xref: /freebsd/sbin/growfs/growfs.c (revision d2387d42b8da231a5b95cbc313825fb2aadf26f6)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD$";
52 #endif /* not lint */
53 
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 #include <sys/disk.h>
60 
61 #include <stdio.h>
62 #include <paths.h>
63 #include <ctype.h>
64 #include <err.h>
65 #include <fcntl.h>
66 #include <limits.h>
67 #include <stdlib.h>
68 #include <stdint.h>
69 #include <string.h>
70 #include <unistd.h>
71 #include <ufs/ufs/dinode.h>
72 #include <ufs/ffs/fs.h>
73 
74 #include "debug.h"
75 
76 /* *************************************************** GLOBALS & TYPES ***** */
77 #ifdef FS_DEBUG
78 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
79 #endif /* FS_DEBUG */
80 
81 static union {
82 	struct fs	fs;
83 	char	pad[SBLOCKSIZE];
84 } fsun1, fsun2;
85 #define	sblock	fsun1.fs	/* the new superblock */
86 #define	osblock	fsun2.fs	/* the old superblock */
87 
88 /*
89  * Possible superblock locations ordered from most to least likely.
90  */
91 static int sblock_try[] = SBLOCKSEARCH;
92 static ufs2_daddr_t sblockloc;
93 
94 static union {
95 	struct cg	cg;
96 	char	pad[MAXBSIZE];
97 } cgun1, cgun2;
98 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
99 #define	aocg	cgun2.cg	/* an old cylinder group */
100 
101 static char	ablk[MAXBSIZE];	/* a block */
102 
103 static struct csum	*fscs;	/* cylinder summary */
104 
105 union dinode {
106 	struct ufs1_dinode dp1;
107 	struct ufs2_dinode dp2;
108 };
109 #define	DIP(dp, field) \
110 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
111 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
112 static ufs2_daddr_t 	inoblk;			/* inode block address */
113 static char		inobuf[MAXBSIZE];	/* inode block */
114 ino_t			maxino;			/* last valid inode */
115 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
116 
117 /*
118  * An array of elements of type struct gfs_bpp describes all blocks to
119  * be relocated in order to free the space needed for the cylinder group
120  * summary for all cylinder groups located in the first cylinder group.
121  */
122 struct gfs_bpp {
123 	ufs2_daddr_t	old;		/* old block number */
124 	ufs2_daddr_t	new;		/* new block number */
125 #define GFS_FL_FIRST	1
126 #define GFS_FL_LAST	2
127 	unsigned int	flags;	/* special handling required */
128 	int	found;		/* how many references were updated */
129 };
130 
131 /* ******************************************************** PROTOTYPES ***** */
132 static void	growfs(int, int, unsigned int);
133 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
134 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
135 static ufs2_daddr_t alloc(void);
136 static int	charsperline(void);
137 static void	usage(void);
138 static int	isblock(struct fs *, unsigned char *, int);
139 static void	clrblock(struct fs *, unsigned char *, int);
140 static void	setblock(struct fs *, unsigned char *, int);
141 static void	initcg(int, time_t, int, unsigned int);
142 static void	updjcg(int, time_t, int, int, unsigned int);
143 static void	updcsloc(time_t, int, int, unsigned int);
144 static struct disklabel	*get_disklabel(int);
145 static void	return_disklabel(int, struct disklabel *, unsigned int);
146 static union dinode *ginode(ino_t, int, int);
147 static void	frag_adjust(ufs2_daddr_t, int);
148 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
149 		    unsigned int);
150 static void	updclst(int);
151 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
152 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
153 		    struct gfs_bpp *, int, int, unsigned int);
154 static void	get_dev_size(int, int *);
155 
156 /* ************************************************************ growfs ***** */
157 /*
158  * Here we actually start growing the file system. We basically read the
159  * cylinder summary from the first cylinder group as we want to update
160  * this on the fly during our various operations. First we handle the
161  * changes in the former last cylinder group. Afterwards we create all new
162  * cylinder groups.  Now we handle the cylinder group containing the
163  * cylinder summary which might result in a relocation of the whole
164  * structure.  In the end we write back the updated cylinder summary, the
165  * new superblock, and slightly patched versions of the super block
166  * copies.
167  */
168 static void
169 growfs(int fsi, int fso, unsigned int Nflag)
170 {
171 	DBG_FUNC("growfs")
172 	int	i;
173 	int	cylno, j;
174 	time_t	utime;
175 	int	width;
176 	char	tmpbuf[100];
177 #ifdef FSIRAND
178 	static int	randinit=0;
179 
180 	DBG_ENTER;
181 
182 	if (!randinit) {
183 		randinit = 1;
184 		srandomdev();
185 	}
186 #else /* not FSIRAND */
187 
188 	DBG_ENTER;
189 
190 #endif /* FSIRAND */
191 	time(&utime);
192 
193 	/*
194 	 * Get the cylinder summary into the memory.
195 	 */
196 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
197 	if(fscs == NULL) {
198 		errx(1, "calloc failed");
199 	}
200 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
201 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
202 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
203 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
204 	}
205 
206 #ifdef FS_DEBUG
207 {
208 	struct csum	*dbg_csp;
209 	int	dbg_csc;
210 	char	dbg_line[80];
211 
212 	dbg_csp=fscs;
213 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
214 		snprintf(dbg_line, sizeof(dbg_line),
215 		    "%d. old csum in old location", dbg_csc);
216 		DBG_DUMP_CSUM(&osblock,
217 		    dbg_line,
218 		    dbg_csp++);
219 	}
220 }
221 #endif /* FS_DEBUG */
222 	DBG_PRINT0("fscs read\n");
223 
224 	/*
225 	 * Do all needed changes in the former last cylinder group.
226 	 */
227 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
228 
229 	/*
230 	 * Dump out summary information about file system.
231 	 */
232 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
233 	printf("growfs: %.1fMB (%qd sectors) block size %d, fragment size %d\n",
234 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
235 	    fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize);
236 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
237 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
238 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
239 	if (sblock.fs_flags & FS_DOSOFTDEP)
240 		printf("\twith soft updates\n");
241 #	undef B2MBFACTOR
242 
243 	/*
244 	 * Now build the cylinders group blocks and
245 	 * then print out indices of cylinder groups.
246 	 */
247 	printf("super-block backups (for fsck -b #) at:\n");
248 	i = 0;
249 	width = charsperline();
250 
251 	/*
252 	 * Iterate for only the new cylinder groups.
253 	 */
254 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
255 		initcg(cylno, utime, fso, Nflag);
256 		j = sprintf(tmpbuf, " %d%s",
257 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
258 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
259 		if (i + j >= width) {
260 			printf("\n");
261 			i = 0;
262 		}
263 		i += j;
264 		printf("%s", tmpbuf);
265 		fflush(stdout);
266 	}
267 	printf("\n");
268 
269 	/*
270 	 * Do all needed changes in the first cylinder group.
271 	 * allocate blocks in new location
272 	 */
273 	updcsloc(utime, fsi, fso, Nflag);
274 
275 	/*
276 	 * Now write the cylinder summary back to disk.
277 	 */
278 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
279 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
280 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
281 		    (void *)(((char *)fscs) + i), fso, Nflag);
282 	}
283 	DBG_PRINT0("fscs written\n");
284 
285 #ifdef FS_DEBUG
286 {
287 	struct csum	*dbg_csp;
288 	int	dbg_csc;
289 	char	dbg_line[80];
290 
291 	dbg_csp=fscs;
292 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
293 		snprintf(dbg_line, sizeof(dbg_line),
294 		    "%d. new csum in new location", dbg_csc);
295 		DBG_DUMP_CSUM(&sblock,
296 		    dbg_line,
297 		    dbg_csp++);
298 	}
299 }
300 #endif /* FS_DEBUG */
301 
302 	/*
303 	 * Now write the new superblock back to disk.
304 	 */
305 	sblock.fs_time = utime;
306 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
307 	DBG_PRINT0("sblock written\n");
308 	DBG_DUMP_FS(&sblock,
309 	    "new initial sblock");
310 
311 	/*
312 	 * Clean up the dynamic fields in our superblock copies.
313 	 */
314 	sblock.fs_fmod = 0;
315 	sblock.fs_clean = 1;
316 	sblock.fs_ronly = 0;
317 	sblock.fs_cgrotor = 0;
318 	sblock.fs_state = 0;
319 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
320 	sblock.fs_flags &= FS_DOSOFTDEP;
321 
322 	/*
323 	 * XXX
324 	 * The following fields are currently distributed from the superblock
325 	 * to the copies:
326 	 *     fs_minfree
327 	 *     fs_rotdelay
328 	 *     fs_maxcontig
329 	 *     fs_maxbpg
330 	 *     fs_minfree,
331 	 *     fs_optim
332 	 *     fs_flags regarding SOFTPDATES
333 	 *
334 	 * We probably should rather change the summary for the cylinder group
335 	 * statistics here to the value of what would be in there, if the file
336 	 * system were created initially with the new size. Therefor we still
337 	 * need to find an easy way of calculating that.
338 	 * Possibly we can try to read the first superblock copy and apply the
339 	 * "diffed" stats between the old and new superblock by still copying
340 	 * certain parameters onto that.
341 	 */
342 
343 	/*
344 	 * Write out the duplicate super blocks.
345 	 */
346 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
347 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
348 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
349 	}
350 	DBG_PRINT0("sblock copies written\n");
351 	DBG_DUMP_FS(&sblock,
352 	    "new other sblocks");
353 
354 	DBG_LEAVE;
355 	return;
356 }
357 
358 /* ************************************************************ initcg ***** */
359 /*
360  * This creates a new cylinder group structure, for more details please see
361  * the source of newfs(8), as this function is taken over almost unchanged.
