1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. 5 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. 11 * 12 * Portions of this software were developed by Edward Tomasz Napierala 13 * under sponsorship from the FreeBSD Foundation. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgment: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors, as well as Christoph 27 * Herrmann and Thomas-Henning von Kamptz. 28 * 4. Neither the name of the University nor the names of its contributors 29 * may be used to endorse or promote products derived from this software 30 * without specific prior written permission. 31 * 32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 42 * SUCH DAMAGE. 43 * 44 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $ 45 * 46 */ 47 48 #ifndef lint 49 static const char copyright[] = 50 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\ 51 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\ 52 All rights reserved.\n"; 53 #endif /* not lint */ 54 55 #include <sys/cdefs.h> 56 __FBSDID("$FreeBSD$"); 57 58 #include <sys/param.h> 59 #include <sys/ioctl.h> 60 #include <sys/stat.h> 61 #include <sys/disk.h> 62 #include <sys/ucred.h> 63 #include <sys/mount.h> 64 65 #include <stdio.h> 66 #include <paths.h> 67 #include <ctype.h> 68 #include <err.h> 69 #include <errno.h> 70 #include <fcntl.h> 71 #include <fstab.h> 72 #include <inttypes.h> 73 #include <limits.h> 74 #include <mntopts.h> 75 #include <paths.h> 76 #include <stdlib.h> 77 #include <stdint.h> 78 #include <string.h> 79 #include <time.h> 80 #include <unistd.h> 81 #include <ufs/ufs/dinode.h> 82 #include <ufs/ffs/fs.h> 83 #include <libutil.h> 84 #include <libufs.h> 85 86 #include "debug.h" 87 88 #ifdef FS_DEBUG 89 int _dbg_lvl_ = (DL_INFO); /* DL_TRC */ 90 #endif /* FS_DEBUG */ 91 92 static union { 93 struct fs fs; 94 char pad[SBLOCKSIZE]; 95 } fsun1, fsun2; 96 #define sblock fsun1.fs /* the new superblock */ 97 #define osblock fsun2.fs /* the old superblock */ 98 99 static union { 100 struct cg cg; 101 char pad[MAXBSIZE]; 102 } cgun1, cgun2; 103 #define acg cgun1.cg /* a cylinder cgroup (new) */ 104 #define aocg cgun2.cg /* an old cylinder group */ 105 106 static struct csum *fscs; /* cylinder summary */ 107 108 static void growfs(int, int, unsigned int); 109 static void rdfs(ufs2_daddr_t, size_t, void *, int); 110 static void wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int); 111 static int charsperline(void); 112 static void usage(void); 113 static int isblock(struct fs *, unsigned char *, int); 114 static void clrblock(struct fs *, unsigned char *, int); 115 static void setblock(struct fs *, unsigned char *, int); 116 static void initcg(int, time_t, int, unsigned int); 117 static void updjcg(int, time_t, int, int, unsigned int); 118 static void updcsloc(time_t, int, int, unsigned int); 119 static void frag_adjust(ufs2_daddr_t, int); 120 static void updclst(int); 121 static void mount_reload(const struct statfs *stfs); 122 static void cgckhash(struct cg *); 123 124 /* 125 * Here we actually start growing the file system. We basically read the 126 * cylinder summary from the first cylinder group as we want to update 127 * this on the fly during our various operations. First we handle the 128 * changes in the former last cylinder group. Afterwards we create all new 129 * cylinder groups. Now we handle the cylinder group containing the 130 * cylinder summary which might result in a relocation of the whole 131 * structure. In the end we write back the updated cylinder summary, the 132 * new superblock, and slightly patched versions of the super block 133 * copies. 134 */ 135 static void 136 growfs(int fsi, int fso, unsigned int Nflag) 137 { 138 DBG_FUNC("growfs") 139 time_t modtime; 140 uint cylno; 141 int i, j, width; 142 char tmpbuf[100]; 143 144 DBG_ENTER; 145 146 time(&modtime); 147 148 /* 149 * Get the cylinder summary into the memory. 150 */ 151 fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize); 152 if (fscs == NULL) 153 errx(1, "calloc failed"); 154 memcpy(fscs, osblock.fs_csp, osblock.fs_cssize); 155 free(osblock.fs_csp); 156 osblock.fs_csp = NULL; 157 sblock.fs_csp = fscs; 158 159 #ifdef FS_DEBUG 160 { 161 struct csum *dbg_csp; 162 u_int32_t dbg_csc; 163 char dbg_line[80]; 164 165 dbg_csp = fscs; 166 167 for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) { 168 snprintf(dbg_line, sizeof(dbg_line), 169 "%d. old csum in old location", dbg_csc); 170 DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++); 171 } 172 } 173 #endif /* FS_DEBUG */ 174 DBG_PRINT0("fscs read\n"); 175 176 /* 177 * Do all needed changes in the former last cylinder group. 178 */ 179 updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag); 180 181 /* 182 * Dump out summary information about file system. 183 */ 184 #ifdef FS_DEBUG 185 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 186 printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 187 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 188 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 189 sblock.fs_fsize); 190 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 191 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 192 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 193 if (sblock.fs_flags & FS_DOSOFTDEP) 194 printf("\twith soft updates\n"); 195 #undef B2MBFACTOR 196 #endif /* FS_DEBUG */ 197 198 /* 199 * Now build the cylinders group blocks and 200 * then print out indices of cylinder groups. 201 */ 202 printf("super-block backups (for fsck_ffs -b #) at:\n"); 203 i = 0; 204 width = charsperline(); 205 206 /* 207 * Iterate for only the new cylinder groups. 208 */ 209 for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) { 210 initcg(cylno, modtime, fso, Nflag); 211 j = sprintf(tmpbuf, " %jd%s", 212 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 213 cylno < (sblock.fs_ncg - 1) ? "," : "" ); 214 if (i + j >= width) { 215 printf("\n"); 216 i = 0; 217 } 218 i += j; 219 printf("%s", tmpbuf); 220 fflush(stdout); 221 } 222 printf("\n"); 223 224 /* 225 * Do all needed changes in the first cylinder group. 226 * allocate blocks in new location 227 */ 228 updcsloc(modtime, fsi, fso, Nflag); 229 230 /* 231 * Clean up the dynamic fields in our superblock. 