xref: /freebsd/sbin/growfs/growfs.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*
2  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
3  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
4  * Copyright (c) 2012 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9  *
10  * Portions of this software were developed by Edward Tomasz Napierala
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgment:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors, as well as Christoph
25  *      Herrmann and Thomas-Henning von Kamptz.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
43  *
44  */
45 
46 #ifndef lint
47 static const char copyright[] =
48 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
49 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
50 All rights reserved.\n";
51 #endif /* not lint */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 #include <sys/disk.h>
60 #include <sys/ucred.h>
61 #include <sys/mount.h>
62 
63 #include <stdio.h>
64 #include <paths.h>
65 #include <ctype.h>
66 #include <err.h>
67 #include <fcntl.h>
68 #include <fstab.h>
69 #include <inttypes.h>
70 #include <limits.h>
71 #include <mntopts.h>
72 #include <stdlib.h>
73 #include <stdint.h>
74 #include <string.h>
75 #include <time.h>
76 #include <unistd.h>
77 #include <ufs/ufs/dinode.h>
78 #include <ufs/ffs/fs.h>
79 #include <libutil.h>
80 
81 #include "debug.h"
82 
83 #ifdef FS_DEBUG
84 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
85 #endif /* FS_DEBUG */
86 
87 static union {
88 	struct fs	fs;
89 	char		pad[SBLOCKSIZE];
90 } fsun1, fsun2;
91 #define	sblock	fsun1.fs	/* the new superblock */
92 #define	osblock	fsun2.fs	/* the old superblock */
93 
94 /*
95  * Possible superblock locations ordered from most to least likely.
96  */
97 static int sblock_try[] = SBLOCKSEARCH;
98 static ufs2_daddr_t sblockloc;
99 
100 static union {
101 	struct cg	cg;
102 	char		pad[MAXBSIZE];
103 } cgun1, cgun2;
104 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
105 #define	aocg	cgun2.cg	/* an old cylinder group */
106 
107 static struct csum	*fscs;	/* cylinder summary */
108 
109 static void	growfs(int, int, unsigned int);
110 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
111 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
112 static int	charsperline(void);
113 static void	usage(void);
114 static int	isblock(struct fs *, unsigned char *, int);
115 static void	clrblock(struct fs *, unsigned char *, int);
116 static void	setblock(struct fs *, unsigned char *, int);
117 static void	initcg(int, time_t, int, unsigned int);
118 static void	updjcg(int, time_t, int, int, unsigned int);
119 static void	updcsloc(time_t, int, int, unsigned int);
120 static void	frag_adjust(ufs2_daddr_t, int);
121 static void	updclst(int);
122 static void	mount_reload(const struct statfs *stfs);
123 
124 /*
125  * Here we actually start growing the file system. We basically read the
126  * cylinder summary from the first cylinder group as we want to update
127  * this on the fly during our various operations. First we handle the
128  * changes in the former last cylinder group. Afterwards we create all new
129  * cylinder groups.  Now we handle the cylinder group containing the
130  * cylinder summary which might result in a relocation of the whole
131  * structure.  In the end we write back the updated cylinder summary, the
132  * new superblock, and slightly patched versions of the super block
133  * copies.
134  */
135 static void
136 growfs(int fsi, int fso, unsigned int Nflag)
137 {
138 	DBG_FUNC("growfs")
139 	time_t modtime;
140 	uint cylno;
141 	int i, j, width;
142 	char tmpbuf[100];
143 	static int randinit = 0;
144 
145 	DBG_ENTER;
146 
147 	if (!randinit) {
148 		randinit = 1;
149 		srandomdev();
150 	}
151 	time(&modtime);
152 
153 	/*
154 	 * Get the cylinder summary into the memory.
155 	 */
156 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
157 	if (fscs == NULL)
158 		errx(1, "calloc failed");
159 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
160 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
161 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
162 		    osblock.fs_bsize), (void *)(((char *)fscs) + i), fsi);
163 	}
164 
165 #ifdef FS_DEBUG
166 	{
167 		struct csum *dbg_csp;
168 		int dbg_csc;
169 		char dbg_line[80];
170 
171 		dbg_csp = fscs;
172 
173 		for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) {
174 			snprintf(dbg_line, sizeof(dbg_line),
175 			    "%d. old csum in old location", dbg_csc);
176 			DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++);
177 		}
178 	}
179 #endif /* FS_DEBUG */
180 	DBG_PRINT0("fscs read\n");
181 
182 	/*
183 	 * Do all needed changes in the former last cylinder group.
184 	 */
185 	updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag);
186 
187 	/*
188 	 * Dump out summary information about file system.
189 	 */
190 #ifdef FS_DEBUG
191 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
192 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
193 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
194 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
195 	    sblock.fs_fsize);
196 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
197 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
198 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
199 	if (sblock.fs_flags & FS_DOSOFTDEP)
200 		printf("\twith soft updates\n");
201 #undef B2MBFACTOR
202 #endif /* FS_DEBUG */
203 
204 	/*
205 	 * Now build the cylinders group blocks and
206 	 * then print out indices of cylinder groups.
207 	 */
208 	printf("super-block backups (for fsck -b #) at:\n");
209 	i = 0;
210 	width = charsperline();
211 
212 	/*
213 	 * Iterate for only the new cylinder groups.
214 	 */
215 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
216 		initcg(cylno, modtime, fso, Nflag);
217 		j = sprintf(tmpbuf, " %jd%s",
218 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
219 		    cylno < (sblock.fs_ncg - 1) ? "," : "" );
220 		if (i + j >= width) {
221 			printf("\n");
222 			i = 0;
223 		}
224 		i += j;
225 		printf("%s", tmpbuf);
226 		fflush(stdout);
227 	}
228 	printf("\n");
229 
230 	/*
231 	 * Do all needed changes in the first cylinder group.
232 	 * allocate blocks in new location
233 	 */
234 	updcsloc(modtime, fsi, fso, Nflag);
235 
236 	/*
237 	 * Now write the cylinder summary back to disk.
238 	 */
239 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
240 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
241 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
242 		    (void *)(((char *)fscs) + i), fso, Nflag);
243 	}
244 	DBG_PRINT0("fscs written\n");
245 
246 #ifdef FS_DEBUG
247 	{
248 		struct csum	*dbg_csp;
249 		int	dbg_csc;
250 		char	dbg_line[80];
251 
252 		dbg_csp = fscs;
253 		for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) {
254 			snprintf(dbg_line, sizeof(dbg_line),
255 			    "%d. new csum in new location", dbg_csc);
256 			DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++);
257 		}
258 	}
259 #endif /* FS_DEBUG */
260 
261 	/*
262 	 * Now write the new superblock back to disk.
263 	 */
264 	sblock.fs_time = modtime;
265 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
266 	DBG_PRINT0("sblock written\n");
267 	DBG_DUMP_FS(&sblock, "new initial sblock");
268 
269 	/*
270 	 * Clean up the dynamic fields in our superblock copies.