362  * As this is never called for the first cylinder group, the special
363  * provisions for that case are removed here.
364  */
365 static void
366 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
367 {
368 	DBG_FUNC("initcg")
369 	static caddr_t iobuf;
370 	long d, dlower, dupper, blkno, start;
371 	ufs2_daddr_t i, cbase, dmax;
372 	struct ufs1_dinode *dp1;
373 	struct ufs2_dinode *dp2;
374 	struct csum *cs;
375 
376 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
377 		errx(37, "panic: cannot allocate I/O buffer");
378 	}
379 	/*
380 	 * Determine block bounds for cylinder group.
381 	 * Allow space for super block summary information in first
382 	 * cylinder group.
383 	 */
384 	cbase = cgbase(&sblock, cylno);
385 	dmax = cbase + sblock.fs_fpg;
386 	if (dmax > sblock.fs_size)
387 		dmax = sblock.fs_size;
388 	dlower = cgsblock(&sblock, cylno) - cbase;
389 	dupper = cgdmin(&sblock, cylno) - cbase;
390 	if (cylno == 0)	/* XXX fscs may be relocated */
391 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
392 	cs = &fscs[cylno];
393 	memset(&acg, 0, sblock.fs_cgsize);
394 	acg.cg_time = utime;
395 	acg.cg_magic = CG_MAGIC;
396 	acg.cg_cgx = cylno;
397 	acg.cg_niblk = sblock.fs_ipg;
398 	acg.cg_initediblk = sblock.fs_ipg;
399 	acg.cg_ndblk = dmax - cbase;
400 	if (sblock.fs_contigsumsize > 0)
401 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
402 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
403 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
404 		acg.cg_iusedoff = start;
405 	} else {
406 		acg.cg_old_ncyl = sblock.fs_old_cpg;
407 		acg.cg_old_time = acg.cg_time;
408 		acg.cg_time = 0;
409 		acg.cg_old_niblk = acg.cg_niblk;
410 		acg.cg_niblk = 0;
411 		acg.cg_initediblk = 0;
412 		acg.cg_old_btotoff = start;
413 		acg.cg_old_boff = acg.cg_old_btotoff +
414 		    sblock.fs_old_cpg * sizeof(int32_t);
415 		acg.cg_iusedoff = acg.cg_old_boff +
416 		    sblock.fs_old_cpg * sizeof(u_int16_t);
417 	}
418 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
419 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
420 	if (sblock.fs_contigsumsize > 0) {
421 		acg.cg_clustersumoff =
422 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
423 		acg.cg_clustersumoff -= sizeof(u_int32_t);
424 		acg.cg_clusteroff = acg.cg_clustersumoff +
425 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
426 		acg.cg_nextfreeoff = acg.cg_clusteroff +
427 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
428 	}
429 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
430 		/*
431 		 * This should never happen as we would have had that panic
432 		 * already on file system creation
433 		 */
434 		errx(37, "panic: cylinder group too big");
435 	}
436 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
437 	if (cylno == 0)
438 		for (i = 0; i < ROOTINO; i++) {
439 			setbit(cg_inosused(&acg), i);
440 			acg.cg_cs.cs_nifree--;
441 		}
442 	bzero(iobuf, sblock.fs_bsize);
443 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
444 		dp1 = (struct ufs1_dinode *)iobuf;
445 		dp2 = (struct ufs2_dinode *)iobuf;
446 #ifdef FSIRAND
447 		for (j = 0; j < INOPB(&sblock); j++)
448 			if (sblock.fs_magic == FS_UFS1_MAGIC) {
449 				dp1->di_gen = random();
450 				dp1++;
451 			} else {
452 				dp2->di_gen = random();
453 				dp2++;
454 			}
455 #endif
456 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
457 		    sblock.fs_bsize, iobuf, fso, Nflag);
458 	}
459 	if (cylno > 0) {
460 		/*
461 		 * In cylno 0, beginning space is reserved
462 		 * for boot and super blocks.
463 		 */
464 		for (d = 0; d < dlower; d += sblock.fs_frag) {
465 			blkno = d / sblock.fs_frag;
466 			setblock(&sblock, cg_blksfree(&acg), blkno);
467 			if (sblock.fs_contigsumsize > 0)
468 				setbit(cg_clustersfree(&acg), blkno);
469 			acg.cg_cs.cs_nbfree++;
470 		}
471 		sblock.fs_dsize += dlower;
472 	}
473 	sblock.fs_dsize += acg.cg_ndblk - dupper;
474 	if ((i = dupper % sblock.fs_frag)) {
475 		acg.cg_frsum[sblock.fs_frag - i]++;
476 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
477 			setbit(cg_blksfree(&acg), dupper);
478 			acg.cg_cs.cs_nffree++;
479 		}
480 	}
481 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
482 	     d += sblock.fs_frag) {
483 		blkno = d / sblock.fs_frag;
484 		setblock(&sblock, cg_blksfree(&acg), blkno);
485 		if (sblock.fs_contigsumsize > 0)
486 			setbit(cg_clustersfree(&acg), blkno);
487 		acg.cg_cs.cs_nbfree++;
488 	}
489 	if (d < acg.cg_ndblk) {
490 		acg.cg_frsum[acg.cg_ndblk - d]++;
491 		for (; d < acg.cg_ndblk; d++) {
492 			setbit(cg_blksfree(&acg), d);
493 			acg.cg_cs.cs_nffree++;
494 		}
495 	}
496 	if (sblock.fs_contigsumsize > 0) {
497 		int32_t *sump = cg_clustersum(&acg);
498 		u_char *mapp = cg_clustersfree(&acg);
499 		int map = *mapp++;
500 		int bit = 1;
501 		int run = 0;
502 
503 		for (i = 0; i < acg.cg_nclusterblks; i++) {
504 			if ((map & bit) != 0)
505 				run++;
506 			else if (run != 0) {
507 				if (run > sblock.fs_contigsumsize)
508 					run = sblock.fs_contigsumsize;
509 				sump[run]++;
510 				run = 0;
511 			}
512 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
513 				bit <<= 1;
514 			else {
515 				map = *mapp++;
516 				bit = 1;
517 			}
518 		}
519 		if (run != 0) {
520 			if (run > sblock.fs_contigsumsize)
521 				run = sblock.fs_contigsumsize;
522 			sump[run]++;
523 		}
524 	}
525 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
526 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
527 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
528 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
529 	*cs = acg.cg_cs;
530 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
531 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
532 	DBG_DUMP_CG(&sblock,
533 	    "new cg",
534 	    &acg);
535 
536 	DBG_LEAVE;
537 	return;
538 }
539 
540 /* ******************************************************* frag_adjust ***** */
541 /*
542  * Here we add or subtract (sign +1/-1) the available fragments in a given
543  * block to or from the fragment statistics. By subtracting before and adding
544  * after an operation on the free frag map we can easy update the fragment
545  * statistic, which seems to be otherwise a rather complex operation.
546  */
547 static void
548 frag_adjust(ufs2_daddr_t frag, int sign)
549 {
550 	DBG_FUNC("frag_adjust")
551 	int fragsize;
552 	int f;
553 
554 	DBG_ENTER;
555 
556 	fragsize=0;
557 	/*
558 	 * Here frag only needs to point to any fragment in the block we want
559 	 * to examine.
560 	 */
561 	for(f=rounddown(frag, sblock.fs_frag);
562 	    f<roundup(frag+1, sblock.fs_frag);
563 	    f++) {
564 		/*
565 		 * Count contiguous free fragments.
566 		 */
567 		if(isset(cg_blksfree(&acg), f)) {
568 			fragsize++;
569 		} else {
570 			if(fragsize && fragsize<sblock.fs_frag) {
571 				/*
572 				 * We found something in between.
573 				 */
574 				acg.cg_frsum[fragsize]+=sign;
575 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
576 				    fragsize,
577 				    sign);
578 			}
579 			fragsize=0;
580 		}
581 	}
582 	if(fragsize && fragsize<sblock.fs_frag) {
583 		/*
584 		 * We found something.
585 		 */
586 		acg.cg_frsum[fragsize]+=sign;
587 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
588 		    fragsize,
589 		    sign);
590 	}
591 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
592 	    fragsize,
593 	    sign);
594 
595 	DBG_LEAVE;
596 	return;
597 }
598 
599 /* ******************************************************* cond_bl_upd ***** */
600 /*
601  * Here we conditionally update a pointer to a fragment. We check for all
602  * relocated blocks if any of its fragments is referenced by the current
603  * field, and update the pointer to the respective fragment in our new
604  * block.  If we find a reference we write back the block immediately,
605  * as there is no easy way for our general block reading engine to figure
606  * out if a write back operation is needed.
607  */
608 static int
609 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
610     unsigned int Nflag)
611 {
612 	DBG_FUNC("cond_bl_upd")
613 	struct gfs_bpp *f;
614 	ufs2_daddr_t src, dst;
615 	int fragnum;
616 	void *ibuf;
617 
618 	DBG_ENTER;
619 
620 	f = field;
621 	for (f = field; f->old != 0; f++) {
622 		src = *block;
623 		if (fragstoblks(&sblock, src) != f->old)
624 			continue;
625 		/*
626 		 * The fragment is part of the block, so update.
627 		 */
628 		dst = blkstofrags(&sblock, f->new);
629 		fragnum = fragnum(&sblock, src);
630 		*block = dst + fragnum;
631 		f->found++;
632 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
633 		    (intmax_t)f->old,
634 		    (intmax_t)f->new,
635 		    fragnum);
636 
637 		/*
638 		 * Copy the block back immediately.