232 * 233 * XXX 234 * The following fields are currently distributed from the superblock 235 * to the copies: 236 * fs_minfree 237 * fs_rotdelay 238 * fs_maxcontig 239 * fs_maxbpg 240 * fs_minfree, 241 * fs_optim 242 * fs_flags 243 * 244 * We probably should rather change the summary for the cylinder group 245 * statistics here to the value of what would be in there, if the file 246 * system were created initially with the new size. Therefor we still 247 * need to find an easy way of calculating that. 248 * Possibly we can try to read the first superblock copy and apply the 249 * "diffed" stats between the old and new superblock by still copying 250 * certain parameters onto that. 251 */ 252 sblock.fs_time = modtime; 253 sblock.fs_fmod = 0; 254 sblock.fs_clean = 1; 255 sblock.fs_ronly = 0; 256 sblock.fs_cgrotor = 0; 257 sblock.fs_state = 0; 258 memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt)); 259 260 /* 261 * Now write the new superblock, its summary information, 262 * and all the alternates back to disk. 263 */ 264 if (!Nflag && sbput(fso, &sblock, sblock.fs_ncg) != 0) 265 errc(2, EIO, "could not write updated superblock"); 266 DBG_PRINT0("fscs written\n"); 267 268 #ifdef FS_DEBUG 269 { 270 struct csum *dbg_csp; 271 u_int32_t dbg_csc; 272 char dbg_line[80]; 273 274 dbg_csp = fscs; 275 for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) { 276 snprintf(dbg_line, sizeof(dbg_line), 277 "%d. new csum in new location", dbg_csc); 278 DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++); 279 } 280 } 281 #endif /* FS_DEBUG */ 282 283 DBG_PRINT0("sblock written\n"); 284 DBG_DUMP_FS(&sblock, "new initial sblock"); 285 286 DBG_PRINT0("sblock copies written\n"); 287 DBG_DUMP_FS(&sblock, "new other sblocks"); 288 289 DBG_LEAVE; 290 return; 291 } 292 293 /* 294 * This creates a new cylinder group structure, for more details please see 295 * the source of newfs(8), as this function is taken over almost unchanged. 296 * As this is never called for the first cylinder group, the special 297 * provisions for that case are removed here. 298 */ 299 static void 300 initcg(int cylno, time_t modtime, int fso, unsigned int Nflag) 301 { 302 DBG_FUNC("initcg") 303 static caddr_t iobuf; 304 static long iobufsize; 305 long blkno, start; 306 ino_t ino; 307 ufs2_daddr_t i, cbase, dmax; 308 struct ufs1_dinode *dp1; 309 struct ufs2_dinode *dp2; 310 struct csum *cs; 311 uint j, d, dupper, dlower; 312 313 if (iobuf == NULL) { 314 iobufsize = 2 * sblock.fs_bsize; 315 if ((iobuf = malloc(iobufsize)) == NULL) 316 errx(37, "panic: cannot allocate I/O buffer"); 317 memset(iobuf, '\0', iobufsize); 318 } 319 /* 320 * Determine block bounds for cylinder group. 321 * Allow space for super block summary information in first 322 * cylinder group. 323 */ 324 cbase = cgbase(&sblock, cylno); 325 dmax = cbase + sblock.fs_fpg; 326 if (dmax > sblock.fs_size) 327 dmax = sblock.fs_size; 328 dlower = cgsblock(&sblock, cylno) - cbase; 329 dupper = cgdmin(&sblock, cylno) - cbase; 330 if (cylno == 0) /* XXX fscs may be relocated */ 331 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 332 cs = &fscs[cylno]; 333 memset(&acg, 0, sblock.fs_cgsize); 334 acg.cg_time = modtime; 335 acg.cg_magic = CG_MAGIC; 336 acg.cg_cgx = cylno; 337 acg.cg_niblk = sblock.fs_ipg; 338 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 339 acg.cg_ndblk = dmax - cbase; 340 if (sblock.fs_contigsumsize > 0) 341 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 342 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 343 if (sblock.fs_magic == FS_UFS2_MAGIC) { 344 acg.cg_iusedoff = start; 345 } else { 346 acg.cg_old_ncyl = sblock.fs_old_cpg; 347 acg.cg_old_time = acg.cg_time; 348 acg.cg_time = 0; 349 acg.cg_old_niblk = acg.cg_niblk; 350 acg.cg_niblk = 0; 351 acg.cg_initediblk = 0; 352 acg.cg_old_btotoff = start; 353 acg.cg_old_boff = acg.cg_old_btotoff + 354 sblock.fs_old_cpg * sizeof(int32_t); 355 acg.cg_iusedoff = acg.cg_old_boff + 356 sblock.fs_old_cpg * sizeof(u_int16_t); 357 } 358 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 359 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 360 if (sblock.fs_contigsumsize > 0) { 361 acg.cg_clustersumoff = 362 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 363 acg.cg_clustersumoff -= sizeof(u_int32_t); 364 acg.cg_clusteroff = acg.cg_clustersumoff + 365 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 366 acg.cg_nextfreeoff = acg.cg_clusteroff + 367 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 368 } 369 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 370 /* 371 * This should never happen as we would have had that panic 372 * already on file system creation 373 */ 374 errx(37, "panic: cylinder group too big"); 375 } 376 acg.cg_cs.cs_nifree += sblock.fs_ipg; 377 if (cylno == 0) 378 for (ino = 0; ino < UFS_ROOTINO; ino++) { 379 setbit(cg_inosused(&acg), ino); 380 acg.cg_cs.cs_nifree--; 381 } 382 /* 383 * Initialize the initial inode blocks. 384 */ 385 dp1 = (struct ufs1_dinode *)(void *)iobuf; 386 dp2 = (struct ufs2_dinode *)(void *)iobuf; 387 for (i = 0; i < acg.cg_initediblk; i++) { 388 if (sblock.fs_magic == FS_UFS1_MAGIC) { 389 dp1->di_gen = arc4random(); 390 dp1++; 391 } else { 392 dp2->di_gen = arc4random(); 393 dp2++; 394 } 395 } 396 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf, 397 fso, Nflag); 398 /* 399 * For the old file system, we have to initialize all the inodes. 400 */ 401 if (sblock.fs_magic == FS_UFS1_MAGIC && 402 sblock.fs_ipg > 2 * INOPB(&sblock)) { 403 for (i = 2 * sblock.fs_frag; 404 i < sblock.fs_ipg / INOPF(&sblock); 405 i += sblock.fs_frag) { 406 dp1 = (struct ufs1_dinode *)(void *)iobuf; 407 for (j = 0; j < INOPB(&sblock); j++) { 408 dp1->di_gen = arc4random(); 409 dp1++; 410 } 411 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 412 sblock.fs_bsize, iobuf, fso, Nflag); 413 } 414 } 415 if (cylno > 0) { 416 /* 417 * In cylno 0, beginning space is reserved 418 * for boot and super blocks. 