		 * Now write the former cylinder group containing the cylinder
1132 		 * summary back to disk.
1133 		 */
1134 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1135 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1136 		DBG_PRINT0("oscg written\n");
1137 		DBG_DUMP_CG(&sblock,
1138 		    "old summary cg",
1139 		    &acg);
1140 
1141 		/*
1142 		 * Find the beginning of the new cylinder group containing the
1143 		 * cylinder summary.
1144 		 */
1145 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1146 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1147 		cs=fscs+ncscg;
1148 
1149 
1150 		/*
1151 		 * If Nflag is specified, we would now read random data instead
1152 		 * of an empty cg structure from disk. So we can't simulate that
1153 		 * part for now.
1154 		 */
1155 		if(Nflag) {
1156 			DBG_PRINT0("nscg update skipped\n");
1157 			DBG_LEAVE;
1158 			return;
1159 		}
1160 
1161 		/*
1162 		 * Read the future cylinder group containing the cylinder
1163 		 * summary from disk, and make a copy.
1164 		 */
1165 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1166 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1167 		DBG_PRINT0("nscg read\n");
1168 		DBG_DUMP_CG(&sblock,
1169 		    "new summary cg",
1170 		    &aocg);
1171 
1172 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1173 
1174 		/*
1175 		 * Allocate all complete blocks used by the new cylinder
1176 		 * summary.
1177 		 */
1178 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1179 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1180 		    d+=sblock.fs_frag) {
1181 			clrblock(&sblock, cg_blksfree(&acg),
1182 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1183 			acg.cg_cs.cs_nbfree--;
1184 			sblock.fs_cstotal.cs_nbfree--;
1185 			if(sblock.fs_contigsumsize > 0) {
1186 				clrbit(cg_clustersfree(&acg),
1187 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1188 			}
1189 		}
1190 
1191 		/*
1192 		 * Allocate all fragments used by the cylinder summary in the
1193 		 * last block.
1194 		 */
1195 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1196 			for(; d-sblock.fs_csaddr<
1197 			    sblock.fs_cssize/sblock.fs_fsize;
1198 			    d++) {
1199 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1200 				acg.cg_cs.cs_nffree--;
1201 				sblock.fs_cstotal.cs_nffree--;
1202 			}
1203 			acg.cg_cs.cs_nbfree--;
1204 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1205 			sblock.fs_cstotal.cs_nbfree--;
1206 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1207 			if(sblock.fs_contigsumsize > 0) {
1208 				clrbit(cg_clustersfree(&acg),
1209 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1210 			}
1211 
1212 			frag_adjust(d%sblock.fs_fpg, +1);
1213 		}
1214 		/*
1215 		 * XXX	Handle the cluster statistics here in the case this
1216 		 *	cylinder group is now almost full, and the remaining
1217 		 *	space is less then the maximum cluster size. This is
1218 		 *	probably not needed, as you would hardly find a file
1219 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1220 		 *	space right behind the cylinder group information in
1221 		 *	any new cylinder group.
1222 		 */
1223 
1224 		/*
1225 		 * Update our statistics in the cylinder summary.
1226 		 */
1227 		*cs = acg.cg_cs;
1228 
1229 		/*
1230 		 * Write the new cylinder group containing the cylinder summary
1231 		 * back to disk.
1232 		 */
1233 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1234 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1235 		DBG_PRINT0("nscg written\n");
1236 		DBG_DUMP_CG(&sblock,
1237 		    "new summary cg",
1238 		    &acg);
1239 
1240 		DBG_LEAVE;
1241 		return;
1242 	}
1243 	/*
1244 	 * We have got enough of space in the current cylinder group, so we
1245 	 * can relocate just a few blocks, and let the summary information
1246 	 * grow in place where it is right now.
1247 	 */
1248 	DBG_TRC;
1249 
1250 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1251 	dupper = sblock.fs_csaddr - cbase +
1252 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1253 	odupper = osblock.fs_csaddr - cbase +
1254 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1255 
1256 	sblock.fs_dsize -= dupper-odupper;
1257 
1258 	/*
1259 	 * Allocate the space for the array of blocks to be relocated.
1260 	 */
1261  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1262 	    sizeof(struct gfs_bpp));
1263 	if(bp == NULL) {
1264 		errx(1, "malloc failed");
1265 	}
1266 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1267 	    sizeof(struct gfs_bpp));
1268 
1269 	/*
1270 	 * Lock all new frags needed for the cylinder group summary. This is
1271 	 * done per fragment in the first and last block of the new required
1272 	 * area, and per block for all other blocks.
1273 	 *
1274 	 * Handle the first new block here (but only if some fragments where
1275 	 * already used for the cylinder summary).
1276 	 */
1277 	ind=0;
1278 	frag_adjust(odupper, -1);
1279 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1280 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1281 		    (intmax_t)d);
1282 		if(isclr(cg_blksfree(&acg), d)) {
1283 			if (!ind) {
1284 				bp[ind].old=d/sblock.fs_frag;
1285 				bp[ind].flags|=GFS_FL_FIRST;
1286 				if(roundup(d, sblock.fs_frag) >= dupper) {
1287 					bp[ind].flags|=GFS_FL_LAST;
1288 				}
1289 				ind++;
1290 			}
1291 		} else {
1292 			clrbit(cg_blksfree(&acg), d);
1293 			acg.cg_cs.cs_nffree--;
1294 			sblock.fs_cstotal.cs_nffree--;
1295 		}
1296 		/*
1297 		 * No cluster handling is needed here, as there was at least
1298 		 * one fragment in use by the cylinder summary in the old
1299 		 * file system.
