1 /* 2 * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. 3 * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz 4 * Copyright (c) 2012 The FreeBSD Foundation 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. 9 * 10 * Portions of this software were developed by Edward Tomasz Napierala 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgment: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors, as well as Christoph 25 * Herrmann and Thomas-Henning von Kamptz. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $ 43 * 44 */ 45 46 #ifndef lint 47 static const char copyright[] = 48 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\ 49 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\ 50 All rights reserved.\n"; 51 #endif /* not lint */ 52 53 #include <sys/cdefs.h> 54 __FBSDID("$FreeBSD$"); 55 56 #include <sys/param.h> 57 #include <sys/ioctl.h> 58 #include <sys/stat.h> 59 #include <sys/disk.h> 60 #include <sys/ucred.h> 61 #include <sys/mount.h> 62 63 #include <stdio.h> 64 #include <paths.h> 65 #include <ctype.h> 66 #include <err.h> 67 #include <fcntl.h> 68 #include <fstab.h> 69 #include <inttypes.h> 70 #include <limits.h> 71 #include <mntopts.h> 72 #include <stdlib.h> 73 #include <stdint.h> 74 #include <string.h> 75 #include <time.h> 76 #include <unistd.h> 77 #include <ufs/ufs/dinode.h> 78 #include <ufs/ffs/fs.h> 79 #include <libutil.h> 80 81 #include "debug.h" 82 83 #ifdef FS_DEBUG 84 int _dbg_lvl_ = (DL_INFO); /* DL_TRC */ 85 #endif /* FS_DEBUG */ 86 87 static union { 88 struct fs fs; 89 char pad[SBLOCKSIZE]; 90 } fsun1, fsun2; 91 #define sblock fsun1.fs /* the new superblock */ 92 #define osblock fsun2.fs /* the old superblock */ 93 94 /* 95 * Possible superblock locations ordered from most to least likely. 96 */ 97 static int sblock_try[] = SBLOCKSEARCH; 98 static ufs2_daddr_t sblockloc; 99 100 static union { 101 struct cg cg; 102 char pad[MAXBSIZE]; 103 } cgun1, cgun2; 104 #define acg cgun1.cg /* a cylinder cgroup (new) */ 105 #define aocg cgun2.cg /* an old cylinder group */ 106 107 static struct csum *fscs; /* cylinder summary */ 108 109 static void growfs(int, int, unsigned int); 110 static void rdfs(ufs2_daddr_t, size_t, void *, int); 111 static void wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int); 112 static int charsperline(void); 113 static void usage(void); 114 static int isblock(struct fs *, unsigned char *, int); 115 static void clrblock(struct fs *, unsigned char *, int); 116 static void setblock(struct fs *, unsigned char *, int); 117 static void initcg(int, time_t, int, unsigned int); 118 static void updjcg(int, time_t, int, int, unsigned int); 119 static void updcsloc(time_t, int, int, unsigned int); 120 static void frag_adjust(ufs2_daddr_t, int); 121 static void updclst(int); 122 static void mount_reload(const struct statfs *stfs); 123 124 /* 125 * Here we actually start growing the file system. We basically read the 126 * cylinder summary from the first cylinder group as we want to update 127 * this on the fly during our various operations. First we handle the 128 * changes in the former last cylinder group. Afterwards we create all new 129 * cylinder groups. Now we handle the cylinder group containing the 130 * cylinder summary which might result in a relocation of the whole 131 * structure. In the end we write back the updated cylinder summary, the 132 * new superblock, and slightly patched versions of the super block 133 * copies. 134 */ 135 static void 136 growfs(int fsi, int fso, unsigned int Nflag) 137 { 138 DBG_FUNC("growfs") 139 time_t modtime; 140 uint cylno; 141 int i, j, width; 142 char tmpbuf[100]; 143 static int randinit = 0; 144 145 DBG_ENTER; 146 147 if (!randinit) { 148 randinit = 1; 149 srandomdev(); 150 } 151 time(&modtime); 152 153 /* 154 * Get the cylinder summary into the memory. 