639 		 *
640 		 * XXX	If src is is from an indirect block we have
641 		 *	to implement copy on write here in case of
642 		 *	active snapshots.
643 		 */
644 		ibuf = malloc(sblock.fs_bsize);
645 		if (!ibuf)
646 			errx(1, "malloc failed");
647 		src -= fragnum;
648 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
649 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
650 		free(ibuf);
651 		/*
652 		 * The same block can't be found again in this loop.
653 		 */
654 		return (1);
655 	}
656 
657 	DBG_LEAVE;
658 	return (0);
659 }
660 
661 /* ************************************************************ updjcg ***** */
662 /*
663  * Here we do all needed work for the former last cylinder group. It has to be
664  * changed in any case, even if the file system ended exactly on the end of
665  * this group, as there is some slightly inconsistent handling of the number
666  * of cylinders in the cylinder group. We start again by reading the cylinder
667  * group from disk. If the last block was not fully available, we first handle
668  * the missing fragments, then we handle all new full blocks in that file
669  * system and finally we handle the new last fragmented block in the file
670  * system.  We again have to handle the fragment statistics rotational layout
671  * tables and cluster summary during all those operations.
672  */
673 static void
674 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
675 {
676 	DBG_FUNC("updjcg")
677 	ufs2_daddr_t	cbase, dmax, dupper;
678 	struct csum	*cs;
679 	int	i,k;
680 	int	j=0;
681 
682 	DBG_ENTER;
683 
684 	/*
685 	 * Read the former last (joining) cylinder group from disk, and make
686 	 * a copy.
687 	 */
688 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
689 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
690 	DBG_PRINT0("jcg read\n");
691 	DBG_DUMP_CG(&sblock,
692 	    "old joining cg",
693 	    &aocg);
694 
695 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
696 
697 	/*
698 	 * If the cylinder group had already its new final size almost
699 	 * nothing is to be done ... except:
700 	 * For some reason the value of cg_ncyl in the last cylinder group has
701 	 * to be zero instead of fs_cpg. As this is now no longer the last
702 	 * cylinder group we have to change that value now to fs_cpg.
703 	 */
704 
705 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
706 		if (sblock.fs_magic == FS_UFS1_MAGIC)
707 			acg.cg_old_ncyl=sblock.fs_old_cpg;
708 
709 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
710 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
711 		DBG_PRINT0("jcg written\n");
712 		DBG_DUMP_CG(&sblock,
713 		    "new joining cg",
714 		    &acg);
715 
716 		DBG_LEAVE;
717 		return;
718 	}
719 
720 	/*
721 	 * Set up some variables needed later.
722 	 */
723 	cbase = cgbase(&sblock, cylno);
724 	dmax = cbase + sblock.fs_fpg;
725 	if (dmax > sblock.fs_size)
726 		dmax = sblock.fs_size;
727 	dupper = cgdmin(&sblock, cylno) - cbase;
728 	if (cylno == 0) { /* XXX fscs may be relocated */
729 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
730 	}
731 
732 	/*
733 	 * Set pointer to the cylinder summary for our cylinder group.
734 	 */
735 	cs = fscs + cylno;
736 
737 	/*
738 	 * Touch the cylinder group, update all fields in the cylinder group as
739 	 * needed, update the free space in the superblock.
740 	 */
741 	acg.cg_time = utime;
742 	if (cylno == sblock.fs_ncg - 1) {
743 		/*
744 		 * This is still the last cylinder group.
745 		 */
746 		if (sblock.fs_magic == FS_UFS1_MAGIC)
747 			acg.cg_old_ncyl =
748 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
749 	} else {
750 		acg.cg_old_ncyl = sblock.fs_old_cpg;
751 	}
752 	DBG_PRINT2("jcg dbg: %d %u",
753 	    cylno,
754 	    sblock.fs_ncg);
755 #ifdef FS_DEBUG
756 	if (sblock.fs_magic == FS_UFS1_MAGIC)
757 		DBG_PRINT2("%d %u",
758 		    acg.cg_old_ncyl,
759 		    sblock.fs_old_cpg);
760 #endif
761 	DBG_PRINT0("\n");
762 	acg.cg_ndblk = dmax - cbase;
763 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
764 	if (sblock.fs_contigsumsize > 0) {
765 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
766 	}
767 
768 	/*
769 	 * Now we have to update the free fragment bitmap for our new free
770 	 * space.  There again we have to handle the fragmentation and also
771 	 * the rotational layout tables and the cluster summary.  This is
772 	 * also done per fragment for the first new block if the old file
773 	 * system end was not on a block boundary, per fragment for the new
774 	 * last block if the new file system end is not on a block boundary,
775 	 * and per block for all space in between.
776 	 *
777 	 * Handle the first new block here if it was partially available
778 	 * before.
779 	 */
780 	if(osblock.fs_size % sblock.fs_frag) {
781 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
782 			/*
783 			 * The new space is enough to fill at least this
784 			 * block
785 			 */
786 			j=0;
787 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
788 			    i>=osblock.fs_size-cbase;
789 			    i--) {
790 				setbit(cg_blksfree(&acg), i);
791 				acg.cg_cs.cs_nffree++;
792 				j++;
793 			}
794 
795 			/*
796 			 * Check if the fragment just created could join an
797 			 * already existing fragment at the former end of the
798 			 * file system.
799 			 */
800 			if(isblock(&sblock, cg_blksfree(&acg),
801 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
802 			    sblock.fs_frag))) {
803 				/*
804 				 * The block is now completely available.
805 				 */
806 				DBG_PRINT0("block was\n");
807 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
808 				acg.cg_cs.cs_nbfree++;
809 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
810 				k=rounddown(osblock.fs_size-cbase,
811 				    sblock.fs_frag);
812 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
813 			} else {
814 				/*
815 				 * Lets rejoin a possible partially growed
816 				 * fragment.
817 				 */
818 				k=0;
819 				while(isset(cg_blksfree(&acg), i) &&
820 				    (i>=rounddown(osblock.fs_size-cbase,
821 				    sblock.fs_frag))) {
822 					i--;
823 					k++;
824 				}
825 				if(k) {
826 					acg.cg_frsum[k]--;
827 				}
828 				acg.cg_frsum[k+j]++;
829 			}
830 		} else {
831 			/*
832 			 * We only grow by some fragments within this last
833 			 * block.
834 			 */
835 			for(i=sblock.fs_size-cbase-1;
836 				i>=osblock.fs_size-cbase;
837 				i--) {
838 				setbit(cg_blksfree(&acg), i);
839 				acg.cg_cs.cs_nffree++;
840 				j++;
841 			}
842 			/*
843 			 * Lets rejoin a possible partially growed fragment.
844 			 */
845 			k=0;
846 			while(isset(cg_blksfree(&acg), i) &&
847 			    (i>=rounddown(osblock.fs_size-cbase,
848 			    sblock.fs_frag))) {
849 				i--;
850 				k++;
851 			}
852 			if(k) {
853 				acg.cg_frsum[k]--;
854 			}
855 			acg.cg_frsum[k+j]++;
856 		}
857 	}
858 
859 	/*
860 	 * Handle all new complete blocks here.
861 	 */
862 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
863 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
864 	    i+=sblock.fs_frag) {
865 		j = i / sblock.fs_frag;
866 		setblock(&sblock, cg_blksfree(&acg), j);
867 		updclst(j);
868 		acg.cg_cs.cs_nbfree++;
869 	}
870 
871 	/*
872 	 * Handle the last new block if there are stll some new fragments left.
873 	 * Here we don't have to bother about the cluster summary or the even
874 	 * the rotational layout table.
875 	 */
876 	if (i < (dmax - cbase)) {
877 		acg.cg_frsum[dmax - cbase - i]++;
878 		for (; i < dmax - cbase; i++) {
879 			setbit(cg_blksfree(&acg), i);
880 			acg.cg_cs.cs_nffree++;
881 		}
882 	}
883 
884 	sblock.fs_cstotal.cs_nffree +=
885 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
886 	sblock.fs_cstotal.cs_nbfree +=
887 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
888 	/*
889 	 * The following statistics are not changed here:
890 	 *     sblock.fs_cstotal.cs_ndir
891 	 *     sblock.fs_cstotal.cs_nifree
892 	 * As the statistics for this cylinder group are ready, copy it to
893 	 * the summary information array.
894 	 */
895 	*cs = acg.cg_cs;
896 
897 	/*
898 	 * Write the updated "joining" cylinder group back to disk.
899 	 */
900 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
901 	    (void *)&acg, fso, Nflag);
902 	DBG_PRINT0("jcg written\n");
903 	DBG_DUMP_CG(&sblock,
904 	    "new joining cg",
905 	    &acg);
906 
907 	DBG_LEAVE;
908 	return;
909 }
910 
911 /* ********************************************************** updcsloc ***** */
912 /*
913  * Here we update the location of the cylinder summary. We have two possible
914  * ways of growing the cylinder summary.
915  * (1)	We can try to grow the summary in the current location, and relocate
916  *	possibly used blocks within the current cylinder group.
917  * (2)	Alternatively we can relocate the whole cylinder summary to the first
918  *	new completely empty cylinder group. Once the cylinder summary is no
919  *	longer in the beginning of the first cylinder group you should never
920  *	use a version of fsck which is not aware of the possibility to have
921  *	this structure in a non standard place.
922  * Option (1) is considered to be less intrusive to the structure of the file-
923  * system. So we try to stick to that whenever possible. If there is not enough
924  * space in the cylinder group containing the cylinder summary we have to use
925  * method (2). In case of active snapshots in the file system we probably can
926  * completely avoid implementing copy on write if we stick to method (2) only.
