xref: /freebsd/sbin/growfs/growfs.c (revision d37ea99837e6ad50837fd9fe1771ddf1c3ba6002)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD$";
52 #endif /* not lint */
53 
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 #include <sys/disk.h>
60 
61 #include <stdio.h>
62 #include <paths.h>
63 #include <ctype.h>
64 #include <err.h>
65 #include <fcntl.h>
66 #include <limits.h>
67 #include <stdlib.h>
68 #include <stdint.h>
69 #include <string.h>
70 #include <time.h>
71 #include <unistd.h>
72 #include <ufs/ufs/dinode.h>
73 #include <ufs/ffs/fs.h>
74 
75 #include "debug.h"
76 
77 /* *************************************************** GLOBALS & TYPES ***** */
78 #ifdef FS_DEBUG
79 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
80 #endif /* FS_DEBUG */
81 
82 static union {
83 	struct fs	fs;
84 	char	pad[SBLOCKSIZE];
85 } fsun1, fsun2;
86 #define	sblock	fsun1.fs	/* the new superblock */
87 #define	osblock	fsun2.fs	/* the old superblock */
88 
89 /*
90  * Possible superblock locations ordered from most to least likely.
91  */
92 static int sblock_try[] = SBLOCKSEARCH;
93 static ufs2_daddr_t sblockloc;
94 
95 static union {
96 	struct cg	cg;
97 	char	pad[MAXBSIZE];
98 } cgun1, cgun2;
99 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
100 #define	aocg	cgun2.cg	/* an old cylinder group */
101 
102 static char	ablk[MAXBSIZE];	/* a block */
103 
104 static struct csum	*fscs;	/* cylinder summary */
105 
106 union dinode {
107 	struct ufs1_dinode dp1;
108 	struct ufs2_dinode dp2;
109 };
110 #define	DIP(dp, field) \
111 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
112 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
113 static ufs2_daddr_t 	inoblk;			/* inode block address */
114 static char		inobuf[MAXBSIZE];	/* inode block */
115 ino_t			maxino;			/* last valid inode */
116 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
117 
118 /*
119  * An array of elements of type struct gfs_bpp describes all blocks to
120  * be relocated in order to free the space needed for the cylinder group
121  * summary for all cylinder groups located in the first cylinder group.
122  */
123 struct gfs_bpp {
124 	ufs2_daddr_t	old;		/* old block number */
125 	ufs2_daddr_t	new;		/* new block number */
126 #define GFS_FL_FIRST	1
127 #define GFS_FL_LAST	2
128 	unsigned int	flags;	/* special handling required */
129 	int	found;		/* how many references were updated */
130 };
131 
132 /* ******************************************************** PROTOTYPES ***** */
133 static void	growfs(int, int, unsigned int);
134 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
135 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
136 static ufs2_daddr_t alloc(void);
137 static int	charsperline(void);
138 static void	usage(void);
139 static int	isblock(struct fs *, unsigned char *, int);
140 static void	clrblock(struct fs *, unsigned char *, int);
141 static void	setblock(struct fs *, unsigned char *, int);
142 static void	initcg(int, time_t, int, unsigned int);
143 static void	updjcg(int, time_t, int, int, unsigned int);
144 static void	updcsloc(time_t, int, int, unsigned int);
145 static struct disklabel	*get_disklabel(int);
146 static void	return_disklabel(int, struct disklabel *, unsigned int);
147 static union dinode *ginode(ino_t, int, int);
148 static void	frag_adjust(ufs2_daddr_t, int);
149 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
150 		    unsigned int);
151 static void	updclst(int);
152 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
153 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
154 		    struct gfs_bpp *, int, int, unsigned int);
155 static void	get_dev_size(int, int *);
156 
157 /* ************************************************************ growfs ***** */
158 /*
159  * Here we actually start growing the file system. We basically read the
160  * cylinder summary from the first cylinder group as we want to update
161  * this on the fly during our various operations. First we handle the
162  * changes in the former last cylinder group. Afterwards we create all new
163  * cylinder groups.  Now we handle the cylinder group containing the
164  * cylinder summary which might result in a relocation of the whole
165  * structure.  In the end we write back the updated cylinder summary, the
166  * new superblock, and slightly patched versions of the super block
167  * copies.
168  */
169 static void
170 growfs(int fsi, int fso, unsigned int Nflag)
171 {
172 	DBG_FUNC("growfs")
173 	int	i;
174 	int	cylno, j;
175 	time_t	utime;
176 	int	width;
177 	char	tmpbuf[100];
178 #ifdef FSIRAND
179 	static int	randinit=0;
180 
181 	DBG_ENTER;
182 
183 	if (!randinit) {
184 		randinit = 1;
185 		srandomdev();
186 	}
187 #else /* not FSIRAND */
188 
189 	DBG_ENTER;
190 
191 #endif /* FSIRAND */
192 	time(&utime);
193 
194 	/*
195 	 * Get the cylinder summary into the memory.
196 	 */
197 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
198 	if(fscs == NULL) {
199 		errx(1, "calloc failed");
200 	}
201 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
202 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
203 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
204 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
205 	}
206 
207 #ifdef FS_DEBUG
208 {
209 	struct csum	*dbg_csp;
210 	int	dbg_csc;
211 	char	dbg_line[80];
212 
213 	dbg_csp=fscs;
214 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
215 		snprintf(dbg_line, sizeof(dbg_line),
216 		    "%d. old csum in old location", dbg_csc);
217 		DBG_DUMP_CSUM(&osblock,
218 		    dbg_line,
219 		    dbg_csp++);
220 	}
221 }
222 #endif /* FS_DEBUG */
223 	DBG_PRINT0("fscs read\n");
224 
225 	/*
226 	 * Do all needed changes in the former last cylinder group.
227 	 */
228 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
229 
230 	/*
231 	 * Dump out summary information about file system.
232 	 */
233 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
234 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
235 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
236 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
237 	    sblock.fs_fsize);
238 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
239 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
240 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
241 	if (sblock.fs_flags & FS_DOSOFTDEP)
242 		printf("\twith soft updates\n");
243 #	undef B2MBFACTOR
244 
245 	/*
246 	 * Now build the cylinders group blocks and
247 	 * then print out indices of cylinder groups.
248 	 */
249 	printf("super-block backups (for fsck -b #) at:\n");
250 	i = 0;
251 	width = charsperline();
252 
253 	/*
254 	 * Iterate for only the new cylinder groups.
255 	 */
256 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
257 		initcg(cylno, utime, fso, Nflag);
258 		j = sprintf(tmpbuf, " %d%s",
259 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
260 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
261 		if (i + j >= width) {
262 			printf("\n");
263 			i = 0;
264 		}
265 		i += j;
266 		printf("%s", tmpbuf);
267 		fflush(stdout);
268 	}
269 	printf("\n");
270 
271 	/*
272 	 * Do all needed changes in the first cylinder group.
273 	 * allocate blocks in new location
274 	 */
275 	updcsloc(utime, fsi, fso, Nflag);
276 
277 	/*
278 	 * Now write the cylinder summary back to disk.
279 	 */
280 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
281 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
282 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
283 		    (void *)(((char *)fscs) + i), fso, Nflag);
284 	}
285 	DBG_PRINT0("fscs written\n");
286 
287 #ifdef FS_DEBUG
288 {
289 	struct csum	*dbg_csp;
290 	int	dbg_csc;
291 	char	dbg_line[80];
292 
293 	dbg_csp=fscs;
294 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
295 		snprintf(dbg_line, sizeof(dbg_line),
296 		    "%d. new csum in new location", dbg_csc);
297 		DBG_DUMP_CSUM(&sblock,
298 		    dbg_line,
299 		    dbg_csp++);
300 	}
301 }
302 #endif /* FS_DEBUG */
303 
304 	/*
305 	 * Now write the new superblock back to disk.
306 	 */
307 	sblock.fs_time = utime;
308 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
309 	DBG_PRINT0("sblock written\n");
310 	DBG_DUMP_FS(&sblock,
311 	    "new initial sblock");
312 
313 	/*
314 	 * Clean up the dynamic fields in our superblock copies.
315 	 */
316 	sblock.fs_fmod = 0;
317 	sblock.fs_clean = 1;
318 	sblock.fs_ronly = 0;
319 	sblock.fs_cgrotor = 0;
320 	sblock.fs_state = 0;
321 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
322 	sblock.fs_flags &= FS_DOSOFTDEP;
323 
324 	/*
325 	 * XXX
326 	 * The following fields are currently distributed from the superblock
327 	 * to the copies:
328 	 *     fs_minfree
329 	 *     fs_rotdelay
330 	 *     fs_maxcontig
331 	 *     fs_maxbpg
332 	 *     fs_minfree,
333 	 *     fs_optim
334 	 *     fs_flags regarding SOFTPDATES
335 	 *
336 	 * We probably should rather change the summary for the cylinder group
337 	 * statistics here to the value of what would be in there, if the file
338 	 * system were created initially with the new size. Therefor we still
339 	 * need to find an easy way of calculating that.
340 	 * Possibly we can try to read the first superblock copy and apply the
341 	 * "diffed" stats between the old and new superblock by still copying
342 	 * certain parameters onto that.
343 	 */
344 
345 	/*
346 	 * Write out the duplicate super blocks.
347 	 */
348 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
349 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
350 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
351 	}
352 	DBG_PRINT0("sblock copies written\n");
353 	DBG_DUMP_FS(&sblock,
354 	    "new other sblocks");
355 
356 	DBG_LEAVE;
357 	return;
358 }
359 
360 /* ************************************************************ initcg ***** */
361 /*
362  * This creates a new cylinder group structure, for more details please see
363  * the source of newfs(8), as this function is taken over almost unchanged.