1300 		 * No block-free counter handling here as this block was not
1301 		 * a free block.
1302 		 */
1303 	}
1304 	frag_adjust(odupper, 1);
1305 
1306 	/*
1307 	 * Handle all needed complete blocks here.
1308 	 */
1309 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1310 		DBG_PRINT1("scg block check loop d=%jd\n",
1311 		    (intmax_t)d);
1312 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1313 			for(f=d; f<d+sblock.fs_frag; f++) {
1314 				if(isset(cg_blksfree(&aocg), f)) {
1315 					acg.cg_cs.cs_nffree--;
1316 					sblock.fs_cstotal.cs_nffree--;
1317 				}
1318 			}
1319 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1320 			bp[ind].old=d/sblock.fs_frag;
1321 			ind++;
1322 		} else {
1323 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1324 			acg.cg_cs.cs_nbfree--;
1325 			sblock.fs_cstotal.cs_nbfree--;
1326 			if(sblock.fs_contigsumsize > 0) {
1327 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1328 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1329 				    lcs<sblock.fs_contigsumsize;
1330 				    l++, lcs++ ) {
1331 					if(isclr(cg_clustersfree(&acg),l)){
1332 						break;
1333 					}
1334 				}
1335 				if(lcs < sblock.fs_contigsumsize) {
1336 					cg_clustersum(&acg)[lcs+1]--;
1337 					if(lcs) {
1338 						cg_clustersum(&acg)[lcs]++;
1339 					}
1340 				}
1341 			}
1342 		}
1343 		/*
1344 		 * No fragment counter handling is needed here, as this finally
1345 		 * doesn't change after the relocation.
1346 		 */
1347 	}
1348 
1349 	/*
1350 	 * Handle all fragments needed in the last new affected block.
1351 	 */
1352 	if(d<dupper) {
1353 		frag_adjust(dupper-1, -1);
1354 
1355 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1356 			acg.cg_cs.cs_nbfree--;
1357 			sblock.fs_cstotal.cs_nbfree--;
1358 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1359 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1360 			if(sblock.fs_contigsumsize > 0) {
1361 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1362 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1363 				    lcs<sblock.fs_contigsumsize;
1364 				    l++, lcs++ ) {
1365 					if(isclr(cg_clustersfree(&acg),l)){
1366 						break;
1367 					}
1368 				}
1369 				if(lcs < sblock.fs_contigsumsize) {
1370 					cg_clustersum(&acg)[lcs+1]--;
1371 					if(lcs) {
1372 						cg_clustersum(&acg)[lcs]++;
1373 					}
1374 				}
1375 			}
1376 		}
1377 
1378 		for(; d<dupper; d++) {
1379 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1380 			    (intmax_t)d);
1381 			if(isclr(cg_blksfree(&acg), d)) {
1382 				bp[ind].old=d/sblock.fs_frag;
1383 				bp[ind].flags|=GFS_FL_LAST;
1384 			} else {
1385 				clrbit(cg_blksfree(&acg), d);
1386 				acg.cg_cs.cs_nffree--;
1387 				sblock.fs_cstotal.cs_nffree--;
1388 			}
1389 		}
1390 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1391 			ind++;
1392 		}
1393 		frag_adjust(dupper-1, 1);
1394 	}
1395 
1396 	/*
1397 	 * If we found a block to relocate just do so.
1398 	 */
1399 	if(ind) {
1400 		for(i=0; i<ind; i++) {
1401 			if(!bp[i].old) { /* no more blocks listed */
1402 				/*
1403 				 * XXX	A relative blocknumber should not be
1404 				 *	zero, which is not explicitly
1405 				 *	guaranteed by our code.
1406 				 */
1407 				break;
1408 			}
1409 			/*
1410 			 * Allocate a complete block in the same (current)
1411 			 * cylinder group.
1412 			 */
1413 			bp[i].new=alloc()/sblock.fs_frag;
1414 
1415 			/*
1416 			 * There is no frag_adjust() needed for the new block
1417 			 * as it will have no fragments yet :-).
1418 			 */
1419 			for(f=bp[i].old*sblock.fs_frag,
1420 			    g=bp[i].new*sblock.fs_frag;
1421 			    f<(bp[i].old+1)*sblock.fs_frag;
1422 			    f++, g++) {
1423 				if(isset(cg_blksfree(&aocg), f)) {
1424 					setbit(cg_blksfree(&acg), g);
1425 					acg.cg_cs.cs_nffree++;
1426 					sblock.fs_cstotal.cs_nffree++;
1427 				}
1428 			}
1429 
1430 			/*
1431 			 * Special handling is required if this was the first
1432 			 * block. We have to consider the fragments which were
1433 			 * used by the cylinder summary in the original block
1434 			 * which re to be free in the copy of our block.  We
1435 			 * have to be careful if this first block happens to
1436 			 * be also the last block to be relocated.