927  */
928 static void
929 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
930 {
931 	DBG_FUNC("updcsloc")
932 	struct csum	*cs;
933 	int	ocscg, ncscg;
934 	int	blocks;
935 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
936 	int	ind;
937 	int	cylno, inc;
938 	struct gfs_bpp	*bp;
939 	int	i, l;
940 	int	lcs=0;
941 	int	block;
942 
943 	DBG_ENTER;
944 
945 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
946 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
947 		/*
948 		 * No new fragment needed.
949 		 */
950 		DBG_LEAVE;
951 		return;
952 	}
953 	ocscg=dtog(&osblock, osblock.fs_csaddr);
954 	cs=fscs+ocscg;
955 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
956 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
957 
958 	/*
959 	 * Read original cylinder group from disk, and make a copy.
960 	 * XXX	If Nflag is set in some very rare cases we now miss
961 	 *	some changes done in updjcg by reading the unmodified
962 	 *	block from disk.
963 	 */
964 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
965 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
966 	DBG_PRINT0("oscg read\n");
967 	DBG_DUMP_CG(&sblock,
968 	    "old summary cg",
969 	    &aocg);
970 
971 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
972 
973 	/*
974 	 * Touch the cylinder group, set up local variables needed later
975 	 * and update the superblock.
976 	 */
977 	acg.cg_time = utime;
978 
979 	/*
980 	 * XXX	In the case of having active snapshots we may need much more
981 	 *	blocks for the copy on write. We need each block twice, and
982 	 *	also up to 8*3 blocks for indirect blocks for all possible
983 	 *	references.
984 	 */
985 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
986 		/*
987 		 * There is not enough space in the old cylinder group to
988 		 * relocate all blocks as needed, so we relocate the whole
989 		 * cylinder group summary to a new group. We try to use the
990 		 * first complete new cylinder group just created. Within the
991 		 * cylinder group we align the area immediately after the
992 		 * cylinder group information location in order to be as
993 		 * close as possible to the original implementation of ffs.
994 		 *
995 		 * First we have to make sure we'll find enough space in the
996 		 * new cylinder group. If not, then we currently give up.
997 		 * We start with freeing everything which was used by the
998 		 * fragments of the old cylinder summary in the current group.
999 		 * Now we write back the group meta data, read in the needed
1000 		 * meta data from the new cylinder group, and start allocating
1001 		 * within that group. Here we can assume, the group to be
1002 		 * completely empty. Which makes the handling of fragments and
1003 		 * clusters a lot easier.
1004 		 */
1005 		DBG_TRC;
1006 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1007 			errx(2, "panic: not enough space");
1008 		}
1009 
1010 		/*
1011 		 * Point "d" to the first fragment not used by the cylinder
1012 		 * summary.
1013 		 */
1014 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1015 
1016 		/*
1017 		 * Set up last cluster size ("lcs") already here. Calculate
1018 		 * the size for the trailing cluster just behind where "d"
1019 		 * points to.
1020 		 */
1021 		if(sblock.fs_contigsumsize > 0) {
1022 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1023 			    lcs=0; lcs<sblock.fs_contigsumsize;
1024 			    block++, lcs++) {
1025 				if(isclr(cg_clustersfree(&acg), block)){
1026 					break;
1027 				}
1028 			}
1029 		}
1030 
1031 		/*
1032 		 * Point "d" to the last frag used by the cylinder summary.
1033 		 */
1034 		d--;
1035 
1036 		DBG_PRINT1("d=%jd\n",
1037 		    (intmax_t)d);
1038 		if((d+1)%sblock.fs_frag) {
1039 			/*
1040 			 * The end of the cylinder summary is not a complete
1041 			 * block.
1042 			 */
1043 			DBG_TRC;
1044 			frag_adjust(d%sblock.fs_fpg, -1);
1045 			for(; (d+1)%sblock.fs_frag; d--) {
1046 				DBG_PRINT1("d=%jd\n",
1047 				    (intmax_t)d);
1048 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1049 				acg.cg_cs.cs_nffree++;
1050 				sblock.fs_cstotal.cs_nffree++;
1051 			}
1052 			/*
1053 			 * Point "d" to the last fragment of the last
1054 			 * (incomplete) block of the cylinder summary.
1055 			 */
1056 			d++;
1057 			frag_adjust(d%sblock.fs_fpg, 1);
1058 
1059 			if(isblock(&sblock, cg_blksfree(&acg),
1060 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1061 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1062 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1063 				acg.cg_cs.cs_nbfree++;
1064 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1065 				sblock.fs_cstotal.cs_nbfree++;
1066 				if(sblock.fs_contigsumsize > 0) {
1067 					setbit(cg_clustersfree(&acg),
1068 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1069 					if(lcs < sblock.fs_contigsumsize) {
1070 						if(lcs) {
1071 							cg_clustersum(&acg)
1072 							    [lcs]--;
1073 						}
1074 						lcs++;
1075 						cg_clustersum(&acg)[lcs]++;
1076 					}
1077 				}
1078 			}
1079 			/*
1080 			 * Point "d" to the first fragment of the block before
1081 			 * the last incomplete block.
1082 			 */
1083 			d--;
1084 		}
1085 
1086 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1087 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1088 		    d-=sblock.fs_frag) {
1089 			DBG_TRC;
1090 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1091 			setblock(&sblock, cg_blksfree(&acg),
1092 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1093 			acg.cg_cs.cs_nbfree++;
1094 			sblock.fs_cstotal.cs_nbfree++;
1095 			if(sblock.fs_contigsumsize > 0) {
1096 				setbit(cg_clustersfree(&acg),
1097 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1098 				/*
1099 				 * The last cluster size is already set up.
1100 				 */
1101 				if(lcs < sblock.fs_contigsumsize) {
1102 					if(lcs) {
1103 						cg_clustersum(&acg)[lcs]--;
1104 					}
1105 					lcs++;
1106 					cg_clustersum(&acg)[lcs]++;
1107 				}
1108 			}
1109 		}
1110 		*cs = acg.cg_cs;
1111 
1112 		/*
1113 		 * Now write the former cylinder group containing the cylinder
1114 		 * summary back to disk.
1115 		 */
1116 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1117 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1118 		DBG_PRINT0("oscg written\n");
1119 		DBG_DUMP_CG(&sblock,
1120 		    "old summary cg",
1121 		    &acg);
1122 
1123 		/*
1124 		 * Find the beginning of the new cylinder group containing the
1125 		 * cylinder summary.
1126 		 */
1127 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1128 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1129 		cs=fscs+ncscg;
1130 
1131 
1132 		/*
1133 		 * If Nflag is specified, we would now read random data instead
1134 		 * of an empty cg structure from disk. So we can't simulate that
1135 		 * part for now.
1136 		 */
1137 		if(Nflag) {
1138 			DBG_PRINT0("nscg update skipped\n");
1139 			DBG_LEAVE;
1140 			return;
1141 		}
1142 
1143 		/*
1144 		 * Read the future cylinder group containing the cylinder
1145 		 * summary from disk, and make a copy.
1146 		 */
1147 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1148 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1149 		DBG_PRINT0("nscg read\n");
1150 		DBG_DUMP_CG(&sblock,
1151 		    "new summary cg",
1152 		    &aocg);
1153 
1154 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1155 
1156 		/*
1157 		 * Allocate all complete blocks used by the new cylinder
1158 		 * summary.
1159 		 */
1160 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1161 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1162 		    d+=sblock.fs_frag) {
1163 			clrblock(&sblock, cg_blksfree(&acg),
1164 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1165 			acg.cg_cs.cs_nbfree--;
1166 			sblock.fs_cstotal.cs_nbfree--;
1167 			if(sblock.fs_contigsumsize > 0) {
1168 				clrbit(cg_clustersfree(&acg),
1169 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1170 			}
1171 		}
1172 
1173 		/*
1174 		 * Allocate all fragments used by the cylinder summary in the
1175 		 * last block.
1176 		 */
1177 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1178 			for(; d-sblock.fs_csaddr<
1179 			    sblock.fs_cssize/sblock.fs_fsize;
1180 			    d++) {
1181 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1182 				acg.cg_cs.cs_nffree--;
1183 				sblock.fs_cstotal.cs_nffree--;
1184 			}
1185 			acg.cg_cs.cs_nbfree--;
1186 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1187 			sblock.fs_cstotal.cs_nbfree--;
1188 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1189 			if(sblock.fs_contigsumsize > 0) {
1190 				clrbit(cg_clustersfree(&acg),
1191 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1192 			}
1193 
1194 			frag_adjust(d%sblock.fs_fpg, +1);
1195 		}
1196 		/*
1197 		 * XXX	Handle the cluster statistics here in the case this
1198 		 *	cylinder group is now almost full, and the remaining
1199 		 *	space is less then the maximum cluster size. This is
1200 		 *	probably not needed, as you would hardly find a file
1201 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1202 		 *	space right behind the cylinder group information in
1203 		 *	any new cylinder group.
1204 		 */
1205 
1206 		/*
1207 		 * Update our statistics in the cylinder summary.
1208 		 */
1209 		*cs = acg.cg_cs;
1210 
1211 		/*
1212 		 * Write the new cylinder group containing the cylinder summary
1213 		 * back to disk.
1214 		 */
1215 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1216 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1217 		DBG_PRINT0("nscg written\n");
1218 		DBG_DUMP_CG(&sblock,
1219 		    "new summary cg",
1220 		    &acg);
1221 
1222 		DBG_LEAVE;
1223 		return;
1224 	}
1225 	/*
1226 	 * We have got enough of space in the current cylinder group, so we
1227 	 * can relocate just a few blocks, and let the summary information
1228 	 * grow in place where it is right now.