364  * As this is never called for the first cylinder group, the special
365  * provisions for that case are removed here.
366  */
367 static void
368 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
369 {
370 	DBG_FUNC("initcg")
371 	static void *iobuf;
372 	long d, dlower, dupper, blkno, start;
373 	ufs2_daddr_t i, cbase, dmax;
374 	struct ufs1_dinode *dp1;
375 	struct ufs2_dinode *dp2;
376 	struct csum *cs;
377 
378 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
379 		errx(37, "panic: cannot allocate I/O buffer");
380 	}
381 	/*
382 	 * Determine block bounds for cylinder group.
383 	 * Allow space for super block summary information in first
384 	 * cylinder group.
385 	 */
386 	cbase = cgbase(&sblock, cylno);
387 	dmax = cbase + sblock.fs_fpg;
388 	if (dmax > sblock.fs_size)
389 		dmax = sblock.fs_size;
390 	dlower = cgsblock(&sblock, cylno) - cbase;
391 	dupper = cgdmin(&sblock, cylno) - cbase;
392 	if (cylno == 0)	/* XXX fscs may be relocated */
393 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
394 	cs = &fscs[cylno];
395 	memset(&acg, 0, sblock.fs_cgsize);
396 	acg.cg_time = utime;
397 	acg.cg_magic = CG_MAGIC;
398 	acg.cg_cgx = cylno;
399 	acg.cg_niblk = sblock.fs_ipg;
400 	acg.cg_initediblk = sblock.fs_ipg;
401 	acg.cg_ndblk = dmax - cbase;
402 	if (sblock.fs_contigsumsize > 0)
403 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
404 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
405 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
406 		acg.cg_iusedoff = start;
407 	} else {
408 		acg.cg_old_ncyl = sblock.fs_old_cpg;
409 		acg.cg_old_time = acg.cg_time;
410 		acg.cg_time = 0;
411 		acg.cg_old_niblk = acg.cg_niblk;
412 		acg.cg_niblk = 0;
413 		acg.cg_initediblk = 0;
414 		acg.cg_old_btotoff = start;
415 		acg.cg_old_boff = acg.cg_old_btotoff +
416 		    sblock.fs_old_cpg * sizeof(int32_t);
417 		acg.cg_iusedoff = acg.cg_old_boff +
418 		    sblock.fs_old_cpg * sizeof(u_int16_t);
419 	}
420 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
421 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
422 	if (sblock.fs_contigsumsize > 0) {
423 		acg.cg_clustersumoff =
424 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
425 		acg.cg_clustersumoff -= sizeof(u_int32_t);
426 		acg.cg_clusteroff = acg.cg_clustersumoff +
427 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
428 		acg.cg_nextfreeoff = acg.cg_clusteroff +
429 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
430 	}
431 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
432 		/*
433 		 * This should never happen as we would have had that panic
434 		 * already on file system creation
435 		 */
436 		errx(37, "panic: cylinder group too big");
437 	}
438 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
439 	if (cylno == 0)
440 		for (i = 0; i < ROOTINO; i++) {
441 			setbit(cg_inosused(&acg), i);
442 			acg.cg_cs.cs_nifree--;
443 		}
444 	bzero(iobuf, sblock.fs_bsize);
445 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
446 		dp1 = (struct ufs1_dinode *)iobuf;
447 		dp2 = (struct ufs2_dinode *)iobuf;
448 #ifdef FSIRAND
449 		for (j = 0; j < INOPB(&sblock); j++)
450 			if (sblock.fs_magic == FS_UFS1_MAGIC) {
451 				dp1->di_gen = random();
452 				dp1++;
453 			} else {
454 				dp2->di_gen = random();
455 				dp2++;
456 			}
457 #endif
458 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
459 		    sblock.fs_bsize, iobuf, fso, Nflag);
460 	}
461 	if (cylno > 0) {
462 		/*
463 		 * In cylno 0, beginning space is reserved
464 		 * for boot and super blocks.
465 		 */
466 		for (d = 0; d < dlower; d += sblock.fs_frag) {
467 			blkno = d / sblock.fs_frag;
468 			setblock(&sblock, cg_blksfree(&acg), blkno);
469 			if (sblock.fs_contigsumsize > 0)
470 				setbit(cg_clustersfree(&acg), blkno);
471 			acg.cg_cs.cs_nbfree++;
472 		}
473 		sblock.fs_dsize += dlower;
474 	}
475 	sblock.fs_dsize += acg.cg_ndblk - dupper;
476 	if ((i = dupper % sblock.fs_frag)) {
477 		acg.cg_frsum[sblock.fs_frag - i]++;
478 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
479 			setbit(cg_blksfree(&acg), dupper);
480 			acg.cg_cs.cs_nffree++;
481 		}
482 	}
483 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
484 	     d += sblock.fs_frag) {
485 		blkno = d / sblock.fs_frag;
486 		setblock(&sblock, cg_blksfree(&acg), blkno);
487 		if (sblock.fs_contigsumsize > 0)
488 			setbit(cg_clustersfree(&acg), blkno);
489 		acg.cg_cs.cs_nbfree++;
490 	}
491 	if (d < acg.cg_ndblk) {
492 		acg.cg_frsum[acg.cg_ndblk - d]++;
493 		for (; d < acg.cg_ndblk; d++) {
494 			setbit(cg_blksfree(&acg), d);
495 			acg.cg_cs.cs_nffree++;
496 		}
497 	}
498 	if (sblock.fs_contigsumsize > 0) {
499 		int32_t *sump = cg_clustersum(&acg);
500 		u_char *mapp = cg_clustersfree(&acg);
501 		int map = *mapp++;
502 		int bit = 1;
503 		int run = 0;
504 
505 		for (i = 0; i < acg.cg_nclusterblks; i++) {
506 			if ((map & bit) != 0)
507 				run++;
508 			else if (run != 0) {
509 				if (run > sblock.fs_contigsumsize)
510 					run = sblock.fs_contigsumsize;
511 				sump[run]++;
512 				run = 0;
513 			}
514 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
515 				bit <<= 1;
516 			else {
517 				map = *mapp++;
518 				bit = 1;
519 			}
520 		}
521 		if (run != 0) {
522 			if (run > sblock.fs_contigsumsize)
523 				run = sblock.fs_contigsumsize;
524 			sump[run]++;
525 		}
526 	}
527 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
528 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
529 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
530 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
531 	*cs = acg.cg_cs;
532 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
533 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
534 	DBG_DUMP_CG(&sblock,
535 	    "new cg",
536 	    &acg);
537 
538 	DBG_LEAVE;
539 	return;
540 }
541 
542 /* ******************************************************* frag_adjust ***** */
543 /*
544  * Here we add or subtract (sign +1/-1) the available fragments in a given
545  * block to or from the fragment statistics. By subtracting before and adding
546  * after an operation on the free frag map we can easy update the fragment
547  * statistic, which seems to be otherwise a rather complex operation.
548  */
549 static void
550 frag_adjust(ufs2_daddr_t frag, int sign)
551 {
552 	DBG_FUNC("frag_adjust")
553 	int fragsize;
554 	int f;
555 
556 	DBG_ENTER;
557 
558 	fragsize=0;
559 	/*
560 	 * Here frag only needs to point to any fragment in the block we want
561 	 * to examine.
562 	 */
563 	for(f=rounddown(frag, sblock.fs_frag);
564 	    f<roundup(frag+1, sblock.fs_frag);
565 	    f++) {
566 		/*
567 		 * Count contiguous free fragments.
568 		 */
569 		if(isset(cg_blksfree(&acg), f)) {
570 			fragsize++;
571 		} else {
572 			if(fragsize && fragsize<sblock.fs_frag) {
573 				/*
574 				 * We found something in between.
575 				 */
576 				acg.cg_frsum[fragsize]+=sign;
577 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
578 				    fragsize,
579 				    sign);
580 			}
581 			fragsize=0;
582 		}
583 	}
584 	if(fragsize && fragsize<sblock.fs_frag) {
585 		/*
586 		 * We found something.
587 		 */
588 		acg.cg_frsum[fragsize]+=sign;
589 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
590 		    fragsize,
591 		    sign);
592 	}
593 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
594 	    fragsize,
595 	    sign);
596 
597 	DBG_LEAVE;
598 	return;
599 }
600 
601 /* ******************************************************* cond_bl_upd ***** */
602 /*
603  * Here we conditionally update a pointer to a fragment. We check for all
604  * relocated blocks if any of its fragments is referenced by the current
605  * field, and update the pointer to the respective fragment in our new
606  * block.  If we find a reference we write back the block immediately,
607  * as there is no easy way for our general block reading engine to figure
608  * out if a write back operation is needed.
609  */
610 static int
611 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
612     unsigned int Nflag)
613 {
614 	DBG_FUNC("cond_bl_upd")
615 	struct gfs_bpp *f;
616 	ufs2_daddr_t src, dst;
617 	int fragnum;
618 	void *ibuf;
619 
620 	DBG_ENTER;
621 
622 	f = field;
623 	for (f = field; f->old != 0; f++) {
624 		src = *block;
625 		if (fragstoblks(&sblock, src) != f->old)
626 			continue;
627 		/*
628 		 * The fragment is part of the block, so update.
629 		 */
630 		dst = blkstofrags(&sblock, f->new);
631 		fragnum = fragnum(&sblock, src);
632 		*block = dst + fragnum;
633 		f->found++;
634 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
635 		    (intmax_t)f->old,
636 		    (intmax_t)f->new,
637 		    fragnum);
638 
639 		/*
640 		 * Copy the block back immediately.