1437 			 */
1438 			if(bp[i].flags & GFS_FL_FIRST) {
1439 				for(f=bp[i].old*sblock.fs_frag,
1440 				    g=bp[i].new*sblock.fs_frag;
1441 				    f<odupper;
1442 				    f++, g++) {
1443 					setbit(cg_blksfree(&acg), g);
1444 					acg.cg_cs.cs_nffree++;
1445 					sblock.fs_cstotal.cs_nffree++;
1446 				}
1447 				if(!(bp[i].flags & GFS_FL_LAST)) {
1448 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1449 				}
1450 			}
1451 
1452 			/*
1453 			 * Special handling is required if this is the last
1454 			 * block to be relocated.
1455 			 */
1456 			if(bp[i].flags & GFS_FL_LAST) {
1457 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1458 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1459 				for(f=dupper;
1460 				    f<roundup(dupper, sblock.fs_frag);
1461 				    f++) {
1462 					if(isclr(cg_blksfree(&acg), f)) {
1463 						setbit(cg_blksfree(&acg), f);
1464 						acg.cg_cs.cs_nffree++;
1465 						sblock.fs_cstotal.cs_nffree++;
1466 					}
1467 				}
1468 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1469 			}
1470 
1471 			/*
1472 			 * !!! Attach the cylindergroup offset here.
1473 			 */
1474 			bp[i].old+=cbase/sblock.fs_frag;
1475 			bp[i].new+=cbase/sblock.fs_frag;
1476 
1477 			/*
1478 			 * Copy the content of the block.
1479 			 */
1480 			/*
1481 			 * XXX	Here we will have to implement a copy on write
1482 			 *	in the case we have any active snapshots.
1483 			 */
1484 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1485 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1486 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1487 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1488 			DBG_DUMP_HEX(&sblock,
1489 			    "copied full block",
1490 			    (unsigned char *)&ablk);
1491 
1492 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1493 			    (intmax_t)bp[i].old,
1494 			    (intmax_t)bp[i].new);
1495 		}
1496 
1497 		/*
1498 		 * Now we have to update all references to any fragment which
1499 		 * belongs to any block relocated. We iterate now over all
1500 		 * cylinder groups, within those over all non zero length
1501 		 * inodes.
1502 		 */
1503 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1504 			DBG_PRINT1("scg doing cg (%d)\n",
1505 			    cylno);
1506 			for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1507 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1508 			}
1509 		}
1510 
1511 		/*
1512 		 * All inodes are checked, now make sure the number of
1513 		 * references found make sense.
1514 		 */
1515 		for(i=0; i<ind; i++) {
1516 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1517 				warnx("error: %jd refs found for block %jd.",
1518 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1519 			}
1520 
1521 		}
1522 	}
1523 	/*
1524 	 * The following statistics are not changed here:
1525 	 *     sblock.fs_cstotal.cs_ndir
1526 	 *     sblock.fs_cstotal.cs_nifree
1527 	 * The following statistics were already updated on the fly:
1528 	 *     sblock.fs_cstotal.cs_nffree
1529 	 *     sblock.fs_cstotal.cs_nbfree
1530 	 * As the statistics for this cylinder group are ready, copy it to
1531 	 * the summary information array.
1532 	 */
1533 
1534 	*cs = acg.cg_cs;
1535 
1536 	/*
1537 	 * Write summary cylinder group back to disk.
1538 	 */
1539 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1540 	    (void *)&acg, fso, Nflag);
1541 	DBG_PRINT0("scg written\n");
1542 	DBG_DUMP_CG(&sblock,
1543 	    "new summary cg",
1544 	    &acg);
1545 
1546 	DBG_LEAVE;
1547 	return;
1548 }
1549 
1550 /* ************************************************************** rdfs ***** */
1551 /*
1552  * Here we read some block(s) from disk.
1553  */
1554 static void
1555 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1556 {
1557 	DBG_FUNC("rdfs")
1558 	ssize_t	n;
1559 
1560 	DBG_ENTER;
1561 
1562 	if (bno < 0) {
1563 		err(32, "rdfs: attempting to read negative block number");
1564 	}
1565 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1566 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1567 	}
1568 	n = read(fsi, bf, size);
1569 	if (n != (ssize_t)size) {
1570 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1571 	}
1572 
1573 	DBG_LEAVE;
1574 	return;
1575 }
1576 
1577 /* ************************************************************** wtfs ***** */
1578 /*
1579  * Here we write some block(s) to disk.
1580  */
1581 static void
1582 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1583 {
1584 	DBG_FUNC("wtfs")
1585 	ssize_t	n;
1586 
1587 	DBG_ENTER;
1588 
1589 	if (Nflag) {
1590 		DBG_LEAVE;
1591 		return;
1592 	}
1593 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1594 		err(35, "wtfs: seek error: %ld", (long)bno);
1595 	}
1596 	n = write(fso, bf, size);
1597 	if (n != (ssize_t)size) {
1598 		err(36, "wtfs: write error: %ld", (long)bno);
1599 	}
1600 
1601 	DBG_LEAVE;
1602 	return;
1603 }
1604 
1605 /* ************************************************************* alloc ***** */
1606 /*
1607  * Here we allocate a free block in the current cylinder group. It is assumed,
1608  * that acg contains the current cylinder group. As we may take a block from
1609  * somewhere in the file system we have to handle cluster summary here.