271 	 */
272 	sblock.fs_fmod = 0;
273 	sblock.fs_clean = 1;
274 	sblock.fs_ronly = 0;
275 	sblock.fs_cgrotor = 0;
276 	sblock.fs_state = 0;
277 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
278 	sblock.fs_flags &= FS_DOSOFTDEP;
279 
280 	/*
281 	 * XXX
282 	 * The following fields are currently distributed from the superblock
283 	 * to the copies:
284 	 *     fs_minfree
285 	 *     fs_rotdelay
286 	 *     fs_maxcontig
287 	 *     fs_maxbpg
288 	 *     fs_minfree,
289 	 *     fs_optim
290 	 *     fs_flags regarding SOFTPDATES
291 	 *
292 	 * We probably should rather change the summary for the cylinder group
293 	 * statistics here to the value of what would be in there, if the file
294 	 * system were created initially with the new size. Therefor we still
295 	 * need to find an easy way of calculating that.
296 	 * Possibly we can try to read the first superblock copy and apply the
297 	 * "diffed" stats between the old and new superblock by still copying
298 	 * certain parameters onto that.
299 	 */
300 
301 	/*
302 	 * Write out the duplicate super blocks.
303 	 */
304 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
305 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
306 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
307 	}
308 	DBG_PRINT0("sblock copies written\n");
309 	DBG_DUMP_FS(&sblock, "new other sblocks");
310 
311 	DBG_LEAVE;
312 	return;
313 }
314 
315 /*
316  * This creates a new cylinder group structure, for more details please see
317  * the source of newfs(8), as this function is taken over almost unchanged.
318  * As this is never called for the first cylinder group, the special
319  * provisions for that case are removed here.
320  */
321 static void
322 initcg(int cylno, time_t modtime, int fso, unsigned int Nflag)
323 {
324 	DBG_FUNC("initcg")
325 	static caddr_t iobuf;
326 	long blkno, start;
327 	ufs2_daddr_t i, cbase, dmax;
328 	struct ufs1_dinode *dp1;
329 	struct csum *cs;
330 	uint j, d, dupper, dlower;
331 
332 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize * 3)) == NULL)
333 		errx(37, "panic: cannot allocate I/O buffer");
334 
335 	/*
336 	 * Determine block bounds for cylinder group.
337 	 * Allow space for super block summary information in first
338 	 * cylinder group.
339 	 */
340 	cbase = cgbase(&sblock, cylno);
341 	dmax = cbase + sblock.fs_fpg;
342 	if (dmax > sblock.fs_size)
343 		dmax = sblock.fs_size;
344 	dlower = cgsblock(&sblock, cylno) - cbase;
345 	dupper = cgdmin(&sblock, cylno) - cbase;
346 	if (cylno == 0)	/* XXX fscs may be relocated */
347 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
348 	cs = &fscs[cylno];
349 	memset(&acg, 0, sblock.fs_cgsize);
350 	acg.cg_time = modtime;
351 	acg.cg_magic = CG_MAGIC;
352 	acg.cg_cgx = cylno;
353 	acg.cg_niblk = sblock.fs_ipg;
354 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
355 	    sblock.fs_ipg : 2 * INOPB(&sblock);
356 	acg.cg_ndblk = dmax - cbase;
357 	if (sblock.fs_contigsumsize > 0)
358 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
359 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
360 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
361 		acg.cg_iusedoff = start;
362 	} else {
363 		acg.cg_old_ncyl = sblock.fs_old_cpg;
364 		acg.cg_old_time = acg.cg_time;
365 		acg.cg_time = 0;
366 		acg.cg_old_niblk = acg.cg_niblk;
367 		acg.cg_niblk = 0;
368 		acg.cg_initediblk = 0;
369 		acg.cg_old_btotoff = start;
370 		acg.cg_old_boff = acg.cg_old_btotoff +
371 		    sblock.fs_old_cpg * sizeof(int32_t);
372 		acg.cg_iusedoff = acg.cg_old_boff +
373 		    sblock.fs_old_cpg * sizeof(u_int16_t);
374 	}
375 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
376 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
377 	if (sblock.fs_contigsumsize > 0) {
378 		acg.cg_clustersumoff =
379 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
380 		acg.cg_clustersumoff -= sizeof(u_int32_t);
381 		acg.cg_clusteroff = acg.cg_clustersumoff +
382 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
383 		acg.cg_nextfreeoff = acg.cg_clusteroff +
384 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
385 	}
386 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
387 		/*
388 		 * This should never happen as we would have had that panic
389 		 * already on file system creation
390 		 */
391 		errx(37, "panic: cylinder group too big");
392 	}
393 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
394 	if (cylno == 0)
395 		for (i = 0; i < ROOTINO; i++) {
396 			setbit(cg_inosused(&acg), i);
397 			acg.cg_cs.cs_nifree--;
398 		}
399 	/*
400 	 * For the old file system, we have to initialize all the inodes.
401 	 */
402 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
403 		bzero(iobuf, sblock.fs_bsize);
404 		for (i = 0; i < sblock.fs_ipg / INOPF(&sblock);
405 		    i += sblock.fs_frag) {
406 			dp1 = (struct ufs1_dinode *)(void *)iobuf;
407 			for (j = 0; j < INOPB(&sblock); j++) {
408 				dp1->di_gen = random();
409 				dp1++;
410 			}
411 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
412 			    sblock.fs_bsize, iobuf, fso, Nflag);
413 		}
414 	}
415 	if (cylno > 0) {
416 		/*
417 		 * In cylno 0, beginning space is reserved
418 		 * for boot and super blocks.