155 */ 156 fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize); 157 if (fscs == NULL) 158 errx(1, "calloc failed"); 159 for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) { 160 rdfs(fsbtodb(&osblock, osblock.fs_csaddr + 161 numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i, 162 osblock.fs_bsize), (void *)(((char *)fscs) + i), fsi); 163 } 164 165 #ifdef FS_DEBUG 166 { 167 struct csum *dbg_csp; 168 int dbg_csc; 169 char dbg_line[80]; 170 171 dbg_csp = fscs; 172 173 for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) { 174 snprintf(dbg_line, sizeof(dbg_line), 175 "%d. old csum in old location", dbg_csc); 176 DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++); 177 } 178 } 179 #endif /* FS_DEBUG */ 180 DBG_PRINT0("fscs read\n"); 181 182 /* 183 * Do all needed changes in the former last cylinder group. 184 */ 185 updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag); 186 187 /* 188 * Dump out summary information about file system. 189 */ 190 #ifdef FS_DEBUG 191 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 192 printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n", 193 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 194 (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, 195 sblock.fs_fsize); 196 printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", 197 sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 198 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 199 if (sblock.fs_flags & FS_DOSOFTDEP) 200 printf("\twith soft updates\n"); 201 #undef B2MBFACTOR 202 #endif /* FS_DEBUG */ 203 204 /* 205 * Now build the cylinders group blocks and 206 * then print out indices of cylinder groups. 207 */ 208 printf("super-block backups (for fsck -b #) at:\n"); 209 i = 0; 210 width = charsperline(); 211 212 /* 213 * Iterate for only the new cylinder groups. 214 */ 215 for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) { 216 initcg(cylno, modtime, fso, Nflag); 217 j = sprintf(tmpbuf, " %jd%s", 218 (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 219 cylno < (sblock.fs_ncg - 1) ? "," : "" ); 220 if (i + j >= width) { 221 printf("\n"); 222 i = 0; 223 } 224 i += j; 225 printf("%s", tmpbuf); 226 fflush(stdout); 227 } 228 printf("\n"); 229 230 /* 231 * Do all needed changes in the first cylinder group. 232 * allocate blocks in new location 233 */ 234 updcsloc(modtime, fsi, fso, Nflag); 235 236 /* 237 * Now write the cylinder summary back to disk. 238 */ 239 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) { 240 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 241 (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize), 242 (void *)(((char *)fscs) + i), fso, Nflag); 243 } 244 DBG_PRINT0("fscs written\n"); 245 246 #ifdef FS_DEBUG 247 { 248 struct csum *dbg_csp; 249 int dbg_csc; 250 char dbg_line[80]; 251 252 dbg_csp = fscs; 253 for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) { 254 snprintf(dbg_line, sizeof(dbg_line), 255 "%d. new csum in new location", dbg_csc); 256 DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++); 257 } 258 } 259 #endif /* FS_DEBUG */ 260 261 /* 262 * Now write the new superblock back to disk. 263 */ 264 sblock.fs_time = modtime; 265 wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag); 266 DBG_PRINT0("sblock written\n"); 267 DBG_DUMP_FS(&sblock, "new initial sblock"); 268 269 /* 270 * Clean up the dynamic fields in our superblock copies. 271 */ 272 sblock.fs_fmod = 0; 273 sblock.fs_clean = 1; 274 sblock.fs_ronly = 0; 275 sblock.fs_cgrotor = 0; 276 sblock.fs_state = 0; 277 memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt)); 278 sblock.fs_flags &= FS_DOSOFTDEP; 279 280 /* 281 * XXX 282 * The following fields are currently distributed from the superblock 283 * to the copies: 284 * fs_minfree 285 * fs_rotdelay 286 * fs_maxcontig 287 * fs_maxbpg 288 * fs_minfree, 289 * fs_optim 290 * fs_flags regarding SOFTPDATES 291 * 292 * We probably should rather change the summary for the cylinder group 293 * statistics here to the value of what would be in there, if the file 294 * system were created initially with the new size. Therefor we still 295 * need to find an easy way of calculating that. 296 * Possibly we can try to read the first superblock copy and apply the 297 * "diffed" stats between the old and new superblock by still copying 298 * certain parameters onto that. 299 */ 300 301 /* 302 * Write out the duplicate super blocks. 