1229 	 */
1230 	DBG_TRC;
1231 
1232 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1233 	dupper = sblock.fs_csaddr - cbase +
1234 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1235 	odupper = osblock.fs_csaddr - cbase +
1236 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1237 
1238 	sblock.fs_dsize -= dupper-odupper;
1239 
1240 	/*
1241 	 * Allocate the space for the array of blocks to be relocated.
1242 	 */
1243  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1244 	    sizeof(struct gfs_bpp));
1245 	if(bp == NULL) {
1246 		errx(1, "malloc failed");
1247 	}
1248 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1249 	    sizeof(struct gfs_bpp));
1250 
1251 	/*
1252 	 * Lock all new frags needed for the cylinder group summary. This is
1253 	 * done per fragment in the first and last block of the new required
1254 	 * area, and per block for all other blocks.
1255 	 *
1256 	 * Handle the first new block here (but only if some fragments where
1257 	 * already used for the cylinder summary).
1258 	 */
1259 	ind=0;
1260 	frag_adjust(odupper, -1);
1261 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1262 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1263 		    (intmax_t)d);
1264 		if(isclr(cg_blksfree(&acg), d)) {
1265 			if (!ind) {
1266 				bp[ind].old=d/sblock.fs_frag;
1267 				bp[ind].flags|=GFS_FL_FIRST;
1268 				if(roundup(d, sblock.fs_frag) >= dupper) {
1269 					bp[ind].flags|=GFS_FL_LAST;
1270 				}
1271 				ind++;
1272 			}
1273 		} else {
1274 			clrbit(cg_blksfree(&acg), d);
1275 			acg.cg_cs.cs_nffree--;
1276 			sblock.fs_cstotal.cs_nffree--;
1277 		}
1278 		/*
1279 		 * No cluster handling is needed here, as there was at least
1280 		 * one fragment in use by the cylinder summary in the old
1281 		 * file system.
1282 		 * No block-free counter handling here as this block was not
1283 		 * a free block.
1284 		 */
1285 	}
1286 	frag_adjust(odupper, 1);
1287 
1288 	/*
1289 	 * Handle all needed complete blocks here.
1290 	 */
1291 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1292 		DBG_PRINT1("scg block check loop d=%jd\n",
1293 		    (intmax_t)d);
1294 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1295 			for(f=d; f<d+sblock.fs_frag; f++) {
1296 				if(isset(cg_blksfree(&aocg), f)) {
1297 					acg.cg_cs.cs_nffree--;
1298 					sblock.fs_cstotal.cs_nffree--;
1299 				}
1300 			}
1301 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1302 			bp[ind].old=d/sblock.fs_frag;
1303 			ind++;
1304 		} else {
1305 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1306 			acg.cg_cs.cs_nbfree--;
1307 			sblock.fs_cstotal.cs_nbfree--;
1308 			if(sblock.fs_contigsumsize > 0) {
1309 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1310 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1311 				    lcs<sblock.fs_contigsumsize;
1312 				    l++, lcs++ ) {
1313 					if(isclr(cg_clustersfree(&acg),l)){
1314 						break;
1315 					}
1316 				}
1317 				if(lcs < sblock.fs_contigsumsize) {
1318 					cg_clustersum(&acg)[lcs+1]--;
1319 					if(lcs) {
1320 						cg_clustersum(&acg)[lcs]++;
1321 					}
1322 				}
1323 			}
1324 		}
1325 		/*
1326 		 * No fragment counter handling is needed here, as this finally
1327 		 * doesn't change after the relocation.
1328 		 */
1329 	}
1330 
1331 	/*
1332 	 * Handle all fragments needed in the last new affected block.
1333 	 */
1334 	if(d<dupper) {
1335 		frag_adjust(dupper-1, -1);
1336 
1337 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1338 			acg.cg_cs.cs_nbfree--;
1339 			sblock.fs_cstotal.cs_nbfree--;
1340 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1341 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1342 			if(sblock.fs_contigsumsize > 0) {
1343 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1344 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1345 				    lcs<sblock.fs_contigsumsize;
1346 				    l++, lcs++ ) {
1347 					if(isclr(cg_clustersfree(&acg),l)){
1348 						break;
1349 					}
1350 				}
1351 				if(lcs < sblock.fs_contigsumsize) {
1352 					cg_clustersum(&acg)[lcs+1]--;
1353 					if(lcs) {
1354 						cg_clustersum(&acg)[lcs]++;
1355 					}
1356 				}
1357 			}
1358 		}
1359 
1360 		for(; d<dupper; d++) {
1361 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1362 			    (intmax_t)d);
1363 			if(isclr(cg_blksfree(&acg), d)) {
1364 				bp[ind].old=d/sblock.fs_frag;
1365 				bp[ind].flags|=GFS_FL_LAST;
1366 			} else {
1367 				clrbit(cg_blksfree(&acg), d);
1368 				acg.cg_cs.cs_nffree--;
1369 				sblock.fs_cstotal.cs_nffree--;
1370 			}
1371 		}
1372 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1373 			ind++;
1374 		}
1375 		frag_adjust(dupper-1, 1);
1376 	}
1377 
1378 	/*
1379 	 * If we found a block to relocate just do so.
1380 	 */
1381 	if(ind) {
1382 		for(i=0; i<ind; i++) {
1383 			if(!bp[i].old) { /* no more blocks listed */
1384 				/*
1385 				 * XXX	A relative blocknumber should not be
1386 				 *	zero, which is not explicitly
1387 				 *	guaranteed by our code.
1388 				 */
1389 				break;
1390 			}
1391 			/*
1392 			 * Allocate a complete block in the same (current)
1393 			 * cylinder group.
1394 			 */
1395 			bp[i].new=alloc()/sblock.fs_frag;
1396 
1397 			/*
1398 			 * There is no frag_adjust() needed for the new block
1399 			 * as it will have no fragments yet :-).
1400 			 */
1401 			for(f=bp[i].old*sblock.fs_frag,
1402 			    g=bp[i].new*sblock.fs_frag;
1403 			    f<(bp[i].old+1)*sblock.fs_frag;
1404 			    f++, g++) {
1405 				if(isset(cg_blksfree(&aocg), f)) {
1406 					setbit(cg_blksfree(&acg), g);
1407 					acg.cg_cs.cs_nffree++;
1408 					sblock.fs_cstotal.cs_nffree++;
1409 				}
1410 			}
1411 
1412 			/*
1413 			 * Special handling is required if this was the first
1414 			 * block. We have to consider the fragments which were
1415 			 * used by the cylinder summary in the original block
1416 			 * which re to be free in the copy of our block.  We
1417 			 * have to be careful if this first block happens to
1418 			 * be also the last block to be relocated.
1419 			 */
1420 			if(bp[i].flags & GFS_FL_FIRST) {
1421 				for(f=bp[i].old*sblock.fs_frag,
1422 				    g=bp[i].new*sblock.fs_frag;
1423 				    f<odupper;
1424 				    f++, g++) {
1425 					setbit(cg_blksfree(&acg), g);
1426 					acg.cg_cs.cs_nffree++;
1427 					sblock.fs_cstotal.cs_nffree++;
1428 				}
1429 				if(!(bp[i].flags & GFS_FL_LAST)) {
1430 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1431 				}
1432 			}
1433 
1434 			/*
1435 			 * Special handling is required if this is the last
1436 			 * block to be relocated.
1437 			 */
1438 			if(bp[i].flags & GFS_FL_LAST) {
1439 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1440 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1441 				for(f=dupper;
1442 				    f<roundup(dupper, sblock.fs_frag);
1443 				    f++) {
1444 					if(isclr(cg_blksfree(&acg), f)) {
1445 						setbit(cg_blksfree(&acg), f);
1446 						acg.cg_cs.cs_nffree++;
1447 						sblock.fs_cstotal.cs_nffree++;
1448 					}
1449 				}
1450 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1451 			}
1452 
1453 			/*
1454 			 * !!! Attach the cylindergroup offset here.
1455 			 */
1456 			bp[i].old+=cbase/sblock.fs_frag;
1457 			bp[i].new+=cbase/sblock.fs_frag;
1458 
1459 			/*
1460 			 * Copy the content of the block.
1461 			 */
1462 			/*
1463 			 * XXX	Here we will have to implement a copy on write
1464 			 *	in the case we have any active snapshots.
1465 			 */
1466 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1467 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1468 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1469 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1470 			DBG_DUMP_HEX(&sblock,
1471 			    "copied full block",
1472 			    (unsigned char *)&ablk);
1473 
1474 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1475 			    (intmax_t)bp[i].old,
1476 			    (intmax_t)bp[i].new);
1477 		}
1478 
1479 		/*
1480 		 * Now we have to update all references to any fragment which
1481 		 * belongs to any block relocated. We iterate now over all
1482 		 * cylinder groups, within those over all non zero length
1483 		 * inodes.
1484 		 */
1485 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1486 			DBG_PRINT1("scg doing cg (%d)\n",
1487 			    cylno);
1488 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1489 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1490 			}
1491 		}
1492 
1493 		/*
1494 		 * All inodes are checked, now make sure the number of
1495 		 * references found make sense.
1496 		 */
1497 		for(i=0; i<ind; i++) {
1498 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1499 				warnx("error: %jd refs found for block %jd.",
1500 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1501 			}
1502 
1503 		}
1504 	}
1505 	/*
1506 	 * The following statistics are not changed here:
1507 	 *     sblock.fs_cstotal.cs_ndir
1508 	 *     sblock.fs_cstotal.cs_nifree
1509 	 * The following statistics were already updated on the fly:
1510 	 *     sblock.fs_cstotal.cs_nffree
1511 	 *     sblock.fs_cstotal.cs_nbfree
1512 	 * As the statistics for this cylinder group are ready, copy it to
1513 	 * the summary information array.