419 		 */
420 		for (d = 0; d < dlower; d += sblock.fs_frag) {
421 			blkno = d / sblock.fs_frag;
422 			setblock(&sblock, cg_blksfree(&acg), blkno);
423 			if (sblock.fs_contigsumsize > 0)
424 				setbit(cg_clustersfree(&acg), blkno);
425 			acg.cg_cs.cs_nbfree++;
426 		}
427 		sblock.fs_dsize += dlower;
428 	}
429 	sblock.fs_dsize += acg.cg_ndblk - dupper;
430 	if ((i = dupper % sblock.fs_frag)) {
431 		acg.cg_frsum[sblock.fs_frag - i]++;
432 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
433 			setbit(cg_blksfree(&acg), dupper);
434 			acg.cg_cs.cs_nffree++;
435 		}
436 	}
437 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
438 	    d += sblock.fs_frag) {
439 		blkno = d / sblock.fs_frag;
440 		setblock(&sblock, cg_blksfree(&acg), blkno);
441 		if (sblock.fs_contigsumsize > 0)
442 			setbit(cg_clustersfree(&acg), blkno);
443 		acg.cg_cs.cs_nbfree++;
444 	}
445 	if (d < acg.cg_ndblk) {
446 		acg.cg_frsum[acg.cg_ndblk - d]++;
447 		for (; d < acg.cg_ndblk; d++) {
448 			setbit(cg_blksfree(&acg), d);
449 			acg.cg_cs.cs_nffree++;
450 		}
451 	}
452 	if (sblock.fs_contigsumsize > 0) {
453 		int32_t *sump = cg_clustersum(&acg);
454 		u_char *mapp = cg_clustersfree(&acg);
455 		int map = *mapp++;
456 		int bit = 1;
457 		int run = 0;
458 
459 		for (i = 0; i < acg.cg_nclusterblks; i++) {
460 			if ((map & bit) != 0)
461 				run++;
462 			else if (run != 0) {
463 				if (run > sblock.fs_contigsumsize)
464 					run = sblock.fs_contigsumsize;
465 				sump[run]++;
466 				run = 0;
467 			}
468 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
469 				bit <<= 1;
470 			else {
471 				map = *mapp++;
472 				bit = 1;
473 			}
474 		}
475 		if (run != 0) {
476 			if (run > sblock.fs_contigsumsize)
477 				run = sblock.fs_contigsumsize;
478 			sump[run]++;
479 		}
480 	}
481 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
482 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
483 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
484 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
485 	*cs = acg.cg_cs;
486 
487 	memcpy(iobuf, &acg, sblock.fs_cgsize);
488 	memset(iobuf + sblock.fs_cgsize, '\0',
489 	    sblock.fs_bsize * 3 - sblock.fs_cgsize);
490 
491 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
492 	    sblock.fs_bsize * 3, iobuf, fso, Nflag);
493 	DBG_DUMP_CG(&sblock, "new cg", &acg);
494 
495 	DBG_LEAVE;
496 	return;
497 }
498 
499 /*
500  * Here we add or subtract (sign +1/-1) the available fragments in a given
501  * block to or from the fragment statistics. By subtracting before and adding
502  * after an operation on the free frag map we can easy update the fragment
503  * statistic, which seems to be otherwise a rather complex operation.
504  */
505 static void
506 frag_adjust(ufs2_daddr_t frag, int sign)
507 {
508 	DBG_FUNC("frag_adjust")
509 	int fragsize;
510 	int f;
511 
512 	DBG_ENTER;
513 
514 	fragsize = 0;
515 	/*
516 	 * Here frag only needs to point to any fragment in the block we want
517 	 * to examine.
518 	 */
519 	for (f = rounddown(frag, sblock.fs_frag);
520 	    f < roundup(frag + 1, sblock.fs_frag); f++) {
521 		/*
522 		 * Count contiguous free fragments.
523 		 */
524 		if (isset(cg_blksfree(&acg), f)) {
525 			fragsize++;
526 		} else {
527 			if (fragsize && fragsize < sblock.fs_frag) {
528 				/*
529 				 * We found something in between.
530 				 */
531 				acg.cg_frsum[fragsize] += sign;
532 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
533 				    fragsize, sign);
534 			}
535 			fragsize = 0;
536 		}
537 	}
538 	if (fragsize && fragsize < sblock.fs_frag) {
539 		/*
540 		 * We found something.
541 		 */
542 		acg.cg_frsum[fragsize] += sign;
543 		DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign);
544 	}
545 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign);
546 
547 	DBG_LEAVE;
548 	return;
549 }
550 
551 /*
552  * Here we do all needed work for the former last cylinder group. It has to be
553  * changed in any case, even if the file system ended exactly on the end of
554  * this group, as there is some slightly inconsistent handling of the number
555  * of cylinders in the cylinder group. We start again by reading the cylinder
556  * group from disk. If the last block was not fully available, we first handle
557  * the missing fragments, then we handle all new full blocks in that file
558  * system and finally we handle the new last fragmented block in the file
559  * system.  We again have to handle the fragment statistics rotational layout
560  * tables and cluster summary during all those operations.
561  */
562 static void
563 updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag)
564 {
565 	DBG_FUNC("updjcg")
566 	ufs2_daddr_t cbase, dmax, dupper;
567 	struct csum *cs;
568 	int i, k;
569 	int j = 0;
570 
571 	DBG_ENTER;
572 
573 	/*
574 	 * Read the former last (joining) cylinder group from disk, and make
575 	 * a copy.
576 	 */
577 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
578 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
579 	DBG_PRINT0("jcg read\n");
580 	DBG_DUMP_CG(&sblock, "old joining cg", &aocg);
581 
582 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
583 
584 	/*
585 	 * If the cylinder group had already its new final size almost
586 	 * nothing is to be done ... except:
587 	 * For some reason the value of cg_ncyl in the last cylinder group has
588 	 * to be zero instead of fs_cpg. As this is now no longer the last
589 	 * cylinder group we have to change that value now to fs_cpg.
590 	 */
591 
592 	if (cgbase(&osblock, cylno + 1) == osblock.fs_size) {
593 		if (sblock.fs_magic == FS_UFS1_MAGIC)
594 			acg.cg_old_ncyl = sblock.fs_old_cpg;
595 
596 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
597 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
598 		DBG_PRINT0("jcg written\n");
599 		DBG_DUMP_CG(&sblock, "new joining cg", &acg);
600 
601 		DBG_LEAVE;
602 		return;
603 	}
604 
605 	/*
606 	 * Set up some variables needed later.
607 	 */
608 	cbase = cgbase(&sblock, cylno);
609 	dmax = cbase + sblock.fs_fpg;
610 	if (dmax > sblock.fs_size)
611 		dmax = sblock.fs_size;
612 	dupper = cgdmin(&sblock, cylno) - cbase;
613 	if (cylno == 0) /* XXX fscs may be relocated */
614 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
615 
616 	/*
617 	 * Set pointer to the cylinder summary for our cylinder group.
618 	 */
619 	cs = fscs + cylno;
620 
621 	/*
622 	 * Touch the cylinder group, update all fields in the cylinder group as
623 	 * needed, update the free space in the superblock.
624 	 */
625 	acg.cg_time = modtime;
626 	if ((unsigned)cylno == sblock.fs_ncg - 1) {
627 		/*
628 		 * This is still the last cylinder group.
629 		 */
630 		if (sblock.fs_magic == FS_UFS1_MAGIC)
631 			acg.cg_old_ncyl =
632 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
633 	} else {
634 		acg.cg_old_ncyl = sblock.fs_old_cpg;
635 	}
636 	DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg);
637 #ifdef FS_DEBUG
638 	if (sblock.fs_magic == FS_UFS1_MAGIC)
639 		DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg);
640 #endif
641 	DBG_PRINT0("\n");
642 	acg.cg_ndblk = dmax - cbase;
643 	sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk;
644 	if (sblock.fs_contigsumsize > 0)
645 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
646 
647 	/*
648 	 * Now we have to update the free fragment bitmap for our new free
649 	 * space.  There again we have to handle the fragmentation and also
650 	 * the rotational layout tables and the cluster summary.  This is
651 	 * also done per fragment for the first new block if the old file
652 	 * system end was not on a block boundary, per fragment for the new
653 	 * last block if the new file system end is not on a block boundary,
654 	 * and per block for all space in between.
655 	 *
656 	 * Handle the first new block here if it was partially available
657 	 * before.