303 */ 304 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 305 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 306 (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag); 307 } 308 DBG_PRINT0("sblock copies written\n"); 309 DBG_DUMP_FS(&sblock, "new other sblocks"); 310 311 DBG_LEAVE; 312 return; 313 } 314 315 /* 316 * This creates a new cylinder group structure, for more details please see 317 * the source of newfs(8), as this function is taken over almost unchanged. 318 * As this is never called for the first cylinder group, the special 319 * provisions for that case are removed here. 320 */ 321 static void 322 initcg(int cylno, time_t modtime, int fso, unsigned int Nflag) 323 { 324 DBG_FUNC("initcg") 325 static caddr_t iobuf; 326 long blkno, start; 327 ufs2_daddr_t i, cbase, dmax; 328 struct ufs1_dinode *dp1; 329 struct csum *cs; 330 uint j, d, dupper, dlower; 331 332 if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize * 3)) == NULL) 333 errx(37, "panic: cannot allocate I/O buffer"); 334 335 /* 336 * Determine block bounds for cylinder group. 337 * Allow space for super block summary information in first 338 * cylinder group. 339 */ 340 cbase = cgbase(&sblock, cylno); 341 dmax = cbase + sblock.fs_fpg; 342 if (dmax > sblock.fs_size) 343 dmax = sblock.fs_size; 344 dlower = cgsblock(&sblock, cylno) - cbase; 345 dupper = cgdmin(&sblock, cylno) - cbase; 346 if (cylno == 0) /* XXX fscs may be relocated */ 347 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 348 cs = &fscs[cylno]; 349 memset(&acg, 0, sblock.fs_cgsize); 350 acg.cg_time = modtime; 351 acg.cg_magic = CG_MAGIC; 352 acg.cg_cgx = cylno; 353 acg.cg_niblk = sblock.fs_ipg; 354 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 355 sblock.fs_ipg : 2 * INOPB(&sblock); 356 acg.cg_ndblk = dmax - cbase; 357 if (sblock.fs_contigsumsize > 0) 358 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 359 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 360 if (sblock.fs_magic == FS_UFS2_MAGIC) { 361 acg.cg_iusedoff = start; 362 } else { 363 acg.cg_old_ncyl = sblock.fs_old_cpg; 364 acg.cg_old_time = acg.cg_time; 365 acg.cg_time = 0; 366 acg.cg_old_niblk = acg.cg_niblk; 367 acg.cg_niblk = 0; 368 acg.cg_initediblk = 0; 369 acg.cg_old_btotoff = start; 370 acg.cg_old_boff = acg.cg_old_btotoff + 371 sblock.fs_old_cpg * sizeof(int32_t); 372 acg.cg_iusedoff = acg.cg_old_boff + 373 sblock.fs_old_cpg * sizeof(u_int16_t); 374 } 375 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 376 acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); 377 if (sblock.fs_contigsumsize > 0) { 378 acg.cg_clustersumoff = 379 roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); 380 acg.cg_clustersumoff -= sizeof(u_int32_t); 381 acg.cg_clusteroff = acg.cg_clustersumoff + 382 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 383 acg.cg_nextfreeoff = acg.cg_clusteroff + 384 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 385 } 386 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { 387 /* 388 * This should never happen as we would have had that panic 389 * already on file system creation 390 */ 391 errx(37, "panic: cylinder group too big"); 392 } 393 acg.cg_cs.cs_nifree += sblock.fs_ipg; 394 if (cylno == 0) 395 for (i = 0; i < ROOTINO; i++) { 396 setbit(cg_inosused(&acg), i); 397 acg.cg_cs.cs_nifree--; 398 } 399 /* 400 * For the old file system, we have to initialize all the inodes. 