1610  */
1611 static ufs2_daddr_t
1612 alloc(void)
1613 {
1614 	DBG_FUNC("alloc")
1615 	ufs2_daddr_t	d, blkno;
1616 	int	lcs1, lcs2;
1617 	int	l;
1618 	int	csmin, csmax;
1619 	int	dlower, dupper, dmax;
1620 
1621 	DBG_ENTER;
1622 
1623 	if (acg.cg_magic != CG_MAGIC) {
1624 		warnx("acg: bad magic number");
1625 		DBG_LEAVE;
1626 		return (0);
1627 	}
1628 	if (acg.cg_cs.cs_nbfree == 0) {
1629 		warnx("error: cylinder group ran out of space");
1630 		DBG_LEAVE;
1631 		return (0);
1632 	}
1633 	/*
1634 	 * We start seeking for free blocks only from the space available after
1635 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1636 	 * block here which we have to relocate a couple of seconds later again
1637 	 * again, and we are not prepared to to this anyway.
1638 	 */
1639 	blkno=-1;
1640 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1641 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1642 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1643 	if (dmax > sblock.fs_size) {
1644 		dmax = sblock.fs_size;
1645 	}
1646 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1647 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1648 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1649 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1650 	    dlower,
1651 	    dupper,
1652 	    dmax);
1653 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1654 	    csmin,
1655 	    csmax);
1656 
1657 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1658 		if(d>=csmin && d<=csmax) {
1659 			continue;
1660 		}
1661 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1662 		    d))) {
1663 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1664 			break;
1665 		}
1666 	}
1667 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1668 		if(d>=csmin && d<=csmax) {
1669 			continue;
1670 		}
1671 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1672 		    d))) {
1673 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1674 			break;
1675 		}
1676 	}
1677 	if(blkno==-1) {
1678 		warnx("internal error: couldn't find promised block in cg");
1679 		DBG_LEAVE;
1680 		return (0);
1681 	}
1682 
1683 	/*
1684 	 * This is needed if the block was found already in the first loop.
1685 	 */
1686 	d=blkstofrags(&sblock, blkno);
1687 
1688 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1689 	if (sblock.fs_contigsumsize > 0) {
1690 		/*
1691 		 * Handle the cluster allocation bitmap.
1692 		 */
1693 		clrbit(cg_clustersfree(&acg), blkno);
1694 		/*
1695 		 * We possibly have split a cluster here, so we have to do
1696 		 * recalculate the sizes of the remaining cluster halves now,
1697 		 * and use them for updating the cluster summary information.
1698 		 *
1699 		 * Lets start with the blocks before our allocated block ...
1700 		 */
1701 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1702 		    l--, lcs1++ ) {
1703 			if(isclr(cg_clustersfree(&acg),l)){
1704 				break;
1705 			}
1706 		}
1707 		/*
1708 		 * ... and continue with the blocks right after our allocated
1709 		 * block.
1710 		 */
1711 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1712 		    l++, lcs2++ ) {
1713 			if(isclr(cg_clustersfree(&acg),l)){
1714 				break;
1715 			}
1716 		}
1717 
1718 		/*
1719 		 * Now update all counters.
1720 		 */
1721 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1722 		if(lcs1) {
1723 			cg_clustersum(&acg)[lcs1]++;
1724 		}
1725 		if(lcs2) {
1726 			cg_clustersum(&acg)[lcs2]++;
1727 		}
1728 	}
1729 	/*
1730 	 * Update all statistics based on blocks.
1731 	 */
1732 	acg.cg_cs.cs_nbfree--;
1733 	sblock.fs_cstotal.cs_nbfree--;
1734 
1735 	DBG_LEAVE;
1736 	return (d);
1737 }
1738 
1739 /* *********************************************************** isblock ***** */
1740 /*
1741  * Here we check if all frags of a block are free. For more details again
1742  * please see the source of newfs(8), as this function is taken over almost
1743  * unchanged.
1744  */
1745 static int
1746 isblock(struct fs *fs, unsigned char *cp, int h)
1747 {
1748 	DBG_FUNC("isblock")
1749 	unsigned char	mask;
1750 
1751 	DBG_ENTER;
1752 
1753 	switch (fs->fs_frag) {
1754 	case 8:
1755 		DBG_LEAVE;
1756 		return (cp[h] == 0xff);
1757 	case 4:
1758 		mask = 0x0f << ((h & 0x1) << 2);
1759 		DBG_LEAVE;
1760 		return ((cp[h >> 1] & mask) == mask);
1761 	case 2:
1762 		mask = 0x03 << ((h & 0x3) << 1);
1763 		DBG_LEAVE;
1764 		return ((cp[h >> 2] & mask) == mask);
1765 	case 1:
1766 		mask = 0x01 << (h & 0x7);
1767 		DBG_LEAVE;
1768 		return ((cp[h >> 3] & mask) == mask);
1769 	default:
1770 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1771 		DBG_LEAVE;
1772 		return (0);
1773 	}
1774 }
1775 
1776 /* ********************************************************** clrblock ***** */
1777 /*
1778  * Here we allocate a complete block in the block map. For more details again
1779  * please see the source of newfs(8), as this function is taken over almost
1780  * unchanged.
1781  */
1782 static void
1783 clrblock(struct fs *fs, unsigned char *cp, int h)
1784 {
1785 	DBG_FUNC("clrblock")
1786 
1787 	DBG_ENTER;
1788 
1789 	switch ((fs)->fs_frag) {
1790 	case 8:
1791 		cp[h] = 0;
1792 		break;
1793 	case 4:
1794 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1795 		break;
1796 	case 2:
1797 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1798 		break;
1799 	case 1:
1800 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1801 		break;
1802 	default:
1803 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1804 		break;
1805 	}
1806 
1807 	DBG_LEAVE;
1808 	return;
1809 }
1810 
1811 /* ********************************************************** setblock ***** */
1812 /*
1813  * Here we free a complete block in the free block map. For more details again
1814  * please see the source of newfs(8), as this function is taken over almost
1815  * unchanged.