658 	 */
659 	if (osblock.fs_size % sblock.fs_frag) {
660 		if (roundup(osblock.fs_size, sblock.fs_frag) <=
661 		    sblock.fs_size) {
662 			/*
663 			 * The new space is enough to fill at least this
664 			 * block
665 			 */
666 			j = 0;
667 			for (i = roundup(osblock.fs_size - cbase,
668 			    sblock.fs_frag) - 1; i >= osblock.fs_size - cbase;
669 			    i--) {
670 				setbit(cg_blksfree(&acg), i);
671 				acg.cg_cs.cs_nffree++;
672 				j++;
673 			}
674 
675 			/*
676 			 * Check if the fragment just created could join an
677 			 * already existing fragment at the former end of the
678 			 * file system.
679 			 */
680 			if (isblock(&sblock, cg_blksfree(&acg),
681 			    ((osblock.fs_size - cgbase(&sblock, cylno)) /
682 			     sblock.fs_frag))) {
683 				/*
684 				 * The block is now completely available.
685 				 */
686 				DBG_PRINT0("block was\n");
687 				acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--;
688 				acg.cg_cs.cs_nbfree++;
689 				acg.cg_cs.cs_nffree -= sblock.fs_frag;
690 				k = rounddown(osblock.fs_size - cbase,
691 				    sblock.fs_frag);
692 				updclst((osblock.fs_size - cbase) /
693 				    sblock.fs_frag);
694 			} else {
695 				/*
696 				 * Lets rejoin a possible partially growed
697 				 * fragment.
698 				 */
699 				k = 0;
700 				while (isset(cg_blksfree(&acg), i) &&
701 				    (i >= rounddown(osblock.fs_size - cbase,
702 				    sblock.fs_frag))) {
703 					i--;
704 					k++;
705 				}
706 				if (k)
707 					acg.cg_frsum[k]--;
708 				acg.cg_frsum[k + j]++;
709 			}
710 		} else {
711 			/*
712 			 * We only grow by some fragments within this last
713 			 * block.
714 			 */
715 			for (i = sblock.fs_size - cbase - 1;
716 			    i >= osblock.fs_size - cbase; i--) {
717 				setbit(cg_blksfree(&acg), i);
718 				acg.cg_cs.cs_nffree++;
719 				j++;
720 			}
721 			/*
722 			 * Lets rejoin a possible partially growed fragment.
723 			 */
724 			k = 0;
725 			while (isset(cg_blksfree(&acg), i) &&
726 			    (i >= rounddown(osblock.fs_size - cbase,
727 			    sblock.fs_frag))) {
728 				i--;
729 				k++;
730 			}
731 			if (k)
732 				acg.cg_frsum[k]--;
733 			acg.cg_frsum[k + j]++;
734 		}
735 	}
736 
737 	/*
738 	 * Handle all new complete blocks here.
739 	 */
740 	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
741 	    i + sblock.fs_frag <= dmax - cbase;	/* XXX <= or only < ? */
742 	    i += sblock.fs_frag) {
743 		j = i / sblock.fs_frag;
744 		setblock(&sblock, cg_blksfree(&acg), j);
745 		updclst(j);
746 		acg.cg_cs.cs_nbfree++;
747 	}
748 
749 	/*
750 	 * Handle the last new block if there are stll some new fragments left.
751 	 * Here we don't have to bother about the cluster summary or the even
752 	 * the rotational layout table.
753 	 */
754 	if (i < (dmax - cbase)) {
755 		acg.cg_frsum[dmax - cbase - i]++;
756 		for (; i < dmax - cbase; i++) {
757 			setbit(cg_blksfree(&acg), i);
758 			acg.cg_cs.cs_nffree++;
759 		}
760 	}
761 
762 	sblock.fs_cstotal.cs_nffree +=
763 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
764 	sblock.fs_cstotal.cs_nbfree +=
765 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
766 	/*
767 	 * The following statistics are not changed here:
768 	 *     sblock.fs_cstotal.cs_ndir
769 	 *     sblock.fs_cstotal.cs_nifree
770 	 * As the statistics for this cylinder group are ready, copy it to
771 	 * the summary information array.
772 	 */
773 	*cs = acg.cg_cs;
774 
775 	/*
776 	 * Write the updated "joining" cylinder group back to disk.
777 	 */
778 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
779 	    (void *)&acg, fso, Nflag);
780 	DBG_PRINT0("jcg written\n");
781 	DBG_DUMP_CG(&sblock, "new joining cg", &acg);
782 
783 	DBG_LEAVE;
784 	return;
785 }
786 
787 /*
788  * Here we update the location of the cylinder summary. We have two possible
789  * ways of growing the cylinder summary:
790  * (1)	We can try to grow the summary in the current location, and relocate
791  *	possibly used blocks within the current cylinder group.
792  * (2)	Alternatively we can relocate the whole cylinder summary to the first
793  *	new completely empty cylinder group. Once the cylinder summary is no
794  *	longer in the beginning of the first cylinder group you should never
795  *	use a version of fsck which is not aware of the possibility to have
796  *	this structure in a non standard place.
797  * Option (2) is considered to be less intrusive to the structure of the file-
798  * system, so that's the one being used.
799  */
800 static void
801 updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag)
802 {
803 	DBG_FUNC("updcsloc")
804 	struct csum *cs;
805 	int ocscg, ncscg;
806 	ufs2_daddr_t d;
807 	int lcs = 0;
808 	int block;
809 
810 	DBG_ENTER;
811 
812 	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
813 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
814 		/*
815 		 * No new fragment needed.
816 		 */
817 		DBG_LEAVE;
818 		return;
819 	}
820 	ocscg = dtog(&osblock, osblock.fs_csaddr);
821 	cs = fscs + ocscg;
822 
823 	/*
824 	 * Read original cylinder group from disk, and make a copy.
825 	 * XXX	If Nflag is set in some very rare cases we now miss
826 	 *	some changes done in updjcg by reading the unmodified
827 	 *	block from disk.
828 	 */
829 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
830 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
831 	DBG_PRINT0("oscg read\n");
832 	DBG_DUMP_CG(&sblock, "old summary cg", &aocg);
833 
834 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
835 
836 	/*
837 	 * Touch the cylinder group, set up local variables needed later
838 	 * and update the superblock.
839 	 */
840 	acg.cg_time = modtime;
841 
842 	/*
843 	 * XXX	In the case of having active snapshots we may need much more
844 	 *	blocks for the copy on write. We need each block twice, and
845 	 *	also up to 8*3 blocks for indirect blocks for all possible
846 	 *	references.
847 	 */
848 	/*
849 	 * There is not enough space in the old cylinder group to
850 	 * relocate all blocks as needed, so we relocate the whole
851 	 * cylinder group summary to a new group. We try to use the
852 	 * first complete new cylinder group just created. Within the
853 	 * cylinder group we align the area immediately after the
854 	 * cylinder group information location in order to be as
855 	 * close as possible to the original implementation of ffs.
856 	 *
857 	 * First we have to make sure we'll find enough space in the
858 	 * new cylinder group. If not, then we currently give up.