401 */ 402 if (sblock.fs_magic == FS_UFS1_MAGIC) { 403 bzero(iobuf, sblock.fs_bsize); 404 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); 405 i += sblock.fs_frag) { 406 dp1 = (struct ufs1_dinode *)(void *)iobuf; 407 for (j = 0; j < INOPB(&sblock); j++) { 408 dp1->di_gen = random(); 409 dp1++; 410 } 411 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 412 sblock.fs_bsize, iobuf, fso, Nflag); 413 } 414 } 415 if (cylno > 0) { 416 /* 417 * In cylno 0, beginning space is reserved 418 * for boot and super blocks. 419 */ 420 for (d = 0; d < dlower; d += sblock.fs_frag) { 421 blkno = d / sblock.fs_frag; 422 setblock(&sblock, cg_blksfree(&acg), blkno); 423 if (sblock.fs_contigsumsize > 0) 424 setbit(cg_clustersfree(&acg), blkno); 425 acg.cg_cs.cs_nbfree++; 426 } 427 sblock.fs_dsize += dlower; 428 } 429 sblock.fs_dsize += acg.cg_ndblk - dupper; 430 if ((i = dupper % sblock.fs_frag)) { 431 acg.cg_frsum[sblock.fs_frag - i]++; 432 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 433 setbit(cg_blksfree(&acg), dupper); 434 acg.cg_cs.cs_nffree++; 435 } 436 } 437 for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; 438 d += sblock.fs_frag) { 439 blkno = d / sblock.fs_frag; 440 setblock(&sblock, cg_blksfree(&acg), blkno); 441 if (sblock.fs_contigsumsize > 0) 442 setbit(cg_clustersfree(&acg), blkno); 443 acg.cg_cs.cs_nbfree++; 444 } 445 if (d < acg.cg_ndblk) { 446 acg.cg_frsum[acg.cg_ndblk - d]++; 447 for (; d < acg.cg_ndblk; d++) { 448 setbit(cg_blksfree(&acg), d); 449 acg.cg_cs.cs_nffree++; 450 } 451 } 452 if (sblock.fs_contigsumsize > 0) { 453 int32_t *sump = cg_clustersum(&acg); 454 u_char *mapp = cg_clustersfree(&acg); 455 int map = *mapp++; 456 int bit = 1; 457 int run = 0; 458 459 for (i = 0; i < acg.cg_nclusterblks; i++) { 460 if ((map & bit) != 0) 461 run++; 462 else if (run != 0) { 463 if (run > sblock.fs_contigsumsize) 464 run = sblock.fs_contigsumsize; 465 sump[run]++; 466 run = 0; 467 } 468 if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) 469 bit <<= 1; 470 else { 471 map = *mapp++; 472 bit = 1; 473 } 474 } 475 if (run != 0) { 476 if (run > sblock.fs_contigsumsize) 477 run = sblock.fs_contigsumsize; 478 sump[run]++; 479 } 480 } 481 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 482 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 483 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 484 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 485 *cs = acg.cg_cs; 486 487 memcpy(iobuf, &acg, sblock.fs_cgsize); 488 memset(iobuf + sblock.fs_cgsize, '\0', 489 sblock.fs_bsize * 3 - sblock.fs_cgsize); 490 491 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 492 sblock.fs_bsize * 3, iobuf, fso, Nflag); 493 DBG_DUMP_CG(&sblock, "new cg", &acg); 494 495 DBG_LEAVE; 496 return; 497 } 498 499 /* 500 * Here we add or subtract (sign +1/-1) the available fragments in a given 501 * block to or from the fragment statistics. By subtracting before and adding 502 * after an operation on the free frag map we can easy update the fragment 503 * statistic, which seems to be otherwise a rather complex operation. 504 */ 505 static void 506 frag_adjust(ufs2_daddr_t frag, int sign) 507 { 508 DBG_FUNC("frag_adjust") 509 int fragsize; 510 int f; 511 512 DBG_ENTER; 513 514 fragsize = 0; 515 /* 516 * Here frag only needs to point to any fragment in the block we want 517 * to examine. 518 */ 519 for (f = rounddown(frag, sblock.fs_frag); 520 f < roundup(frag + 1, sblock.fs_frag); f++) { 521 /* 522 * Count contiguous free fragments. 523 */ 524 if (isset(cg_blksfree(&acg), f)) { 525 fragsize++; 526 } else { 527 if (fragsize && fragsize < sblock.fs_frag) { 528 /* 529 * We found something in between. 530 */ 531 acg.cg_frsum[fragsize] += sign; 532 DBG_PRINT2("frag_adjust [%d]+=%d\n", 533 fragsize, sign); 534 } 535 fragsize = 0; 536 } 537 } 538 if (fragsize && fragsize < sblock.fs_frag) { 539 /* 540 * We found something. 