xref: /freebsd/sbin/growfs/growfs.c (revision d056fa046c6a91b90cd98165face0e42a33a5173)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 /* ********************************************************** INCLUDES ***** */
53 #include <sys/param.h>
54 #include <sys/disklabel.h>
55 #include <sys/ioctl.h>
56 #include <sys/stat.h>
57 #include <sys/disk.h>
58 
59 #include <stdio.h>
60 #include <paths.h>
61 #include <ctype.h>
62 #include <err.h>
63 #include <fcntl.h>
64 #include <limits.h>
65 #include <stdlib.h>
66 #include <stdint.h>
67 #include <string.h>
68 #include <time.h>
69 #include <unistd.h>
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ffs/fs.h>
72 
73 #include "debug.h"
74 
75 /* *************************************************** GLOBALS & TYPES ***** */
76 #ifdef FS_DEBUG
77 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
78 #endif /* FS_DEBUG */
79 
80 static union {
81 	struct fs	fs;
82 	char	pad[SBLOCKSIZE];
83 } fsun1, fsun2;
84 #define	sblock	fsun1.fs	/* the new superblock */
85 #define	osblock	fsun2.fs	/* the old superblock */
86 
87 /*
88  * Possible superblock locations ordered from most to least likely.
89  */
90 static int sblock_try[] = SBLOCKSEARCH;
91 static ufs2_daddr_t sblockloc;
92 
93 static union {
94 	struct cg	cg;
95 	char	pad[MAXBSIZE];
96 } cgun1, cgun2;
97 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
98 #define	aocg	cgun2.cg	/* an old cylinder group */
99 
100 static char	ablk[MAXBSIZE];	/* a block */
101 
102 static struct csum	*fscs;	/* cylinder summary */
103 
104 union dinode {
105 	struct ufs1_dinode dp1;
106 	struct ufs2_dinode dp2;
107 };
108 #define	DIP(dp, field) \
109 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
110 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
111 #define	DIP_SET(dp, field, val) do { \
112 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
113 		(dp)->dp1.field = (val); \
114 	else \
115 		(dp)->dp2.field = (val); \
116 	} while (0)
117 static ufs2_daddr_t 	inoblk;			/* inode block address */
118 static char		inobuf[MAXBSIZE];	/* inode block */
119 ino_t			maxino;			/* last valid inode */
120 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
121 
122 /*
123  * An array of elements of type struct gfs_bpp describes all blocks to
124  * be relocated in order to free the space needed for the cylinder group
125  * summary for all cylinder groups located in the first cylinder group.
126  */
127 struct gfs_bpp {
128 	ufs2_daddr_t	old;		/* old block number */
129 	ufs2_daddr_t	new;		/* new block number */
130 #define GFS_FL_FIRST	1
131 #define GFS_FL_LAST	2
132 	unsigned int	flags;	/* special handling required */
133 	int	found;		/* how many references were updated */
134 };
135 
136 /* ******************************************************** PROTOTYPES ***** */
137 static void	growfs(int, int, unsigned int);
138 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
139 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
140 static ufs2_daddr_t alloc(void);
141 static int	charsperline(void);
142 static void	usage(void);
143 static int	isblock(struct fs *, unsigned char *, int);
144 static void	clrblock(struct fs *, unsigned char *, int);
145 static void	setblock(struct fs *, unsigned char *, int);
146 static void	initcg(int, time_t, int, unsigned int);
147 static void	updjcg(int, time_t, int, int, unsigned int);
148 static void	updcsloc(time_t, int, int, unsigned int);
149 static struct disklabel	*get_disklabel(int);
150 static void	return_disklabel(int, struct disklabel *, unsigned int);
151 static union dinode *ginode(ino_t, int, int);
152 static void	frag_adjust(ufs2_daddr_t, int);
153 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
154 		    unsigned int);
155 static void	updclst(int);
156 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
157 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
158 		    struct gfs_bpp *, int, int, unsigned int);
159 static void	get_dev_size(int, int *);
160 
161 /* ************************************************************ growfs ***** */
162 /*
163  * Here we actually start growing the file system. We basically read the
164  * cylinder summary from the first cylinder group as we want to update
165  * this on the fly during our various operations. First we handle the
166  * changes in the former last cylinder group. Afterwards we create all new
167  * cylinder groups.  Now we handle the cylinder group containing the
168  * cylinder summary which might result in a relocation of the whole
169  * structure.  In the end we write back the updated cylinder summary, the
170  * new superblock, and slightly patched versions of the super block
171  * copies.
172  */
173 static void
174 growfs(int fsi, int fso, unsigned int Nflag)
175 {
176 	DBG_FUNC("growfs")
177 	int	i;
178 	int	cylno, j;
179 	time_t	utime;
180 	int	width;
181 	char	tmpbuf[100];
182 #ifdef FSIRAND
183 	static int	randinit=0;
184 
185 	DBG_ENTER;
186 
187 	if (!randinit) {
188 		randinit = 1;
189 		srandomdev();
190 	}
191 #else /* not FSIRAND */
192 
193 	DBG_ENTER;
194 
195 #endif /* FSIRAND */
196 	time(&utime);
197 
198 	/*
199 	 * Get the cylinder summary into the memory.
200 	 */
201 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
202 	if(fscs == NULL) {
203 		errx(1, "calloc failed");
204 	}
205 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
206 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
207 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
208 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
209 	}
210 
211 #ifdef FS_DEBUG
212 {
213 	struct csum	*dbg_csp;
214 	int	dbg_csc;
215 	char	dbg_line[80];
216 
217 	dbg_csp=fscs;
218 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
219 		snprintf(dbg_line, sizeof(dbg_line),
220 		    "%d. old csum in old location", dbg_csc);
221 		DBG_DUMP_CSUM(&osblock,
222 		    dbg_line,
223 		    dbg_csp++);
224 	}
225 }
226 #endif /* FS_DEBUG */
227 	DBG_PRINT0("fscs read\n");
228 
229 	/*
230 	 * Do all needed changes in the former last cylinder group.
231 	 */
232 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
233 
234 	/*
235 	 * Dump out summary information about file system.
236 	 */
237 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
238 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
239 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
240 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
241 	    sblock.fs_fsize);
242 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
243 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
244 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
245 	if (sblock.fs_flags & FS_DOSOFTDEP)
246 		printf("\twith soft updates\n");
247 #	undef B2MBFACTOR
248 
249 	/*
250 	 * Now build the cylinders group blocks and
251 	 * then print out indices of cylinder groups.
252 	 */
253 	printf("super-block backups (for fsck -b #) at:\n");
254 	i = 0;
255 	width = charsperline();
256 
257 	/*
258 	 * Iterate for only the new cylinder groups.
259 	 */
260 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
261 		initcg(cylno, utime, fso, Nflag);
262 		j = sprintf(tmpbuf, " %d%s",
263 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
264 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
265 		if (i + j >= width) {
266 			printf("\n");
267 			i = 0;
268 		}
269 		i += j;
270 		printf("%s", tmpbuf);
271 		fflush(stdout);
272 	}
273 	printf("\n");
274 
275 	/*
276 	 * Do all needed changes in the first cylinder group.
277 	 * allocate blocks in new location
278 	 */
279 	updcsloc(utime, fsi, fso, Nflag);
280 
281 	/*
282 	 * Now write the cylinder summary back to disk.
283 	 */
284 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
285 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
286 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
287 		    (void *)(((char *)fscs) + i), fso, Nflag);
288 	}
289 	DBG_PRINT0("fscs written\n");
290 
291 #ifdef FS_DEBUG
292 {
293 	struct csum	*dbg_csp;
294 	int	dbg_csc;
295 	char	dbg_line[80];
296 
297 	dbg_csp=fscs;
298 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
299 		snprintf(dbg_line, sizeof(dbg_line),
300 		    "%d. new csum in new location", dbg_csc);
301 		DBG_DUMP_CSUM(&sblock,
302 		    dbg_line,
303 		    dbg_csp++);
304 	}
305 }
306 #endif /* FS_DEBUG */
307 
308 	/*
309 	 * Now write the new superblock back to disk.
310 	 */
311 	sblock.fs_time = utime;
312 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
313 	DBG_PRINT0("sblock written\n");
314 	DBG_DUMP_FS(&sblock,
315 	    "new initial sblock");
316 
317 	/*
318 	 * Clean up the dynamic fields in our superblock copies.
319 	 */
320 	sblock.fs_fmod = 0;
321 	sblock.fs_clean = 1;
322 	sblock.fs_ronly = 0;
323 	sblock.fs_cgrotor = 0;
324 	sblock.fs_state = 0;
325 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
326 	sblock.fs_flags &= FS_DOSOFTDEP;
327 
328 	/*
329 	 * XXX
330 	 * The following fields are currently distributed from the superblock
331 	 * to the copies:
332 	 *     fs_minfree
333 	 *     fs_rotdelay
334 	 *     fs_maxcontig
335 	 *     fs_maxbpg
336 	 *     fs_minfree,
337 	 *     fs_optim
338 	 *     fs_flags regarding SOFTPDATES
339 	 *
340 	 * We probably should rather change the summary for the cylinder group
341 	 * statistics here to the value of what would be in there, if the file
342 	 * system were created initially with the new size. Therefor we still
343 	 * need to find an easy way of calculating that.
344 	 * Possibly we can try to read the first superblock copy and apply the
345 	 * "diffed" stats between the old and new superblock by still copying
346 	 * certain parameters onto that.
347 	 */
348 
349 	/*
350 	 * Write out the duplicate super blocks.