419 */ 420 for (d = 0; d < dlower; d += sblock.fs_frag) { 421 blkno = d / sblock.fs_frag; 422 setblock(&sblock, cg_blksfree(&acg), blkno); 423 if (sblock.fs_contigsumsize > 0) 424 setbit(cg_clustersfree(&acg), blkno); 425 acg.cg_cs.cs_nbfree++; 426 } 427 sblock.fs_dsize += dlower; 428 } 429 sblock.fs_dsize += acg.cg_ndblk - dupper; 430 if ((i = dupper % sblock.fs_frag)) { 431 acg.cg_frsum[sblock.fs_frag - i]++; 432 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 433 setbit(cg_blksfree(&acg), dupper); 434 acg.cg_cs.cs_nffree++; 435 } 436 } 437 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 438 d += sblock.fs_frag) { 439 blkno = d / sblock.fs_frag; 440 setblock(&sblock, cg_blksfree(&acg), blkno); 441 if (sblock.fs_contigsumsize > 0) 442 setbit(cg_clustersfree(&acg), blkno); 443 acg.cg_cs.cs_nbfree++; 444 } 445 if (d < acg.cg_ndblk) { 446 acg.cg_frsum[acg.cg_ndblk - d]++; 447 for (; d < acg.cg_ndblk; d++) { 448 setbit(cg_blksfree(&acg), d); 449 acg.cg_cs.cs_nffree++; 450 } 451 } 452 if (sblock.fs_contigsumsize > 0) { 453 int32_t *sump = cg_clustersum(&acg); 454 u_char *mapp = cg_clustersfree(&acg); 455 int map = *mapp++; 456 int bit = 1; 457 int run = 0; 458 459 for (i = 0; i < acg.cg_nclusterblks; i++) { 460 if ((map & bit) != 0) 461 run++; 462 else if (run != 0) { 463 if (run > sblock.fs_contigsumsize) 464 run = sblock.fs_contigsumsize; 465 sump[run]++; 466 run = 0; 467 } 468 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 469 bit <<= 1; 470 else { 471 map = *mapp++; 472 bit = 1; 473 } 474 } 475 if (run != 0) { 476 if (run > sblock.fs_contigsumsize) 477 run = sblock.fs_contigsumsize; 478 sump[run]++; 479 } 480 } 481 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 482 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 483 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 484 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 485 *cs = acg.cg_cs; 486 487 cgckhash(&acg); 488 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), sblock.fs_cgsize, &acg, 489 fso, Nflag); 490 DBG_DUMP_CG(&sblock, "new cg", &acg); 491 492 DBG_LEAVE; 493 return; 494 } 495 496 /* 497 * Here we add or subtract (sign +1/-1) the available fragments in a given 498 * block to or from the fragment statistics. By subtracting before and adding 499 * after an operation on the free frag map we can easy update the fragment 500 * statistic, which seems to be otherwise a rather complex operation. 501 */ 502 static void 503 frag_adjust(ufs2_daddr_t frag, int sign) 504 { 505 DBG_FUNC("frag_adjust") 506 int fragsize; 507 int f; 508 509 DBG_ENTER; 510 511 fragsize = 0; 512 /* 513 * Here frag only needs to point to any fragment in the block we want 514 * to examine. 515 */ 516 for (f = rounddown(frag, sblock.fs_frag); 517 f < roundup(frag + 1, sblock.fs_frag); f++) { 518 /* 519 * Count contiguous free fragments. 520 */ 521 if (isset(cg_blksfree(&acg), f)) { 522 fragsize++; 523 } else { 524 if (fragsize && fragsize < sblock.fs_frag) { 525 /* 526 * We found something in between. 527 */ 528 acg.cg_frsum[fragsize] += sign; 529 DBG_PRINT2("frag_adjust [%d]+=%d\n", 530 fragsize, sign); 531 } 532 fragsize = 0; 533 } 534 } 535 if (fragsize && fragsize < sblock.fs_frag) { 536 /* 537 * We found something. 538 */ 539 acg.cg_frsum[fragsize] += sign; 540 DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign); 541 } 542 DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign); 543 544 DBG_LEAVE; 545 return; 546 } 547 548 /* 549 * Here we do all needed work for the former last cylinder group. It has to be 550 * changed in any case, even if the file system ended exactly on the end of 551 * this group, as there is some slightly inconsistent handling of the number 552 * of cylinders in the cylinder group. We start again by reading the cylinder 553 * group from disk. If the last block was not fully available, we first handle 554 * the missing fragments, then we handle all new full blocks in that file 555 * system and finally we handle the new last fragmented block in the file 556 * system. We again have to handle the fragment statistics rotational layout 557 * tables and cluster summary during all those operations. 558 */ 559 static void 560 updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag) 561 { 562 DBG_FUNC("updjcg") 563 ufs2_daddr_t cbase, dmax, dupper; 564 struct csum *cs; 565 int i, k; 566 int j = 0; 567 568 DBG_ENTER; 569 570 /* 571 * Read the former last (joining) cylinder group from disk, and make 572 * a copy. 573 */ 574 rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)), 575 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); 576 DBG_PRINT0("jcg read\n"); 577 DBG_DUMP_CG(&sblock, "old joining cg", &aocg); 578 579 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); 580 581 /* 582 * If the cylinder group had already its new final size almost 583 * nothing is to be done ... except: 584 * For some reason the value of cg_ncyl in the last cylinder group has 585 * to be zero instead of fs_cpg. As this is now no longer the last 586 * cylinder group we have to change that value now to fs_cpg. 587 */ 588 589 if (cgbase(&osblock, cylno + 1) == osblock.fs_size) { 590 if (sblock.fs_magic == FS_UFS1_MAGIC) 591 acg.cg_old_ncyl = sblock.fs_old_cpg; 592 593 cgckhash(&acg); 594 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 595 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); 596 DBG_PRINT0("jcg written\n"); 597 DBG_DUMP_CG(&sblock, "new joining cg", &acg); 598 599 DBG_LEAVE; 600 return; 601 } 602 603 /* 604 * Set up some variables needed later. 605 */ 606 cbase = cgbase(&sblock, cylno); 607 dmax = cbase + sblock.fs_fpg; 608 if (dmax > sblock.fs_size) 609 dmax = sblock.fs_size; 610 dupper = cgdmin(&sblock, cylno) - cbase; 611 if (cylno == 0) /* XXX fscs may be relocated */ 612 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 613 614 /* 615 * Set pointer to the cylinder summary for our cylinder group. 616 */ 617 cs = fscs + cylno; 618 619 /* 620 * Touch the cylinder group, update all fields in the cylinder group as 621 * needed, update the free space in the superblock. 622 */ 623 acg.cg_time = modtime; 624 if ((unsigned)cylno == sblock.fs_ncg - 1) { 625 /* 626 * This is still the last cylinder group. 627 */ 628 if (sblock.fs_magic == FS_UFS1_MAGIC) 629 acg.cg_old_ncyl = 630 sblock.fs_old_ncyl % sblock.fs_old_cpg; 631 } else { 632 acg.cg_old_ncyl = sblock.fs_old_cpg; 633 } 634 DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg); 635 #ifdef FS_DEBUG 636 if (sblock.fs_magic == FS_UFS1_MAGIC) 637 DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg); 638 #endif 639 DBG_PRINT0("\n"); 640 acg.cg_ndblk = dmax - cbase; 641 sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk; 642 if (sblock.fs_contigsumsize > 0) 643 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 644 645 /* 646 * Now we have to update the free fragment bitmap for our new free 647 * space. There again we have to handle the fragmentation and also 648 * the rotational layout tables and the cluster summary. This is 649 * also done per fragment for the first new block if the old file 650 * system end was not on a block boundary, per fragment for the new 651 * last block if the new file system end is not on a block boundary, 652 * and per block for all space in between. 