541 */ 542 acg.cg_frsum[fragsize] += sign; 543 DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign); 544 } 545 DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign); 546 547 DBG_LEAVE; 548 return; 549 } 550 551 /* 552 * Here we do all needed work for the former last cylinder group. It has to be 553 * changed in any case, even if the file system ended exactly on the end of 554 * this group, as there is some slightly inconsistent handling of the number 555 * of cylinders in the cylinder group. We start again by reading the cylinder 556 * group from disk. If the last block was not fully available, we first handle 557 * the missing fragments, then we handle all new full blocks in that file 558 * system and finally we handle the new last fragmented block in the file 559 * system. We again have to handle the fragment statistics rotational layout 560 * tables and cluster summary during all those operations. 561 */ 562 static void 563 updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag) 564 { 565 DBG_FUNC("updjcg") 566 ufs2_daddr_t cbase, dmax, dupper; 567 struct csum *cs; 568 int i, k; 569 int j = 0; 570 571 DBG_ENTER; 572 573 /* 574 * Read the former last (joining) cylinder group from disk, and make 575 * a copy. 576 */ 577 rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)), 578 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); 579 DBG_PRINT0("jcg read\n"); 580 DBG_DUMP_CG(&sblock, "old joining cg", &aocg); 581 582 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); 583 584 /* 585 * If the cylinder group had already its new final size almost 586 * nothing is to be done ... except: 587 * For some reason the value of cg_ncyl in the last cylinder group has 588 * to be zero instead of fs_cpg. As this is now no longer the last 589 * cylinder group we have to change that value now to fs_cpg. 590 */ 591 592 if (cgbase(&osblock, cylno + 1) == osblock.fs_size) { 593 if (sblock.fs_magic == FS_UFS1_MAGIC) 594 acg.cg_old_ncyl = sblock.fs_old_cpg; 595 596 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 597 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); 598 DBG_PRINT0("jcg written\n"); 599 DBG_DUMP_CG(&sblock, "new joining cg", &acg); 600 601 DBG_LEAVE; 602 return; 603 } 604 605 /* 606 * Set up some variables needed later. 607 */ 608 cbase = cgbase(&sblock, cylno); 609 dmax = cbase + sblock.fs_fpg; 610 if (dmax > sblock.fs_size) 611 dmax = sblock.fs_size; 612 dupper = cgdmin(&sblock, cylno) - cbase; 613 if (cylno == 0) /* XXX fscs may be relocated */ 614 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 615 616 /* 617 * Set pointer to the cylinder summary for our cylinder group. 618 */ 619 cs = fscs + cylno; 620 621 /* 622 * Touch the cylinder group, update all fields in the cylinder group as 623 * needed, update the free space in the superblock. 624 */ 625 acg.cg_time = modtime; 626 if ((unsigned)cylno == sblock.fs_ncg - 1) { 627 /* 628 * This is still the last cylinder group. 629 */ 630 if (sblock.fs_magic == FS_UFS1_MAGIC) 631 acg.cg_old_ncyl = 632 sblock.fs_old_ncyl % sblock.fs_old_cpg; 633 } else { 634 acg.cg_old_ncyl = sblock.fs_old_cpg; 635 } 636 DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg); 637 #ifdef FS_DEBUG 638 if (sblock.fs_magic == FS_UFS1_MAGIC) 639 DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg); 640 #endif 641 DBG_PRINT0("\n"); 642 acg.cg_ndblk = dmax - cbase; 643 sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk; 644 if (sblock.fs_contigsumsize > 0) 645 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 646 647 /* 648 * Now we have to update the free fragment bitmap for our new free 649 * space. There again we have to handle the fragmentation and also 650 * the rotational layout tables and the cluster summary. This is 651 * also done per fragment for the first new block if the old file 652 * system end was not on a block boundary, per fragment for the new 653 * last block if the new file system end is not on a block boundary, 654 * and per block for all space in between. 