351 	 */
352 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
353 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
354 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
355 	}
356 	DBG_PRINT0("sblock copies written\n");
357 	DBG_DUMP_FS(&sblock,
358 	    "new other sblocks");
359 
360 	DBG_LEAVE;
361 	return;
362 }
363 
364 /* ************************************************************ initcg ***** */
365 /*
366  * This creates a new cylinder group structure, for more details please see
367  * the source of newfs(8), as this function is taken over almost unchanged.
368  * As this is never called for the first cylinder group, the special
369  * provisions for that case are removed here.
370  */
371 static void
372 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
373 {
374 	DBG_FUNC("initcg")
375 	static void *iobuf;
376 	long d, dlower, dupper, blkno, start;
377 	ufs2_daddr_t i, cbase, dmax;
378 	struct ufs1_dinode *dp1;
379 	struct ufs2_dinode *dp2;
380 	struct csum *cs;
381 
382 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
383 		errx(37, "panic: cannot allocate I/O buffer");
384 	}
385 	/*
386 	 * Determine block bounds for cylinder group.
387 	 * Allow space for super block summary information in first
388 	 * cylinder group.
389 	 */
390 	cbase = cgbase(&sblock, cylno);
391 	dmax = cbase + sblock.fs_fpg;
392 	if (dmax > sblock.fs_size)
393 		dmax = sblock.fs_size;
394 	dlower = cgsblock(&sblock, cylno) - cbase;
395 	dupper = cgdmin(&sblock, cylno) - cbase;
396 	if (cylno == 0)	/* XXX fscs may be relocated */
397 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
398 	cs = &fscs[cylno];
399 	memset(&acg, 0, sblock.fs_cgsize);
400 	acg.cg_time = utime;
401 	acg.cg_magic = CG_MAGIC;
402 	acg.cg_cgx = cylno;
403 	acg.cg_niblk = sblock.fs_ipg;
404 	acg.cg_initediblk = sblock.fs_ipg;
405 	acg.cg_ndblk = dmax - cbase;
406 	if (sblock.fs_contigsumsize > 0)
407 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
408 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
409 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
410 		acg.cg_iusedoff = start;
411 	} else {
412 		acg.cg_old_ncyl = sblock.fs_old_cpg;
413 		acg.cg_old_time = acg.cg_time;
414 		acg.cg_time = 0;
415 		acg.cg_old_niblk = acg.cg_niblk;
416 		acg.cg_niblk = 0;
417 		acg.cg_initediblk = 0;
418 		acg.cg_old_btotoff = start;
419 		acg.cg_old_boff = acg.cg_old_btotoff +
420 		    sblock.fs_old_cpg * sizeof(int32_t);
421 		acg.cg_iusedoff = acg.cg_old_boff +
422 		    sblock.fs_old_cpg * sizeof(u_int16_t);
423 	}
424 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
425 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
426 	if (sblock.fs_contigsumsize > 0) {
427 		acg.cg_clustersumoff =
428 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
429 		acg.cg_clustersumoff -= sizeof(u_int32_t);
430 		acg.cg_clusteroff = acg.cg_clustersumoff +
431 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
432 		acg.cg_nextfreeoff = acg.cg_clusteroff +
433 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
434 	}
435 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
436 		/*
437 		 * This should never happen as we would have had that panic
438 		 * already on file system creation
439 		 */
440 		errx(37, "panic: cylinder group too big");
441 	}
442 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
443 	if (cylno == 0)
444 		for (i = 0; i < ROOTINO; i++) {
445 			setbit(cg_inosused(&acg), i);
446 			acg.cg_cs.cs_nifree--;
447 		}
448 	/*
449 	 * XXX Newfs writes out two blocks of initialized inodes
450 	 *     unconditionally.  Should we check here to make sure that they
451 	 *     were actually written?
452 	 */
453 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
454 		bzero(iobuf, sblock.fs_bsize);
455 		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
456 		     i += sblock.fs_frag) {
457 			dp1 = (struct ufs1_dinode *)iobuf;
458 			dp2 = (struct ufs2_dinode *)iobuf;
459 #ifdef FSIRAND
460 			for (j = 0; j < INOPB(&sblock); j++)
461 				if (sblock.fs_magic == FS_UFS1_MAGIC) {
462 					dp1->di_gen = random();
463 					dp1++;
464 				} else {
465 					dp2->di_gen = random();
466 					dp2++;
467 				}
468 #endif
469 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
470 			    sblock.fs_bsize, iobuf, fso, Nflag);
471 		}
472 	}
473 	if (cylno > 0) {
474 		/*
475 		 * In cylno 0, beginning space is reserved
476 		 * for boot and super blocks.
477 		 */
478 		for (d = 0; d < dlower; d += sblock.fs_frag) {
479 			blkno = d / sblock.fs_frag;
480 			setblock(&sblock, cg_blksfree(&acg), blkno);
481 			if (sblock.fs_contigsumsize > 0)
482 				setbit(cg_clustersfree(&acg), blkno);
483 			acg.cg_cs.cs_nbfree++;
484 		}
485 		sblock.fs_dsize += dlower;
486 	}
487 	sblock.fs_dsize += acg.cg_ndblk - dupper;
488 	if ((i = dupper % sblock.fs_frag)) {
489 		acg.cg_frsum[sblock.fs_frag - i]++;
490 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
491 			setbit(cg_blksfree(&acg), dupper);
492 			acg.cg_cs.cs_nffree++;
493 		}
494 	}
495 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
496 	     d += sblock.fs_frag) {
497 		blkno = d / sblock.fs_frag;
498 		setblock(&sblock, cg_blksfree(&acg), blkno);
499 		if (sblock.fs_contigsumsize > 0)
500 			setbit(cg_clustersfree(&acg), blkno);
501 		acg.cg_cs.cs_nbfree++;
502 	}
503 	if (d < acg.cg_ndblk) {
504 		acg.cg_frsum[acg.cg_ndblk - d]++;
505 		for (; d < acg.cg_ndblk; d++) {
506 			setbit(cg_blksfree(&acg), d);
507 			acg.cg_cs.cs_nffree++;
508 		}
509 	}
510 	if (sblock.fs_contigsumsize > 0) {
511 		int32_t *sump = cg_clustersum(&acg);
512 		u_char *mapp = cg_clustersfree(&acg);
513 		int map = *mapp++;
514 		int bit = 1;
515 		int run = 0;
516 
517 		for (i = 0; i < acg.cg_nclusterblks; i++) {
518 			if ((map & bit) != 0)
519 				run++;
520 			else if (run != 0) {
521 				if (run > sblock.fs_contigsumsize)
522 					run = sblock.fs_contigsumsize;
523 				sump[run]++;
524 				run = 0;
525 			}
526 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
527 				bit <<= 1;
528 			else {
529 				map = *mapp++;
530 				bit = 1;
531 			}
532 		}
533 		if (run != 0) {
534 			if (run > sblock.fs_contigsumsize)
535 				run = sblock.fs_contigsumsize;
536 			sump[run]++;
537 		}
538 	}
539 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
540 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
541 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
542 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
543 	*cs = acg.cg_cs;
544 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
545 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
546 	DBG_DUMP_CG(&sblock,
547 	    "new cg",
548 	    &acg);
549 
550 	DBG_LEAVE;
551 	return;
552 }
553 
554 /* ******************************************************* frag_adjust ***** */
555 /*
556  * Here we add or subtract (sign +1/-1) the available fragments in a given
557  * block to or from the fragment statistics. By subtracting before and adding
558  * after an operation on the free frag map we can easy update the fragment
559  * statistic, which seems to be otherwise a rather complex operation.
560  */
561 static void
562 frag_adjust(ufs2_daddr_t frag, int sign)
563 {
564 	DBG_FUNC("frag_adjust")
565 	int fragsize;
566 	int f;
567 
568 	DBG_ENTER;
569 
570 	fragsize=0;
571 	/*
572 	 * Here frag only needs to point to any fragment in the block we want
573 	 * to examine.
574 	 */
575 	for(f=rounddown(frag, sblock.fs_frag);
576 	    f<roundup(frag+1, sblock.fs_frag);
577 	    f++) {
578 		/*
579 		 * Count contiguous free fragments.
580 		 */
581 		if(isset(cg_blksfree(&acg), f)) {
582 			fragsize++;
583 		} else {
584 			if(fragsize && fragsize<sblock.fs_frag) {
585 				/*
586 				 * We found something in between.
587 				 */
588 				acg.cg_frsum[fragsize]+=sign;
589 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
590 				    fragsize,
591 				    sign);
592 			}
593 			fragsize=0;
594 		}
595 	}
596 	if(fragsize && fragsize<sblock.fs_frag) {
597 		/*
598 		 * We found something.
599 		 */
600 		acg.cg_frsum[fragsize]+=sign;
601 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
602 		    fragsize,
603 		    sign);
604 	}
605 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
606 	    fragsize,
607 	    sign);
608 
609 	DBG_LEAVE;
610 	return;
611 }
612 
613 /* ******************************************************* cond_bl_upd ***** */
614 /*
615  * Here we conditionally update a pointer to a fragment. We check for all
616  * relocated blocks if any of its fragments is referenced by the current
617  * field, and update the pointer to the respective fragment in our new
618  * block.  If we find a reference we write back the block immediately,
619  * as there is no easy way for our general block reading engine to figure
620  * out if a write back operation is needed.
621  */
622 static int
623 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
624     unsigned int Nflag)
625 {
626 	DBG_FUNC("cond_bl_upd")
627 	struct gfs_bpp *f;
628 	ufs2_daddr_t src, dst;
629 	int fragnum;
630 	void *ibuf;
631 
632 	DBG_ENTER;
633 
634 	f = field;
635 	for (f = field; f->old != 0; f++) {
636 		src = *block;
637 		if (fragstoblks(&sblock, src) != f->old)
638 			continue;
639 		/*
640 		 * The fragment is part of the block, so update.