1816  */
1817 static void
1818 setblock(struct fs *fs, unsigned char *cp, int h)
1819 {
1820 	DBG_FUNC("setblock")
1821 
1822 	DBG_ENTER;
1823 
1824 	switch (fs->fs_frag) {
1825 	case 8:
1826 		cp[h] = 0xff;
1827 		break;
1828 	case 4:
1829 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1830 		break;
1831 	case 2:
1832 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1833 		break;
1834 	case 1:
1835 		cp[h >> 3] |= (0x01 << (h & 0x7));
1836 		break;
1837 	default:
1838 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1839 		break;
1840 	}
1841 
1842 	DBG_LEAVE;
1843 	return;
1844 }
1845 
1846 /* ************************************************************ ginode ***** */
1847 /*
1848  * This function provides access to an individual inode. We find out in which
1849  * block the requested inode is located, read it from disk if needed, and
1850  * return the pointer into that block. We maintain a cache of one block to
1851  * not read the same block again and again if we iterate linearly over all
1852  * inodes.
1853  */
1854 static union dinode *
1855 ginode(ino_t inumber, int fsi, int cg)
1856 {
1857 	DBG_FUNC("ginode")
1858 	static ino_t	startinum = 0;	/* first inode in cached block */
1859 
1860 	DBG_ENTER;
1861 
1862 	/*
1863 	 * The inumber passed in is relative to the cg, so use it here to see
1864 	 * if the inode has been allocated yet.
1865 	 */
1866 	if (isclr(cg_inosused(&aocg), inumber)) {
1867 		DBG_LEAVE;
1868 		return NULL;
1869 	}
1870 	/*
1871 	 * Now make the inumber relative to the entire inode space so it can
1872 	 * be sanity checked.
1873 	 */
1874 	inumber += (cg * sblock.fs_ipg);
1875 	if (inumber < ROOTINO) {
1876 		DBG_LEAVE;
1877 		return NULL;
1878 	}
1879 	if (inumber > maxino)
1880 		errx(8, "bad inode number %d to ginode", inumber);
1881 	if (startinum == 0 ||
1882 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1883 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1884 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1885 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1886 	}
1887 	DBG_LEAVE;
1888 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1889 		return (union dinode *)((uintptr_t)inobuf +
1890 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1891 	return (union dinode *)((uintptr_t)inobuf +
1892 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1893 }
1894 
1895 /* ****************************************************** charsperline ***** */
1896 /*
1897  * Figure out how many lines our current terminal has. For more details again
1898  * please see the source of newfs(8), as this function is taken over almost
1899  * unchanged.
1900  */
1901 static int
1902 charsperline(void)
1903 {
1904 	DBG_FUNC("charsperline")
1905 	int	columns;
1906 	char	*cp;
1907 	struct winsize	ws;
1908 
1909 	DBG_ENTER;
1910 
1911 	columns = 0;
1912 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1913 		columns = ws.ws_col;
1914 	}
1915 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1916 		columns = atoi(cp);
1917 	}
1918 	if (columns == 0) {
1919 		columns = 80;	/* last resort */
1920 	}
1921 
1922 	DBG_LEAVE;
1923 	return columns;
1924 }
1925 
1926 /* ****************************************************** get_dev_size ***** */
1927 /*
1928  * Get the size of the partition if we can't figure it out from the disklabel,
1929  * e.g. from vinum volumes.
1930  */
1931 static void
1932 get_dev_size(int fd, int *size)
1933 {
1934    int sectorsize;
1935    off_t mediasize;
1936 
1937    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1938         err(1,"DIOCGSECTORSIZE");
1939    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1940         err(1,"DIOCGMEDIASIZE");
1941 
1942    if (sectorsize <= 0)
1943        errx(1, "bogus sectorsize: %d", sectorsize);
1944 
1945    *size = mediasize / sectorsize;
1946 }
1947 
1948 /* ************************************************************** main ***** */
1949 /*
1950  * growfs(8)  is a utility which allows to increase the size of an existing
1951  * ufs file system. Currently this can only be done on unmounted file system.
1952  * It recognizes some command line options to specify the new desired size,
1953  * and it does some basic checkings. The old file system size is determined
1954  * and after some more checks like we can really access the new last block
1955  * on the disk etc. we calculate the new parameters for the superblock. After
1956  * having done this we just call growfs() which will do the work.  Before
1957  * we finish the only thing left is to update the disklabel.
1958  * We still have to provide support for snapshots. Therefore we first have to
1959  * understand what data structures are always replicated in the snapshot on
1960  * creation, for all other blocks we touch during our procedure, we have to
1961  * keep the old blocks unchanged somewhere available for the snapshots. If we
1962  * are lucky, then we only have to handle our blocks to be relocated in that
1963  * way.
1964  * Also we have to consider in what order we actually update the critical
1965  * data structures of the file system to make sure, that in case of a disaster
1966  * fsck(8) is still able to restore any lost data.
1967  * The foreseen last step then will be to provide for growing even mounted
1968  * file systems. There we have to extend the mount() system call to provide
1969  * userland access to the file system locking facility.