653 * 654 * Handle the first new block here if it was partially available 655 * before. 656 */ 657 if (osblock.fs_size % sblock.fs_frag) { 658 if (roundup(osblock.fs_size, sblock.fs_frag) <= 659 sblock.fs_size) { 660 /* 661 * The new space is enough to fill at least this 662 * block 663 */ 664 j = 0; 665 for (i = roundup(osblock.fs_size - cbase, 666 sblock.fs_frag) - 1; i >= osblock.fs_size - cbase; 667 i--) { 668 setbit(cg_blksfree(&acg), i); 669 acg.cg_cs.cs_nffree++; 670 j++; 671 } 672 673 /* 674 * Check if the fragment just created could join an 675 * already existing fragment at the former end of the 676 * file system. 677 */ 678 if (isblock(&sblock, cg_blksfree(&acg), 679 ((osblock.fs_size - cgbase(&sblock, cylno)) / 680 sblock.fs_frag))) { 681 /* 682 * The block is now completely available. 683 */ 684 DBG_PRINT0("block was\n"); 685 acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--; 686 acg.cg_cs.cs_nbfree++; 687 acg.cg_cs.cs_nffree -= sblock.fs_frag; 688 k = rounddown(osblock.fs_size - cbase, 689 sblock.fs_frag); 690 updclst((osblock.fs_size - cbase) / 691 sblock.fs_frag); 692 } else { 693 /* 694 * Lets rejoin a possible partially growed 695 * fragment. 696 */ 697 k = 0; 698 while (isset(cg_blksfree(&acg), i) && 699 (i >= rounddown(osblock.fs_size - cbase, 700 sblock.fs_frag))) { 701 i--; 702 k++; 703 } 704 if (k) 705 acg.cg_frsum[k]--; 706 acg.cg_frsum[k + j]++; 707 } 708 } else { 709 /* 710 * We only grow by some fragments within this last 711 * block. 712 */ 713 for (i = sblock.fs_size - cbase - 1; 714 i >= osblock.fs_size - cbase; i--) { 715 setbit(cg_blksfree(&acg), i); 716 acg.cg_cs.cs_nffree++; 717 j++; 718 } 719 /* 720 * Lets rejoin a possible partially growed fragment. 721 */ 722 k = 0; 723 while (isset(cg_blksfree(&acg), i) && 724 (i >= rounddown(osblock.fs_size - cbase, 725 sblock.fs_frag))) { 726 i--; 727 k++; 728 } 729 if (k) 730 acg.cg_frsum[k]--; 731 acg.cg_frsum[k + j]++; 732 } 733 } 734 735 /* 736 * Handle all new complete blocks here. 737 */ 738 for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag); 739 i + sblock.fs_frag <= dmax - cbase; /* XXX <= or only < ? */ 740 i += sblock.fs_frag) { 741 j = i / sblock.fs_frag; 742 setblock(&sblock, cg_blksfree(&acg), j); 743 updclst(j); 744 acg.cg_cs.cs_nbfree++; 745 } 746 747 /* 748 * Handle the last new block if there are stll some new fragments left. 749 * Here we don't have to bother about the cluster summary or the even 750 * the rotational layout table. 751 */ 752 if (i < (dmax - cbase)) { 753 acg.cg_frsum[dmax - cbase - i]++; 754 for (; i < dmax - cbase; i++) { 755 setbit(cg_blksfree(&acg), i); 756 acg.cg_cs.cs_nffree++; 757 } 758 } 759 760 sblock.fs_cstotal.cs_nffree += 761 (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree); 762 sblock.fs_cstotal.cs_nbfree += 763 (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree); 764 /* 765 * The following statistics are not changed here: 766 * sblock.fs_cstotal.cs_ndir 767 * sblock.fs_cstotal.cs_nifree 768 * As the statistics for this cylinder group are ready, copy it to 769 * the summary information array. 770 */ 771 *cs = acg.cg_cs; 772 773 /* 774 * Write the updated "joining" cylinder group back to disk. 775 */ 776 cgckhash(&acg); 777 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize, 778 (void *)&acg, fso, Nflag); 779 DBG_PRINT0("jcg written\n"); 780 DBG_DUMP_CG(&sblock, "new joining cg", &acg); 781 782 DBG_LEAVE; 783 return; 784 } 785 786 /* 787 * Here we update the location of the cylinder summary. We have two possible 788 * ways of growing the cylinder summary: 789 * (1) We can try to grow the summary in the current location, and relocate 790 * possibly used blocks within the current cylinder group. 791 * (2) Alternatively we can relocate the whole cylinder summary to the first 792 * new completely empty cylinder group. Once the cylinder summary is no 793 * longer in the beginning of the first cylinder group you should never 794 * use a version of fsck which is not aware of the possibility to have 795 * this structure in a non standard place. 796 * Option (2) is considered to be less intrusive to the structure of the file- 797 * system, so that's the one being used. 798 */ 799 static void 800 updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag) 801 { 802 DBG_FUNC("updcsloc") 803 struct csum *cs; 804 int ocscg, ncscg; 805 ufs2_daddr_t d; 806 int lcs = 0; 807 int block; 808 809 DBG_ENTER; 810 811 if (howmany(sblock.fs_cssize, sblock.fs_fsize) == 812 howmany(osblock.fs_cssize, osblock.fs_fsize)) { 813 /* 814 * No new fragment needed. 815 */ 816 DBG_LEAVE; 817 return; 818 } 819 ocscg = dtog(&osblock, osblock.fs_csaddr); 820 cs = fscs + ocscg; 821 822 /* 823 * Read original cylinder group from disk, and make a copy. 824 * XXX If Nflag is set in some very rare cases we now miss 825 * some changes done in updjcg by reading the unmodified 826 * block from disk. 827 */ 828 rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)), 829 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); 830 DBG_PRINT0("oscg read\n"); 831 DBG_DUMP_CG(&sblock, "old summary cg", &aocg); 832 833 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); 834 835 /* 836 * Touch the cylinder group, set up local variables needed later 837 * and update the superblock. 838 */ 839 acg.cg_time = modtime; 840 841 /* 842 * XXX In the case of having active snapshots we may need much more 843 * blocks for the copy on write. We need each block twice, and 844 * also up to 8*3 blocks for indirect blocks for all possible 845 * references. 846 */ 847 /* 848 * There is not enough space in the old cylinder group to 849 * relocate all blocks as needed, so we relocate the whole 850 * cylinder group summary to a new group. We try to use the 851 * first complete new cylinder group just created. Within the 852 * cylinder group we align the area immediately after the 853 * cylinder group information location in order to be as 854 * close as possible to the original implementation of ffs. 855 * 856 * First we have to make sure we'll find enough space in the 857 * new cylinder group. If not, then we currently give up. 858 * We start with freeing everything which was used by the 859 * fragments of the old cylinder summary in the current group. 