641 		 */
642 		dst = blkstofrags(&sblock, f->new);
643 		fragnum = fragnum(&sblock, src);
644 		*block = dst + fragnum;
645 		f->found++;
646 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
647 		    (intmax_t)f->old,
648 		    (intmax_t)f->new,
649 		    fragnum);
650 
651 		/*
652 		 * Copy the block back immediately.
653 		 *
654 		 * XXX	If src is is from an indirect block we have
655 		 *	to implement copy on write here in case of
656 		 *	active snapshots.
657 		 */
658 		ibuf = malloc(sblock.fs_bsize);
659 		if (!ibuf)
660 			errx(1, "malloc failed");
661 		src -= fragnum;
662 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
663 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
664 		free(ibuf);
665 		/*
666 		 * The same block can't be found again in this loop.
667 		 */
668 		return (1);
669 	}
670 
671 	DBG_LEAVE;
672 	return (0);
673 }
674 
675 /* ************************************************************ updjcg ***** */
676 /*
677  * Here we do all needed work for the former last cylinder group. It has to be
678  * changed in any case, even if the file system ended exactly on the end of
679  * this group, as there is some slightly inconsistent handling of the number
680  * of cylinders in the cylinder group. We start again by reading the cylinder
681  * group from disk. If the last block was not fully available, we first handle
682  * the missing fragments, then we handle all new full blocks in that file
683  * system and finally we handle the new last fragmented block in the file
684  * system.  We again have to handle the fragment statistics rotational layout
685  * tables and cluster summary during all those operations.
686  */
687 static void
688 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
689 {
690 	DBG_FUNC("updjcg")
691 	ufs2_daddr_t	cbase, dmax, dupper;
692 	struct csum	*cs;
693 	int	i,k;
694 	int	j=0;
695 
696 	DBG_ENTER;
697 
698 	/*
699 	 * Read the former last (joining) cylinder group from disk, and make
700 	 * a copy.
701 	 */
702 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
703 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
704 	DBG_PRINT0("jcg read\n");
705 	DBG_DUMP_CG(&sblock,
706 	    "old joining cg",
707 	    &aocg);
708 
709 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
710 
711 	/*
712 	 * If the cylinder group had already its new final size almost
713 	 * nothing is to be done ... except:
714 	 * For some reason the value of cg_ncyl in the last cylinder group has
715 	 * to be zero instead of fs_cpg. As this is now no longer the last
716 	 * cylinder group we have to change that value now to fs_cpg.
717 	 */
718 
719 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
720 		if (sblock.fs_magic == FS_UFS1_MAGIC)
721 			acg.cg_old_ncyl=sblock.fs_old_cpg;
722 
723 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
724 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
725 		DBG_PRINT0("jcg written\n");
726 		DBG_DUMP_CG(&sblock,
727 		    "new joining cg",
728 		    &acg);
729 
730 		DBG_LEAVE;
731 		return;
732 	}
733 
734 	/*
735 	 * Set up some variables needed later.
736 	 */
737 	cbase = cgbase(&sblock, cylno);
738 	dmax = cbase + sblock.fs_fpg;
739 	if (dmax > sblock.fs_size)
740 		dmax = sblock.fs_size;
741 	dupper = cgdmin(&sblock, cylno) - cbase;
742 	if (cylno == 0) { /* XXX fscs may be relocated */
743 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
744 	}
745 
746 	/*
747 	 * Set pointer to the cylinder summary for our cylinder group.
748 	 */
749 	cs = fscs + cylno;
750 
751 	/*
752 	 * Touch the cylinder group, update all fields in the cylinder group as
753 	 * needed, update the free space in the superblock.
754 	 */
755 	acg.cg_time = utime;
756 	if (cylno == sblock.fs_ncg - 1) {
757 		/*
758 		 * This is still the last cylinder group.
759 		 */
760 		if (sblock.fs_magic == FS_UFS1_MAGIC)
761 			acg.cg_old_ncyl =
762 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
763 	} else {
764 		acg.cg_old_ncyl = sblock.fs_old_cpg;
765 	}
766 	DBG_PRINT2("jcg dbg: %d %u",
767 	    cylno,
768 	    sblock.fs_ncg);
769 #ifdef FS_DEBUG
770 	if (sblock.fs_magic == FS_UFS1_MAGIC)
771 		DBG_PRINT2("%d %u",
772 		    acg.cg_old_ncyl,
773 		    sblock.fs_old_cpg);
774 #endif
775 	DBG_PRINT0("\n");
776 	acg.cg_ndblk = dmax - cbase;
777 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
778 	if (sblock.fs_contigsumsize > 0) {
779 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
780 	}
781 
782 	/*
783 	 * Now we have to update the free fragment bitmap for our new free
784 	 * space.  There again we have to handle the fragmentation and also
785 	 * the rotational layout tables and the cluster summary.  This is
786 	 * also done per fragment for the first new block if the old file
787 	 * system end was not on a block boundary, per fragment for the new
788 	 * last block if the new file system end is not on a block boundary,
789 	 * and per block for all space in between.
790 	 *
791 	 * Handle the first new block here if it was partially available
792 	 * before.
793 	 */
794 	if(osblock.fs_size % sblock.fs_frag) {
795 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
796 			/*
797 			 * The new space is enough to fill at least this
798 			 * block
799 			 */
800 			j=0;
801 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
802 			    i>=osblock.fs_size-cbase;
803 			    i--) {
804 				setbit(cg_blksfree(&acg), i);
805 				acg.cg_cs.cs_nffree++;
806 				j++;
807 			}
808 
809 			/*
810 			 * Check if the fragment just created could join an
811 			 * already existing fragment at the former end of the
812 			 * file system.
813 			 */
814 			if(isblock(&sblock, cg_blksfree(&acg),
815 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
816 			    sblock.fs_frag))) {
817 				/*
818 				 * The block is now completely available.
819 				 */
820 				DBG_PRINT0("block was\n");
821 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
822 				acg.cg_cs.cs_nbfree++;
823 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
824 				k=rounddown(osblock.fs_size-cbase,
825 				    sblock.fs_frag);
826 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
827 			} else {
828 				/*
829 				 * Lets rejoin a possible partially growed
830 				 * fragment.
831 				 */
832 				k=0;
833 				while(isset(cg_blksfree(&acg), i) &&
834 				    (i>=rounddown(osblock.fs_size-cbase,
835 				    sblock.fs_frag))) {
836 					i--;
837 					k++;
838 				}
839 				if(k) {
840 					acg.cg_frsum[k]--;
841 				}
842 				acg.cg_frsum[k+j]++;
843 			}
844 		} else {
845 			/*
846 			 * We only grow by some fragments within this last
847 			 * block.
848 			 */
849 			for(i=sblock.fs_size-cbase-1;
850 				i>=osblock.fs_size-cbase;
851 				i--) {
852 				setbit(cg_blksfree(&acg), i);
853 				acg.cg_cs.cs_nffree++;
854 				j++;
855 			}
856 			/*
857 			 * Lets rejoin a possible partially growed fragment.
858 			 */
859 			k=0;
860 			while(isset(cg_blksfree(&acg), i) &&
861 			    (i>=rounddown(osblock.fs_size-cbase,
862 			    sblock.fs_frag))) {
863 				i--;
864 				k++;
865 			}
866 			if(k) {
867 				acg.cg_frsum[k]--;
868 			}
869 			acg.cg_frsum[k+j]++;
870 		}
871 	}
872 
873 	/*
874 	 * Handle all new complete blocks here.
875 	 */
876 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
877 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
878 	    i+=sblock.fs_frag) {
879 		j = i / sblock.fs_frag;
880 		setblock(&sblock, cg_blksfree(&acg), j);
881 		updclst(j);
882 		acg.cg_cs.cs_nbfree++;
883 	}
884 
885 	/*
886 	 * Handle the last new block if there are stll some new fragments left.
887 	 * Here we don't have to bother about the cluster summary or the even
888 	 * the rotational layout table.
889 	 */
890 	if (i < (dmax - cbase)) {
891 		acg.cg_frsum[dmax - cbase - i]++;
892 		for (; i < dmax - cbase; i++) {
893 			setbit(cg_blksfree(&acg), i);
894 			acg.cg_cs.cs_nffree++;
895 		}
896 	}
897 
898 	sblock.fs_cstotal.cs_nffree +=
899 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
900 	sblock.fs_cstotal.cs_nbfree +=
901 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
902 	/*
903 	 * The following statistics are not changed here:
904 	 *     sblock.fs_cstotal.cs_ndir
905 	 *     sblock.fs_cstotal.cs_nifree
906 	 * As the statistics for this cylinder group are ready, copy it to
907 	 * the summary information array.
908 	 */
909 	*cs = acg.cg_cs;
910 
911 	/*
912 	 * Write the updated "joining" cylinder group back to disk.
913 	 */
914 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
915 	    (void *)&acg, fso, Nflag);
916 	DBG_PRINT0("jcg written\n");
917 	DBG_DUMP_CG(&sblock,
918 	    "new joining cg",
919 	    &acg);
920 
921 	DBG_LEAVE;
922 	return;
923 }
924 
925 /* ********************************************************** updcsloc ***** */
926 /*
927  * Here we update the location of the cylinder summary. We have two possible
928  * ways of growing the cylinder summary.
929  * (1)	We can try to grow the summary in the current location, and relocate
930  *	possibly used blocks within the current cylinder group.
931  * (2)	Alternatively we can relocate the whole cylinder summary to the first
932  *	new completely empty cylinder group. Once the cylinder summary is no
933  *	longer in the beginning of the first cylinder group you should never
934  *	use a version of fsck which is not aware of the possibility to have
935  *	this structure in a non standard place.