859 	 * We start with freeing everything which was used by the
860 	 * fragments of the old cylinder summary in the current group.
861 	 * Now we write back the group meta data, read in the needed
862 	 * meta data from the new cylinder group, and start allocating
863 	 * within that group. Here we can assume, the group to be
864 	 * completely empty. Which makes the handling of fragments and
865 	 * clusters a lot easier.
866 	 */
867 	DBG_TRC;
868 	if (sblock.fs_ncg - osblock.fs_ncg < 2)
869 		errx(2, "panic: not enough space");
870 
871 	/*
872 	 * Point "d" to the first fragment not used by the cylinder
873 	 * summary.
874 	 */
875 	d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
876 
877 	/*
878 	 * Set up last cluster size ("lcs") already here. Calculate
879 	 * the size for the trailing cluster just behind where "d"
880 	 * points to.
881 	 */
882 	if (sblock.fs_contigsumsize > 0) {
883 		for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
884 		    lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) {
885 			if (isclr(cg_clustersfree(&acg), block))
886 				break;
887 		}
888 	}
889 
890 	/*
891 	 * Point "d" to the last frag used by the cylinder summary.
892 	 */
893 	d--;
894 
895 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
896 	if ((d + 1) % sblock.fs_frag) {
897 		/*
898 		 * The end of the cylinder summary is not a complete
899 		 * block.
900 		 */
901 		DBG_TRC;
902 		frag_adjust(d % sblock.fs_fpg, -1);
903 		for (; (d + 1) % sblock.fs_frag; d--) {
904 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
905 			setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
906 			acg.cg_cs.cs_nffree++;
907 			sblock.fs_cstotal.cs_nffree++;
908 		}
909 		/*
910 		 * Point "d" to the last fragment of the last
911 		 * (incomplete) block of the cylinder summary.
912 		 */
913 		d++;
914 		frag_adjust(d % sblock.fs_fpg, 1);
915 
916 		if (isblock(&sblock, cg_blksfree(&acg),
917 		    (d % sblock.fs_fpg) / sblock.fs_frag)) {
918 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
919 			acg.cg_cs.cs_nffree -= sblock.fs_frag;
920 			acg.cg_cs.cs_nbfree++;
921 			sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
922 			sblock.fs_cstotal.cs_nbfree++;
923 			if (sblock.fs_contigsumsize > 0) {
924 				setbit(cg_clustersfree(&acg),
925 				    (d % sblock.fs_fpg) / sblock.fs_frag);
926 				if (lcs < sblock.fs_contigsumsize) {
927 					if (lcs)
928 						cg_clustersum(&acg)[lcs]--;
929 					lcs++;
930 					cg_clustersum(&acg)[lcs]++;
931 				}
932 			}
933 		}
934 		/*
935 		 * Point "d" to the first fragment of the block before
936 		 * the last incomplete block.
937 		 */
938 		d--;
939 	}
940 
941 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
942 	for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
943 	    d -= sblock.fs_frag) {
944 		DBG_TRC;
945 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
946 		setblock(&sblock, cg_blksfree(&acg),
947 		    (d % sblock.fs_fpg) / sblock.fs_frag);
948 		acg.cg_cs.cs_nbfree++;
949 		sblock.fs_cstotal.cs_nbfree++;
950 		if (sblock.fs_contigsumsize > 0) {
951 			setbit(cg_clustersfree(&acg),
952 			    (d % sblock.fs_fpg) / sblock.fs_frag);
953 			/*
954 			 * The last cluster size is already set up.
955 			 */
956 			if (lcs < sblock.fs_contigsumsize) {
957 				if (lcs)
958 					cg_clustersum(&acg)[lcs]--;
959 				lcs++;
960 				cg_clustersum(&acg)[lcs]++;
961 			}
962 		}
963 	}
964 	*cs = acg.cg_cs;
965 
966 	/*
967 	 * Now write the former cylinder group containing the cylinder
968 	 * summary back to disk.
969 	 */
970 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
971 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
972 	DBG_PRINT0("oscg written\n");
973 	DBG_DUMP_CG(&sblock, "old summary cg", &acg);
974 
975 	/*
976 	 * Find the beginning of the new cylinder group containing the
977 	 * cylinder summary.
978 	 */
979 	sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
980 	ncscg = dtog(&sblock, sblock.fs_csaddr);
981 	cs = fscs + ncscg;
982 
983 	/*
984 	 * If Nflag is specified, we would now read random data instead
985 	 * of an empty cg structure from disk. So we can't simulate that
986 	 * part for now.
987 	 */
988 	if (Nflag) {
989 		DBG_PRINT0("nscg update skipped\n");
990 		DBG_LEAVE;
991 		return;
992 	}
993 
994 	/*
995 	 * Read the future cylinder group containing the cylinder
996 	 * summary from disk, and make a copy.
997 	 */
998 	rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
999 	    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1000 	DBG_PRINT0("nscg read\n");
1001 	DBG_DUMP_CG(&sblock, "new summary cg", &aocg);
1002 
1003 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1004 
1005 	/*
1006 	 * Allocate all complete blocks used by the new cylinder
1007 	 * summary.
1008 	 */
1009 	for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
1010 	    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
1011 	    d += sblock.fs_frag) {
1012 		clrblock(&sblock, cg_blksfree(&acg),
1013 		    (d % sblock.fs_fpg) / sblock.fs_frag);
1014 		acg.cg_cs.cs_nbfree--;
1015 		sblock.fs_cstotal.cs_nbfree--;
1016 		if (sblock.fs_contigsumsize > 0) {
1017 			clrbit(cg_clustersfree(&acg),
1018 			    (d % sblock.fs_fpg) / sblock.fs_frag);
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * Allocate all fragments used by the cylinder summary in the
1024 	 * last block.
1025 	 */
1026 	if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1027 		for (; d - sblock.fs_csaddr <
1028 		    sblock.fs_cssize/sblock.fs_fsize; d++) {
1029 			clrbit(cg_blksfree(&acg), d % sblock.fs_fpg);
1030 			acg.cg_cs.cs_nffree--;
1031 			sblock.fs_cstotal.cs_nffree--;
1032 		}
1033 		acg.cg_cs.cs_nbfree--;
1034 		acg.cg_cs.cs_nffree += sblock.fs_frag;
1035 		sblock.fs_cstotal.cs_nbfree--;
1036 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1037 		if (sblock.fs_contigsumsize > 0)
1038 			clrbit(cg_clustersfree(&acg),
1039 			    (d % sblock.fs_fpg) / sblock.fs_frag);
1040 
1041 		frag_adjust(d % sblock.fs_fpg, 1);
1042 	}
1043 	/*
1044 	 * XXX	Handle the cluster statistics here in the case this
1045 	 *	cylinder group is now almost full, and the remaining
1046 	 *	space is less then the maximum cluster size. This is
1047 	 *	probably not needed, as you would hardly find a file
1048 	 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1049 	 *	space right behind the cylinder group information in
1050 	 *	any new cylinder group.