641 		 *
642 		 * XXX	If src is is from an indirect block we have
643 		 *	to implement copy on write here in case of
644 		 *	active snapshots.
645 		 */
646 		ibuf = malloc(sblock.fs_bsize);
647 		if (!ibuf)
648 			errx(1, "malloc failed");
649 		src -= fragnum;
650 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
651 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
652 		free(ibuf);
653 		/*
654 		 * The same block can't be found again in this loop.
655 		 */
656 		return (1);
657 	}
658 
659 	DBG_LEAVE;
660 	return (0);
661 }
662 
663 /* ************************************************************ updjcg ***** */
664 /*
665  * Here we do all needed work for the former last cylinder group. It has to be
666  * changed in any case, even if the file system ended exactly on the end of
667  * this group, as there is some slightly inconsistent handling of the number
668  * of cylinders in the cylinder group. We start again by reading the cylinder
669  * group from disk. If the last block was not fully available, we first handle
670  * the missing fragments, then we handle all new full blocks in that file
671  * system and finally we handle the new last fragmented block in the file
672  * system.  We again have to handle the fragment statistics rotational layout
673  * tables and cluster summary during all those operations.
674  */
675 static void
676 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
677 {
678 	DBG_FUNC("updjcg")
679 	ufs2_daddr_t	cbase, dmax, dupper;
680 	struct csum	*cs;
681 	int	i,k;
682 	int	j=0;
683 
684 	DBG_ENTER;
685 
686 	/*
687 	 * Read the former last (joining) cylinder group from disk, and make
688 	 * a copy.
689 	 */
690 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
691 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
692 	DBG_PRINT0("jcg read\n");
693 	DBG_DUMP_CG(&sblock,
694 	    "old joining cg",
695 	    &aocg);
696 
697 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
698 
699 	/*
700 	 * If the cylinder group had already its new final size almost
701 	 * nothing is to be done ... except:
702 	 * For some reason the value of cg_ncyl in the last cylinder group has
703 	 * to be zero instead of fs_cpg. As this is now no longer the last
704 	 * cylinder group we have to change that value now to fs_cpg.
705 	 */
706 
707 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
708 		if (sblock.fs_magic == FS_UFS1_MAGIC)
709 			acg.cg_old_ncyl=sblock.fs_old_cpg;
710 
711 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
712 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
713 		DBG_PRINT0("jcg written\n");
714 		DBG_DUMP_CG(&sblock,
715 		    "new joining cg",
716 		    &acg);
717 
718 		DBG_LEAVE;
719 		return;
720 	}
721 
722 	/*
723 	 * Set up some variables needed later.
724 	 */
725 	cbase = cgbase(&sblock, cylno);
726 	dmax = cbase + sblock.fs_fpg;
727 	if (dmax > sblock.fs_size)
728 		dmax = sblock.fs_size;
729 	dupper = cgdmin(&sblock, cylno) - cbase;
730 	if (cylno == 0) { /* XXX fscs may be relocated */
731 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
732 	}
733 
734 	/*
735 	 * Set pointer to the cylinder summary for our cylinder group.
736 	 */
737 	cs = fscs + cylno;
738 
739 	/*
740 	 * Touch the cylinder group, update all fields in the cylinder group as
741 	 * needed, update the free space in the superblock.
742 	 */
743 	acg.cg_time = utime;
744 	if (cylno == sblock.fs_ncg - 1) {
745 		/*
746 		 * This is still the last cylinder group.
747 		 */
748 		if (sblock.fs_magic == FS_UFS1_MAGIC)
749 			acg.cg_old_ncyl =
750 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
751 	} else {
752 		acg.cg_old_ncyl = sblock.fs_old_cpg;
753 	}
754 	DBG_PRINT2("jcg dbg: %d %u",
755 	    cylno,
756 	    sblock.fs_ncg);
757 #ifdef FS_DEBUG
758 	if (sblock.fs_magic == FS_UFS1_MAGIC)
759 		DBG_PRINT2("%d %u",
760 		    acg.cg_old_ncyl,
761 		    sblock.fs_old_cpg);
762 #endif
763 	DBG_PRINT0("\n");
764 	acg.cg_ndblk = dmax - cbase;
765 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
766 	if (sblock.fs_contigsumsize > 0) {
767 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
768 	}
769 
770 	/*
771 	 * Now we have to update the free fragment bitmap for our new free
772 	 * space.  There again we have to handle the fragmentation and also
773 	 * the rotational layout tables and the cluster summary.  This is
774 	 * also done per fragment for the first new block if the old file
775 	 * system end was not on a block boundary, per fragment for the new
776 	 * last block if the new file system end is not on a block boundary,
777 	 * and per block for all space in between.
778 	 *
779 	 * Handle the first new block here if it was partially available
780 	 * before.
781 	 */
782 	if(osblock.fs_size % sblock.fs_frag) {
783 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
784 			/*
785 			 * The new space is enough to fill at least this
786 			 * block
787 			 */
788 			j=0;
789 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
790 			    i>=osblock.fs_size-cbase;
791 			    i--) {
792 				setbit(cg_blksfree(&acg), i);
793 				acg.cg_cs.cs_nffree++;
794 				j++;
795 			}
796 
797 			/*
798 			 * Check if the fragment just created could join an
799 			 * already existing fragment at the former end of the
800 			 * file system.
801 			 */
802 			if(isblock(&sblock, cg_blksfree(&acg),
803 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
804 			    sblock.fs_frag))) {
805 				/*
806 				 * The block is now completely available.
807 				 */
808 				DBG_PRINT0("block was\n");
809 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
810 				acg.cg_cs.cs_nbfree++;
811 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
812 				k=rounddown(osblock.fs_size-cbase,
813 				    sblock.fs_frag);
814 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
815 			} else {
816 				/*
817 				 * Lets rejoin a possible partially growed
818 				 * fragment.
819 				 */
820 				k=0;
821 				while(isset(cg_blksfree(&acg), i) &&
822 				    (i>=rounddown(osblock.fs_size-cbase,
823 				    sblock.fs_frag))) {
824 					i--;
825 					k++;
826 				}
827 				if(k) {
828 					acg.cg_frsum[k]--;
829 				}
830 				acg.cg_frsum[k+j]++;
831 			}
832 		} else {
833 			/*
834 			 * We only grow by some fragments within this last
835 			 * block.
836 			 */
837 			for(i=sblock.fs_size-cbase-1;
838 				i>=osblock.fs_size-cbase;
839 				i--) {
840 				setbit(cg_blksfree(&acg), i);
841 				acg.cg_cs.cs_nffree++;
842 				j++;
843 			}
844 			/*
845 			 * Lets rejoin a possible partially growed fragment.
846 			 */
847 			k=0;
848 			while(isset(cg_blksfree(&acg), i) &&
849 			    (i>=rounddown(osblock.fs_size-cbase,
850 			    sblock.fs_frag))) {
851 				i--;
852 				k++;
853 			}
854 			if(k) {
855 				acg.cg_frsum[k]--;
856 			}
857 			acg.cg_frsum[k+j]++;
858 		}
859 	}
860 
861 	/*
862 	 * Handle all new complete blocks here.
863 	 */
864 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
865 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
866 	    i+=sblock.fs_frag) {
867 		j = i / sblock.fs_frag;
868 		setblock(&sblock, cg_blksfree(&acg), j);
869 		updclst(j);
870 		acg.cg_cs.cs_nbfree++;
871 	}
872 
873 	/*
874 	 * Handle the last new block if there are stll some new fragments left.
875 	 * Here we don't have to bother about the cluster summary or the even
876 	 * the rotational layout table.
877 	 */
878 	if (i < (dmax - cbase)) {
879 		acg.cg_frsum[dmax - cbase - i]++;
880 		for (; i < dmax - cbase; i++) {
881 			setbit(cg_blksfree(&acg), i);
882 			acg.cg_cs.cs_nffree++;
883 		}
884 	}
885 
886 	sblock.fs_cstotal.cs_nffree +=
887 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
888 	sblock.fs_cstotal.cs_nbfree +=
889 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
890 	/*
891 	 * The following statistics are not changed here:
892 	 *     sblock.fs_cstotal.cs_ndir
893 	 *     sblock.fs_cstotal.cs_nifree
894 	 * As the statistics for this cylinder group are ready, copy it to
895 	 * the summary information array.
896 	 */
897 	*cs = acg.cg_cs;
898 
899 	/*
900 	 * Write the updated "joining" cylinder group back to disk.
901 	 */
902 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
903 	    (void *)&acg, fso, Nflag);
904 	DBG_PRINT0("jcg written\n");
905 	DBG_DUMP_CG(&sblock,
906 	    "new joining cg",
907 	    &acg);
908 
909 	DBG_LEAVE;
910 	return;
911 }
912 
913 /* ********************************************************** updcsloc ***** */
914 /*
915  * Here we update the location of the cylinder summary. We have two possible
916  * ways of growing the cylinder summary.
917  * (1)	We can try to grow the summary in the current location, and relocate
918  *	possibly used blocks within the current cylinder group.
919  * (2)	Alternatively we can relocate the whole cylinder summary to the first
920  *	new completely empty cylinder group. Once the cylinder summary is no
921  *	longer in the beginning of the first cylinder group you should never
922  *	use a version of fsck which is not aware of the possibility to have
923  *	this structure in a non standard place.
924  * Option (1) is considered to be less intrusive to the structure of the file-
925  * system. So we try to stick to that whenever possible. If there is not enough
926  * space in the cylinder group containing the cylinder summary we have to use
927  * method (2). In case of active snapshots in the file system we probably can
928  * completely avoid implementing copy on write if we stick to method (2) only.