655 * 656 * Handle the first new block here if it was partially available 657 * before. 658 */ 659 if (osblock.fs_size % sblock.fs_frag) { 660 if (roundup(osblock.fs_size, sblock.fs_frag) <= 661 sblock.fs_size) { 662 /* 663 * The new space is enough to fill at least this 664 * block 665 */ 666 j = 0; 667 for (i = roundup(osblock.fs_size - cbase, 668 sblock.fs_frag) - 1; i >= osblock.fs_size - cbase; 669 i--) { 670 setbit(cg_blksfree(&acg), i); 671 acg.cg_cs.cs_nffree++; 672 j++; 673 } 674 675 /* 676 * Check if the fragment just created could join an 677 * already existing fragment at the former end of the 678 * file system. 679 */ 680 if (isblock(&sblock, cg_blksfree(&acg), 681 ((osblock.fs_size - cgbase(&sblock, cylno)) / 682 sblock.fs_frag))) { 683 /* 684 * The block is now completely available. 685 */ 686 DBG_PRINT0("block was\n"); 687 acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--; 688 acg.cg_cs.cs_nbfree++; 689 acg.cg_cs.cs_nffree -= sblock.fs_frag; 690 k = rounddown(osblock.fs_size - cbase, 691 sblock.fs_frag); 692 updclst((osblock.fs_size - cbase) / 693 sblock.fs_frag); 694 } else { 695 /* 696 * Lets rejoin a possible partially growed 697 * fragment. 698 */ 699 k = 0; 700 while (isset(cg_blksfree(&acg), i) && 701 (i >= rounddown(osblock.fs_size - cbase, 702 sblock.fs_frag))) { 703 i--; 704 k++; 705 } 706 if (k) 707 acg.cg_frsum[k]--; 708 acg.cg_frsum[k + j]++; 709 } 710 } else { 711 /* 712 * We only grow by some fragments within this last 713 * block. 714 */ 715 for (i = sblock.fs_size - cbase - 1; 716 i >= osblock.fs_size - cbase; i--) { 717 setbit(cg_blksfree(&acg), i); 718 acg.cg_cs.cs_nffree++; 719 j++; 720 } 721 /* 722 * Lets rejoin a possible partially growed fragment. 723 */ 724 k = 0; 725 while (isset(cg_blksfree(&acg), i) && 726 (i >= rounddown(osblock.fs_size - cbase, 727 sblock.fs_frag))) { 728 i--; 729 k++; 730 } 731 if (k) 732 acg.cg_frsum[k]--; 733 acg.cg_frsum[k + j]++; 734 } 735 } 736 737 /* 738 * Handle all new complete blocks here. 739 */ 740 for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag); 741 i + sblock.fs_frag <= dmax - cbase; /* XXX <= or only < ? */ 742 i += sblock.fs_frag) { 743 j = i / sblock.fs_frag; 744 setblock(&sblock, cg_blksfree(&acg), j); 745 updclst(j); 746 acg.cg_cs.cs_nbfree++; 747 } 748 749 /* 750 * Handle the last new block if there are stll some new fragments left. 751 * Here we don't have to bother about the cluster summary or the even 752 * the rotational layout table. 753 */ 754 if (i < (dmax - cbase)) { 755 acg.cg_frsum[dmax - cbase - i]++; 756 for (; i < dmax - cbase; i++) { 757 setbit(cg_blksfree(&acg), i); 758 acg.cg_cs.cs_nffree++; 759 } 760 } 761 762 sblock.fs_cstotal.cs_nffree += 763 (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree); 764 sblock.fs_cstotal.cs_nbfree += 765 (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree); 766 /* 767 * The following statistics are not changed here: 768 * sblock.fs_cstotal.cs_ndir 769 * sblock.fs_cstotal.cs_nifree 770 * As the statistics for this cylinder group are ready, copy it to 771 * the summary information array. 772 */ 773 *cs = acg.cg_cs; 774 775 /* 776 * Write the updated "joining" cylinder group back to disk. 777 */ 778 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize, 779 (void *)&acg, fso, Nflag); 780 DBG_PRINT0("jcg written\n"); 781 DBG_DUMP_CG(&sblock, "new joining cg", &acg); 782 783 DBG_LEAVE; 784 return; 785 } 786 787 /* 788 * Here we update the location of the cylinder summary. We have two possible 789 * ways of growing the cylinder summary: 790 * (1) We can try to grow the summary in the current location, and relocate 791 * possibly used blocks within the current cylinder group. 792 * (2) Alternatively we can relocate the whole cylinder summary to the first 793 * new completely empty cylinder group. Once the cylinder summary is no 794 * longer in the beginning of the first cylinder group you should never 795 * use a version of fsck which is not aware of the possibility to have 796 * this structure in a non standard place. 