1970  */
1971 int
1972 main(int argc, char **argv)
1973 {
1974 	DBG_FUNC("main")
1975 	char	*device, *special, *cp;
1976 	int	ch;
1977 	unsigned int	size=0;
1978 	size_t	len;
1979 	unsigned int	Nflag=0;
1980 	int	ExpertFlag=0;
1981 	struct stat	st;
1982 	struct disklabel	*lp;
1983 	struct partition	*pp;
1984 	int	i,fsi,fso;
1985     u_int32_t p_size;
1986 	char	reply[5];
1987 #ifdef FSMAXSNAP
1988 	int	j;
1989 #endif /* FSMAXSNAP */
1990 
1991 	DBG_ENTER;
1992 
1993 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1994 		switch(ch) {
1995 		case 'N':
1996 			Nflag=1;
1997 			break;
1998 		case 's':
1999 			size=(size_t)atol(optarg);
2000 			if(size<1) {
2001 				usage();
2002 			}
2003 			break;
2004 		case 'v': /* for compatibility to newfs */
2005 			break;
2006 		case 'y':
2007 			ExpertFlag=1;
2008 			break;
2009 		case '?':
2010 			/* FALLTHROUGH */
2011 		default:
2012 			usage();
2013 		}
2014 	}
2015 	argc -= optind;
2016 	argv += optind;
2017 
2018 	if(argc != 1) {
2019 		usage();
2020 	}
2021 	device=*argv;
2022 
2023 	/*
2024 	 * Now try to guess the (raw)device name.
2025 	 */
2026 	if (0 == strrchr(device, '/')) {
2027 		/*
2028 		 * No path prefix was given, so try in that order:
2029 		 *     /dev/r%s
2030 		 *     /dev/%s
2031 		 *     /dev/vinum/r%s
2032 		 *     /dev/vinum/%s.
2033 		 *
2034 		 * FreeBSD now doesn't distinguish between raw and block
2035 		 * devices any longer, but it should still work this way.
2036 		 */
2037 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2038 		special=(char *)malloc(len);
2039 		if(special == NULL) {
2040 			errx(1, "malloc failed");
2041 		}
2042 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2043 		if (stat(special, &st) == -1) {
2044 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2045 			if (stat(special, &st) == -1) {
2046 				snprintf(special, len, "%svinum/r%s",
2047 				    _PATH_DEV, device);
2048 				if (stat(special, &st) == -1) {
2049 					/* For now this is the 'last resort' */
2050 					snprintf(special, len, "%svinum/%s",
2051 					    _PATH_DEV, device);
2052 				}
2053 			}
2054 		}
2055 		device = special;
2056 	}
2057 
2058 	/*
2059 	 * Try to access our devices for writing ...
2060 	 */
2061 	if (Nflag) {
2062 		fso = -1;
2063 	} else {
2064 		fso = open(device, O_WRONLY);
2065 		if (fso < 0) {
2066 			err(1, "%s", device);
2067 		}
2068 	}
2069 
2070 	/*
2071 	 * ... and reading.
2072 	 */
2073 	fsi = open(device, O_RDONLY);
2074 	if (fsi < 0) {
2075 		err(1, "%s", device);
2076 	}
2077 
2078 	/*
2079 	 * Try to read a label and guess the slice if not specified. This
2080 	 * code should guess the right thing and avoid to bother the user
2081 	 * with the task of specifying the option -v on vinum volumes.
2082 	 */
2083 	cp=device+strlen(device)-1;
2084 	lp = get_disklabel(fsi);
2085 	pp = NULL;
2086     if (lp != NULL) {
2087         if (isdigit(*cp)) {
2088             pp = &lp->d_partitions[2];
2089         } else if (*cp>='a' && *cp<='h') {
2090             pp = &lp->d_partitions[*cp - 'a'];
2091         } else {
2092             errx(1, "unknown device");
2093         }
2094         p_size = pp->p_size;
2095     } else {
2096         get_dev_size(fsi, &p_size);
2097     }
2098 
2099 	/*
2100 	 * Check if that partition is suitable for growing a file system.
2101 	 */
2102 	if (p_size < 1) {
2103 		errx(1, "partition is unavailable");
2104 	}
2105 
2106 	/*
2107 	 * Read the current superblock, and take a backup.
2108 	 */
2109 	for (i = 0; sblock_try[i] != -1; i++) {
2110 		sblockloc = sblock_try[i] / DEV_BSIZE;
2111 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2112 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2113 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2114 		      osblock.fs_sblockloc == sblock_try[i])) &&
2115 		    osblock.fs_bsize <= MAXBSIZE &&
2116 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2117 			break;
2118 	}
2119 	if (sblock_try[i] == -1) {
2120 		errx(1, "superblock not recognized");
2121 	}
2122 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2123 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2124 
2125 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2126 	DBG_DUMP_FS(&sblock,
2127 	    "old sblock");
2128 
2129 	/*
2130 	 * Determine size to grow to. Default to the full size specified in
2131 	 * the disk label.
2132 	 */
2133 	sblock.fs_size = dbtofsb(&osblock, p_size);
2134 	if (size != 0) {
2135 		if (size > p_size){
2136 			errx(1, "there is not enough space (%d < %d)",
2137 			    p_size, size);
2138 		}
2139 		sblock.fs_size = dbtofsb(&osblock, size);
2140 	}
2141 
2142 	/*
2143 	 * Are we really growing ?