860 * Now we write back the group meta data, read in the needed 861 * meta data from the new cylinder group, and start allocating 862 * within that group. Here we can assume, the group to be 863 * completely empty. Which makes the handling of fragments and 864 * clusters a lot easier. 865 */ 866 DBG_TRC; 867 if (sblock.fs_ncg - osblock.fs_ncg < 2) 868 errx(2, "panic: not enough space"); 869 870 /* 871 * Point "d" to the first fragment not used by the cylinder 872 * summary. 873 */ 874 d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize); 875 876 /* 877 * Set up last cluster size ("lcs") already here. Calculate 878 * the size for the trailing cluster just behind where "d" 879 * points to. 880 */ 881 if (sblock.fs_contigsumsize > 0) { 882 for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag), 883 lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) { 884 if (isclr(cg_clustersfree(&acg), block)) 885 break; 886 } 887 } 888 889 /* 890 * Point "d" to the last frag used by the cylinder summary. 891 */ 892 d--; 893 894 DBG_PRINT1("d=%jd\n", (intmax_t)d); 895 if ((d + 1) % sblock.fs_frag) { 896 /* 897 * The end of the cylinder summary is not a complete 898 * block. 899 */ 900 DBG_TRC; 901 frag_adjust(d % sblock.fs_fpg, -1); 902 for (; (d + 1) % sblock.fs_frag; d--) { 903 DBG_PRINT1("d=%jd\n", (intmax_t)d); 904 setbit(cg_blksfree(&acg), d % sblock.fs_fpg); 905 acg.cg_cs.cs_nffree++; 906 sblock.fs_cstotal.cs_nffree++; 907 } 908 /* 909 * Point "d" to the last fragment of the last 910 * (incomplete) block of the cylinder summary. 911 */ 912 d++; 913 frag_adjust(d % sblock.fs_fpg, 1); 914 915 if (isblock(&sblock, cg_blksfree(&acg), 916 (d % sblock.fs_fpg) / sblock.fs_frag)) { 917 DBG_PRINT1("d=%jd\n", (intmax_t)d); 918 acg.cg_cs.cs_nffree -= sblock.fs_frag; 919 acg.cg_cs.cs_nbfree++; 920 sblock.fs_cstotal.cs_nffree -= sblock.fs_frag; 921 sblock.fs_cstotal.cs_nbfree++; 922 if (sblock.fs_contigsumsize > 0) { 923 setbit(cg_clustersfree(&acg), 924 (d % sblock.fs_fpg) / sblock.fs_frag); 925 if (lcs < sblock.fs_contigsumsize) { 926 if (lcs) 927 cg_clustersum(&acg)[lcs]--; 928 lcs++; 929 cg_clustersum(&acg)[lcs]++; 930 } 931 } 932 } 933 /* 934 * Point "d" to the first fragment of the block before 935 * the last incomplete block. 936 */ 937 d--; 938 } 939 940 DBG_PRINT1("d=%jd\n", (intmax_t)d); 941 for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr; 942 d -= sblock.fs_frag) { 943 DBG_TRC; 944 DBG_PRINT1("d=%jd\n", (intmax_t)d); 945 setblock(&sblock, cg_blksfree(&acg), 946 (d % sblock.fs_fpg) / sblock.fs_frag); 947 acg.cg_cs.cs_nbfree++; 948 sblock.fs_cstotal.cs_nbfree++; 949 if (sblock.fs_contigsumsize > 0) { 950 setbit(cg_clustersfree(&acg), 951 (d % sblock.fs_fpg) / sblock.fs_frag); 952 /* 953 * The last cluster size is already set up. 954 */ 955 if (lcs < sblock.fs_contigsumsize) { 956 if (lcs) 957 cg_clustersum(&acg)[lcs]--; 958 lcs++; 959 cg_clustersum(&acg)[lcs]++; 960 } 961 } 962 } 963 *cs = acg.cg_cs; 964 965 /* 966 * Now write the former cylinder group containing the cylinder 967 * summary back to disk. 968 */ 969 cgckhash(&acg); 970 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), 971 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); 972 DBG_PRINT0("oscg written\n"); 973 DBG_DUMP_CG(&sblock, "old summary cg", &acg); 974 975 /* 976 * Find the beginning of the new cylinder group containing the 977 * cylinder summary. 978 */ 979 sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg); 980 ncscg = dtog(&sblock, sblock.fs_csaddr); 981 cs = fscs + ncscg; 982 983 /* 984 * If Nflag is specified, we would now read random data instead 985 * of an empty cg structure from disk. So we can't simulate that 986 * part for now. 987 */ 988 if (Nflag) { 989 DBG_PRINT0("nscg update skipped\n"); 990 DBG_LEAVE; 991 return; 992 } 993 994 /* 995 * Read the future cylinder group containing the cylinder 996 * summary from disk, and make a copy. 997 */ 998 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), 999 (size_t)sblock.fs_cgsize, (void *)&aocg, fsi); 1000 DBG_PRINT0("nscg read\n"); 1001 DBG_DUMP_CG(&sblock, "new summary cg", &aocg); 1002 1003 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); 1004 1005 /* 1006 * Allocate all complete blocks used by the new cylinder 1007 * summary. 1008 */ 1009 for (d = sblock.fs_csaddr; d + sblock.fs_frag <= 1010 sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize); 1011 d += sblock.fs_frag) { 1012 clrblock(&sblock, cg_blksfree(&acg), 1013 (d % sblock.fs_fpg) / sblock.fs_frag); 1014 acg.cg_cs.cs_nbfree--; 1015 sblock.fs_cstotal.cs_nbfree--; 1016 if (sblock.fs_contigsumsize > 0) { 1017 clrbit(cg_clustersfree(&acg), 1018 (d % sblock.fs_fpg) / sblock.fs_frag); 1019 } 1020 } 1021 1022 /* 1023 * Allocate all fragments used by the cylinder summary in the 1024 * last block. 1025 */ 1026 if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) { 1027 for (; d - sblock.fs_csaddr < 1028 sblock.fs_cssize/sblock.fs_fsize; d++) { 1029 clrbit(cg_blksfree(&acg), d % sblock.fs_fpg); 1030 acg.cg_cs.cs_nffree--; 1031 sblock.fs_cstotal.cs_nffree--; 1032 } 1033 acg.cg_cs.cs_nbfree--; 1034 acg.cg_cs.cs_nffree += sblock.fs_frag; 1035 sblock.fs_cstotal.cs_nbfree--; 1036 sblock.fs_cstotal.cs_nffree += sblock.fs_frag; 1037 if (sblock.fs_contigsumsize > 0) 1038 clrbit(cg_clustersfree(&acg), 1039 (d % sblock.fs_fpg) / sblock.fs_frag); 1040 1041 frag_adjust(d % sblock.fs_fpg, 1); 1042 } 1043 /* 1044 * XXX Handle the cluster statistics here in the case this 1045 * cylinder group is now almost full, and the remaining 1046 * space is less then the maximum cluster size. This is 1047 * probably not needed, as you would hardly find a file 1048 * system which has only MAXCSBUFS+FS_MAXCONTIG of free 1049 * space right behind the cylinder group information in 1050 * any new cylinder group. 1051 */ 1052 1053 /* 1054 * Update our statistics in the cylinder summary. 