936  * Option (1) is considered to be less intrusive to the structure of the file-
937  * system. So we try to stick to that whenever possible. If there is not enough
938  * space in the cylinder group containing the cylinder summary we have to use
939  * method (2). In case of active snapshots in the file system we probably can
940  * completely avoid implementing copy on write if we stick to method (2) only.
941  */
942 static void
943 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
944 {
945 	DBG_FUNC("updcsloc")
946 	struct csum	*cs;
947 	int	ocscg, ncscg;
948 	int	blocks;
949 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
950 	int	ind;
951 	int	cylno, inc;
952 	struct gfs_bpp	*bp;
953 	int	i, l;
954 	int	lcs=0;
955 	int	block;
956 
957 	DBG_ENTER;
958 
959 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
960 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
961 		/*
962 		 * No new fragment needed.
963 		 */
964 		DBG_LEAVE;
965 		return;
966 	}
967 	ocscg=dtog(&osblock, osblock.fs_csaddr);
968 	cs=fscs+ocscg;
969 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
970 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
971 
972 	/*
973 	 * Read original cylinder group from disk, and make a copy.
974 	 * XXX	If Nflag is set in some very rare cases we now miss
975 	 *	some changes done in updjcg by reading the unmodified
976 	 *	block from disk.
977 	 */
978 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
979 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
980 	DBG_PRINT0("oscg read\n");
981 	DBG_DUMP_CG(&sblock,
982 	    "old summary cg",
983 	    &aocg);
984 
985 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
986 
987 	/*
988 	 * Touch the cylinder group, set up local variables needed later
989 	 * and update the superblock.
990 	 */
991 	acg.cg_time = utime;
992 
993 	/*
994 	 * XXX	In the case of having active snapshots we may need much more
995 	 *	blocks for the copy on write. We need each block twice, and
996 	 *	also up to 8*3 blocks for indirect blocks for all possible
997 	 *	references.
998 	 */
999 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
1000 		/*
1001 		 * There is not enough space in the old cylinder group to
1002 		 * relocate all blocks as needed, so we relocate the whole
1003 		 * cylinder group summary to a new group. We try to use the
1004 		 * first complete new cylinder group just created. Within the
1005 		 * cylinder group we align the area immediately after the
1006 		 * cylinder group information location in order to be as
1007 		 * close as possible to the original implementation of ffs.
1008 		 *
1009 		 * First we have to make sure we'll find enough space in the
1010 		 * new cylinder group. If not, then we currently give up.
1011 		 * We start with freeing everything which was used by the
1012 		 * fragments of the old cylinder summary in the current group.
1013 		 * Now we write back the group meta data, read in the needed
1014 		 * meta data from the new cylinder group, and start allocating
1015 		 * within that group. Here we can assume, the group to be
1016 		 * completely empty. Which makes the handling of fragments and
1017 		 * clusters a lot easier.
1018 		 */
1019 		DBG_TRC;
1020 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1021 			errx(2, "panic: not enough space");
1022 		}
1023 
1024 		/*
1025 		 * Point "d" to the first fragment not used by the cylinder
1026 		 * summary.
1027 		 */
1028 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1029 
1030 		/*
1031 		 * Set up last cluster size ("lcs") already here. Calculate
1032 		 * the size for the trailing cluster just behind where "d"
1033 		 * points to.
1034 		 */
1035 		if(sblock.fs_contigsumsize > 0) {
1036 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1037 			    lcs=0; lcs<sblock.fs_contigsumsize;
1038 			    block++, lcs++) {
1039 				if(isclr(cg_clustersfree(&acg), block)){
1040 					break;
1041 				}
1042 			}
1043 		}
1044 
1045 		/*
1046 		 * Point "d" to the last frag used by the cylinder summary.
1047 		 */
1048 		d--;
1049 
1050 		DBG_PRINT1("d=%jd\n",
1051 		    (intmax_t)d);
1052 		if((d+1)%sblock.fs_frag) {
1053 			/*
1054 			 * The end of the cylinder summary is not a complete
1055 			 * block.
1056 			 */
1057 			DBG_TRC;
1058 			frag_adjust(d%sblock.fs_fpg, -1);
1059 			for(; (d+1)%sblock.fs_frag; d--) {
1060 				DBG_PRINT1("d=%jd\n",
1061 				    (intmax_t)d);
1062 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1063 				acg.cg_cs.cs_nffree++;
1064 				sblock.fs_cstotal.cs_nffree++;
1065 			}
1066 			/*
1067 			 * Point "d" to the last fragment of the last
1068 			 * (incomplete) block of the cylinder summary.
1069 			 */
1070 			d++;
1071 			frag_adjust(d%sblock.fs_fpg, 1);
1072 
1073 			if(isblock(&sblock, cg_blksfree(&acg),
1074 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1075 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1076 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1077 				acg.cg_cs.cs_nbfree++;
1078 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1079 				sblock.fs_cstotal.cs_nbfree++;
1080 				if(sblock.fs_contigsumsize > 0) {
1081 					setbit(cg_clustersfree(&acg),
1082 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1083 					if(lcs < sblock.fs_contigsumsize) {
1084 						if(lcs) {
1085 							cg_clustersum(&acg)
1086 							    [lcs]--;
1087 						}
1088 						lcs++;
1089 						cg_clustersum(&acg)[lcs]++;
1090 					}
1091 				}
1092 			}
1093 			/*
1094 			 * Point "d" to the first fragment of the block before
1095 			 * the last incomplete block.
1096 			 */
1097 			d--;
1098 		}
1099 
1100 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1101 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1102 		    d-=sblock.fs_frag) {
1103 			DBG_TRC;
1104 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1105 			setblock(&sblock, cg_blksfree(&acg),
1106 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1107 			acg.cg_cs.cs_nbfree++;
1108 			sblock.fs_cstotal.cs_nbfree++;
1109 			if(sblock.fs_contigsumsize > 0) {
1110 				setbit(cg_clustersfree(&acg),
1111 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1112 				/*
1113 				 * The last cluster size is already set up.
1114 				 */
1115 				if(lcs < sblock.fs_contigsumsize) {
1116 					if(lcs) {
1117 						cg_clustersum(&acg)[lcs]--;
1118 					}
1119 					lcs++;
1120 					cg_clustersum(&acg)[lcs]++;
1121 				}
1122 			}
1123 		}
1124 		*cs = acg.cg_cs;
1125 
1126 		/*
1127 		 * Now write the former cylinder group containing the cylinder
1128 		 * summary back to disk.
1129 		 */
1130 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1131 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1132 		DBG_PRINT0("oscg written\n");
1133 		DBG_DUMP_CG(&sblock,
1134 		    "old summary cg",
1135 		    &acg);
1136 
1137 		/*
1138 		 * Find the beginning of the new cylinder group containing the
1139 		 * cylinder summary.
1140 		 */
1141 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1142 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1143 		cs=fscs+ncscg;
1144 
1145 
1146 		/*
1147 		 * If Nflag is specified, we would now read random data instead
1148 		 * of an empty cg structure from disk. So we can't simulate that
1149 		 * part for now.
1150 		 */
1151 		if(Nflag) {
1152 			DBG_PRINT0("nscg update skipped\n");
1153 			DBG_LEAVE;
1154 			return;
1155 		}
1156 
1157 		/*
1158 		 * Read the future cylinder group containing the cylinder
1159 		 * summary from disk, and make a copy.
1160 		 */
1161 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1162 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1163 		DBG_PRINT0("nscg read\n");
1164 		DBG_DUMP_CG(&sblock,
1165 		    "new summary cg",
1166 		    &aocg);
1167 
1168 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1169 
1170 		/*
1171 		 * Allocate all complete blocks used by the new cylinder
1172 		 * summary.
1173 		 */
1174 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1175 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1176 		    d+=sblock.fs_frag) {
1177 			clrblock(&sblock, cg_blksfree(&acg),
1178 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1179 			acg.cg_cs.cs_nbfree--;
1180 			sblock.fs_cstotal.cs_nbfree--;
1181 			if(sblock.fs_contigsumsize > 0) {
1182 				clrbit(cg_clustersfree(&acg),
1183 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1184 			}
1185 		}
1186 
1187 		/*
1188 		 * Allocate all fragments used by the cylinder summary in the
1189 		 * last block.
1190 		 */
1191 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1192 			for(; d-sblock.fs_csaddr<
1193 			    sblock.fs_cssize/sblock.fs_fsize;
1194 			    d++) {
1195 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1196 				acg.cg_cs.cs_nffree--;
1197 				sblock.fs_cstotal.cs_nffree--;
1198 			}
1199 			acg.cg_cs.cs_nbfree--;
1200 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1201 			sblock.fs_cstotal.cs_nbfree--;
1202 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1203 			if(sblock.fs_contigsumsize > 0) {
1204 				clrbit(cg_clustersfree(&acg),
1205 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1206 			}
1207 
1208 			frag_adjust(d%sblock.fs_fpg, +1);
1209 		}
1210 		/*
1211 		 * XXX	Handle the cluster statistics here in the case this
1212 		 *	cylinder group is now almost full, and the remaining
1213 		 *	space is less then the maximum cluster size. This is
1214 		 *	probably not needed, as you would hardly find a file
1215 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1216 		 *	space right behind the cylinder group information in
1217 		 *	any new cylinder group.
1218 		 */
1219 
1220 		/*
1221 		 * Update our statistics in the cylinder summary.
1222 		 */
1223 		*cs = acg.cg_cs;
1224 
1225 		/*
1226 		 * Write the new cylinder group containing the cylinder summary
1227 		 * back to disk.
1228 		 */
1229 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1230 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1231 		DBG_PRINT0("nscg written\n");
1232 		DBG_DUMP_CG(&sblock,
1233 		    "new summary cg",
1234 		    &acg);
1235 
1236 		DBG_LEAVE;
1237 		return;
1238 	}
1239 	/*
1240 	 * We have got enough of space in the current cylinder group, so we
1241 	 * can relocate just a few blocks, and let the summary information
1242 	 * grow in place where it is right now.