1051 	 */
1052 
1053 	/*
1054 	 * Update our statistics in the cylinder summary.
1055 	 */
1056 	*cs = acg.cg_cs;
1057 
1058 	/*
1059 	 * Write the new cylinder group containing the cylinder summary
1060 	 * back to disk.
1061 	 */
1062 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1063 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1064 	DBG_PRINT0("nscg written\n");
1065 	DBG_DUMP_CG(&sblock, "new summary cg", &acg);
1066 
1067 	DBG_LEAVE;
1068 	return;
1069 }
1070 
1071 /*
1072  * Here we read some block(s) from disk.
1073  */
1074 static void
1075 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1076 {
1077 	DBG_FUNC("rdfs")
1078 	ssize_t	n;
1079 
1080 	DBG_ENTER;
1081 
1082 	if (bno < 0)
1083 		err(32, "rdfs: attempting to read negative block number");
1084 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0)
1085 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1086 	n = read(fsi, bf, size);
1087 	if (n != (ssize_t)size)
1088 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1089 
1090 	DBG_LEAVE;
1091 	return;
1092 }
1093 
1094 /*
1095  * Here we write some block(s) to disk.
1096  */
1097 static void
1098 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1099 {
1100 	DBG_FUNC("wtfs")
1101 	ssize_t	n;
1102 
1103 	DBG_ENTER;
1104 
1105 	if (Nflag) {
1106 		DBG_LEAVE;
1107 		return;
1108 	}
1109 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0)
1110 		err(35, "wtfs: seek error: %ld", (long)bno);
1111 	n = write(fso, bf, size);
1112 	if (n != (ssize_t)size)
1113 		err(36, "wtfs: write error: %ld", (long)bno);
1114 
1115 	DBG_LEAVE;
1116 	return;
1117 }
1118 
1119 /*
1120  * Here we check if all frags of a block are free. For more details again
1121  * please see the source of newfs(8), as this function is taken over almost
1122  * unchanged.
1123  */
1124 static int
1125 isblock(struct fs *fs, unsigned char *cp, int h)
1126 {
1127 	DBG_FUNC("isblock")
1128 	unsigned char mask;
1129 
1130 	DBG_ENTER;
1131 
1132 	switch (fs->fs_frag) {
1133 	case 8:
1134 		DBG_LEAVE;
1135 		return (cp[h] == 0xff);
1136 	case 4:
1137 		mask = 0x0f << ((h & 0x1) << 2);
1138 		DBG_LEAVE;
1139 		return ((cp[h >> 1] & mask) == mask);
1140 	case 2:
1141 		mask = 0x03 << ((h & 0x3) << 1);
1142 		DBG_LEAVE;
1143 		return ((cp[h >> 2] & mask) == mask);
1144 	case 1:
1145 		mask = 0x01 << (h & 0x7);
1146 		DBG_LEAVE;
1147 		return ((cp[h >> 3] & mask) == mask);
1148 	default:
1149 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1150 		DBG_LEAVE;
1151 		return (0);
1152 	}
1153 }
1154 
1155 /*
1156  * Here we allocate a complete block in the block map. For more details again
1157  * please see the source of newfs(8), as this function is taken over almost
1158  * unchanged.
1159  */
1160 static void
1161 clrblock(struct fs *fs, unsigned char *cp, int h)
1162 {
1163 	DBG_FUNC("clrblock")
1164 
1165 	DBG_ENTER;
1166 
1167 	switch ((fs)->fs_frag) {
1168 	case 8:
1169 		cp[h] = 0;
1170 		break;
1171 	case 4:
1172 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1173 		break;
1174 	case 2:
1175 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1176 		break;
1177 	case 1:
1178 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1179 		break;
1180 	default:
1181 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1182 		break;
1183 	}
1184 
1185 	DBG_LEAVE;
1186 	return;
1187 }
1188 
1189 /*
1190  * Here we free a complete block in the free block map. For more details again
1191  * please see the source of newfs(8), as this function is taken over almost
1192  * unchanged.
1193  */
1194 static void
1195 setblock(struct fs *fs, unsigned char *cp, int h)
1196 {
1197 	DBG_FUNC("setblock")
1198 
1199 	DBG_ENTER;
1200 
1201 	switch (fs->fs_frag) {
1202 	case 8:
1203 		cp[h] = 0xff;
1204 		break;
1205 	case 4:
1206 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1207 		break;
1208 	case 2:
1209 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1210 		break;
1211 	case 1:
1212 		cp[h >> 3] |= (0x01 << (h & 0x7));
1213 		break;
1214 	default:
1215 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1216 		break;
1217 	}
1218 
1219 	DBG_LEAVE;
1220 	return;
1221 }
1222 
1223 /*
1224  * Figure out how many lines our current terminal has. For more details again
1225  * please see the source of newfs(8), as this function is taken over almost
1226  * unchanged.
1227  */
1228 static int
1229 charsperline(void)
1230 {
1231 	DBG_FUNC("charsperline")
1232 	int columns;
1233 	char *cp;
1234 	struct winsize ws;
1235 
1236 	DBG_ENTER;
1237 
1238 	columns = 0;
1239 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1240 		columns = ws.ws_col;
1241 	if (columns == 0 && (cp = getenv("COLUMNS")))
1242 		columns = atoi(cp);
1243 	if (columns == 0)
1244 		columns = 80;	/* last resort */
1245 
1246 	DBG_LEAVE;
1247 	return (columns);
1248 }
1249 
1250 static int
1251 is_dev(const char *name)
1252 {
1253 	struct stat devstat;
1254 
1255 	if (stat(name, &devstat) != 0)
1256 		return (0);
1257 	if (!S_ISCHR(devstat.st_mode))
1258 		return (0);
1259 	return (1);
1260 }
1261 
1262 /*
1263  * Return mountpoint on which the device is currently mounted.
1264  */
1265 static const struct statfs *
1266 dev_to_statfs(const char *dev)
1267 {
1268 	struct stat devstat, mntdevstat;
1269 	struct statfs *mntbuf, *statfsp;
1270 	char device[MAXPATHLEN];
1271 	char *mntdevname;
1272 	int i, mntsize;
1273 
1274 	/*
1275 	 * First check the mounted filesystems.
1276 	 */
1277 	if (stat(dev, &devstat) != 0)
1278 		return (NULL);
1279 	if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode))
1280 		return (NULL);
1281 
1282 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1283 	for (i = 0; i < mntsize; i++) {
1284 		statfsp = &mntbuf[i];
1285 		mntdevname = statfsp->f_mntfromname;
1286 		if (*mntdevname != '/') {
1287 			strcpy(device, _PATH_DEV);
1288 			strcat(device, mntdevname);
1289 			mntdevname = device;
1290 		}
1291 		if (stat(mntdevname, &mntdevstat) == 0 &&
1292 		    mntdevstat.st_rdev == devstat.st_rdev)
1293 			return (statfsp);
1294 	}
1295 
1296 	return (NULL);
1297 }
1298 
1299 static const char *
1300 mountpoint_to_dev(const char *mountpoint)
1301 {
1302 	struct statfs *mntbuf, *statfsp;
1303 	struct fstab *fs;
1304 	int i, mntsize;
1305 
1306 	/*
1307 	 * First check the mounted filesystems.