1055 */ 1056 *cs = acg.cg_cs; 1057 1058 /* 1059 * Write the new cylinder group containing the cylinder summary 1060 * back to disk. 1061 */ 1062 cgckhash(&acg); 1063 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), 1064 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); 1065 DBG_PRINT0("nscg written\n"); 1066 DBG_DUMP_CG(&sblock, "new summary cg", &acg); 1067 1068 DBG_LEAVE; 1069 return; 1070 } 1071 1072 /* 1073 * Here we read some block(s) from disk. 1074 */ 1075 static void 1076 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi) 1077 { 1078 DBG_FUNC("rdfs") 1079 ssize_t n; 1080 1081 DBG_ENTER; 1082 1083 if (bno < 0) 1084 err(32, "rdfs: attempting to read negative block number"); 1085 if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) 1086 err(33, "rdfs: seek error: %jd", (intmax_t)bno); 1087 n = read(fsi, bf, size); 1088 if (n != (ssize_t)size) 1089 err(34, "rdfs: read error: %jd", (intmax_t)bno); 1090 1091 DBG_LEAVE; 1092 return; 1093 } 1094 1095 /* 1096 * Here we write some block(s) to disk. 1097 */ 1098 static void 1099 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag) 1100 { 1101 DBG_FUNC("wtfs") 1102 ssize_t n; 1103 1104 DBG_ENTER; 1105 1106 if (Nflag) { 1107 DBG_LEAVE; 1108 return; 1109 } 1110 if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) 1111 err(35, "wtfs: seek error: %ld", (long)bno); 1112 n = write(fso, bf, size); 1113 if (n != (ssize_t)size) 1114 err(36, "wtfs: write error: %ld", (long)bno); 1115 1116 DBG_LEAVE; 1117 return; 1118 } 1119 1120 /* 1121 * Here we check if all frags of a block are free. For more details again 1122 * please see the source of newfs(8), as this function is taken over almost 1123 * unchanged. 1124 */ 1125 static int 1126 isblock(struct fs *fs, unsigned char *cp, int h) 1127 { 1128 DBG_FUNC("isblock") 1129 unsigned char mask; 1130 1131 DBG_ENTER; 1132 1133 switch (fs->fs_frag) { 1134 case 8: 1135 DBG_LEAVE; 1136 return (cp[h] == 0xff); 1137 case 4: 1138 mask = 0x0f << ((h & 0x1) << 2); 1139 DBG_LEAVE; 1140 return ((cp[h >> 1] & mask) == mask); 1141 case 2: 1142 mask = 0x03 << ((h & 0x3) << 1); 1143 DBG_LEAVE; 1144 return ((cp[h >> 2] & mask) == mask); 1145 case 1: 1146 mask = 0x01 << (h & 0x7); 1147 DBG_LEAVE; 1148 return ((cp[h >> 3] & mask) == mask); 1149 default: 1150 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1151 DBG_LEAVE; 1152 return (0); 1153 } 1154 } 1155 1156 /* 1157 * Here we allocate a complete block in the block map. For more details again 1158 * please see the source of newfs(8), as this function is taken over almost 1159 * unchanged. 1160 */ 1161 static void 1162 clrblock(struct fs *fs, unsigned char *cp, int h) 1163 { 1164 DBG_FUNC("clrblock") 1165 1166 DBG_ENTER; 1167 1168 switch ((fs)->fs_frag) { 1169 case 8: 1170 cp[h] = 0; 1171 break; 1172 case 4: 1173 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1174 break; 1175 case 2: 1176 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1177 break; 1178 case 1: 1179 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1180 break; 1181 default: 1182 warnx("clrblock bad fs_frag %d", fs->fs_frag); 1183 break; 1184 } 1185 1186 DBG_LEAVE; 1187 return; 1188 } 1189 1190 /* 1191 * Here we free a complete block in the free block map. For more details again 1192 * please see the source of newfs(8), as this function is taken over almost 1193 * unchanged. 1194 */ 1195 static void 1196 setblock(struct fs *fs, unsigned char *cp, int h) 1197 { 1198 DBG_FUNC("setblock") 1199 1200 DBG_ENTER; 1201 1202 switch (fs->fs_frag) { 1203 case 8: 1204 cp[h] = 0xff; 1205 break; 1206 case 4: 1207 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1208 break; 1209 case 2: 1210 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1211 break; 1212 case 1: 1213 cp[h >> 3] |= (0x01 << (h & 0x7)); 1214 break; 1215 default: 1216 warnx("setblock bad fs_frag %d", fs->fs_frag); 1217 break; 1218 } 1219 1220 DBG_LEAVE; 1221 return; 1222 } 1223 1224 /* 1225 * Figure out how many lines our current terminal has. For more details again 1226 * please see the source of newfs(8), as this function is taken over almost 1227 * unchanged. 1228 */ 1229 static int 1230 charsperline(void) 1231 { 1232 DBG_FUNC("charsperline") 1233 int columns; 1234 char *cp; 1235 struct winsize ws; 1236 1237 DBG_ENTER; 1238 1239 columns = 0; 1240 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1241 columns = ws.ws_col; 1242 if (columns == 0 && (cp = getenv("COLUMNS"))) 1243 columns = atoi(cp); 1244 if (columns == 0) 1245 columns = 80; /* last resort */ 1246 1247 DBG_LEAVE; 1248 return (columns); 1249 } 1250 1251 static int 1252 is_dev(const char *name) 1253 { 1254 struct stat devstat; 1255 1256 if (stat(name, &devstat) != 0) 1257 return (0); 1258 if (!S_ISCHR(devstat.st_mode)) 1259 return (0); 1260 return (1); 1261 } 1262 1263 /* 1264 * Return mountpoint on which the device is currently mounted. 1265 */ 1266 static const struct statfs * 1267 dev_to_statfs(const char *dev) 1268 { 1269 struct stat devstat, mntdevstat; 1270 struct statfs *mntbuf, *statfsp; 1271 char device[MAXPATHLEN]; 1272 char *mntdevname; 1273 int i, mntsize; 1274 1275 /* 1276 * First check the mounted filesystems. 1277 */ 1278 if (stat(dev, &devstat) != 0) 1279 return (NULL); 1280 if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode)) 1281 return (NULL); 1282 1283 mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); 1284 for (i = 0; i < mntsize; i++) { 1285 statfsp = &mntbuf[i]; 1286 mntdevname = statfsp->f_mntfromname; 1287 if (*mntdevname != '/') { 1288 strcpy(device, _PATH_DEV); 1289 strcat(device, mntdevname); 1290 mntdevname = device; 1291 } 1292 if (stat(mntdevname, &mntdevstat) == 0 && 1293 mntdevstat.st_rdev == devstat.st_rdev) 1294 return (statfsp); 1295 } 1296 1297 return (NULL); 1298 } 1299 1300 static const char * 1301 mountpoint_to_dev(const char *mountpoint) 1302 { 1303 struct statfs *mntbuf, *statfsp; 1304 struct fstab *fs; 1305 int i, mntsize; 1306 1307 /* 1308 * First check the mounted filesystems. 1309 */ 1310 mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); 1311 for (i = 0; i < mntsize; i++) { 1312 statfsp = &mntbuf[i]; 1313 1314 if (strcmp(statfsp->f_mntonname, mountpoint) == 0) 1315 return (statfsp->f_mntfromname); 1316 } 1317 1318 /* 1319 * Check the fstab. 