929  */
930 static void
931 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
932 {
933 	DBG_FUNC("updcsloc")
934 	struct csum	*cs;
935 	int	ocscg, ncscg;
936 	int	blocks;
937 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
938 	int	ind;
939 	int	cylno, inc;
940 	struct gfs_bpp	*bp;
941 	int	i, l;
942 	int	lcs=0;
943 	int	block;
944 
945 	DBG_ENTER;
946 
947 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
948 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
949 		/*
950 		 * No new fragment needed.
951 		 */
952 		DBG_LEAVE;
953 		return;
954 	}
955 	ocscg=dtog(&osblock, osblock.fs_csaddr);
956 	cs=fscs+ocscg;
957 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
958 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
959 
960 	/*
961 	 * Read original cylinder group from disk, and make a copy.
962 	 * XXX	If Nflag is set in some very rare cases we now miss
963 	 *	some changes done in updjcg by reading the unmodified
964 	 *	block from disk.
965 	 */
966 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
967 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
968 	DBG_PRINT0("oscg read\n");
969 	DBG_DUMP_CG(&sblock,
970 	    "old summary cg",
971 	    &aocg);
972 
973 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
974 
975 	/*
976 	 * Touch the cylinder group, set up local variables needed later
977 	 * and update the superblock.
978 	 */
979 	acg.cg_time = utime;
980 
981 	/*
982 	 * XXX	In the case of having active snapshots we may need much more
983 	 *	blocks for the copy on write. We need each block twice, and
984 	 *	also up to 8*3 blocks for indirect blocks for all possible
985 	 *	references.
986 	 */
987 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
988 		/*
989 		 * There is not enough space in the old cylinder group to
990 		 * relocate all blocks as needed, so we relocate the whole
991 		 * cylinder group summary to a new group. We try to use the
992 		 * first complete new cylinder group just created. Within the
993 		 * cylinder group we align the area immediately after the
994 		 * cylinder group information location in order to be as
995 		 * close as possible to the original implementation of ffs.
996 		 *
997 		 * First we have to make sure we'll find enough space in the
998 		 * new cylinder group. If not, then we currently give up.
999 		 * We start with freeing everything which was used by the
1000 		 * fragments of the old cylinder summary in the current group.
1001 		 * Now we write back the group meta data, read in the needed
1002 		 * meta data from the new cylinder group, and start allocating
1003 		 * within that group. Here we can assume, the group to be
1004 		 * completely empty. Which makes the handling of fragments and
1005 		 * clusters a lot easier.
1006 		 */
1007 		DBG_TRC;
1008 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1009 			errx(2, "panic: not enough space");
1010 		}
1011 
1012 		/*
1013 		 * Point "d" to the first fragment not used by the cylinder
1014 		 * summary.
1015 		 */
1016 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1017 
1018 		/*
1019 		 * Set up last cluster size ("lcs") already here. Calculate
1020 		 * the size for the trailing cluster just behind where "d"
1021 		 * points to.
1022 		 */
1023 		if(sblock.fs_contigsumsize > 0) {
1024 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1025 			    lcs=0; lcs<sblock.fs_contigsumsize;
1026 			    block++, lcs++) {
1027 				if(isclr(cg_clustersfree(&acg), block)){
1028 					break;
1029 				}
1030 			}
1031 		}
1032 
1033 		/*
1034 		 * Point "d" to the last frag used by the cylinder summary.
1035 		 */
1036 		d--;
1037 
1038 		DBG_PRINT1("d=%jd\n",
1039 		    (intmax_t)d);
1040 		if((d+1)%sblock.fs_frag) {
1041 			/*
1042 			 * The end of the cylinder summary is not a complete
1043 			 * block.
1044 			 */
1045 			DBG_TRC;
1046 			frag_adjust(d%sblock.fs_fpg, -1);
1047 			for(; (d+1)%sblock.fs_frag; d--) {
1048 				DBG_PRINT1("d=%jd\n",
1049 				    (intmax_t)d);
1050 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1051 				acg.cg_cs.cs_nffree++;
1052 				sblock.fs_cstotal.cs_nffree++;
1053 			}
1054 			/*
1055 			 * Point "d" to the last fragment of the last
1056 			 * (incomplete) block of the cylinder summary.
1057 			 */
1058 			d++;
1059 			frag_adjust(d%sblock.fs_fpg, 1);
1060 
1061 			if(isblock(&sblock, cg_blksfree(&acg),
1062 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1063 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1064 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1065 				acg.cg_cs.cs_nbfree++;
1066 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1067 				sblock.fs_cstotal.cs_nbfree++;
1068 				if(sblock.fs_contigsumsize > 0) {
1069 					setbit(cg_clustersfree(&acg),
1070 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1071 					if(lcs < sblock.fs_contigsumsize) {
1072 						if(lcs) {
1073 							cg_clustersum(&acg)
1074 							    [lcs]--;
1075 						}
1076 						lcs++;
1077 						cg_clustersum(&acg)[lcs]++;
1078 					}
1079 				}
1080 			}
1081 			/*
1082 			 * Point "d" to the first fragment of the block before
1083 			 * the last incomplete block.
1084 			 */
1085 			d--;
1086 		}
1087 
1088 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1089 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1090 		    d-=sblock.fs_frag) {
1091 			DBG_TRC;
1092 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1093 			setblock(&sblock, cg_blksfree(&acg),
1094 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1095 			acg.cg_cs.cs_nbfree++;
1096 			sblock.fs_cstotal.cs_nbfree++;
1097 			if(sblock.fs_contigsumsize > 0) {
1098 				setbit(cg_clustersfree(&acg),
1099 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1100 				/*
1101 				 * The last cluster size is already set up.
1102 				 */
1103 				if(lcs < sblock.fs_contigsumsize) {
1104 					if(lcs) {
1105 						cg_clustersum(&acg)[lcs]--;
1106 					}
1107 					lcs++;
1108 					cg_clustersum(&acg)[lcs]++;
1109 				}
1110 			}
1111 		}
1112 		*cs = acg.cg_cs;
1113 
1114 		/*
1115 		 * Now write the former cylinder group containing the cylinder
1116 		 * summary back to disk.
1117 		 */
1118 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1119 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1120 		DBG_PRINT0("oscg written\n");
1121 		DBG_DUMP_CG(&sblock,
1122 		    "old summary cg",
1123 		    &acg);
1124 
1125 		/*
1126 		 * Find the beginning of the new cylinder group containing the
1127 		 * cylinder summary.
1128 		 */
1129 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1130 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1131 		cs=fscs+ncscg;
1132 
1133 
1134 		/*
1135 		 * If Nflag is specified, we would now read random data instead
1136 		 * of an empty cg structure from disk. So we can't simulate that
1137 		 * part for now.
1138 		 */
1139 		if(Nflag) {
1140 			DBG_PRINT0("nscg update skipped\n");
1141 			DBG_LEAVE;
1142 			return;
1143 		}
1144 
1145 		/*
1146 		 * Read the future cylinder group containing the cylinder
1147 		 * summary from disk, and make a copy.
1148 		 */
1149 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1150 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1151 		DBG_PRINT0("nscg read\n");
1152 		DBG_DUMP_CG(&sblock,
1153 		    "new summary cg",
1154 		    &aocg);
1155 
1156 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1157 
1158 		/*
1159 		 * Allocate all complete blocks used by the new cylinder
1160 		 * summary.
1161 		 */
1162 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1163 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1164 		    d+=sblock.fs_frag) {
1165 			clrblock(&sblock, cg_blksfree(&acg),
1166 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1167 			acg.cg_cs.cs_nbfree--;
1168 			sblock.fs_cstotal.cs_nbfree--;
1169 			if(sblock.fs_contigsumsize > 0) {
1170 				clrbit(cg_clustersfree(&acg),
1171 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1172 			}
1173 		}
1174 
1175 		/*
1176 		 * Allocate all fragments used by the cylinder summary in the
1177 		 * last block.
1178 		 */
1179 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1180 			for(; d-sblock.fs_csaddr<
1181 			    sblock.fs_cssize/sblock.fs_fsize;
1182 			    d++) {
1183 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1184 				acg.cg_cs.cs_nffree--;
1185 				sblock.fs_cstotal.cs_nffree--;
1186 			}
1187 			acg.cg_cs.cs_nbfree--;
1188 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1189 			sblock.fs_cstotal.cs_nbfree--;
1190 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1191 			if(sblock.fs_contigsumsize > 0) {
1192 				clrbit(cg_clustersfree(&acg),
1193 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1194 			}
1195 
1196 			frag_adjust(d%sblock.fs_fpg, +1);
1197 		}
1198 		/*
1199 		 * XXX	Handle the cluster statistics here in the case this
1200 		 *	cylinder group is now almost full, and the remaining
1201 		 *	space is less then the maximum cluster size. This is
1202 		 *	probably not needed, as you would hardly find a file
1203 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1204 		 *	space right behind the cylinder group information in
1205 		 *	any new cylinder group.
1206 		 */
1207 
1208 		/*
1209 		 * Update our statistics in the cylinder summary.
1210 		 */
1211 		*cs = acg.cg_cs;
1212 
1213 		/*
1214 		 * Write the new cylinder group containing the cylinder summary
1215 		 * back to disk.
1216 		 */
1217 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1218 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1219 		DBG_PRINT0("nscg written\n");
1220 		DBG_DUMP_CG(&sblock,
1221 		    "new summary cg",
1222 		    &acg);
1223 
1224 		DBG_LEAVE;
1225 		return;
1226 	}
1227 	/*
1228 	 * We have got enough of space in the current cylinder group, so we
1229 	 * can relocate just a few blocks, and let the summary information
1230 	 * grow in place where it is right now.