1308 	 */
1309 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1310 	for (i = 0; i < mntsize; i++) {
1311 		statfsp = &mntbuf[i];
1312 
1313 		if (strcmp(statfsp->f_mntonname, mountpoint) == 0)
1314 			return (statfsp->f_mntfromname);
1315 	}
1316 
1317 	/*
1318 	 * Check the fstab.
1319 	 */
1320 	fs = getfsfile(mountpoint);
1321 	if (fs != NULL)
1322 		return (fs->fs_spec);
1323 
1324 	return (NULL);
1325 }
1326 
1327 static const char *
1328 getdev(const char *name)
1329 {
1330 	static char device[MAXPATHLEN];
1331 	const char *cp, *dev;
1332 
1333 	if (is_dev(name))
1334 		return (name);
1335 
1336 	cp = strrchr(name, '/');
1337 	if (cp == 0) {
1338 		snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name);
1339 		if (is_dev(device))
1340 			return (device);
1341 	}
1342 
1343 	dev = mountpoint_to_dev(name);
1344 	if (dev != NULL && is_dev(dev))
1345 		return (dev);
1346 
1347 	return (NULL);
1348 }
1349 
1350 /*
1351  * growfs(8) is a utility which allows to increase the size of an existing
1352  * ufs file system. Currently this can only be done on unmounted file system.
1353  * It recognizes some command line options to specify the new desired size,
1354  * and it does some basic checkings. The old file system size is determined
1355  * and after some more checks like we can really access the new last block
1356  * on the disk etc. we calculate the new parameters for the superblock. After
1357  * having done this we just call growfs() which will do the work.
1358  * We still have to provide support for snapshots. Therefore we first have to
1359  * understand what data structures are always replicated in the snapshot on
1360  * creation, for all other blocks we touch during our procedure, we have to
1361  * keep the old blocks unchanged somewhere available for the snapshots. If we
1362  * are lucky, then we only have to handle our blocks to be relocated in that
1363  * way.
1364  * Also we have to consider in what order we actually update the critical
1365  * data structures of the file system to make sure, that in case of a disaster
1366  * fsck(8) is still able to restore any lost data.
1367  * The foreseen last step then will be to provide for growing even mounted
1368  * file systems. There we have to extend the mount() system call to provide
1369  * userland access to the file system locking facility.
1370  */
1371 int
1372 main(int argc, char **argv)
1373 {
1374 	DBG_FUNC("main")
1375 	const char *device;
1376 	const struct statfs *statfsp;
1377 	uint64_t size = 0;
1378 	off_t mediasize;
1379 	int error, i, j, fsi, fso, ch, Nflag = 0, yflag = 0;
1380 	char *p, reply[5], oldsizebuf[6], newsizebuf[6];
1381 	void *testbuf;
1382 
1383 	DBG_ENTER;
1384 
1385 	while ((ch = getopt(argc, argv, "Ns:vy")) != -1) {
1386 		switch(ch) {
1387 		case 'N':
1388 			Nflag = 1;
1389 			break;
1390 		case 's':
1391 			size = (off_t)strtoumax(optarg, &p, 0);
1392 			if (p == NULL || *p == '\0')
1393 				size *= DEV_BSIZE;
1394 			else if (*p == 'b' || *p == 'B')
1395 				; /* do nothing */
1396 			else if (*p == 'k' || *p == 'K')
1397 				size <<= 10;
1398 			else if (*p == 'm' || *p == 'M')
1399 				size <<= 20;
1400 			else if (*p == 'g' || *p == 'G')
1401 				size <<= 30;
1402 			else if (*p == 't' || *p == 'T') {
1403 				size <<= 30;
1404 				size <<= 10;
1405 			} else
1406 				errx(1, "unknown suffix on -s argument");
1407 			break;
1408 		case 'v': /* for compatibility to newfs */
1409 			break;
1410 		case 'y':
1411 			yflag = 1;
1412 			break;
1413 		case '?':
1414 			/* FALLTHROUGH */
1415 		default:
1416 			usage();
1417 		}
1418 	}
1419 	argc -= optind;
1420 	argv += optind;
1421 
1422 	if (argc != 1)
1423 		usage();
1424 
1425 	/*
1426 	 * Now try to guess the device name.
1427 	 */
1428 	device = getdev(*argv);
1429 	if (device == NULL)
1430 		errx(1, "cannot find special device for %s", *argv);
1431 
1432 	statfsp = dev_to_statfs(device);
1433 
1434 	fsi = open(device, O_RDONLY);
1435 	if (fsi < 0)
1436 		err(1, "%s", device);
1437 
1438 	/*
1439 	 * Try to guess the slice size if not specified.
1440 	 */
1441 	if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1)
1442 		err(1,"DIOCGMEDIASIZE");
1443 
1444 	/*
1445 	 * Check if that partition is suitable for growing a file system.
1446 	 */
1447 	if (mediasize < 1)
1448 		errx(1, "partition is unavailable");
1449 
1450 	/*
1451 	 * Read the current superblock, and take a backup.
1452 	 */
1453 	for (i = 0; sblock_try[i] != -1; i++) {
1454 		sblockloc = sblock_try[i] / DEV_BSIZE;
1455 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
1456 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
1457 		    (osblock.fs_magic == FS_UFS2_MAGIC &&
1458 		    osblock.fs_sblockloc == sblock_try[i])) &&
1459 		    osblock.fs_bsize <= MAXBSIZE &&
1460 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
1461 			break;
1462 	}
1463 	if (sblock_try[i] == -1)
1464 		errx(1, "superblock not recognized");
1465 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
1466 
1467 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
1468 	DBG_DUMP_FS(&sblock, "old sblock");
1469 
1470 	/*
1471 	 * Determine size to grow to. Default to the device size.
1472 	 */
1473 	if (size == 0)
1474 		size = mediasize;
1475 	else {
1476 		if (size > (uint64_t)mediasize) {
1477 			humanize_number(oldsizebuf, sizeof(oldsizebuf), size,
1478 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1479 			humanize_number(newsizebuf, sizeof(newsizebuf),
1480 			    mediasize,
1481 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1482 
1483 			errx(1, "requested size %s is larger "
1484 			    "than the available %s", oldsizebuf, newsizebuf);
1485 		}
1486 	}
1487 
1488 	if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) {
1489 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1490 		    osblock.fs_size * osblock.fs_fsize,
1491 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1492 		humanize_number(newsizebuf, sizeof(newsizebuf), size,
1493 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1494 
1495 		errx(1, "requested size %s is not larger than the current "
1496 		   "filesystem size %s", newsizebuf, oldsizebuf);
1497 	}
1498 
1499 	sblock.fs_size = dbtofsb(&osblock, size / DEV_BSIZE);
1500 
1501 	/*
1502 	 * Are we really growing?