2144 	 */
2145 	if(osblock.fs_size >= sblock.fs_size) {
2146 		errx(1, "we are not growing (%jd->%jd)",
2147 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2148 	}
2149 
2150 
2151 #ifdef FSMAXSNAP
2152 	/*
2153 	 * Check if we find an active snapshot.
2154 	 */
2155 	if(ExpertFlag == 0) {
2156 		for(j=0; j<FSMAXSNAP; j++) {
2157 			if(sblock.fs_snapinum[j]) {
2158 				errx(1, "active snapshot found in file system\n"
2159 				    "	please remove all snapshots before "
2160 				    "using growfs");
2161 			}
2162 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2163 				break;
2164 			}
2165 		}
2166 	}
2167 #endif
2168 
2169 	if (ExpertFlag == 0 && Nflag == 0) {
2170 		printf("We strongly recommend you to make a backup "
2171 		    "before growing the Filesystem\n\n"
2172 		    " Did you backup your data (Yes/No) ? ");
2173 		fgets(reply, (int)sizeof(reply), stdin);
2174 		if (strcmp(reply, "Yes\n")){
2175 			printf("\n Nothing done \n");
2176 			exit (0);
2177 		}
2178 	}
2179 
2180 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2181 
2182 	/*
2183 	 * Try to access our new last block in the file system. Even if we
2184 	 * later on realize we have to abort our operation, on that block
2185 	 * there should be no data, so we can't destroy something yet.
2186 	 */
2187 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2188 	    fso, Nflag);
2189 
2190 	/*
2191 	 * Now calculate new superblock values and check for reasonable
2192 	 * bound for new file system size:
2193 	 *     fs_size:    is derived from label or user input
2194 	 *     fs_dsize:   should get updated in the routines creating or
2195 	 *                 updating the cylinder groups on the fly
2196 	 *     fs_cstotal: should get updated in the routines creating or
2197 	 *                 updating the cylinder groups
2198 	 */
2199 
2200 	/*
2201 	 * Update the number of cylinders and cylinder groups in the file system.
2202 	 */
2203 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2204 		sblock.fs_old_ncyl =
2205 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2206 		if (sblock.fs_size * sblock.fs_old_nspf >
2207 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2208 			sblock.fs_old_ncyl++;
2209 	}
2210 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2211 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2212 
2213 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2214 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2215 		/*
2216 		 * The space in the new last cylinder group is too small,
2217 		 * so revert back.
2218 		 */
2219 		sblock.fs_ncg--;
2220 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2221 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2222 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2223 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2224 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2225 		maxino -= sblock.fs_ipg;
2226 	}
2227 
2228 	/*
2229 	 * Update the space for the cylinder group summary information in the
2230 	 * respective cylinder group data area.
2231 	 */
2232 	sblock.fs_cssize =
2233 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2234 
2235 	if(osblock.fs_size >= sblock.fs_size) {
2236 		errx(1, "not enough new space");
2237 	}
2238 
2239 	DBG_PRINT0("sblock calculated\n");
2240 
2241 	/*
2242 	 * Ok, everything prepared, so now let's do the tricks.
2243 	 */
2244 	growfs(fsi, fso, Nflag);
2245 
2246 	/*
2247 	 * Update the disk label.
2248 	 */
2249     if (!unlabeled) {
2250         pp->p_fsize = sblock.fs_fsize;
2251         pp->p_frag = sblock.fs_frag;
2252         pp->p_cpg = sblock.fs_fpg;
2253 
2254         return_disklabel(fso, lp, Nflag);
2255         DBG_PRINT0("label rewritten\n");
2256     }
2257 
2258 	close(fsi);
2259 	if(fso>-1) close(fso);
2260 
2261 	DBG_CLOSE;
2262 
2263 	DBG_LEAVE;
2264 	return 0;
2265 }
2266 
2267 /* ************************************************** return_disklabel ***** */
2268 /*
2269  * Write the updated disklabel back to disk.
2270  */
2271 static void
2272 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2273 {
2274 	DBG_FUNC("return_disklabel")
2275 	u_short	sum;
2276 	u_short	*ptr;
2277 
2278 	DBG_ENTER;
2279 
2280 	if(!lp) {
2281 		DBG_LEAVE;
2282 		return;
2283 	}
2284 	if(!Nflag) {
2285 		lp->d_checksum=0;
2286 		sum = 0;
2287 		ptr=(u_short *)lp;
2288 
2289 		/*
2290 		 * recalculate checksum
2291 		 */
2292 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2293 			sum ^= *ptr++;
2294 		}
2295 		lp->d_checksum=sum;
2296 
2297 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2298 			errx(1, "DIOCWDINFO failed");
2299 		}
2300 	}
2301 	free(lp);
2302 
2303 	DBG_LEAVE;
2304 	return ;
2305 }
2306 
2307 /* ***************************************************** get_disklabel ***** */
2308 /*
2309  * Read the disklabel from disk.
2310  */
2311 static struct disklabel *
2312 get_disklabel(int fd)
2313 {
2314 	DBG_FUNC("get_disklabel")
2315 	static struct	disklabel *lab;
2316 
2317 	DBG_ENTER;
2318 
2319 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2320 	if (!lab)
2321 		errx(1, "malloc failed");
2322 
2323     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2324         return (lab);
2325 
2326     unlabeled++;
2327 
2328 	DBG_LEAVE;
2329 	return (NULL);
2330 }
2331 
2332 
2333 /* ************************************************************* usage ***** */
2334 /*
2335  * Dump a line of usage.