1320 */ 1321 fs = getfsfile(mountpoint); 1322 if (fs != NULL) 1323 return (fs->fs_spec); 1324 1325 return (NULL); 1326 } 1327 1328 static const char * 1329 getdev(const char *name) 1330 { 1331 static char device[MAXPATHLEN]; 1332 const char *cp, *dev; 1333 1334 if (is_dev(name)) 1335 return (name); 1336 1337 cp = strrchr(name, '/'); 1338 if (cp == NULL) { 1339 snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name); 1340 if (is_dev(device)) 1341 return (device); 1342 } 1343 1344 dev = mountpoint_to_dev(name); 1345 if (dev != NULL && is_dev(dev)) 1346 return (dev); 1347 1348 return (NULL); 1349 } 1350 1351 /* 1352 * growfs(8) is a utility which allows to increase the size of an existing 1353 * ufs file system. Currently this can only be done on unmounted file system. 1354 * It recognizes some command line options to specify the new desired size, 1355 * and it does some basic checkings. The old file system size is determined 1356 * and after some more checks like we can really access the new last block 1357 * on the disk etc. we calculate the new parameters for the superblock. After 1358 * having done this we just call growfs() which will do the work. 1359 * We still have to provide support for snapshots. Therefore we first have to 1360 * understand what data structures are always replicated in the snapshot on 1361 * creation, for all other blocks we touch during our procedure, we have to 1362 * keep the old blocks unchanged somewhere available for the snapshots. If we 1363 * are lucky, then we only have to handle our blocks to be relocated in that 1364 * way. 1365 * Also we have to consider in what order we actually update the critical 1366 * data structures of the file system to make sure, that in case of a disaster 1367 * fsck(8) is still able to restore any lost data. 1368 * The foreseen last step then will be to provide for growing even mounted 1369 * file systems. There we have to extend the mount() system call to provide 1370 * userland access to the file system locking facility. 1371 */ 1372 int 1373 main(int argc, char **argv) 1374 { 1375 DBG_FUNC("main") 1376 struct fs *fs; 1377 const char *device; 1378 const struct statfs *statfsp; 1379 uint64_t size = 0; 1380 off_t mediasize; 1381 int error, j, fsi, fso, ch, ret, Nflag = 0, yflag = 0; 1382 char *p, reply[5], oldsizebuf[6], newsizebuf[6]; 1383 void *testbuf; 1384 1385 DBG_ENTER; 1386 1387 while ((ch = getopt(argc, argv, "Ns:vy")) != -1) { 1388 switch(ch) { 1389 case 'N': 1390 Nflag = 1; 1391 break; 1392 case 's': 1393 size = (off_t)strtoumax(optarg, &p, 0); 1394 if (p == NULL || *p == '\0') 1395 size *= DEV_BSIZE; 1396 else if (*p == 'b' || *p == 'B') 1397 ; /* do nothing */ 1398 else if (*p == 'k' || *p == 'K') 1399 size <<= 10; 1400 else if (*p == 'm' || *p == 'M') 1401 size <<= 20; 1402 else if (*p == 'g' || *p == 'G') 1403 size <<= 30; 1404 else if (*p == 't' || *p == 'T') { 1405 size <<= 30; 1406 size <<= 10; 1407 } else 1408 errx(1, "unknown suffix on -s argument"); 1409 break; 1410 case 'v': /* for compatibility to newfs */ 1411 break; 1412 case 'y': 1413 yflag = 1; 1414 break; 1415 case '?': 1416 /* FALLTHROUGH */ 1417 default: 1418 usage(); 1419 } 1420 } 1421 argc -= optind; 1422 argv += optind; 1423 1424 if (argc != 1) 1425 usage(); 1426 1427 /* 1428 * Now try to guess the device name. 1429 */ 1430 device = getdev(*argv); 1431 if (device == NULL) 1432 errx(1, "cannot find special device for %s", *argv); 1433 1434 statfsp = dev_to_statfs(device); 1435 1436 fsi = open(device, O_RDONLY); 1437 if (fsi < 0) 1438 err(1, "%s", device); 1439 1440 /* 1441 * Try to guess the slice size if not specified. 1442 */ 1443 if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1) 1444 err(1,"DIOCGMEDIASIZE"); 1445 1446 /* 1447 * Check if that partition is suitable for growing a file system. 1448 */ 1449 if (mediasize < 1) 1450 errx(1, "partition is unavailable"); 1451 1452 /* 1453 * Read the current superblock, and take a backup. 1454 */ 1455 if ((ret = sbget(fsi, &fs, STDSB)) != 0) { 1456 switch (ret) { 1457 case ENOENT: 1458 errx(1, "superblock not recognized"); 1459 default: 1460 errc(1, ret, "unable to read superblock"); 1461 } 1462 } 1463 /* 1464 * Check for unclean filesystem. 1465 */ 1466 if (fs->fs_clean == 0 || 1467 (fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) != 0) 1468 errx(1, "%s is not clean - run fsck.\n", *argv); 1469 memcpy(&osblock, fs, fs->fs_sbsize); 1470 free(fs); 1471 memcpy((void *)&fsun1, (void *)&fsun2, osblock.fs_sbsize); 1472 1473 DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */ 1474 DBG_DUMP_FS(&sblock, "old sblock"); 1475 1476 /* 1477 * Determine size to grow to. Default to the device size. 1478 */ 1479 if (size == 0) 1480 size = mediasize; 1481 else { 1482 if (size > (uint64_t)mediasize) { 1483 humanize_number(oldsizebuf, sizeof(oldsizebuf), size, 1484 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1485 humanize_number(newsizebuf, sizeof(newsizebuf), 1486 mediasize, 1487 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1488 1489 errx(1, "requested size %s is larger " 1490 "than the available %s", oldsizebuf, newsizebuf); 1491 } 1492 } 1493 1494 /* 1495 * Make sure the new size is a multiple of fs_fsize; /dev/ufssuspend 1496 * only supports fragment-aligned IO requests. 1497 */ 1498 size -= size % osblock.fs_fsize; 1499 1500 if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) { 1501 humanize_number(oldsizebuf, sizeof(oldsizebuf), 1502 osblock.fs_size * osblock.fs_fsize, 1503 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1504 humanize_number(newsizebuf, sizeof(newsizebuf), size, 1505 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1506 1507 errx(1, "requested size %s is not larger than the current " 1508 "filesystem size %s", newsizebuf, oldsizebuf); 1509 } 1510 1511 sblock.fs_size = dbtofsb(&osblock, size / DEV_BSIZE); 1512 sblock.fs_providersize = dbtofsb(&osblock, mediasize / DEV_BSIZE); 1513 1514 /* 1515 * Are we really growing? 1516 */ 1517 if (osblock.fs_size >= sblock.fs_size) { 1518 errx(1, "we are not growing (%jd->%jd)", 1519 (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size); 1520 } 1521 1522 /* 1523 * Check if we find an active snapshot. 1524 */ 1525 if (yflag == 0) { 1526 for (j = 0; j < FSMAXSNAP; j++) { 1527 if (sblock.fs_snapinum[j]) { 1528 errx(1, "active snapshot found in file system; " 1529 "please remove all snapshots before " 1530 "using growfs"); 1531 } 1532 if (!sblock.fs_snapinum[j]) /* list is dense */ 1533 break; 1534 } 1535 } 1536 1537 if (yflag == 0 && Nflag == 0) { 1538 if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) 1539 printf("Device is mounted read-write; resizing will " 1540 "result in temporary write suspension for %s.