1231 	 */
1232 	DBG_TRC;
1233 
1234 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1235 	dupper = sblock.fs_csaddr - cbase +
1236 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1237 	odupper = osblock.fs_csaddr - cbase +
1238 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1239 
1240 	sblock.fs_dsize -= dupper-odupper;
1241 
1242 	/*
1243 	 * Allocate the space for the array of blocks to be relocated.
1244 	 */
1245  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1246 	    sizeof(struct gfs_bpp));
1247 	if(bp == NULL) {
1248 		errx(1, "malloc failed");
1249 	}
1250 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1251 	    sizeof(struct gfs_bpp));
1252 
1253 	/*
1254 	 * Lock all new frags needed for the cylinder group summary. This is
1255 	 * done per fragment in the first and last block of the new required
1256 	 * area, and per block for all other blocks.
1257 	 *
1258 	 * Handle the first new block here (but only if some fragments where
1259 	 * already used for the cylinder summary).
1260 	 */
1261 	ind=0;
1262 	frag_adjust(odupper, -1);
1263 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1264 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1265 		    (intmax_t)d);
1266 		if(isclr(cg_blksfree(&acg), d)) {
1267 			if (!ind) {
1268 				bp[ind].old=d/sblock.fs_frag;
1269 				bp[ind].flags|=GFS_FL_FIRST;
1270 				if(roundup(d, sblock.fs_frag) >= dupper) {
1271 					bp[ind].flags|=GFS_FL_LAST;
1272 				}
1273 				ind++;
1274 			}
1275 		} else {
1276 			clrbit(cg_blksfree(&acg), d);
1277 			acg.cg_cs.cs_nffree--;
1278 			sblock.fs_cstotal.cs_nffree--;
1279 		}
1280 		/*
1281 		 * No cluster handling is needed here, as there was at least
1282 		 * one fragment in use by the cylinder summary in the old
1283 		 * file system.
1284 		 * No block-free counter handling here as this block was not
1285 		 * a free block.
1286 		 */
1287 	}
1288 	frag_adjust(odupper, 1);
1289 
1290 	/*
1291 	 * Handle all needed complete blocks here.
1292 	 */
1293 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1294 		DBG_PRINT1("scg block check loop d=%jd\n",
1295 		    (intmax_t)d);
1296 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1297 			for(f=d; f<d+sblock.fs_frag; f++) {
1298 				if(isset(cg_blksfree(&aocg), f)) {
1299 					acg.cg_cs.cs_nffree--;
1300 					sblock.fs_cstotal.cs_nffree--;
1301 				}
1302 			}
1303 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1304 			bp[ind].old=d/sblock.fs_frag;
1305 			ind++;
1306 		} else {
1307 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1308 			acg.cg_cs.cs_nbfree--;
1309 			sblock.fs_cstotal.cs_nbfree--;
1310 			if(sblock.fs_contigsumsize > 0) {
1311 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1312 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1313 				    lcs<sblock.fs_contigsumsize;
1314 				    l++, lcs++ ) {
1315 					if(isclr(cg_clustersfree(&acg),l)){
1316 						break;
1317 					}
1318 				}
1319 				if(lcs < sblock.fs_contigsumsize) {
1320 					cg_clustersum(&acg)[lcs+1]--;
1321 					if(lcs) {
1322 						cg_clustersum(&acg)[lcs]++;
1323 					}
1324 				}
1325 			}
1326 		}
1327 		/*
1328 		 * No fragment counter handling is needed here, as this finally
1329 		 * doesn't change after the relocation.
1330 		 */
1331 	}
1332 
1333 	/*
1334 	 * Handle all fragments needed in the last new affected block.
1335 	 */
1336 	if(d<dupper) {
1337 		frag_adjust(dupper-1, -1);
1338 
1339 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1340 			acg.cg_cs.cs_nbfree--;
1341 			sblock.fs_cstotal.cs_nbfree--;
1342 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1343 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1344 			if(sblock.fs_contigsumsize > 0) {
1345 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1346 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1347 				    lcs<sblock.fs_contigsumsize;
1348 				    l++, lcs++ ) {
1349 					if(isclr(cg_clustersfree(&acg),l)){
1350 						break;
1351 					}
1352 				}
1353 				if(lcs < sblock.fs_contigsumsize) {
1354 					cg_clustersum(&acg)[lcs+1]--;
1355 					if(lcs) {
1356 						cg_clustersum(&acg)[lcs]++;
1357 					}
1358 				}
1359 			}
1360 		}
1361 
1362 		for(; d<dupper; d++) {
1363 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1364 			    (intmax_t)d);
1365 			if(isclr(cg_blksfree(&acg), d)) {
1366 				bp[ind].old=d/sblock.fs_frag;
1367 				bp[ind].flags|=GFS_FL_LAST;
1368 			} else {
1369 				clrbit(cg_blksfree(&acg), d);
1370 				acg.cg_cs.cs_nffree--;
1371 				sblock.fs_cstotal.cs_nffree--;
1372 			}
1373 		}
1374 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1375 			ind++;
1376 		}
1377 		frag_adjust(dupper-1, 1);
1378 	}
1379 
1380 	/*
1381 	 * If we found a block to relocate just do so.
1382 	 */
1383 	if(ind) {
1384 		for(i=0; i<ind; i++) {
1385 			if(!bp[i].old) { /* no more blocks listed */
1386 				/*
1387 				 * XXX	A relative blocknumber should not be
1388 				 *	zero, which is not explicitly
1389 				 *	guaranteed by our code.
1390 				 */
1391 				break;
1392 			}
1393 			/*
1394 			 * Allocate a complete block in the same (current)
1395 			 * cylinder group.
1396 			 */
1397 			bp[i].new=alloc()/sblock.fs_frag;
1398 
1399 			/*
1400 			 * There is no frag_adjust() needed for the new block
1401 			 * as it will have no fragments yet :-).
1402 			 */
1403 			for(f=bp[i].old*sblock.fs_frag,
1404 			    g=bp[i].new*sblock.fs_frag;
1405 			    f<(bp[i].old+1)*sblock.fs_frag;
1406 			    f++, g++) {
1407 				if(isset(cg_blksfree(&aocg), f)) {
1408 					setbit(cg_blksfree(&acg), g);
1409 					acg.cg_cs.cs_nffree++;
1410 					sblock.fs_cstotal.cs_nffree++;
1411 				}
1412 			}
1413 
1414 			/*
1415 			 * Special handling is required if this was the first
1416 			 * block. We have to consider the fragments which were
1417 			 * used by the cylinder summary in the original block
1418 			 * which re to be free in the copy of our block.  We
1419 			 * have to be careful if this first block happens to
1420 			 * be also the last block to be relocated.
1421 			 */
1422 			if(bp[i].flags & GFS_FL_FIRST) {
1423 				for(f=bp[i].old*sblock.fs_frag,
1424 				    g=bp[i].new*sblock.fs_frag;
1425 				    f<odupper;
1426 				    f++, g++) {
1427 					setbit(cg_blksfree(&acg), g);
1428 					acg.cg_cs.cs_nffree++;
1429 					sblock.fs_cstotal.cs_nffree++;
1430 				}
1431 				if(!(bp[i].flags & GFS_FL_LAST)) {
1432 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1433 				}
1434 			}
1435 
1436 			/*
1437 			 * Special handling is required if this is the last
1438 			 * block to be relocated.
1439 			 */
1440 			if(bp[i].flags & GFS_FL_LAST) {
1441 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1442 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1443 				for(f=dupper;
1444 				    f<roundup(dupper, sblock.fs_frag);
1445 				    f++) {
1446 					if(isclr(cg_blksfree(&acg), f)) {
1447 						setbit(cg_blksfree(&acg), f);
1448 						acg.cg_cs.cs_nffree++;
1449 						sblock.fs_cstotal.cs_nffree++;
1450 					}
1451 				}
1452 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1453 			}
1454 
1455 			/*
1456 			 * !!! Attach the cylindergroup offset here.
1457 			 */
1458 			bp[i].old+=cbase/sblock.fs_frag;
1459 			bp[i].new+=cbase/sblock.fs_frag;
1460 
1461 			/*
1462 			 * Copy the content of the block.
1463 			 */
1464 			/*
1465 			 * XXX	Here we will have to implement a copy on write
1466 			 *	in the case we have any active snapshots.
1467 			 */
1468 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1469 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1470 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1471 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1472 			DBG_DUMP_HEX(&sblock,
1473 			    "copied full block",
1474 			    (unsigned char *)&ablk);
1475 
1476 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1477 			    (intmax_t)bp[i].old,
1478 			    (intmax_t)bp[i].new);
1479 		}
1480 
1481 		/*
1482 		 * Now we have to update all references to any fragment which
1483 		 * belongs to any block relocated. We iterate now over all
1484 		 * cylinder groups, within those over all non zero length
1485 		 * inodes.
1486 		 */
1487 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1488 			DBG_PRINT1("scg doing cg (%d)\n",
1489 			    cylno);
1490 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1491 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1492 			}
1493 		}
1494 
1495 		/*
1496 		 * All inodes are checked, now make sure the number of
1497 		 * references found make sense.
1498 		 */
1499 		for(i=0; i<ind; i++) {
1500 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1501 				warnx("error: %jd refs found for block %jd.",
1502 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1503 			}
1504 
1505 		}
1506 	}
1507 	/*
1508 	 * The following statistics are not changed here:
1509 	 *     sblock.fs_cstotal.cs_ndir
1510 	 *     sblock.fs_cstotal.cs_nifree
1511 	 * The following statistics were already updated on the fly:
1512 	 *     sblock.fs_cstotal.cs_nffree
1513 	 *     sblock.fs_cstotal.cs_nbfree
1514 	 * As the statistics for this cylinder group are ready, copy it to
1515 	 * the summary information array.