1514 	 */
1515 
1516 	*cs = acg.cg_cs;
1517 
1518 	/*
1519 	 * Write summary cylinder group back to disk.
1520 	 */
1521 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1522 	    (void *)&acg, fso, Nflag);
1523 	DBG_PRINT0("scg written\n");
1524 	DBG_DUMP_CG(&sblock,
1525 	    "new summary cg",
1526 	    &acg);
1527 
1528 	DBG_LEAVE;
1529 	return;
1530 }
1531 
1532 /* ************************************************************** rdfs ***** */
1533 /*
1534  * Here we read some block(s) from disk.
1535  */
1536 static void
1537 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1538 {
1539 	DBG_FUNC("rdfs")
1540 	ssize_t	n;
1541 
1542 	DBG_ENTER;
1543 
1544 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1545 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1546 	}
1547 	n = read(fsi, bf, size);
1548 	if (n != (ssize_t)size) {
1549 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1550 	}
1551 
1552 	DBG_LEAVE;
1553 	return;
1554 }
1555 
1556 /* ************************************************************** wtfs ***** */
1557 /*
1558  * Here we write some block(s) to disk.
1559  */
1560 static void
1561 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1562 {
1563 	DBG_FUNC("wtfs")
1564 	ssize_t	n;
1565 
1566 	DBG_ENTER;
1567 
1568 	if (Nflag) {
1569 		DBG_LEAVE;
1570 		return;
1571 	}
1572 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1573 		err(35, "wtfs: seek error: %ld", (long)bno);
1574 	}
1575 	n = write(fso, bf, size);
1576 	if (n != (ssize_t)size) {
1577 		err(36, "wtfs: write error: %ld", (long)bno);
1578 	}
1579 
1580 	DBG_LEAVE;
1581 	return;
1582 }
1583 
1584 /* ************************************************************* alloc ***** */
1585 /*
1586  * Here we allocate a free block in the current cylinder group. It is assumed,
1587  * that acg contains the current cylinder group. As we may take a block from
1588  * somewhere in the file system we have to handle cluster summary here.
1589  */
1590 static ufs2_daddr_t
1591 alloc(void)
1592 {
1593 	DBG_FUNC("alloc")
1594 	ufs2_daddr_t	d, blkno;
1595 	int	lcs1, lcs2;
1596 	int	l;
1597 	int	csmin, csmax;
1598 	int	dlower, dupper, dmax;
1599 
1600 	DBG_ENTER;
1601 
1602 	if (acg.cg_magic != CG_MAGIC) {
1603 		warnx("acg: bad magic number");
1604 		DBG_LEAVE;
1605 		return (0);
1606 	}
1607 	if (acg.cg_cs.cs_nbfree == 0) {
1608 		warnx("error: cylinder group ran out of space");
1609 		DBG_LEAVE;
1610 		return (0);
1611 	}
1612 	/*
1613 	 * We start seeking for free blocks only from the space available after
1614 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1615 	 * block here which we have to relocate a couple of seconds later again
1616 	 * again, and we are not prepared to to this anyway.
1617 	 */
1618 	blkno=-1;
1619 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1620 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1621 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1622 	if (dmax > sblock.fs_size) {
1623 		dmax = sblock.fs_size;
1624 	}
1625 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1626 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1627 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1628 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1629 	    dlower,
1630 	    dupper,
1631 	    dmax);
1632 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1633 	    csmin,
1634 	    csmax);
1635 
1636 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1637 		if(d>=csmin && d<=csmax) {
1638 			continue;
1639 		}
1640 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1641 		    d))) {
1642 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1643 			break;
1644 		}
1645 	}
1646 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1647 		if(d>=csmin && d<=csmax) {
1648 			continue;
1649 		}
1650 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1651 		    d))) {
1652 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1653 			break;
1654 		}
1655 	}
1656 	if(blkno==-1) {
1657 		warnx("internal error: couldn't find promised block in cg");
1658 		DBG_LEAVE;
1659 		return (0);
1660 	}
1661 
1662 	/*
1663 	 * This is needed if the block was found already in the first loop.
1664 	 */
1665 	d=blkstofrags(&sblock, blkno);
1666 
1667 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1668 	if (sblock.fs_contigsumsize > 0) {
1669 		/*
1670 		 * Handle the cluster allocation bitmap.
1671 		 */
1672 		clrbit(cg_clustersfree(&acg), blkno);
1673 		/*
1674 		 * We possibly have split a cluster here, so we have to do
1675 		 * recalculate the sizes of the remaining cluster halves now,
1676 		 * and use them for updating the cluster summary information.
1677 		 *
1678 		 * Lets start with the blocks before our allocated block ...
1679 		 */
1680 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1681 		    l--, lcs1++ ) {
1682 			if(isclr(cg_clustersfree(&acg),l)){
1683 				break;
1684 			}
1685 		}
1686 		/*
1687 		 * ... and continue with the blocks right after our allocated
1688 		 * block.
1689 		 */
1690 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1691 		    l++, lcs2++ ) {
1692 			if(isclr(cg_clustersfree(&acg),l)){
1693 				break;
1694 			}
1695 		}
1696 
1697 		/*
1698 		 * Now update all counters.
1699 		 */
1700 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1701 		if(lcs1) {
1702 			cg_clustersum(&acg)[lcs1]++;
1703 		}
1704 		if(lcs2) {
1705 			cg_clustersum(&acg)[lcs2]++;
1706 		}
1707 	}
1708 	/*
1709 	 * Update all statistics based on blocks.
1710 	 */
1711 	acg.cg_cs.cs_nbfree--;
1712 	sblock.fs_cstotal.cs_nbfree--;
1713 
1714 	DBG_LEAVE;
1715 	return (d);
1716 }
1717 
1718 /* *********************************************************** isblock ***** */
1719 /*
1720  * Here we check if all frags of a block are free. For more details again
1721  * please see the source of newfs(8), as this function is taken over almost
1722  * unchanged.
1723  */
1724 static int
1725 isblock(struct fs *fs, unsigned char *cp, int h)
1726 {
1727 	DBG_FUNC("isblock")
1728 	unsigned char	mask;
1729 
1730 	DBG_ENTER;
1731 
1732 	switch (fs->fs_frag) {
1733 	case 8:
1734 		DBG_LEAVE;
1735 		return (cp[h] == 0xff);
1736 	case 4:
1737 		mask = 0x0f << ((h & 0x1) << 2);
1738 		DBG_LEAVE;
1739 		return ((cp[h >> 1] & mask) == mask);
1740 	case 2:
1741 		mask = 0x03 << ((h & 0x3) << 1);
1742 		DBG_LEAVE;
1743 		return ((cp[h >> 2] & mask) == mask);
1744 	case 1:
1745 		mask = 0x01 << (h & 0x7);
1746 		DBG_LEAVE;
1747 		return ((cp[h >> 3] & mask) == mask);
1748 	default:
1749 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1750 		DBG_LEAVE;
1751 		return (0);
1752 	}
1753 }
1754 
1755 /* ********************************************************** clrblock ***** */
1756 /*
1757  * Here we allocate a complete block in the block map. For more details again
1758  * please see the source of newfs(8), as this function is taken over almost
1759  * unchanged.
1760  */
1761 static void
1762 clrblock(struct fs *fs, unsigned char *cp, int h)
1763 {
1764 	DBG_FUNC("clrblock")
1765 
1766 	DBG_ENTER;
1767 
1768 	switch ((fs)->fs_frag) {
1769 	case 8:
1770 		cp[h] = 0;
1771 		break;
1772 	case 4:
1773 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1774 		break;
1775 	case 2:
1776 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1777 		break;
1778 	case 1:
1779 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1780 		break;
1781 	default:
1782 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1783 		break;
1784 	}
1785 
1786 	DBG_LEAVE;
1787 	return;
1788 }
1789 
1790 /* ********************************************************** setblock ***** */
1791 /*
1792  * Here we free a complete block in the free block map. For more details again
1793  * please see the source of newfs(8), as this function is taken over almost
1794  * unchanged.
1795  */
1796 static void
1797 setblock(struct fs *fs, unsigned char *cp, int h)
1798 {
1799 	DBG_FUNC("setblock")
1800 
1801 	DBG_ENTER;
1802 
1803 	switch (fs->fs_frag) {
1804 	case 8:
1805 		cp[h] = 0xff;
1806 		break;
1807 	case 4:
1808 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1809 		break;
1810 	case 2:
1811 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1812 		break;
1813 	case 1:
1814 		cp[h >> 3] |= (0x01 << (h & 0x7));
1815 		break;
1816 	default:
1817 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1818 		break;
1819 	}
1820 
1821 	DBG_LEAVE;
1822 	return;
1823 }
1824 
1825 /* ************************************************************ ginode ***** */
1826 /*
1827  * This function provides access to an individual inode. We find out in which
1828  * block the requested inode is located, read it from disk if needed, and
1829  * return the pointer into that block. We maintain a cache of one block to
1830  * not read the same block again and again if we iterate linearly over all
1831  * inodes.