1243 	 */
1244 	DBG_TRC;
1245 
1246 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1247 	dupper = sblock.fs_csaddr - cbase +
1248 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1249 	odupper = osblock.fs_csaddr - cbase +
1250 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1251 
1252 	sblock.fs_dsize -= dupper-odupper;
1253 
1254 	/*
1255 	 * Allocate the space for the array of blocks to be relocated.
1256 	 */
1257  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1258 	    sizeof(struct gfs_bpp));
1259 	if(bp == NULL) {
1260 		errx(1, "malloc failed");
1261 	}
1262 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1263 	    sizeof(struct gfs_bpp));
1264 
1265 	/*
1266 	 * Lock all new frags needed for the cylinder group summary. This is
1267 	 * done per fragment in the first and last block of the new required
1268 	 * area, and per block for all other blocks.
1269 	 *
1270 	 * Handle the first new block here (but only if some fragments where
1271 	 * already used for the cylinder summary).
1272 	 */
1273 	ind=0;
1274 	frag_adjust(odupper, -1);
1275 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1276 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1277 		    (intmax_t)d);
1278 		if(isclr(cg_blksfree(&acg), d)) {
1279 			if (!ind) {
1280 				bp[ind].old=d/sblock.fs_frag;
1281 				bp[ind].flags|=GFS_FL_FIRST;
1282 				if(roundup(d, sblock.fs_frag) >= dupper) {
1283 					bp[ind].flags|=GFS_FL_LAST;
1284 				}
1285 				ind++;
1286 			}
1287 		} else {
1288 			clrbit(cg_blksfree(&acg), d);
1289 			acg.cg_cs.cs_nffree--;
1290 			sblock.fs_cstotal.cs_nffree--;
1291 		}
1292 		/*
1293 		 * No cluster handling is needed here, as there was at least
1294 		 * one fragment in use by the cylinder summary in the old
1295 		 * file system.
1296 		 * No block-free counter handling here as this block was not
1297 		 * a free block.
1298 		 */
1299 	}
1300 	frag_adjust(odupper, 1);
1301 
1302 	/*
1303 	 * Handle all needed complete blocks here.
1304 	 */
1305 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1306 		DBG_PRINT1("scg block check loop d=%jd\n",
1307 		    (intmax_t)d);
1308 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1309 			for(f=d; f<d+sblock.fs_frag; f++) {
1310 				if(isset(cg_blksfree(&aocg), f)) {
1311 					acg.cg_cs.cs_nffree--;
1312 					sblock.fs_cstotal.cs_nffree--;
1313 				}
1314 			}
1315 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1316 			bp[ind].old=d/sblock.fs_frag;
1317 			ind++;
1318 		} else {
1319 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1320 			acg.cg_cs.cs_nbfree--;
1321 			sblock.fs_cstotal.cs_nbfree--;
1322 			if(sblock.fs_contigsumsize > 0) {
1323 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1324 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1325 				    lcs<sblock.fs_contigsumsize;
1326 				    l++, lcs++ ) {
1327 					if(isclr(cg_clustersfree(&acg),l)){
1328 						break;
1329 					}
1330 				}
1331 				if(lcs < sblock.fs_contigsumsize) {
1332 					cg_clustersum(&acg)[lcs+1]--;
1333 					if(lcs) {
1334 						cg_clustersum(&acg)[lcs]++;
1335 					}
1336 				}
1337 			}
1338 		}
1339 		/*
1340 		 * No fragment counter handling is needed here, as this finally
1341 		 * doesn't change after the relocation.
1342 		 */
1343 	}
1344 
1345 	/*
1346 	 * Handle all fragments needed in the last new affected block.
1347 	 */
1348 	if(d<dupper) {
1349 		frag_adjust(dupper-1, -1);
1350 
1351 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1352 			acg.cg_cs.cs_nbfree--;
1353 			sblock.fs_cstotal.cs_nbfree--;
1354 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1355 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1356 			if(sblock.fs_contigsumsize > 0) {
1357 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1358 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1359 				    lcs<sblock.fs_contigsumsize;
1360 				    l++, lcs++ ) {
1361 					if(isclr(cg_clustersfree(&acg),l)){
1362 						break;
1363 					}
1364 				}
1365 				if(lcs < sblock.fs_contigsumsize) {
1366 					cg_clustersum(&acg)[lcs+1]--;
1367 					if(lcs) {
1368 						cg_clustersum(&acg)[lcs]++;
1369 					}
1370 				}
1371 			}
1372 		}
1373 
1374 		for(; d<dupper; d++) {
1375 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1376 			    (intmax_t)d);
1377 			if(isclr(cg_blksfree(&acg), d)) {
1378 				bp[ind].old=d/sblock.fs_frag;
1379 				bp[ind].flags|=GFS_FL_LAST;
1380 			} else {
1381 				clrbit(cg_blksfree(&acg), d);
1382 				acg.cg_cs.cs_nffree--;
1383 				sblock.fs_cstotal.cs_nffree--;
1384 			}
1385 		}
1386 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1387 			ind++;
1388 		}
1389 		frag_adjust(dupper-1, 1);
1390 	}
1391 
1392 	/*
1393 	 * If we found a block to relocate just do so.
1394 	 */
1395 	if(ind) {
1396 		for(i=0; i<ind; i++) {
1397 			if(!bp[i].old) { /* no more blocks listed */
1398 				/*
1399 				 * XXX	A relative blocknumber should not be
1400 				 *	zero, which is not explicitly
1401 				 *	guaranteed by our code.
1402 				 */
1403 				break;
1404 			}
1405 			/*
1406 			 * Allocate a complete block in the same (current)
1407 			 * cylinder group.
1408 			 */
1409 			bp[i].new=alloc()/sblock.fs_frag;
1410 
1411 			/*
1412 			 * There is no frag_adjust() needed for the new block
1413 			 * as it will have no fragments yet :-).
1414 			 */
1415 			for(f=bp[i].old*sblock.fs_frag,
1416 			    g=bp[i].new*sblock.fs_frag;
1417 			    f<(bp[i].old+1)*sblock.fs_frag;
1418 			    f++, g++) {
1419 				if(isset(cg_blksfree(&aocg), f)) {
1420 					setbit(cg_blksfree(&acg), g);
1421 					acg.cg_cs.cs_nffree++;
1422 					sblock.fs_cstotal.cs_nffree++;
1423 				}
1424 			}
1425 
1426 			/*
1427 			 * Special handling is required if this was the first
1428 			 * block. We have to consider the fragments which were
1429 			 * used by the cylinder summary in the original block
1430 			 * which re to be free in the copy of our block.  We
1431 			 * have to be careful if this first block happens to
1432 			 * be also the last block to be relocated.
1433 			 */
1434 			if(bp[i].flags & GFS_FL_FIRST) {
1435 				for(f=bp[i].old*sblock.fs_frag,
1436 				    g=bp[i].new*sblock.fs_frag;
1437 				    f<odupper;
1438 				    f++, g++) {
1439 					setbit(cg_blksfree(&acg), g);
1440 					acg.cg_cs.cs_nffree++;
1441 					sblock.fs_cstotal.cs_nffree++;
1442 				}
1443 				if(!(bp[i].flags & GFS_FL_LAST)) {
1444 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1445 				}
1446 			}
1447 
1448 			/*
1449 			 * Special handling is required if this is the last
1450 			 * block to be relocated.
1451 			 */
1452 			if(bp[i].flags & GFS_FL_LAST) {
1453 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1454 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1455 				for(f=dupper;
1456 				    f<roundup(dupper, sblock.fs_frag);
1457 				    f++) {
1458 					if(isclr(cg_blksfree(&acg), f)) {
1459 						setbit(cg_blksfree(&acg), f);
1460 						acg.cg_cs.cs_nffree++;
1461 						sblock.fs_cstotal.cs_nffree++;
1462 					}
1463 				}
1464 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1465 			}
1466 
1467 			/*
1468 			 * !!! Attach the cylindergroup offset here.
1469 			 */
1470 			bp[i].old+=cbase/sblock.fs_frag;
1471 			bp[i].new+=cbase/sblock.fs_frag;
1472 
1473 			/*
1474 			 * Copy the content of the block.
1475 			 */
1476 			/*
1477 			 * XXX	Here we will have to implement a copy on write
1478 			 *	in the case we have any active snapshots.
1479 			 */
1480 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1481 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1482 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1483 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1484 			DBG_DUMP_HEX(&sblock,
1485 			    "copied full block",
1486 			    (unsigned char *)&ablk);
1487 
1488 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1489 			    (intmax_t)bp[i].old,
1490 			    (intmax_t)bp[i].new);
1491 		}
1492 
1493 		/*
1494 		 * Now we have to update all references to any fragment which
1495 		 * belongs to any block relocated. We iterate now over all
1496 		 * cylinder groups, within those over all non zero length
1497 		 * inodes.
1498 		 */
1499 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1500 			DBG_PRINT1("scg doing cg (%d)\n",
1501 			    cylno);
1502 			for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1503 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1504 			}
1505 		}
1506 
1507 		/*
1508 		 * All inodes are checked, now make sure the number of
1509 		 * references found make sense.
1510 		 */
1511 		for(i=0; i<ind; i++) {
1512 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1513 				warnx("error: %jd refs found for block %jd.",
1514 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1515 			}
1516 
1517 		}
1518 	}
1519 	/*
1520 	 * The following statistics are not changed here:
1521 	 *     sblock.fs_cstotal.cs_ndir
1522 	 *     sblock.fs_cstotal.cs_nifree
1523 	 * The following statistics were already updated on the fly:
1524 	 *     sblock.fs_cstotal.cs_nffree
1525 	 *     sblock.fs_cstotal.cs_nbfree
1526 	 * As the statistics for this cylinder group are ready, copy it to
1527 	 * the summary information array.