\n", 1541 statfsp->f_mntonname); 1542 printf("It's strongly recommended to make a backup " 1543 "before growing the file system.\n" 1544 "OK to grow filesystem on %s", device); 1545 if (statfsp != NULL) 1546 printf(", mounted on %s,", statfsp->f_mntonname); 1547 humanize_number(oldsizebuf, sizeof(oldsizebuf), 1548 osblock.fs_size * osblock.fs_fsize, 1549 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1550 humanize_number(newsizebuf, sizeof(newsizebuf), 1551 sblock.fs_size * sblock.fs_fsize, 1552 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1553 printf(" from %s to %s? [yes/no] ", oldsizebuf, newsizebuf); 1554 fflush(stdout); 1555 fgets(reply, (int)sizeof(reply), stdin); 1556 if (strcasecmp(reply, "yes\n")){ 1557 printf("Response other than \"yes\"; aborting\n"); 1558 exit(0); 1559 } 1560 } 1561 1562 /* 1563 * Try to access our device for writing. If it's not mounted, 1564 * or mounted read-only, simply open it; otherwise, use UFS 1565 * suspension mechanism. 1566 */ 1567 if (Nflag) { 1568 fso = -1; 1569 } else { 1570 if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) { 1571 fso = open(_PATH_UFSSUSPEND, O_RDWR); 1572 if (fso == -1) 1573 err(1, "unable to open %s", _PATH_UFSSUSPEND); 1574 error = ioctl(fso, UFSSUSPEND, &statfsp->f_fsid); 1575 if (error != 0) 1576 err(1, "UFSSUSPEND"); 1577 } else { 1578 fso = open(device, O_WRONLY); 1579 if (fso < 0) 1580 err(1, "%s", device); 1581 } 1582 } 1583 1584 /* 1585 * Try to access our new last block in the file system. 1586 */ 1587 testbuf = malloc(sblock.fs_fsize); 1588 if (testbuf == NULL) 1589 err(1, "malloc"); 1590 rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE), 1591 sblock.fs_fsize, testbuf, fsi); 1592 wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE), 1593 sblock.fs_fsize, testbuf, fso, Nflag); 1594 free(testbuf); 1595 1596 /* 1597 * Now calculate new superblock values and check for reasonable 1598 * bound for new file system size: 1599 * fs_size: is derived from user input 1600 * fs_dsize: should get updated in the routines creating or 1601 * updating the cylinder groups on the fly 1602 * fs_cstotal: should get updated in the routines creating or 1603 * updating the cylinder groups 1604 */ 1605 1606 /* 1607 * Update the number of cylinders and cylinder groups in the file system. 1608 */ 1609 if (sblock.fs_magic == FS_UFS1_MAGIC) { 1610 sblock.fs_old_ncyl = 1611 sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc; 1612 if (sblock.fs_size * sblock.fs_old_nspf > 1613 sblock.fs_old_ncyl * sblock.fs_old_spc) 1614 sblock.fs_old_ncyl++; 1615 } 1616 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 1617 1618 /* 1619 * Allocate last cylinder group only if there is enough room 1620 * for at least one data block. 1621 */ 1622 if (sblock.fs_size % sblock.fs_fpg != 0 && 1623 sblock.fs_size <= cgdmin(&sblock, sblock.fs_ncg - 1)) { 1624 humanize_number(oldsizebuf, sizeof(oldsizebuf), 1625 (sblock.fs_size % sblock.fs_fpg) * sblock.fs_fsize, 1626 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1627 warnx("no room to allocate last cylinder group; " 1628 "leaving %s unused", oldsizebuf); 1629 sblock.fs_ncg--; 1630 if (sblock.fs_magic == FS_UFS1_MAGIC) 1631 sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg; 1632 sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg; 1633 } 1634 1635 /* 1636 * Update the space for the cylinder group summary information in the 1637 * respective cylinder group data area. 1638 */ 1639 sblock.fs_cssize = 1640 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 1641 1642 if (osblock.fs_size >= sblock.fs_size) 1643 errx(1, "not enough new space"); 1644 1645 DBG_PRINT0("sblock calculated\n"); 1646 1647 /* 1648 * Ok, everything prepared, so now let's do the tricks. 1649 */ 1650 growfs(fsi, fso, Nflag); 1651 1652 close(fsi); 1653 if (fso > -1) { 1654 if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) { 1655 error = ioctl(fso, UFSRESUME); 1656 if (error != 0) 1657 err(1, "UFSRESUME"); 1658 } 1659 error = close(fso); 1660 if (error != 0) 1661 err(1, "close"); 1662 if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) != 0) 1663 mount_reload(statfsp); 1664 } 1665 1666 DBG_CLOSE; 1667 1668 DBG_LEAVE; 1669 return (0); 1670 } 1671 1672 /* 1673 * Dump a line of usage. 1674 */ 1675 static void 1676 usage(void) 1677 { 1678 DBG_FUNC("usage") 1679 1680 DBG_ENTER; 1681 1682 fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n"); 1683 1684 DBG_LEAVE; 1685 exit(1); 1686 } 1687 1688 /* 1689 * This updates most parameters and the bitmap related to cluster. We have to 1690 * assume that sblock, osblock, acg are set up. 1691 */ 1692 static void 1693 updclst(int block) 1694 { 1695 DBG_FUNC("updclst") 1696 static int lcs = 0; 1697 1698 DBG_ENTER; 1699 1700 if (sblock.fs_contigsumsize < 1) /* no clustering */ 1701 return; 1702 /* 1703 * update cluster allocation map 1704 */ 1705 setbit(cg_clustersfree(&acg), block); 1706 1707 /* 1708 * update cluster summary table 1709 */ 1710 if (!lcs) { 1711 /* 1712 * calculate size for the trailing cluster 1713 */ 1714 for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) { 1715 if (isclr(cg_clustersfree(&acg), block)) 1716 break; 1717 } 1718 } 1719 if (lcs < sblock.fs_contigsumsize) { 1720 if (lcs) 1721 cg_clustersum(&acg)[lcs]--; 1722 lcs++; 1723 cg_clustersum(&acg)[lcs]++; 1724 } 1725 1726 DBG_LEAVE; 1727 return; 1728 } 1729 1730 static void 1731 mount_reload(const struct statfs *stfs) 1732 { 1733 char errmsg[255]; 1734 struct iovec *iov; 1735 int iovlen; 1736 1737 iov = NULL; 1738 iovlen = 0; 1739 *errmsg = '\0'; 1740 build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4); 1741 build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1); 1742 build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg)); 1743 build_iovec(&iov, &iovlen, "update", NULL, 0); 1744 build_iovec(&iov, &iovlen, "reload", NULL, 0); 1745 1746 if (nmount(iov, iovlen, stfs->f_flags) < 0) { 1747 errmsg[sizeof(errmsg) - 1] = '\0'; 1748 err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname, 1749 *errmsg != '\0' ? ": " : "", errmsg); 1750 } 1751 } 1752 1753 /* 1754 * Calculate the check-hash of the cylinder group. 1755 */ 1756 static void 1757 cgckhash(struct cg *cgp) 1758 { 1759 1760 if ((sblock.fs_metackhash & CK_CYLGRP) == 0) 1761 return; 1762 cgp->cg_ckhash = 0; 1763 cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize); 1764 } 1765