1503 	 */
1504 	if (osblock.fs_size >= sblock.fs_size) {
1505 		errx(1, "we are not growing (%jd->%jd)",
1506 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1507 	}
1508 
1509 	/*
1510 	 * Check if we find an active snapshot.
1511 	 */
1512 	if (yflag == 0) {
1513 		for (j = 0; j < FSMAXSNAP; j++) {
1514 			if (sblock.fs_snapinum[j]) {
1515 				errx(1, "active snapshot found in file system; "
1516 				    "please remove all snapshots before "
1517 				    "using growfs");
1518 			}
1519 			if (!sblock.fs_snapinum[j]) /* list is dense */
1520 				break;
1521 		}
1522 	}
1523 
1524 	if (yflag == 0 && Nflag == 0) {
1525 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0)
1526 			errx(1, "%s is mounted read-write on %s",
1527 			    statfsp->f_mntfromname, statfsp->f_mntonname);
1528 		printf("It's strongly recommended to make a backup "
1529 		    "before growing the file system.\n"
1530 		    "OK to grow filesystem on %s", device);
1531 		if (statfsp != NULL)
1532 			printf(", mounted on %s,", statfsp->f_mntonname);
1533 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1534 		    osblock.fs_size * osblock.fs_fsize,
1535 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1536 		humanize_number(newsizebuf, sizeof(newsizebuf),
1537 		    sblock.fs_size * sblock.fs_fsize,
1538 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1539 		printf(" from %s to %s? [Yes/No] ", oldsizebuf, newsizebuf);
1540 		fflush(stdout);
1541 		fgets(reply, (int)sizeof(reply), stdin);
1542 		if (strcmp(reply, "Yes\n")){
1543 			printf("\nNothing done\n");
1544 			exit (0);
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Try to access our device for writing.  If it's not mounted,
1550 	 * or mounted read-only, simply open it; otherwise, use UFS
1551 	 * suspension mechanism.
1552 	 */
1553 	if (Nflag) {
1554 		fso = -1;
1555 	} else {
1556 		fso = open(device, O_WRONLY);
1557 		if (fso < 0)
1558 			err(1, "%s", device);
1559 	}
1560 
1561 	/*
1562 	 * Try to access our new last block in the file system.
1563 	 */
1564 	testbuf = malloc(sblock.fs_fsize);
1565 	if (testbuf == NULL)
1566 		err(1, "malloc");
1567 	rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1568 	    sblock.fs_fsize, testbuf, fsi);
1569 	wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1570 	    sblock.fs_fsize, testbuf, fso, Nflag);
1571 	free(testbuf);
1572 
1573 	/*
1574 	 * Now calculate new superblock values and check for reasonable
1575 	 * bound for new file system size:
1576 	 *     fs_size:    is derived from user input
1577 	 *     fs_dsize:   should get updated in the routines creating or
1578 	 *                 updating the cylinder groups on the fly
1579 	 *     fs_cstotal: should get updated in the routines creating or
1580 	 *                 updating the cylinder groups
1581 	 */
1582 
1583 	/*
1584 	 * Update the number of cylinders and cylinder groups in the file system.
1585 	 */
1586 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1587 		sblock.fs_old_ncyl =
1588 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
1589 		if (sblock.fs_size * sblock.fs_old_nspf >
1590 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
1591 			sblock.fs_old_ncyl++;
1592 	}
1593 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1594 
1595 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1596 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
1597 		/*
1598 		 * The space in the new last cylinder group is too small,
1599 		 * so revert back.
1600 		 */
1601 		sblock.fs_ncg--;
1602 		if (sblock.fs_magic == FS_UFS1_MAGIC)
1603 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
1604 		printf("Warning: %jd sector(s) cannot be allocated.\n",
1605 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
1606 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
1607 	}
1608 
1609 	/*
1610 	 * Update the space for the cylinder group summary information in the
1611 	 * respective cylinder group data area.
1612 	 */
1613 	sblock.fs_cssize =
1614 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1615 
1616 	if (osblock.fs_size >= sblock.fs_size)
1617 		errx(1, "not enough new space");
1618 
1619 	DBG_PRINT0("sblock calculated\n");
1620 
1621 	/*
1622 	 * Ok, everything prepared, so now let's do the tricks.
1623 	 */
1624 	growfs(fsi, fso, Nflag);
1625 
1626 	close(fsi);
1627 	if (fso > -1) {
1628 		error = close(fso);
1629 		if (error != 0)
1630 			err(1, "close");
1631 	}
1632 	if (statfsp != NULL)
1633 		mount_reload(statfsp);
1634 
1635 	DBG_CLOSE;
1636 
1637 	DBG_LEAVE;
1638 	return (0);
1639 }
1640 
1641 /*
1642  * Dump a line of usage.
1643  */
1644 static void
1645 usage(void)
1646 {
1647 	DBG_FUNC("usage")
1648 
1649 	DBG_ENTER;
1650 
1651 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n");
1652 
1653 	DBG_LEAVE;
1654 	exit(1);
1655 }
1656 
1657 /*
1658  * This updates most parameters and the bitmap related to cluster. We have to
1659  * assume that sblock, osblock, acg are set up.
1660  */
1661 static void
1662 updclst(int block)
1663 {
1664 	DBG_FUNC("updclst")
1665 	static int lcs = 0;
1666 
1667 	DBG_ENTER;
1668 
1669 	if (sblock.fs_contigsumsize < 1) /* no clustering */
1670 		return;
1671 	/*
1672 	 * update cluster allocation map
1673 	 */
1674 	setbit(cg_clustersfree(&acg), block);
1675 
1676 	/*
1677 	 * update cluster summary table
1678 	 */
1679 	if (!lcs) {
1680 		/*
1681 		 * calculate size for the trailing cluster
1682 		 */
1683 		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) {
1684 			if (isclr(cg_clustersfree(&acg), block))
1685 				break;
1686 		}
1687 	}
1688 	if (lcs < sblock.fs_contigsumsize) {
1689 		if (lcs)
1690 			cg_clustersum(&acg)[lcs]--;
1691 		lcs++;
1692 		cg_clustersum(&acg)[lcs]++;
1693 	}
1694 
1695 	DBG_LEAVE;
1696 	return;
1697 }
1698 
1699 static void
1700 mount_reload(const struct statfs *stfs)
1701 {
1702 	char errmsg[255];
1703 	struct iovec *iov;
1704 	int iovlen;
1705 
1706 	iov = NULL;
1707 	iovlen = 0;
1708 	*errmsg = '\0';
1709 	build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4);
1710 	build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1);
1711 	build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg));
1712 	build_iovec(&iov, &iovlen, "update", NULL, 0);
1713 	build_iovec(&iov, &iovlen, "reload", NULL, 0);
1714 
1715 	if (nmount(iov, iovlen, stfs->f_flags) < 0) {
1716 		errmsg[sizeof(errmsg) - 1] = '\0';
1717 		err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname,
1718 		    *errmsg != '\0' ? ": " : "", errmsg);
1719 	}
1720 }
1721