1528 	 */
1529 
1530 	*cs = acg.cg_cs;
1531 
1532 	/*
1533 	 * Write summary cylinder group back to disk.
1534 	 */
1535 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1536 	    (void *)&acg, fso, Nflag);
1537 	DBG_PRINT0("scg written\n");
1538 	DBG_DUMP_CG(&sblock,
1539 	    "new summary cg",
1540 	    &acg);
1541 
1542 	DBG_LEAVE;
1543 	return;
1544 }
1545 
1546 /* ************************************************************** rdfs ***** */
1547 /*
1548  * Here we read some block(s) from disk.
1549  */
1550 static void
1551 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1552 {
1553 	DBG_FUNC("rdfs")
1554 	ssize_t	n;
1555 
1556 	DBG_ENTER;
1557 
1558 	if (bno < 0) {
1559 		err(32, "rdfs: attempting to read negative block number");
1560 	}
1561 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1562 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1563 	}
1564 	n = read(fsi, bf, size);
1565 	if (n != (ssize_t)size) {
1566 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1567 	}
1568 
1569 	DBG_LEAVE;
1570 	return;
1571 }
1572 
1573 /* ************************************************************** wtfs ***** */
1574 /*
1575  * Here we write some block(s) to disk.
1576  */
1577 static void
1578 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1579 {
1580 	DBG_FUNC("wtfs")
1581 	ssize_t	n;
1582 
1583 	DBG_ENTER;
1584 
1585 	if (Nflag) {
1586 		DBG_LEAVE;
1587 		return;
1588 	}
1589 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1590 		err(35, "wtfs: seek error: %ld", (long)bno);
1591 	}
1592 	n = write(fso, bf, size);
1593 	if (n != (ssize_t)size) {
1594 		err(36, "wtfs: write error: %ld", (long)bno);
1595 	}
1596 
1597 	DBG_LEAVE;
1598 	return;
1599 }
1600 
1601 /* ************************************************************* alloc ***** */
1602 /*
1603  * Here we allocate a free block in the current cylinder group. It is assumed,
1604  * that acg contains the current cylinder group. As we may take a block from
1605  * somewhere in the file system we have to handle cluster summary here.
1606  */
1607 static ufs2_daddr_t
1608 alloc(void)
1609 {
1610 	DBG_FUNC("alloc")
1611 	ufs2_daddr_t	d, blkno;
1612 	int	lcs1, lcs2;
1613 	int	l;
1614 	int	csmin, csmax;
1615 	int	dlower, dupper, dmax;
1616 
1617 	DBG_ENTER;
1618 
1619 	if (acg.cg_magic != CG_MAGIC) {
1620 		warnx("acg: bad magic number");
1621 		DBG_LEAVE;
1622 		return (0);
1623 	}
1624 	if (acg.cg_cs.cs_nbfree == 0) {
1625 		warnx("error: cylinder group ran out of space");
1626 		DBG_LEAVE;
1627 		return (0);
1628 	}
1629 	/*
1630 	 * We start seeking for free blocks only from the space available after
1631 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1632 	 * block here which we have to relocate a couple of seconds later again
1633 	 * again, and we are not prepared to to this anyway.
1634 	 */
1635 	blkno=-1;
1636 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1637 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1638 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1639 	if (dmax > sblock.fs_size) {
1640 		dmax = sblock.fs_size;
1641 	}
1642 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1643 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1644 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1645 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1646 	    dlower,
1647 	    dupper,
1648 	    dmax);
1649 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1650 	    csmin,
1651 	    csmax);
1652 
1653 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1654 		if(d>=csmin && d<=csmax) {
1655 			continue;
1656 		}
1657 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1658 		    d))) {
1659 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1660 			break;
1661 		}
1662 	}
1663 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1664 		if(d>=csmin && d<=csmax) {
1665 			continue;
1666 		}
1667 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1668 		    d))) {
1669 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1670 			break;
1671 		}
1672 	}
1673 	if(blkno==-1) {
1674 		warnx("internal error: couldn't find promised block in cg");
1675 		DBG_LEAVE;
1676 		return (0);
1677 	}
1678 
1679 	/*
1680 	 * This is needed if the block was found already in the first loop.
1681 	 */
1682 	d=blkstofrags(&sblock, blkno);
1683 
1684 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1685 	if (sblock.fs_contigsumsize > 0) {
1686 		/*
1687 		 * Handle the cluster allocation bitmap.
1688 		 */
1689 		clrbit(cg_clustersfree(&acg), blkno);
1690 		/*
1691 		 * We possibly have split a cluster here, so we have to do
1692 		 * recalculate the sizes of the remaining cluster halves now,
1693 		 * and use them for updating the cluster summary information.
1694 		 *
1695 		 * Lets start with the blocks before our allocated block ...
1696 		 */
1697 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1698 		    l--, lcs1++ ) {
1699 			if(isclr(cg_clustersfree(&acg),l)){
1700 				break;
1701 			}
1702 		}
1703 		/*
1704 		 * ... and continue with the blocks right after our allocated
1705 		 * block.
1706 		 */
1707 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1708 		    l++, lcs2++ ) {
1709 			if(isclr(cg_clustersfree(&acg),l)){
1710 				break;
1711 			}
1712 		}
1713 
1714 		/*
1715 		 * Now update all counters.
1716 		 */
1717 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1718 		if(lcs1) {
1719 			cg_clustersum(&acg)[lcs1]++;
1720 		}
1721 		if(lcs2) {
1722 			cg_clustersum(&acg)[lcs2]++;
1723 		}
1724 	}
1725 	/*
1726 	 * Update all statistics based on blocks.
1727 	 */
1728 	acg.cg_cs.cs_nbfree--;
1729 	sblock.fs_cstotal.cs_nbfree--;
1730 
1731 	DBG_LEAVE;
1732 	return (d);
1733 }
1734 
1735 /* *********************************************************** isblock ***** */
1736 /*
1737  * Here we check if all frags of a block are free. For more details again
1738  * please see the source of newfs(8), as this function is taken over almost
1739  * unchanged.
1740  */
1741 static int
1742 isblock(struct fs *fs, unsigned char *cp, int h)
1743 {
1744 	DBG_FUNC("isblock")
1745 	unsigned char	mask;
1746 
1747 	DBG_ENTER;
1748 
1749 	switch (fs->fs_frag) {
1750 	case 8:
1751 		DBG_LEAVE;
1752 		return (cp[h] == 0xff);
1753 	case 4:
1754 		mask = 0x0f << ((h & 0x1) << 2);
1755 		DBG_LEAVE;
1756 		return ((cp[h >> 1] & mask) == mask);
1757 	case 2:
1758 		mask = 0x03 << ((h & 0x3) << 1);
1759 		DBG_LEAVE;
1760 		return ((cp[h >> 2] & mask) == mask);
1761 	case 1:
1762 		mask = 0x01 << (h & 0x7);
1763 		DBG_LEAVE;
1764 		return ((cp[h >> 3] & mask) == mask);
1765 	default:
1766 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1767 		DBG_LEAVE;
1768 		return (0);
1769 	}
1770 }
1771 
1772 /* ********************************************************** clrblock ***** */
1773 /*
1774  * Here we allocate a complete block in the block map. For more details again
1775  * please see the source of newfs(8), as this function is taken over almost
1776  * unchanged.
1777  */
1778 static void
1779 clrblock(struct fs *fs, unsigned char *cp, int h)
1780 {
1781 	DBG_FUNC("clrblock")
1782 
1783 	DBG_ENTER;
1784 
1785 	switch ((fs)->fs_frag) {
1786 	case 8:
1787 		cp[h] = 0;
1788 		break;
1789 	case 4:
1790 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1791 		break;
1792 	case 2:
1793 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1794 		break;
1795 	case 1:
1796 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1797 		break;
1798 	default:
1799 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1800 		break;
1801 	}
1802 
1803 	DBG_LEAVE;
1804 	return;
1805 }
1806 
1807 /* ********************************************************** setblock ***** */
1808 /*
1809  * Here we free a complete block in the free block map. For more details again
1810  * please see the source of newfs(8), as this function is taken over almost
1811  * unchanged.
1812  */
1813 static void
1814 setblock(struct fs *fs, unsigned char *cp, int h)
1815 {
1816 	DBG_FUNC("setblock")
1817 
1818 	DBG_ENTER;
1819 
1820 	switch (fs->fs_frag) {
1821 	case 8:
1822 		cp[h] = 0xff;
1823 		break;
1824 	case 4:
1825 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1826 		break;
1827 	case 2:
1828 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1829 		break;
1830 	case 1:
1831 		cp[h >> 3] |= (0x01 << (h & 0x7));
1832 		break;
1833 	default:
1834 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1835 		break;
1836 	}
1837 
1838 	DBG_LEAVE;
1839 	return;
1840 }
1841 
1842 /* ************************************************************ ginode ***** */
1843 /*
1844  * This function provides access to an individual inode. We find out in which
1845  * block the requested inode is located, read it from disk if needed, and
1846  * return the pointer into that block. We maintain a cache of one block to
1847  * not read the same block again and again if we iterate linearly over all
1848  * inodes.
1849  */
1850 static union dinode *
1851 ginode(ino_t inumber, int fsi, int cg)
1852 {
1853 	DBG_FUNC("ginode")
1854 	static ino_t	startinum = 0;	/* first inode in cached block */
1855 
1856 	DBG_ENTER;
1857 
1858 	/*
1859 	 * The inumber passed in is relative to the cg, so use it here to see
1860 	 * if the inode has been allocated yet.