1516 	 */
1517 
1518 	*cs = acg.cg_cs;
1519 
1520 	/*
1521 	 * Write summary cylinder group back to disk.
1522 	 */
1523 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1524 	    (void *)&acg, fso, Nflag);
1525 	DBG_PRINT0("scg written\n");
1526 	DBG_DUMP_CG(&sblock,
1527 	    "new summary cg",
1528 	    &acg);
1529 
1530 	DBG_LEAVE;
1531 	return;
1532 }
1533 
1534 /* ************************************************************** rdfs ***** */
1535 /*
1536  * Here we read some block(s) from disk.
1537  */
1538 static void
1539 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1540 {
1541 	DBG_FUNC("rdfs")
1542 	ssize_t	n;
1543 
1544 	DBG_ENTER;
1545 
1546 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1547 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1548 	}
1549 	n = read(fsi, bf, size);
1550 	if (n != (ssize_t)size) {
1551 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1552 	}
1553 
1554 	DBG_LEAVE;
1555 	return;
1556 }
1557 
1558 /* ************************************************************** wtfs ***** */
1559 /*
1560  * Here we write some block(s) to disk.
1561  */
1562 static void
1563 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1564 {
1565 	DBG_FUNC("wtfs")
1566 	ssize_t	n;
1567 
1568 	DBG_ENTER;
1569 
1570 	if (Nflag) {
1571 		DBG_LEAVE;
1572 		return;
1573 	}
1574 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1575 		err(35, "wtfs: seek error: %ld", (long)bno);
1576 	}
1577 	n = write(fso, bf, size);
1578 	if (n != (ssize_t)size) {
1579 		err(36, "wtfs: write error: %ld", (long)bno);
1580 	}
1581 
1582 	DBG_LEAVE;
1583 	return;
1584 }
1585 
1586 /* ************************************************************* alloc ***** */
1587 /*
1588  * Here we allocate a free block in the current cylinder group. It is assumed,
1589  * that acg contains the current cylinder group. As we may take a block from
1590  * somewhere in the file system we have to handle cluster summary here.
1591  */
1592 static ufs2_daddr_t
1593 alloc(void)
1594 {
1595 	DBG_FUNC("alloc")
1596 	ufs2_daddr_t	d, blkno;
1597 	int	lcs1, lcs2;
1598 	int	l;
1599 	int	csmin, csmax;
1600 	int	dlower, dupper, dmax;
1601 
1602 	DBG_ENTER;
1603 
1604 	if (acg.cg_magic != CG_MAGIC) {
1605 		warnx("acg: bad magic number");
1606 		DBG_LEAVE;
1607 		return (0);
1608 	}
1609 	if (acg.cg_cs.cs_nbfree == 0) {
1610 		warnx("error: cylinder group ran out of space");
1611 		DBG_LEAVE;
1612 		return (0);
1613 	}
1614 	/*
1615 	 * We start seeking for free blocks only from the space available after
1616 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1617 	 * block here which we have to relocate a couple of seconds later again
1618 	 * again, and we are not prepared to to this anyway.
1619 	 */
1620 	blkno=-1;
1621 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1622 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1623 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1624 	if (dmax > sblock.fs_size) {
1625 		dmax = sblock.fs_size;
1626 	}
1627 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1628 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1629 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1630 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1631 	    dlower,
1632 	    dupper,
1633 	    dmax);
1634 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1635 	    csmin,
1636 	    csmax);
1637 
1638 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1639 		if(d>=csmin && d<=csmax) {
1640 			continue;
1641 		}
1642 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1643 		    d))) {
1644 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1645 			break;
1646 		}
1647 	}
1648 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1649 		if(d>=csmin && d<=csmax) {
1650 			continue;
1651 		}
1652 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1653 		    d))) {
1654 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1655 			break;
1656 		}
1657 	}
1658 	if(blkno==-1) {
1659 		warnx("internal error: couldn't find promised block in cg");
1660 		DBG_LEAVE;
1661 		return (0);
1662 	}
1663 
1664 	/*
1665 	 * This is needed if the block was found already in the first loop.
1666 	 */
1667 	d=blkstofrags(&sblock, blkno);
1668 
1669 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1670 	if (sblock.fs_contigsumsize > 0) {
1671 		/*
1672 		 * Handle the cluster allocation bitmap.
1673 		 */
1674 		clrbit(cg_clustersfree(&acg), blkno);
1675 		/*
1676 		 * We possibly have split a cluster here, so we have to do
1677 		 * recalculate the sizes of the remaining cluster halves now,
1678 		 * and use them for updating the cluster summary information.
1679 		 *
1680 		 * Lets start with the blocks before our allocated block ...
1681 		 */
1682 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1683 		    l--, lcs1++ ) {
1684 			if(isclr(cg_clustersfree(&acg),l)){
1685 				break;
1686 			}
1687 		}
1688 		/*
1689 		 * ... and continue with the blocks right after our allocated
1690 		 * block.
1691 		 */
1692 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1693 		    l++, lcs2++ ) {
1694 			if(isclr(cg_clustersfree(&acg),l)){
1695 				break;
1696 			}
1697 		}
1698 
1699 		/*
1700 		 * Now update all counters.
1701 		 */
1702 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1703 		if(lcs1) {
1704 			cg_clustersum(&acg)[lcs1]++;
1705 		}
1706 		if(lcs2) {
1707 			cg_clustersum(&acg)[lcs2]++;
1708 		}
1709 	}
1710 	/*
1711 	 * Update all statistics based on blocks.
1712 	 */
1713 	acg.cg_cs.cs_nbfree--;
1714 	sblock.fs_cstotal.cs_nbfree--;
1715 
1716 	DBG_LEAVE;
1717 	return (d);
1718 }
1719 
1720 /* *********************************************************** isblock ***** */
1721 /*
1722  * Here we check if all frags of a block are free. For more details again
1723  * please see the source of newfs(8), as this function is taken over almost
1724  * unchanged.
1725  */
1726 static int
1727 isblock(struct fs *fs, unsigned char *cp, int h)
1728 {
1729 	DBG_FUNC("isblock")
1730 	unsigned char	mask;
1731 
1732 	DBG_ENTER;
1733 
1734 	switch (fs->fs_frag) {
1735 	case 8:
1736 		DBG_LEAVE;
1737 		return (cp[h] == 0xff);
1738 	case 4:
1739 		mask = 0x0f << ((h & 0x1) << 2);
1740 		DBG_LEAVE;
1741 		return ((cp[h >> 1] & mask) == mask);
1742 	case 2:
1743 		mask = 0x03 << ((h & 0x3) << 1);
1744 		DBG_LEAVE;
1745 		return ((cp[h >> 2] & mask) == mask);
1746 	case 1:
1747 		mask = 0x01 << (h & 0x7);
1748 		DBG_LEAVE;
1749 		return ((cp[h >> 3] & mask) == mask);
1750 	default:
1751 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1752 		DBG_LEAVE;
1753 		return (0);
1754 	}
1755 }
1756 
1757 /* ********************************************************** clrblock ***** */
1758 /*
1759  * Here we allocate a complete block in the block map. For more details again
1760  * please see the source of newfs(8), as this function is taken over almost
1761  * unchanged.
1762  */
1763 static void
1764 clrblock(struct fs *fs, unsigned char *cp, int h)
1765 {
1766 	DBG_FUNC("clrblock")
1767 
1768 	DBG_ENTER;
1769 
1770 	switch ((fs)->fs_frag) {
1771 	case 8:
1772 		cp[h] = 0;
1773 		break;
1774 	case 4:
1775 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1776 		break;
1777 	case 2:
1778 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1779 		break;
1780 	case 1:
1781 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1782 		break;
1783 	default:
1784 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1785 		break;
1786 	}
1787 
1788 	DBG_LEAVE;
1789 	return;
1790 }
1791 
1792 /* ********************************************************** setblock ***** */
1793 /*
1794  * Here we free a complete block in the free block map. For more details again
1795  * please see the source of newfs(8), as this function is taken over almost
1796  * unchanged.
1797  */
1798 static void
1799 setblock(struct fs *fs, unsigned char *cp, int h)
1800 {
1801 	DBG_FUNC("setblock")
1802 
1803 	DBG_ENTER;
1804 
1805 	switch (fs->fs_frag) {
1806 	case 8:
1807 		cp[h] = 0xff;
1808 		break;
1809 	case 4:
1810 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1811 		break;
1812 	case 2:
1813 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1814 		break;
1815 	case 1:
1816 		cp[h >> 3] |= (0x01 << (h & 0x7));
1817 		break;
1818 	default:
1819 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1820 		break;
1821 	}
1822 
1823 	DBG_LEAVE;
1824 	return;
1825 }
1826 
1827 /* ************************************************************ ginode ***** */
1828 /*
1829  * This function provides access to an individual inode. We find out in which
1830  * block the requested inode is located, read it from disk if needed, and
1831  * return the pointer into that block. We maintain a cache of one block to
1832  * not read the same block again and again if we iterate linearly over all
1833  * inodes.