797 * Option (2) is considered to be less intrusive to the structure of the file- 798 * system, so that's the one being used. 799 */ 800 static void 801 updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag) 802 { 803 DBG_FUNC("updcsloc") 804 struct csum *cs; 805 int ocscg, ncscg; 806 ufs2_daddr_t d; 807 int lcs = 0; 808 int block; 809 810 DBG_ENTER; 811 812 if (howmany(sblock.fs_cssize, sblock.fs_fsize) == 813 howmany(osblock.fs_cssize, osblock.fs_fsize)) { 814 /* 815 * No new fragment needed. 816 */ 817 DBG_LEAVE; 818 return; 819 } 820 ocscg = dtog(&osblock, osblock.fs_csaddr); 821 cs = fscs + ocscg; 822 823 /* 824 * Read original cylinder group from disk, and make a copy. 825 * XXX If Nflag is set in some very rare cases we now miss 826 * some changes done in updjcg by reading the unmodified 827 * block from disk. 828 */ 829 rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)), 830 (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); 831 DBG_PRINT0("oscg read\n"); 832 DBG_DUMP_CG(&sblock, "old summary cg", &aocg); 833 834 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); 835 836 /* 837 * Touch the cylinder group, set up local variables needed later 838 * and update the superblock. 839 */ 840 acg.cg_time = modtime; 841 842 /* 843 * XXX In the case of having active snapshots we may need much more 844 * blocks for the copy on write. We need each block twice, and 845 * also up to 8*3 blocks for indirect blocks for all possible 846 * references. 847 */ 848 /* 849 * There is not enough space in the old cylinder group to 850 * relocate all blocks as needed, so we relocate the whole 851 * cylinder group summary to a new group. We try to use the 852 * first complete new cylinder group just created. Within the 853 * cylinder group we align the area immediately after the 854 * cylinder group information location in order to be as 855 * close as possible to the original implementation of ffs. 856 * 857 * First we have to make sure we'll find enough space in the 858 * new cylinder group. If not, then we currently give up. 859 * We start with freeing everything which was used by the 860 * fragments of the old cylinder summary in the current group. 861 * Now we write back the group meta data, read in the needed 862 * meta data from the new cylinder group, and start allocating 863 * within that group. Here we can assume, the group to be 864 * completely empty. Which makes the handling of fragments and 865 * clusters a lot easier. 866 */ 867 DBG_TRC; 868 if (sblock.fs_ncg - osblock.fs_ncg < 2) 869 errx(2, "panic: not enough space"); 870 871 /* 872 * Point "d" to the first fragment not used by the cylinder 873 * summary. 874 */ 875 d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize); 876 877 /* 878 * Set up last cluster size ("lcs") already here. Calculate 879 * the size for the trailing cluster just behind where "d" 880 * points to. 881 */ 882 if (sblock.fs_contigsumsize > 0) { 883 for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag), 884 lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) { 885 if (isclr(cg_clustersfree(&acg), block)) 886 break; 887 } 888 } 889 890 /* 891 * Point "d" to the last frag used by the cylinder summary. 892 */ 893 d--; 894 895 DBG_PRINT1("d=%jd\n", (intmax_t)d); 896 if ((d + 1) % sblock.fs_frag) { 897 /* 898 * The end of the cylinder summary is not a complete 899 * block. 900 */ 901 DBG_TRC; 902 frag_adjust(d % sblock.fs_fpg, -1); 903 for (; (d + 1) % sblock.fs_frag; d--) { 904 DBG_PRINT1("d=%jd\n", (intmax_t)d); 905 setbit(cg_blksfree(&acg), d % sblock.fs_fpg); 906 acg.cg_cs.cs_nffree++; 907 sblock.fs_cstotal.cs_nffree++; 908 } 909 /* 910 * Point "d" to the last fragment of the last 911 * (incomplete) block of the cylinder summary. 