2336  */
2337 static void
2338 usage(void)
2339 {
2340 	DBG_FUNC("usage")
2341 
2342 	DBG_ENTER;
2343 
2344 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2345 
2346 	DBG_LEAVE;
2347 	exit(1);
2348 }
2349 
2350 /* *********************************************************** updclst ***** */
2351 /*
2352  * This updates most parameters and the bitmap related to cluster. We have to
2353  * assume that sblock, osblock, acg are set up.
2354  */
2355 static void
2356 updclst(int block)
2357 {
2358 	DBG_FUNC("updclst")
2359 	static int	lcs=0;
2360 
2361 	DBG_ENTER;
2362 
2363 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2364 		return;
2365 	}
2366 	/*
2367 	 * update cluster allocation map
2368 	 */
2369 	setbit(cg_clustersfree(&acg), block);
2370 
2371 	/*
2372 	 * update cluster summary table
2373 	 */
2374 	if(!lcs) {
2375 		/*
2376 		 * calculate size for the trailing cluster
2377 		 */
2378 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2379 			if(isclr(cg_clustersfree(&acg), block)){
2380 				break;
2381 			}
2382 		}
2383 	}
2384 	if(lcs < sblock.fs_contigsumsize) {
2385 		if(lcs) {
2386 			cg_clustersum(&acg)[lcs]--;
2387 		}
2388 		lcs++;
2389 		cg_clustersum(&acg)[lcs]++;
2390 	}
2391 
2392 	DBG_LEAVE;
2393 	return;
2394 }
2395 
2396 /* *********************************************************** updrefs ***** */
2397 /*
2398  * This updates all references to relocated blocks for the given inode.  The
2399  * inode is given as number within the cylinder group, and the number of the
2400  * cylinder group.
2401  */
2402 static void
2403 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2404     Nflag)
2405 {
2406 	DBG_FUNC("updrefs")
2407 	ufs_lbn_t	len, lbn, numblks;
2408 	ufs2_daddr_t	iptr, blksperindir;
2409 	union dinode	*ino;
2410 	int		i, mode, inodeupdated;
2411 
2412 	DBG_ENTER;
2413 
2414 	ino = ginode(in, fsi, cg);
2415 	if (ino == NULL) {
2416 		DBG_LEAVE;
2417 		return;
2418 	}
2419 	mode = DIP(ino, di_mode) & IFMT;
2420 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2421 		DBG_LEAVE;
2422 		return; /* only check DIR, FILE, LINK */
2423 	}
2424 	if (mode == IFLNK &&
2425 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2426 		DBG_LEAVE;
2427 		return;	/* skip short symlinks */
2428 	}
2429 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2430 	if (numblks == 0) {
2431 		DBG_LEAVE;
2432 		return;	/* skip empty file */
2433 	}
2434 	if (DIP(ino, di_blocks) == 0) {
2435 		DBG_LEAVE;
2436 		return;	/* skip empty swiss cheesy file or old fastlink */
2437 	}
2438 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2439 	    in,
2440 	    cg);
2441 
2442 	/*
2443 	 * Check all the blocks.
2444 	 */
2445 	inodeupdated = 0;
2446 	len = numblks < NDADDR ? numblks : NDADDR;
2447 	for (i = 0; i < len; i++) {
2448 		iptr = DIP(ino, di_db[i]);
2449 		if (iptr == 0)
2450 			continue;
2451 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2452 			DIP_SET(ino, di_db[i], iptr);
2453 			inodeupdated++;
2454 		}
2455 	}
2456 	DBG_PRINT0("~~scg direct blocks checked\n");
2457 
2458 	blksperindir = 1;
2459 	len = numblks - NDADDR;
2460 	lbn = NDADDR;
2461 	for (i = 0; len > 0 && i < NIADDR; i++) {
2462 		iptr = DIP(ino, di_ib[i]);
2463 		if (iptr == 0)
2464 			continue;
2465 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2466 			DIP_SET(ino, di_ib[i], iptr);
2467 			inodeupdated++;
2468 		}
2469 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2470 		blksperindir *= NINDIR(&sblock);
2471 		lbn += blksperindir;
2472 		len -= blksperindir;
2473 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2474 	}
2475 	if (inodeupdated)
2476 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2477 
2478 	DBG_LEAVE;
2479 	return;
2480 }
2481 
2482 /*
2483  * Recursively check all the indirect blocks.
2484  */
2485 static void
2486 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2487     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2488 {
2489 	DBG_FUNC("indirchk")
2490 	void *ibuf;
2491 	int i, last;
2492 	ufs2_daddr_t iptr;
2493 
2494 	DBG_ENTER;
2495 
2496 	/* read in the indirect block. */
2497 	ibuf = malloc(sblock.fs_bsize);
2498 	if (!ibuf)
2499 		errx(1, "malloc failed");
2500 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2501 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2502 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2503 	for (i = 0; i < last; i++) {
2504 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2505 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2506 		else
2507 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2508 		if (iptr == 0)
2509 			continue;
2510 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2511 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2512 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2513 			else
2514 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2515 		}
2516 		if (blksperindir == 1)
2517 			continue;
2518 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2519 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2520 	}
2521 	free(ibuf);
2522 
2523 	DBG_LEAVE;
2524 	return;
2525 }
2526