1834  */
1835 static union dinode *
1836 ginode(ino_t inumber, int fsi, int cg)
1837 {
1838 	DBG_FUNC("ginode")
1839 	static ino_t	startinum = 0;	/* first inode in cached block */
1840 
1841 	DBG_ENTER;
1842 
1843 	inumber += (cg * sblock.fs_ipg);
1844 	if (isclr(cg_inosused(&aocg), inumber)) {
1845 		DBG_LEAVE;
1846 		return NULL;
1847 	}
1848 	if (inumber < ROOTINO || inumber > maxino)
1849 		errx(8, "bad inode number %d to ginode", inumber);
1850 	if (startinum == 0 ||
1851 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1852 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1853 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1854 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1855 	}
1856 	DBG_LEAVE;
1857 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1858 		return (union dinode *)((uintptr_t)inobuf +
1859 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1860 	return (union dinode *)((uintptr_t)inobuf +
1861 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1862 }
1863 
1864 /* ****************************************************** charsperline ***** */
1865 /*
1866  * Figure out how many lines our current terminal has. For more details again
1867  * please see the source of newfs(8), as this function is taken over almost
1868  * unchanged.
1869  */
1870 static int
1871 charsperline(void)
1872 {
1873 	DBG_FUNC("charsperline")
1874 	int	columns;
1875 	char	*cp;
1876 	struct winsize	ws;
1877 
1878 	DBG_ENTER;
1879 
1880 	columns = 0;
1881 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1882 		columns = ws.ws_col;
1883 	}
1884 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1885 		columns = atoi(cp);
1886 	}
1887 	if (columns == 0) {
1888 		columns = 80;	/* last resort */
1889 	}
1890 
1891 	DBG_LEAVE;
1892 	return columns;
1893 }
1894 
1895 /* ****************************************************** get_dev_size ***** */
1896 /*
1897  * Get the size of the partition if we can't figure it out from the disklabel,
1898  * e.g. from vinum volumes.
1899  */
1900 static void
1901 get_dev_size(int fd, int *size)
1902 {
1903    int sectorsize;
1904    off_t mediasize;
1905 
1906    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1907         err(1,"DIOCGSECTORSIZE");
1908    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1909         err(1,"DIOCGMEDIASIZE");
1910 
1911    if (sectorsize <= 0)
1912        errx(1, "bogus sectorsize: %d", sectorsize);
1913 
1914    *size = mediasize / sectorsize;
1915 }
1916 
1917 /* ************************************************************** main ***** */
1918 /*
1919  * growfs(8)  is a utility which allows to increase the size of an existing
1920  * ufs file system. Currently this can only be done on unmounted file system.
1921  * It recognizes some command line options to specify the new desired size,
1922  * and it does some basic checkings. The old file system size is determined
1923  * and after some more checks like we can really access the new last block
1924  * on the disk etc. we calculate the new parameters for the superblock. After
1925  * having done this we just call growfs() which will do the work.  Before
1926  * we finish the only thing left is to update the disklabel.
1927  * We still have to provide support for snapshots. Therefore we first have to
1928  * understand what data structures are always replicated in the snapshot on
1929  * creation, for all other blocks we touch during our procedure, we have to
1930  * keep the old blocks unchanged somewhere available for the snapshots. If we
1931  * are lucky, then we only have to handle our blocks to be relocated in that
1932  * way.
1933  * Also we have to consider in what order we actually update the critical
1934  * data structures of the file system to make sure, that in case of a disaster
1935  * fsck(8) is still able to restore any lost data.
1936  * The foreseen last step then will be to provide for growing even mounted
1937  * file systems. There we have to extend the mount() system call to provide
1938  * userland access to the file system locking facility.
1939  */
1940 int
1941 main(int argc, char **argv)
1942 {
1943 	DBG_FUNC("main")
1944 	char	*device, *special, *cp;
1945 	int	ch;
1946 	unsigned int	size=0;
1947 	size_t	len;
1948 	unsigned int	Nflag=0;
1949 	int	ExpertFlag=0;
1950 	struct stat	st;
1951 	struct disklabel	*lp;
1952 	struct partition	*pp;
1953 	int	i,fsi,fso;
1954     u_int32_t p_size;
1955 	char	reply[5];
1956 #ifdef FSMAXSNAP
1957 	int	j;
1958 #endif /* FSMAXSNAP */
1959 
1960 	DBG_ENTER;
1961 
1962 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1963 		switch(ch) {
1964 		case 'N':
1965 			Nflag=1;
1966 			break;
1967 		case 's':
1968 			size=(size_t)atol(optarg);
1969 			if(size<1) {
1970 				usage();
1971 			}
1972 			break;
1973 		case 'v': /* for compatibility to newfs */
1974 			break;
1975 		case 'y':
1976 			ExpertFlag=1;
1977 			break;
1978 		case '?':
1979 			/* FALLTHROUGH */
1980 		default:
1981 			usage();
1982 		}
1983 	}
1984 	argc -= optind;
1985 	argv += optind;
1986 
1987 	if(argc != 1) {
1988 		usage();
1989 	}
1990 	device=*argv;
1991 
1992 	/*
1993 	 * Now try to guess the (raw)device name.
1994 	 */
1995 	if (0 == strrchr(device, '/')) {
1996 		/*
1997 		 * No path prefix was given, so try in that order:
1998 		 *     /dev/r%s
1999 		 *     /dev/%s
2000 		 *     /dev/vinum/r%s
2001 		 *     /dev/vinum/%s.
2002 		 *
2003 		 * FreeBSD now doesn't distinguish between raw and block
2004 		 * devices any longer, but it should still work this way.
2005 		 */
2006 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2007 		special=(char *)malloc(len);
2008 		if(special == NULL) {
2009 			errx(1, "malloc failed");
2010 		}
2011 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2012 		if (stat(special, &st) == -1) {
2013 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2014 			if (stat(special, &st) == -1) {
2015 				snprintf(special, len, "%svinum/r%s",
2016 				    _PATH_DEV, device);
2017 				if (stat(special, &st) == -1) {
2018 					/* For now this is the 'last resort' */
2019 					snprintf(special, len, "%svinum/%s",
2020 					    _PATH_DEV, device);
2021 				}
2022 			}
2023 		}
2024 		device = special;
2025 	}
2026 
2027 	/*
2028 	 * Try to access our devices for writing ...
2029 	 */
2030 	if (Nflag) {
2031 		fso = -1;
2032 	} else {
2033 		fso = open(device, O_WRONLY);
2034 		if (fso < 0) {
2035 			err(1, "%s", device);
2036 		}
2037 	}
2038 
2039 	/*
2040 	 * ... and reading.
2041 	 */
2042 	fsi = open(device, O_RDONLY);
2043 	if (fsi < 0) {
2044 		err(1, "%s", device);
2045 	}
2046 
2047 	/*
2048 	 * Try to read a label and guess the slice if not specified. This
2049 	 * code should guess the right thing and avoid to bother the user
2050 	 * with the task of specifying the option -v on vinum volumes.
2051 	 */
2052 	cp=device+strlen(device)-1;
2053 	lp = get_disklabel(fsi);
2054 	pp = NULL;
2055     if (lp != NULL) {
2056         if (isdigit(*cp)) {
2057             pp = &lp->d_partitions[2];
2058         } else if (*cp>='a' && *cp<='h') {
2059             pp = &lp->d_partitions[*cp - 'a'];
2060         } else {
2061             errx(1, "unknown device");
2062         }
2063         p_size = pp->p_size;
2064     } else {
2065         get_dev_size(fsi, &p_size);
2066     }
2067 
2068 	/*
2069 	 * Check if that partition is suitable for growing a file system.
2070 	 */
2071 	if (p_size < 1) {
2072 		errx(1, "partition is unavailable");
2073 	}
2074 
2075 	/*
2076 	 * Read the current superblock, and take a backup.
2077 	 */
2078 	for (i = 0; sblock_try[i] != -1; i++) {
2079 		sblockloc = sblock_try[i] / DEV_BSIZE;
2080 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2081 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2082 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2083 		      osblock.fs_sblockloc == sblock_try[i])) &&
2084 		    osblock.fs_bsize <= MAXBSIZE &&
2085 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2086 			break;
2087 	}
2088 	if (sblock_try[i] == -1) {
2089 		errx(1, "superblock not recognized");
2090 	}
2091 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2092 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2093 
2094 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2095 	DBG_DUMP_FS(&sblock,
2096 	    "old sblock");
2097 
2098 	/*
2099 	 * Determine size to grow to. Default to the full size specified in
2100 	 * the disk label.
2101 	 */
2102 	sblock.fs_size = dbtofsb(&osblock, p_size);
2103 	if (size != 0) {
2104 		if (size > p_size){
2105 			errx(1, "There is not enough space (%d < %d)",
2106 			    p_size, size);
2107 		}
2108 		sblock.fs_size = dbtofsb(&osblock, size);
2109 	}
2110 
2111 	/*
2112 	 * Are we really growing ?
2113 	 */
2114 	if(osblock.fs_size >= sblock.fs_size) {
2115 		errx(1, "we are not growing (%jd->%jd)",
2116 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2117 	}
2118 
2119 
2120 #ifdef FSMAXSNAP
2121 	/*
2122 	 * Check if we find an active snapshot.
2123 	 */
2124 	if(ExpertFlag == 0) {
2125 		for(j=0; j<FSMAXSNAP; j++) {
2126 			if(sblock.fs_snapinum[j]) {
2127 				errx(1, "active snapshot found in file system\n"
2128 				    "	please remove all snapshots before "
2129 				    "using growfs\n");
2130 			}
2131 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2132 				break;
2133 			}
2134 		}
2135 	}
2136 #endif
2137 
2138 	if (ExpertFlag == 0 && Nflag == 0) {
2139 		printf("We strongly recommend you to make a backup "
2140 		    "before growing the Filesystem\n\n"
2141 		    " Did you backup your data (Yes/No) ? ");
2142 		fgets(reply, (int)sizeof(reply), stdin);
2143 		if (strcmp(reply, "Yes\n")){
2144 			printf("\n Nothing done \n");
2145 			exit (0);
2146 		}
2147 	}
2148 
2149 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2150 
2151 	/*
2152 	 * Try to access our new last block in the file system. Even if we
2153 	 * later on realize we have to abort our operation, on that block
2154 	 * there should be no data, so we can't destroy something yet.