1832  */
1833 static union dinode *
1834 ginode(ino_t inumber, int fsi, int cg)
1835 {
1836 	DBG_FUNC("ginode")
1837 	static ino_t	startinum = 0;	/* first inode in cached block */
1838 
1839 	DBG_ENTER;
1840 
1841 	inumber += (cg * sblock.fs_ipg);
1842 	if (isclr(cg_inosused(&aocg), inumber)) {
1843 		DBG_LEAVE;
1844 		return NULL;
1845 	}
1846 	if (inumber < ROOTINO || inumber > maxino)
1847 		errx(8, "bad inode number %d to ginode", inumber);
1848 	if (startinum == 0 ||
1849 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1850 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1851 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1852 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1853 	}
1854 	DBG_LEAVE;
1855 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1856 		return ((union dinode *)
1857 		    &((struct ufs1_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1858 	return ((union dinode *)
1859 	    &((struct ufs2_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1860 }
1861 
1862 /* ****************************************************** charsperline ***** */
1863 /*
1864  * Figure out how many lines our current terminal has. For more details again
1865  * please see the source of newfs(8), as this function is taken over almost
1866  * unchanged.
1867  */
1868 static int
1869 charsperline(void)
1870 {
1871 	DBG_FUNC("charsperline")
1872 	int	columns;
1873 	char	*cp;
1874 	struct winsize	ws;
1875 
1876 	DBG_ENTER;
1877 
1878 	columns = 0;
1879 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1880 		columns = ws.ws_col;
1881 	}
1882 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1883 		columns = atoi(cp);
1884 	}
1885 	if (columns == 0) {
1886 		columns = 80;	/* last resort */
1887 	}
1888 
1889 	DBG_LEAVE;
1890 	return columns;
1891 }
1892 
1893 /* ****************************************************** get_dev_size ***** */
1894 /*
1895  * Get the size of the partition if we can't figure it out from the disklabel,
1896  * e.g. from vinum volumes.
1897  */
1898 static void
1899 get_dev_size(int fd, int *size)
1900 {
1901    int sectorsize;
1902    off_t mediasize;
1903 
1904    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1905         err(1,"DIOCGSECTORSIZE");
1906    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1907         err(1,"DIOCGMEDIASIZE");
1908 
1909    if (sectorsize <= 0)
1910        errx(1, "bogus sectorsize: %d", sectorsize);
1911 
1912    *size = mediasize / sectorsize;
1913 }
1914 
1915 /* ************************************************************** main ***** */
1916 /*
1917  * growfs(8)  is a utility which allows to increase the size of an existing
1918  * ufs file system. Currently this can only be done on unmounted file system.
1919  * It recognizes some command line options to specify the new desired size,
1920  * and it does some basic checkings. The old file system size is determined
1921  * and after some more checks like we can really access the new last block
1922  * on the disk etc. we calculate the new parameters for the superblock. After
1923  * having done this we just call growfs() which will do the work.  Before
1924  * we finish the only thing left is to update the disklabel.
1925  * We still have to provide support for snapshots. Therefore we first have to
1926  * understand what data structures are always replicated in the snapshot on
1927  * creation, for all other blocks we touch during our procedure, we have to
1928  * keep the old blocks unchanged somewhere available for the snapshots. If we
1929  * are lucky, then we only have to handle our blocks to be relocated in that
1930  * way.
1931  * Also we have to consider in what order we actually update the critical
1932  * data structures of the file system to make sure, that in case of a disaster
1933  * fsck(8) is still able to restore any lost data.
1934  * The foreseen last step then will be to provide for growing even mounted
1935  * file systems. There we have to extend the mount() system call to provide
1936  * userland access to the file system locking facility.
1937  */
1938 int
1939 main(int argc, char **argv)
1940 {
1941 	DBG_FUNC("main")
1942 	char	*device, *special, *cp;
1943 	char	ch;
1944 	unsigned int	size=0;
1945 	size_t	len;
1946 	unsigned int	Nflag=0;
1947 	int	ExpertFlag=0;
1948 	struct stat	st;
1949 	struct disklabel	*lp;
1950 	struct partition	*pp;
1951 	int	i,fsi,fso;
1952     u_int32_t p_size;
1953 	char	reply[5];
1954 #ifdef FSMAXSNAP
1955 	int	j;
1956 #endif /* FSMAXSNAP */
1957 
1958 	DBG_ENTER;
1959 
1960 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1961 		switch(ch) {
1962 		case 'N':
1963 			Nflag=1;
1964 			break;
1965 		case 's':
1966 			size=(size_t)atol(optarg);
1967 			if(size<1) {
1968 				usage();
1969 			}
1970 			break;
1971 		case 'v': /* for compatibility to newfs */
1972 			break;
1973 		case 'y':
1974 			ExpertFlag=1;
1975 			break;
1976 		case '?':
1977 			/* FALLTHROUGH */
1978 		default:
1979 			usage();
1980 		}
1981 	}
1982 	argc -= optind;
1983 	argv += optind;
1984 
1985 	if(argc != 1) {
1986 		usage();
1987 	}
1988 	device=*argv;
1989 
1990 	/*
1991 	 * Now try to guess the (raw)device name.
1992 	 */
1993 	if (0 == strrchr(device, '/')) {
1994 		/*
1995 		 * No path prefix was given, so try in that order:
1996 		 *     /dev/r%s
1997 		 *     /dev/%s
1998 		 *     /dev/vinum/r%s
1999 		 *     /dev/vinum/%s.
2000 		 *
2001 		 * FreeBSD now doesn't distinguish between raw and block
2002 		 * devices any longer, but it should still work this way.
2003 		 */
2004 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2005 		special=(char *)malloc(len);
2006 		if(special == NULL) {
2007 			errx(1, "malloc failed");
2008 		}
2009 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2010 		if (stat(special, &st) == -1) {
2011 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2012 			if (stat(special, &st) == -1) {
2013 				snprintf(special, len, "%svinum/r%s",
2014 				    _PATH_DEV, device);
2015 				if (stat(special, &st) == -1) {
2016 					/* For now this is the 'last resort' */
2017 					snprintf(special, len, "%svinum/%s",
2018 					    _PATH_DEV, device);
2019 				}
2020 			}
2021 		}
2022 		device = special;
2023 	}
2024 
2025 	/*
2026 	 * Try to access our devices for writing ...
2027 	 */
2028 	if (Nflag) {
2029 		fso = -1;
2030 	} else {
2031 		fso = open(device, O_WRONLY);
2032 		if (fso < 0) {
2033 			err(1, "%s", device);
2034 		}
2035 	}
2036 
2037 	/*
2038 	 * ... and reading.
2039 	 */
2040 	fsi = open(device, O_RDONLY);
2041 	if (fsi < 0) {
2042 		err(1, "%s", device);
2043 	}
2044 
2045 	/*
2046 	 * Try to read a label and guess the slice if not specified. This
2047 	 * code should guess the right thing and avoid to bother the user
2048 	 * with the task of specifying the option -v on vinum volumes.
2049 	 */
2050 	cp=device+strlen(device)-1;
2051 	lp = get_disklabel(fsi);
2052 	pp = NULL;
2053     if (lp != NULL) {
2054         if (isdigit(*cp)) {
2055             pp = &lp->d_partitions[2];
2056         } else if (*cp>='a' && *cp<='h') {
2057             pp = &lp->d_partitions[*cp - 'a'];
2058         } else {
2059             errx(1, "unknown device");
2060         }
2061         p_size = pp->p_size;
2062     } else {
2063         get_dev_size(fsi, &p_size);
2064     }
2065 
2066 	/*
2067 	 * Check if that partition is suitable for growing a file system.
2068 	 */
2069 	if (p_size < 1) {
2070 		errx(1, "partition is unavailable");
2071 	}
2072 
2073 	/*
2074 	 * Read the current superblock, and take a backup.
2075 	 */
2076 	for (i = 0; sblock_try[i] != -1; i++) {
2077 		sblockloc = sblock_try[i] / DEV_BSIZE;
2078 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2079 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2080 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2081 		      osblock.fs_sblockloc == sblock_try[i])) &&
2082 		    osblock.fs_bsize <= MAXBSIZE &&
2083 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2084 			break;
2085 	}
2086 	if (sblock_try[i] == -1) {
2087 		errx(1, "superblock not recognized");
2088 	}
2089 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2090 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2091 
2092 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2093 	DBG_DUMP_FS(&sblock,
2094 	    "old sblock");
2095 
2096 	/*
2097 	 * Determine size to grow to. Default to the full size specified in
2098 	 * the disk label.
2099 	 */
2100 	sblock.fs_size = dbtofsb(&osblock, p_size);
2101 	if (size != 0) {
2102 		if (size > p_size){
2103 			errx(1, "There is not enough space (%d < %d)",
2104 			    p_size, size);
2105 		}
2106 		sblock.fs_size = dbtofsb(&osblock, size);
2107 	}
2108 
2109 	/*
2110 	 * Are we really growing ?
2111 	 */
2112 	if(osblock.fs_size >= sblock.fs_size) {
2113 		errx(1, "we are not growing (%jd->%jd)",
2114 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2115 	}
2116 
2117 
2118 #ifdef FSMAXSNAP
2119 	/*
2120 	 * Check if we find an active snapshot.
2121 	 */
2122 	if(ExpertFlag == 0) {
2123 		for(j=0; j<FSMAXSNAP; j++) {
2124 			if(sblock.fs_snapinum[j]) {
2125 				errx(1, "active snapshot found in file system\n"
2126 				    "	please remove all snapshots before "
2127 				    "using growfs\n");
2128 			}
2129 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2130 				break;
2131 			}
2132 		}
2133 	}
2134 #endif
2135 
2136 	if (ExpertFlag == 0 && Nflag == 0) {
2137 		printf("We strongly recommend you to make a backup "
2138 		    "before growing the Filesystem\n\n"
2139 		    " Did you backup your data (Yes/No) ? ");
2140 		fgets(reply, (int)sizeof(reply), stdin);
2141 		if (strcmp(reply, "Yes\n")){
2142 			printf("\n Nothing done \n");
2143 			exit (0);
2144 		}
2145 	}
2146 
2147 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2148 
2149 	/*
2150 	 * Try to access our new last block in the file system. Even if we
2151 	 * later on realize we have to abort our operation, on that block
2152 	 * there should be no data, so we can't destroy something yet.