1861 	 */
1862 	if (isclr(cg_inosused(&aocg), inumber)) {
1863 		DBG_LEAVE;
1864 		return NULL;
1865 	}
1866 	/*
1867 	 * Now make the inumber relative to the entire inode space so it can
1868 	 * be sanity checked.
1869 	 */
1870 	inumber += (cg * sblock.fs_ipg);
1871 	if (inumber < ROOTINO) {
1872 		DBG_LEAVE;
1873 		return NULL;
1874 	}
1875 	if (inumber > maxino)
1876 		errx(8, "bad inode number %d to ginode", inumber);
1877 	if (startinum == 0 ||
1878 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1879 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1880 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1881 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1882 	}
1883 	DBG_LEAVE;
1884 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1885 		return (union dinode *)((uintptr_t)inobuf +
1886 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1887 	return (union dinode *)((uintptr_t)inobuf +
1888 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1889 }
1890 
1891 /* ****************************************************** charsperline ***** */
1892 /*
1893  * Figure out how many lines our current terminal has. For more details again
1894  * please see the source of newfs(8), as this function is taken over almost
1895  * unchanged.
1896  */
1897 static int
1898 charsperline(void)
1899 {
1900 	DBG_FUNC("charsperline")
1901 	int	columns;
1902 	char	*cp;
1903 	struct winsize	ws;
1904 
1905 	DBG_ENTER;
1906 
1907 	columns = 0;
1908 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1909 		columns = ws.ws_col;
1910 	}
1911 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1912 		columns = atoi(cp);
1913 	}
1914 	if (columns == 0) {
1915 		columns = 80;	/* last resort */
1916 	}
1917 
1918 	DBG_LEAVE;
1919 	return columns;
1920 }
1921 
1922 /* ****************************************************** get_dev_size ***** */
1923 /*
1924  * Get the size of the partition if we can't figure it out from the disklabel,
1925  * e.g. from vinum volumes.
1926  */
1927 static void
1928 get_dev_size(int fd, int *size)
1929 {
1930    int sectorsize;
1931    off_t mediasize;
1932 
1933    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1934         err(1,"DIOCGSECTORSIZE");
1935    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1936         err(1,"DIOCGMEDIASIZE");
1937 
1938    if (sectorsize <= 0)
1939        errx(1, "bogus sectorsize: %d", sectorsize);
1940 
1941    *size = mediasize / sectorsize;
1942 }
1943 
1944 /* ************************************************************** main ***** */
1945 /*
1946  * growfs(8)  is a utility which allows to increase the size of an existing
1947  * ufs file system. Currently this can only be done on unmounted file system.
1948  * It recognizes some command line options to specify the new desired size,
1949  * and it does some basic checkings. The old file system size is determined
1950  * and after some more checks like we can really access the new last block
1951  * on the disk etc. we calculate the new parameters for the superblock. After
1952  * having done this we just call growfs() which will do the work.  Before
1953  * we finish the only thing left is to update the disklabel.
1954  * We still have to provide support for snapshots. Therefore we first have to
1955  * understand what data structures are always replicated in the snapshot on
1956  * creation, for all other blocks we touch during our procedure, we have to
1957  * keep the old blocks unchanged somewhere available for the snapshots. If we
1958  * are lucky, then we only have to handle our blocks to be relocated in that
1959  * way.
1960  * Also we have to consider in what order we actually update the critical
1961  * data structures of the file system to make sure, that in case of a disaster
1962  * fsck(8) is still able to restore any lost data.
1963  * The foreseen last step then will be to provide for growing even mounted
1964  * file systems. There we have to extend the mount() system call to provide
1965  * userland access to the file system locking facility.
1966  */
1967 int
1968 main(int argc, char **argv)
1969 {
1970 	DBG_FUNC("main")
1971 	char	*device, *special, *cp;
1972 	int	ch;
1973 	unsigned int	size=0;
1974 	size_t	len;
1975 	unsigned int	Nflag=0;
1976 	int	ExpertFlag=0;
1977 	struct stat	st;
1978 	struct disklabel	*lp;
1979 	struct partition	*pp;
1980 	int	i,fsi,fso;
1981     u_int32_t p_size;
1982 	char	reply[5];
1983 #ifdef FSMAXSNAP
1984 	int	j;
1985 #endif /* FSMAXSNAP */
1986 
1987 	DBG_ENTER;
1988 
1989 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1990 		switch(ch) {
1991 		case 'N':
1992 			Nflag=1;
1993 			break;
1994 		case 's':
1995 			size=(size_t)atol(optarg);
1996 			if(size<1) {
1997 				usage();
1998 			}
1999 			break;
2000 		case 'v': /* for compatibility to newfs */
2001 			break;
2002 		case 'y':
2003 			ExpertFlag=1;
2004 			break;
2005 		case '?':
2006 			/* FALLTHROUGH */
2007 		default:
2008 			usage();
2009 		}
2010 	}
2011 	argc -= optind;
2012 	argv += optind;
2013 
2014 	if(argc != 1) {
2015 		usage();
2016 	}
2017 	device=*argv;
2018 
2019 	/*
2020 	 * Now try to guess the (raw)device name.
2021 	 */
2022 	if (0 == strrchr(device, '/')) {
2023 		/*
2024 		 * No path prefix was given, so try in that order:
2025 		 *     /dev/r%s
2026 		 *     /dev/%s
2027 		 *     /dev/vinum/r%s
2028 		 *     /dev/vinum/%s.
2029 		 *
2030 		 * FreeBSD now doesn't distinguish between raw and block
2031 		 * devices any longer, but it should still work this way.
2032 		 */
2033 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2034 		special=(char *)malloc(len);
2035 		if(special == NULL) {
2036 			errx(1, "malloc failed");
2037 		}
2038 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2039 		if (stat(special, &st) == -1) {
2040 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2041 			if (stat(special, &st) == -1) {
2042 				snprintf(special, len, "%svinum/r%s",
2043 				    _PATH_DEV, device);
2044 				if (stat(special, &st) == -1) {
2045 					/* For now this is the 'last resort' */
2046 					snprintf(special, len, "%svinum/%s",
2047 					    _PATH_DEV, device);
2048 				}
2049 			}
2050 		}
2051 		device = special;
2052 	}
2053 
2054 	/*
2055 	 * Try to access our devices for writing ...
2056 	 */
2057 	if (Nflag) {
2058 		fso = -1;
2059 	} else {
2060 		fso = open(device, O_WRONLY);
2061 		if (fso < 0) {
2062 			err(1, "%s", device);
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * ... and reading.
2068 	 */
2069 	fsi = open(device, O_RDONLY);
2070 	if (fsi < 0) {
2071 		err(1, "%s", device);
2072 	}
2073 
2074 	/*
2075 	 * Try to read a label and guess the slice if not specified. This
2076 	 * code should guess the right thing and avoid to bother the user
2077 	 * with the task of specifying the option -v on vinum volumes.
2078 	 */
2079 	cp=device+strlen(device)-1;
2080 	lp = get_disklabel(fsi);
2081 	pp = NULL;
2082     if (lp != NULL) {
2083         if (isdigit(*cp)) {
2084             pp = &lp->d_partitions[2];
2085         } else if (*cp>='a' && *cp<='h') {
2086             pp = &lp->d_partitions[*cp - 'a'];
2087         } else {
2088             errx(1, "unknown device");
2089         }
2090         p_size = pp->p_size;
2091     } else {
2092         get_dev_size(fsi, &p_size);
2093     }
2094 
2095 	/*
2096 	 * Check if that partition is suitable for growing a file system.
2097 	 */
2098 	if (p_size < 1) {
2099 		errx(1, "partition is unavailable");
2100 	}
2101 
2102 	/*
2103 	 * Read the current superblock, and take a backup.
2104 	 */
2105 	for (i = 0; sblock_try[i] != -1; i++) {
2106 		sblockloc = sblock_try[i] / DEV_BSIZE;
2107 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2108 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2109 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2110 		      osblock.fs_sblockloc == sblock_try[i])) &&
2111 		    osblock.fs_bsize <= MAXBSIZE &&
2112 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2113 			break;
2114 	}
2115 	if (sblock_try[i] == -1) {
2116 		errx(1, "superblock not recognized");
2117 	}
2118 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2119 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2120 
2121 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2122 	DBG_DUMP_FS(&sblock,
2123 	    "old sblock");
2124 
2125 	/*
2126 	 * Determine size to grow to. Default to the full size specified in
2127 	 * the disk label.
2128 	 */
2129 	sblock.fs_size = dbtofsb(&osblock, p_size);
2130 	if (size != 0) {
2131 		if (size > p_size){
2132 			errx(1, "there is not enough space (%d < %d)",
2133 			    p_size, size);
2134 		}
2135 		sblock.fs_size = dbtofsb(&osblock, size);
2136 	}
2137 
2138 	/*
2139 	 * Are we really growing ?
2140 	 */
2141 	if(osblock.fs_size >= sblock.fs_size) {
2142 		errx(1, "we are not growing (%jd->%jd)",
2143 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2144 	}
2145 
2146 
2147 #ifdef FSMAXSNAP
2148 	/*
2149 	 * Check if we find an active snapshot.