2155 	 */
2156 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2157 	    fso, Nflag);
2158 
2159 	/*
2160 	 * Now calculate new superblock values and check for reasonable
2161 	 * bound for new file system size:
2162 	 *     fs_size:    is derived from label or user input
2163 	 *     fs_dsize:   should get updated in the routines creating or
2164 	 *                 updating the cylinder groups on the fly
2165 	 *     fs_cstotal: should get updated in the routines creating or
2166 	 *                 updating the cylinder groups
2167 	 */
2168 
2169 	/*
2170 	 * Update the number of cylinders and cylinder groups in the file system.
2171 	 */
2172 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2173 		sblock.fs_old_ncyl =
2174 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2175 		if (sblock.fs_size * sblock.fs_old_nspf >
2176 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2177 			sblock.fs_old_ncyl++;
2178 	}
2179 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2180 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2181 
2182 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2183 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2184 		/*
2185 		 * The space in the new last cylinder group is too small,
2186 		 * so revert back.
2187 		 */
2188 		sblock.fs_ncg--;
2189 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2190 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2191 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2192 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2193 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2194 	}
2195 
2196 	/*
2197 	 * Update the space for the cylinder group summary information in the
2198 	 * respective cylinder group data area.
2199 	 */
2200 	sblock.fs_cssize =
2201 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2202 
2203 	if(osblock.fs_size >= sblock.fs_size) {
2204 		errx(1, "not enough new space");
2205 	}
2206 
2207 	DBG_PRINT0("sblock calculated\n");
2208 
2209 	/*
2210 	 * Ok, everything prepared, so now let's do the tricks.
2211 	 */
2212 	growfs(fsi, fso, Nflag);
2213 
2214 	/*
2215 	 * Update the disk label.
2216 	 */
2217     if (!unlabeled) {
2218         pp->p_fsize = sblock.fs_fsize;
2219         pp->p_frag = sblock.fs_frag;
2220         pp->p_cpg = sblock.fs_fpg;
2221 
2222         return_disklabel(fso, lp, Nflag);
2223         DBG_PRINT0("label rewritten\n");
2224     }
2225 
2226 	close(fsi);
2227 	if(fso>-1) close(fso);
2228 
2229 	DBG_CLOSE;
2230 
2231 	DBG_LEAVE;
2232 	return 0;
2233 }
2234 
2235 /* ************************************************** return_disklabel ***** */
2236 /*
2237  * Write the updated disklabel back to disk.
2238  */
2239 static void
2240 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2241 {
2242 	DBG_FUNC("return_disklabel")
2243 	u_short	sum;
2244 	u_short	*ptr;
2245 
2246 	DBG_ENTER;
2247 
2248 	if(!lp) {
2249 		DBG_LEAVE;
2250 		return;
2251 	}
2252 	if(!Nflag) {
2253 		lp->d_checksum=0;
2254 		sum = 0;
2255 		ptr=(u_short *)lp;
2256 
2257 		/*
2258 		 * recalculate checksum
2259 		 */
2260 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2261 			sum ^= *ptr++;
2262 		}
2263 		lp->d_checksum=sum;
2264 
2265 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2266 			errx(1, "DIOCWDINFO failed");
2267 		}
2268 	}
2269 	free(lp);
2270 
2271 	DBG_LEAVE;
2272 	return ;
2273 }
2274 
2275 /* ***************************************************** get_disklabel ***** */
2276 /*
2277  * Read the disklabel from disk.
2278  */
2279 static struct disklabel *
2280 get_disklabel(int fd)
2281 {
2282 	DBG_FUNC("get_disklabel")
2283 	static struct	disklabel *lab;
2284 
2285 	DBG_ENTER;
2286 
2287 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2288 	if (!lab)
2289 		errx(1, "malloc failed");
2290 
2291     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2292         return (lab);
2293 
2294     unlabeled++;
2295 
2296 	DBG_LEAVE;
2297 	return (NULL);
2298 }
2299 
2300 
2301 /* ************************************************************* usage ***** */
2302 /*
2303  * Dump a line of usage.
2304  */
2305 static void
2306 usage(void)
2307 {
2308 	DBG_FUNC("usage")
2309 
2310 	DBG_ENTER;
2311 
2312 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2313 
2314 	DBG_LEAVE;
2315 	exit(1);
2316 }
2317 
2318 /* *********************************************************** updclst ***** */
2319 /*
2320  * This updates most parameters and the bitmap related to cluster. We have to
2321  * assume that sblock, osblock, acg are set up.
2322  */
2323 static void
2324 updclst(int block)
2325 {
2326 	DBG_FUNC("updclst")
2327 	static int	lcs=0;
2328 
2329 	DBG_ENTER;
2330 
2331 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2332 		return;
2333 	}
2334 	/*
2335 	 * update cluster allocation map
2336 	 */
2337 	setbit(cg_clustersfree(&acg), block);
2338 
2339 	/*
2340 	 * update cluster summary table
2341 	 */
2342 	if(!lcs) {
2343 		/*
2344 		 * calculate size for the trailing cluster
2345 		 */
2346 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2347 			if(isclr(cg_clustersfree(&acg), block)){
2348 				break;
2349 			}
2350 		}
2351 	}
2352 	if(lcs < sblock.fs_contigsumsize) {
2353 		if(lcs) {
2354 			cg_clustersum(&acg)[lcs]--;
2355 		}
2356 		lcs++;
2357 		cg_clustersum(&acg)[lcs]++;
2358 	}
2359 
2360 	DBG_LEAVE;
2361 	return;
2362 }
2363 
2364 /* *********************************************************** updrefs ***** */
2365 /*
2366  * This updates all references to relocated blocks for the given inode.  The
2367  * inode is given as number within the cylinder group, and the number of the
2368  * cylinder group.
2369  */
2370 static void
2371 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2372     Nflag)
2373 {
2374 	DBG_FUNC("updrefs")
2375 	ufs_lbn_t	len, lbn, numblks;
2376 	ufs2_daddr_t	iptr, blksperindir;
2377 	union dinode	*ino;
2378 	int		i, mode, inodeupdated;
2379 
2380 	DBG_ENTER;
2381 
2382 	/*
2383 	 * XXX We should skip unused inodes even from being read from disk
2384 	 *     here by using the bitmap.
2385 	 */
2386 	ino = ginode(in, fsi, cg);
2387 	if (ino == NULL) {
2388 		DBG_LEAVE;
2389 		return;
2390 	}
2391 	mode = DIP(ino, di_mode) & IFMT;
2392 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2393 		DBG_LEAVE;
2394 		return; /* only check DIR, FILE, LINK */
2395 	}
2396 	if (mode == IFLNK && DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2397 		DBG_LEAVE;
2398 		return;	/* skip short symlinks */
2399 	}
2400 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2401 	if (numblks == 0) {
2402 		DBG_LEAVE;
2403 		return;	/* skip empty file */
2404 	}
2405 	if (DIP(ino, di_blocks) == 0) {
2406 		DBG_LEAVE;
2407 		return;	/* skip empty swiss cheesy file or old fastlink */
2408 	}
2409 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2410 	    in,
2411 	    cg);
2412 
2413 	/*
2414 	 * Check all the blocks.
2415 	 */
2416 	inodeupdated = 0;
2417 	len = numblks < NDADDR ? numblks : NDADDR;
2418 	for (i = 0; i < len; i++) {
2419 		iptr = DIP(ino, di_db[i]);
2420 		if (iptr == 0)
2421 			continue;
2422 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2423 			DIP(ino, di_db[i]) = iptr;
2424 			inodeupdated++;
2425 		}
2426 	}
2427 	DBG_PRINT0("~~scg direct blocks checked\n");
2428 
2429 	blksperindir = 1;
2430 	len = numblks - NDADDR;
2431 	lbn = NDADDR;
2432 	for (i = 0; len > 0 && i < NIADDR; i++) {
2433 		iptr = DIP(ino, di_ib[i]);
2434 		if (iptr == 0)
2435 			continue;
2436 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2437 			DIP(ino, di_ib[i]) = iptr;
2438 			inodeupdated++;
2439 		}
2440 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2441 		blksperindir *= NINDIR(&sblock);
2442 		lbn += blksperindir;
2443 		len -= blksperindir;
2444 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2445 	}
2446 	if (inodeupdated)
2447 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2448 
2449 	DBG_LEAVE;
2450 	return;
2451 }
2452 
2453 /*
2454  * Recursively check all the indirect blocks.
2455  */
2456 static void
2457 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2458     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2459 {
2460 	DBG_FUNC("indirchk")
2461 	void *ibuf;
2462 	int i, last;
2463 	ufs2_daddr_t iptr;
2464 
2465 	DBG_ENTER;
2466 
2467 	/* read in the indirect block. */
2468 	ibuf = malloc(sblock.fs_bsize);
2469 	if (!ibuf)
2470 		errx(1, "malloc failed");
2471 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2472 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2473 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2474 	for (i = 0; i < last; i++) {
2475 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2476 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2477 		else
2478 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2479 		if (iptr == 0)
2480 			continue;
2481 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2482 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2483 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2484 			else
2485 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2486 		}
2487 		if (blksperindir == 1)
2488 			continue;
2489 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2490 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2491 	}
2492 	free(ibuf);
2493 
2494 	DBG_LEAVE;
2495 	return;
2496 }
2497