2153 	 */
2154 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2155 	    fso, Nflag);
2156 
2157 	/*
2158 	 * Now calculate new superblock values and check for reasonable
2159 	 * bound for new file system size:
2160 	 *     fs_size:    is derived from label or user input
2161 	 *     fs_dsize:   should get updated in the routines creating or
2162 	 *                 updating the cylinder groups on the fly
2163 	 *     fs_cstotal: should get updated in the routines creating or
2164 	 *                 updating the cylinder groups
2165 	 */
2166 
2167 	/*
2168 	 * Update the number of cylinders and cylinder groups in the file system.
2169 	 */
2170 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2171 		sblock.fs_old_ncyl =
2172 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2173 		if (sblock.fs_size * sblock.fs_old_nspf >
2174 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2175 			sblock.fs_old_ncyl++;
2176 	}
2177 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2178 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2179 
2180 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2181 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2182 		/*
2183 		 * The space in the new last cylinder group is too small,
2184 		 * so revert back.
2185 		 */
2186 		sblock.fs_ncg--;
2187 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2188 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2189 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2190 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2191 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2192 	}
2193 
2194 	/*
2195 	 * Update the space for the cylinder group summary information in the
2196 	 * respective cylinder group data area.
2197 	 */
2198 	sblock.fs_cssize =
2199 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2200 
2201 	if(osblock.fs_size >= sblock.fs_size) {
2202 		errx(1, "not enough new space");
2203 	}
2204 
2205 	DBG_PRINT0("sblock calculated\n");
2206 
2207 	/*
2208 	 * Ok, everything prepared, so now let's do the tricks.
2209 	 */
2210 	growfs(fsi, fso, Nflag);
2211 
2212 	/*
2213 	 * Update the disk label.
2214 	 */
2215     if (!unlabeled) {
2216         pp->p_fsize = sblock.fs_fsize;
2217         pp->p_frag = sblock.fs_frag;
2218         pp->p_cpg = sblock.fs_fpg;
2219 
2220         return_disklabel(fso, lp, Nflag);
2221         DBG_PRINT0("label rewritten\n");
2222     }
2223 
2224 	close(fsi);
2225 	if(fso>-1) close(fso);
2226 
2227 	DBG_CLOSE;
2228 
2229 	DBG_LEAVE;
2230 	return 0;
2231 }
2232 
2233 /* ************************************************** return_disklabel ***** */
2234 /*
2235  * Write the updated disklabel back to disk.
2236  */
2237 static void
2238 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2239 {
2240 	DBG_FUNC("return_disklabel")
2241 	u_short	sum;
2242 	u_short	*ptr;
2243 
2244 	DBG_ENTER;
2245 
2246 	if(!lp) {
2247 		DBG_LEAVE;
2248 		return;
2249 	}
2250 	if(!Nflag) {
2251 		lp->d_checksum=0;
2252 		sum = 0;
2253 		ptr=(u_short *)lp;
2254 
2255 		/*
2256 		 * recalculate checksum
2257 		 */
2258 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2259 			sum ^= *ptr++;
2260 		}
2261 		lp->d_checksum=sum;
2262 
2263 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2264 			errx(1, "DIOCWDINFO failed");
2265 		}
2266 	}
2267 	free(lp);
2268 
2269 	DBG_LEAVE;
2270 	return ;
2271 }
2272 
2273 /* ***************************************************** get_disklabel ***** */
2274 /*
2275  * Read the disklabel from disk.
2276  */
2277 static struct disklabel *
2278 get_disklabel(int fd)
2279 {
2280 	DBG_FUNC("get_disklabel")
2281 	static struct	disklabel *lab;
2282 
2283 	DBG_ENTER;
2284 
2285 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2286 	if (!lab)
2287 		errx(1, "malloc failed");
2288 
2289     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2290         return (lab);
2291 
2292     unlabeled++;
2293 
2294 	DBG_LEAVE;
2295 	return (NULL);
2296 }
2297 
2298 
2299 /* ************************************************************* usage ***** */
2300 /*
2301  * Dump a line of usage.
2302  */
2303 static void
2304 usage(void)
2305 {
2306 	DBG_FUNC("usage")
2307 
2308 	DBG_ENTER;
2309 
2310 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2311 
2312 	DBG_LEAVE;
2313 	exit(1);
2314 }
2315 
2316 /* *********************************************************** updclst ***** */
2317 /*
2318  * This updates most parameters and the bitmap related to cluster. We have to
2319  * assume that sblock, osblock, acg are set up.
2320  */
2321 static void
2322 updclst(int block)
2323 {
2324 	DBG_FUNC("updclst")
2325 	static int	lcs=0;
2326 
2327 	DBG_ENTER;
2328 
2329 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2330 		return;
2331 	}
2332 	/*
2333 	 * update cluster allocation map
2334 	 */
2335 	setbit(cg_clustersfree(&acg), block);
2336 
2337 	/*
2338 	 * update cluster summary table
2339 	 */
2340 	if(!lcs) {
2341 		/*
2342 		 * calculate size for the trailing cluster
2343 		 */
2344 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2345 			if(isclr(cg_clustersfree(&acg), block)){
2346 				break;
2347 			}
2348 		}
2349 	}
2350 	if(lcs < sblock.fs_contigsumsize) {
2351 		if(lcs) {
2352 			cg_clustersum(&acg)[lcs]--;
2353 		}
2354 		lcs++;
2355 		cg_clustersum(&acg)[lcs]++;
2356 	}
2357 
2358 	DBG_LEAVE;
2359 	return;
2360 }
2361 
2362 /* *********************************************************** updrefs ***** */
2363 /*
2364  * This updates all references to relocated blocks for the given inode.  The
2365  * inode is given as number within the cylinder group, and the number of the
2366  * cylinder group.
2367  */
2368 static void
2369 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2370     Nflag)
2371 {
2372 	DBG_FUNC("updrefs")
2373 	ufs_lbn_t	len, lbn, numblks;
2374 	ufs2_daddr_t	iptr, blksperindir;
2375 	union dinode	*ino;
2376 	int		i, mode, inodeupdated;
2377 
2378 	DBG_ENTER;
2379 
2380 	/*
2381 	 * XXX We should skip unused inodes even from being read from disk
2382 	 *     here by using the bitmap.
2383 	 */
2384 	ino = ginode(in, fsi, cg);
2385 	if (ino == NULL) {
2386 		DBG_LEAVE;
2387 		return;
2388 	}
2389 	mode = DIP(ino, di_mode) & IFMT;
2390 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2391 		DBG_LEAVE;
2392 		return; /* only check DIR, FILE, LINK */
2393 	}
2394 	if (mode == IFLNK && DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2395 		DBG_LEAVE;
2396 		return;	/* skip short symlinks */
2397 	}
2398 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2399 	if (numblks == 0) {
2400 		DBG_LEAVE;
2401 		return;	/* skip empty file */
2402 	}
2403 	if (DIP(ino, di_blocks) == 0) {
2404 		DBG_LEAVE;
2405 		return;	/* skip empty swiss cheesy file or old fastlink */
2406 	}
2407 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2408 	    in,
2409 	    cg);
2410 
2411 	/*
2412 	 * Check all the blocks.
2413 	 */
2414 	inodeupdated = 0;
2415 	len = numblks < NDADDR ? numblks : NDADDR;
2416 	for (i = 0; i < len; i++) {
2417 		iptr = DIP(ino, di_db[i]);
2418 		if (iptr == 0)
2419 			continue;
2420 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2421 			DIP(ino, di_db[i]) = iptr;
2422 			inodeupdated++;
2423 		}
2424 	}
2425 	DBG_PRINT0("~~scg direct blocks checked\n");
2426 
2427 	blksperindir = 1;
2428 	len = numblks - NDADDR;
2429 	lbn = NDADDR;
2430 	for (i = 0; len > 0 && i < NIADDR; i++) {
2431 		iptr = DIP(ino, di_ib[i]);
2432 		if (iptr == 0)
2433 			continue;
2434 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2435 			DIP(ino, di_ib[i]) = iptr;
2436 			inodeupdated++;
2437 		}
2438 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2439 		blksperindir *= NINDIR(&sblock);
2440 		lbn += blksperindir;
2441 		len -= blksperindir;
2442 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2443 	}
2444 	if (inodeupdated)
2445 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2446 
2447 	DBG_LEAVE;
2448 	return;
2449 }
2450 
2451 /*
2452  * Recursively check all the indirect blocks.
2453  */
2454 static void
2455 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2456     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2457 {
2458 	DBG_FUNC("indirchk")
2459 	void *ibuf;
2460 	int i, last;
2461 	ufs2_daddr_t iptr;
2462 
2463 	DBG_ENTER;
2464 
2465 	/* read in the indirect block. */
2466 	ibuf = malloc(sblock.fs_bsize);
2467 	if (!ibuf)
2468 		errx(1, "malloc failed");
2469 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2470 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2471 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2472 	for (i = 0; i < last; i++) {
2473 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2474 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2475 		else
2476 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2477 		if (iptr == 0)
2478 			continue;
2479 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2480 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2481 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2482 			else
2483 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2484 		}
2485 		if (blksperindir == 1)
2486 			continue;
2487 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2488 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2489 	}
2490 	free(ibuf);
2491 
2492 	DBG_LEAVE;
2493 	return;
2494 }
2495