2150 	 */
2151 	if(ExpertFlag == 0) {
2152 		for(j=0; j<FSMAXSNAP; j++) {
2153 			if(sblock.fs_snapinum[j]) {
2154 				errx(1, "active snapshot found in file system\n"
2155 				    "	please remove all snapshots before "
2156 				    "using growfs");
2157 			}
2158 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2159 				break;
2160 			}
2161 		}
2162 	}
2163 #endif
2164 
2165 	if (ExpertFlag == 0 && Nflag == 0) {
2166 		printf("We strongly recommend you to make a backup "
2167 		    "before growing the Filesystem\n\n"
2168 		    " Did you backup your data (Yes/No) ? ");
2169 		fgets(reply, (int)sizeof(reply), stdin);
2170 		if (strcmp(reply, "Yes\n")){
2171 			printf("\n Nothing done \n");
2172 			exit (0);
2173 		}
2174 	}
2175 
2176 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2177 
2178 	/*
2179 	 * Try to access our new last block in the file system. Even if we
2180 	 * later on realize we have to abort our operation, on that block
2181 	 * there should be no data, so we can't destroy something yet.
2182 	 */
2183 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2184 	    fso, Nflag);
2185 
2186 	/*
2187 	 * Now calculate new superblock values and check for reasonable
2188 	 * bound for new file system size:
2189 	 *     fs_size:    is derived from label or user input
2190 	 *     fs_dsize:   should get updated in the routines creating or
2191 	 *                 updating the cylinder groups on the fly
2192 	 *     fs_cstotal: should get updated in the routines creating or
2193 	 *                 updating the cylinder groups
2194 	 */
2195 
2196 	/*
2197 	 * Update the number of cylinders and cylinder groups in the file system.
2198 	 */
2199 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2200 		sblock.fs_old_ncyl =
2201 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2202 		if (sblock.fs_size * sblock.fs_old_nspf >
2203 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2204 			sblock.fs_old_ncyl++;
2205 	}
2206 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2207 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2208 
2209 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2210 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2211 		/*
2212 		 * The space in the new last cylinder group is too small,
2213 		 * so revert back.
2214 		 */
2215 		sblock.fs_ncg--;
2216 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2217 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2218 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2219 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2220 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2221 	}
2222 
2223 	/*
2224 	 * Update the space for the cylinder group summary information in the
2225 	 * respective cylinder group data area.
2226 	 */
2227 	sblock.fs_cssize =
2228 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2229 
2230 	if(osblock.fs_size >= sblock.fs_size) {
2231 		errx(1, "not enough new space");
2232 	}
2233 
2234 	DBG_PRINT0("sblock calculated\n");
2235 
2236 	/*
2237 	 * Ok, everything prepared, so now let's do the tricks.
2238 	 */
2239 	growfs(fsi, fso, Nflag);
2240 
2241 	/*
2242 	 * Update the disk label.
2243 	 */
2244     if (!unlabeled) {
2245         pp->p_fsize = sblock.fs_fsize;
2246         pp->p_frag = sblock.fs_frag;
2247         pp->p_cpg = sblock.fs_fpg;
2248 
2249         return_disklabel(fso, lp, Nflag);
2250         DBG_PRINT0("label rewritten\n");
2251     }
2252 
2253 	close(fsi);
2254 	if(fso>-1) close(fso);
2255 
2256 	DBG_CLOSE;
2257 
2258 	DBG_LEAVE;
2259 	return 0;
2260 }
2261 
2262 /* ************************************************** return_disklabel ***** */
2263 /*
2264  * Write the updated disklabel back to disk.
2265  */
2266 static void
2267 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2268 {
2269 	DBG_FUNC("return_disklabel")
2270 	u_short	sum;
2271 	u_short	*ptr;
2272 
2273 	DBG_ENTER;
2274 
2275 	if(!lp) {
2276 		DBG_LEAVE;
2277 		return;
2278 	}
2279 	if(!Nflag) {
2280 		lp->d_checksum=0;
2281 		sum = 0;
2282 		ptr=(u_short *)lp;
2283 
2284 		/*
2285 		 * recalculate checksum
2286 		 */
2287 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2288 			sum ^= *ptr++;
2289 		}
2290 		lp->d_checksum=sum;
2291 
2292 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2293 			errx(1, "DIOCWDINFO failed");
2294 		}
2295 	}
2296 	free(lp);
2297 
2298 	DBG_LEAVE;
2299 	return ;
2300 }
2301 
2302 /* ***************************************************** get_disklabel ***** */
2303 /*
2304  * Read the disklabel from disk.
2305  */
2306 static struct disklabel *
2307 get_disklabel(int fd)
2308 {
2309 	DBG_FUNC("get_disklabel")
2310 	static struct	disklabel *lab;
2311 
2312 	DBG_ENTER;
2313 
2314 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2315 	if (!lab)
2316 		errx(1, "malloc failed");
2317 
2318     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2319         return (lab);
2320 
2321     unlabeled++;
2322 
2323 	DBG_LEAVE;
2324 	return (NULL);
2325 }
2326 
2327 
2328 /* ************************************************************* usage ***** */
2329 /*
2330  * Dump a line of usage.
2331  */
2332 static void
2333 usage(void)
2334 {
2335 	DBG_FUNC("usage")
2336 
2337 	DBG_ENTER;
2338 
2339 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2340 
2341 	DBG_LEAVE;
2342 	exit(1);
2343 }
2344 
2345 /* *********************************************************** updclst ***** */
2346 /*
2347  * This updates most parameters and the bitmap related to cluster. We have to
2348  * assume that sblock, osblock, acg are set up.
2349  */
2350 static void
2351 updclst(int block)
2352 {
2353 	DBG_FUNC("updclst")
2354 	static int	lcs=0;
2355 
2356 	DBG_ENTER;
2357 
2358 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2359 		return;
2360 	}
2361 	/*
2362 	 * update cluster allocation map
2363 	 */
2364 	setbit(cg_clustersfree(&acg), block);
2365 
2366 	/*
2367 	 * update cluster summary table
2368 	 */
2369 	if(!lcs) {
2370 		/*
2371 		 * calculate size for the trailing cluster
2372 		 */
2373 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2374 			if(isclr(cg_clustersfree(&acg), block)){
2375 				break;
2376 			}
2377 		}
2378 	}
2379 	if(lcs < sblock.fs_contigsumsize) {
2380 		if(lcs) {
2381 			cg_clustersum(&acg)[lcs]--;
2382 		}
2383 		lcs++;
2384 		cg_clustersum(&acg)[lcs]++;
2385 	}
2386 
2387 	DBG_LEAVE;
2388 	return;
2389 }
2390 
2391 /* *********************************************************** updrefs ***** */
2392 /*
2393  * This updates all references to relocated blocks for the given inode.  The
2394  * inode is given as number within the cylinder group, and the number of the
2395  * cylinder group.
2396  */
2397 static void
2398 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2399     Nflag)
2400 {
2401 	DBG_FUNC("updrefs")
2402 	ufs_lbn_t	len, lbn, numblks;
2403 	ufs2_daddr_t	iptr, blksperindir;
2404 	union dinode	*ino;
2405 	int		i, mode, inodeupdated;
2406 
2407 	DBG_ENTER;
2408 
2409 	ino = ginode(in, fsi, cg);
2410 	if (ino == NULL) {
2411 		DBG_LEAVE;
2412 		return;
2413 	}
2414 	mode = DIP(ino, di_mode) & IFMT;
2415 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2416 		DBG_LEAVE;
2417 		return; /* only check DIR, FILE, LINK */
2418 	}
2419 	if (mode == IFLNK &&
2420 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2421 		DBG_LEAVE;
2422 		return;	/* skip short symlinks */
2423 	}
2424 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2425 	if (numblks == 0) {
2426 		DBG_LEAVE;
2427 		return;	/* skip empty file */
2428 	}
2429 	if (DIP(ino, di_blocks) == 0) {
2430 		DBG_LEAVE;
2431 		return;	/* skip empty swiss cheesy file or old fastlink */
2432 	}
2433 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2434 	    in,
2435 	    cg);
2436 
2437 	/*
2438 	 * Check all the blocks.
2439 	 */
2440 	inodeupdated = 0;
2441 	len = numblks < NDADDR ? numblks : NDADDR;
2442 	for (i = 0; i < len; i++) {
2443 		iptr = DIP(ino, di_db[i]);
2444 		if (iptr == 0)
2445 			continue;
2446 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2447 			DIP_SET(ino, di_db[i], iptr);
2448 			inodeupdated++;
2449 		}
2450 	}
2451 	DBG_PRINT0("~~scg direct blocks checked\n");
2452 
2453 	blksperindir = 1;
2454 	len = numblks - NDADDR;
2455 	lbn = NDADDR;
2456 	for (i = 0; len > 0 && i < NIADDR; i++) {
2457 		iptr = DIP(ino, di_ib[i]);
2458 		if (iptr == 0)
2459 			continue;
2460 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2461 			DIP_SET(ino, di_ib[i], iptr);
2462 			inodeupdated++;
2463 		}
2464 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2465 		blksperindir *= NINDIR(&sblock);
2466 		lbn += blksperindir;
2467 		len -= blksperindir;
2468 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2469 	}
2470 	if (inodeupdated)
2471 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2472 
2473 	DBG_LEAVE;
2474 	return;
2475 }
2476 
2477 /*
2478  * Recursively check all the indirect blocks.
2479  */
2480 static void
2481 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2482     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2483 {
2484 	DBG_FUNC("indirchk")
2485 	void *ibuf;
2486 	int i, last;
2487 	ufs2_daddr_t iptr;
2488 
2489 	DBG_ENTER;
2490 
2491 	/* read in the indirect block. */
2492 	ibuf = malloc(sblock.fs_bsize);
2493 	if (!ibuf)
2494 		errx(1, "malloc failed");
2495 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2496 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2497 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2498 	for (i = 0; i < last; i++) {
2499 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2500 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2501 		else
2502 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2503 		if (iptr == 0)
2504 			continue;
2505 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2506 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2507 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2508 			else
2509 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2510 		}
2511 		if (blksperindir == 1)
2512 			continue;
2513 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2514 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2515 	}
2516 	free(ibuf);
2517 
2518 	DBG_LEAVE;
2519 	return;
2520 }
2521