912 */ 913 d++; 914 frag_adjust(d % sblock.fs_fpg, 1); 915 916 if (isblock(&sblock, cg_blksfree(&acg), 917 (d % sblock.fs_fpg) / sblock.fs_frag)) { 918 DBG_PRINT1("d=%jd\n", (intmax_t)d); 919 acg.cg_cs.cs_nffree -= sblock.fs_frag; 920 acg.cg_cs.cs_nbfree++; 921 sblock.fs_cstotal.cs_nffree -= sblock.fs_frag; 922 sblock.fs_cstotal.cs_nbfree++; 923 if (sblock.fs_contigsumsize > 0) { 924 setbit(cg_clustersfree(&acg), 925 (d % sblock.fs_fpg) / sblock.fs_frag); 926 if (lcs < sblock.fs_contigsumsize) { 927 if (lcs) 928 cg_clustersum(&acg)[lcs]--; 929 lcs++; 930 cg_clustersum(&acg)[lcs]++; 931 } 932 } 933 } 934 /* 935 * Point "d" to the first fragment of the block before 936 * the last incomplete block. 937 */ 938 d--; 939 } 940 941 DBG_PRINT1("d=%jd\n", (intmax_t)d); 942 for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr; 943 d -= sblock.fs_frag) { 944 DBG_TRC; 945 DBG_PRINT1("d=%jd\n", (intmax_t)d); 946 setblock(&sblock, cg_blksfree(&acg), 947 (d % sblock.fs_fpg) / sblock.fs_frag); 948 acg.cg_cs.cs_nbfree++; 949 sblock.fs_cstotal.cs_nbfree++; 950 if (sblock.fs_contigsumsize > 0) { 951 setbit(cg_clustersfree(&acg), 952 (d % sblock.fs_fpg) / sblock.fs_frag); 953 /* 954 * The last cluster size is already set up. 955 */ 956 if (lcs < sblock.fs_contigsumsize) { 957 if (lcs) 958 cg_clustersum(&acg)[lcs]--; 959 lcs++; 960 cg_clustersum(&acg)[lcs]++; 961 } 962 } 963 } 964 *cs = acg.cg_cs; 965 966 /* 967 * Now write the former cylinder group containing the cylinder 968 * summary back to disk. 969 */ 970 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), 971 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); 972 DBG_PRINT0("oscg written\n"); 973 DBG_DUMP_CG(&sblock, "old summary cg", &acg); 974 975 /* 976 * Find the beginning of the new cylinder group containing the 977 * cylinder summary. 978 */ 979 sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg); 980 ncscg = dtog(&sblock, sblock.fs_csaddr); 981 cs = fscs + ncscg; 982 983 /* 984 * If Nflag is specified, we would now read random data instead 985 * of an empty cg structure from disk. So we can't simulate that 986 * part for now. 987 */ 988 if (Nflag) { 989 DBG_PRINT0("nscg update skipped\n"); 990 DBG_LEAVE; 991 return; 992 } 993 994 /* 995 * Read the future cylinder group containing the cylinder 996 * summary from disk, and make a copy. 997 */ 998 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), 999 (size_t)sblock.fs_cgsize, (void *)&aocg, fsi); 1000 DBG_PRINT0("nscg read\n"); 1001 DBG_DUMP_CG(&sblock, "new summary cg", &aocg); 1002 1003 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); 1004 1005 /* 1006 * Allocate all complete blocks used by the new cylinder 1007 * summary. 1008 */ 1009 for (d = sblock.fs_csaddr; d + sblock.fs_frag <= 1010 sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize); 1011 d += sblock.fs_frag) { 1012 clrblock(&sblock, cg_blksfree(&acg), 1013 (d % sblock.fs_fpg) / sblock.fs_frag); 1014 acg.cg_cs.cs_nbfree--; 1015 sblock.fs_cstotal.cs_nbfree--; 1016 if (sblock.fs_contigsumsize > 0) { 1017 clrbit(cg_clustersfree(&acg), 1018 (d % sblock.fs_fpg) / sblock.fs_frag); 1019 } 1020 } 1021 1022 /* 1023 * Allocate all fragments used by the cylinder summary in the 1024 * last block. 1025 */ 1026 if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) { 1027 for (; d - sblock.fs_csaddr < 1028 sblock.fs_cssize/sblock.fs_fsize; d++) { 1029 clrbit(cg_blksfree(&acg), d % sblock.fs_fpg); 1030 acg.cg_cs.cs_nffree--; 1031 sblock.fs_cstotal.cs_nffree--; 1032 } 1033 acg.cg_cs.cs_nbfree--; 1034 acg.cg_cs.cs_nffree += sblock.fs_frag; 1035 sblock.fs_cstotal.cs_nbfree--; 1036 sblock.fs_cstotal.cs_nffree += sblock.fs_frag; 1037 if (sblock.fs_contigsumsize > 0) 1038 clrbit(cg_clustersfree(&acg), 1039 (d % sblock.fs_fpg) / sblock.fs_frag); 1040 1041 frag_adjust(d % sblock.fs_fpg, 1); 1042 } 1043 /* 1044 * XXX Handle the cluster statistics here in the case this 1045 * cylinder group is now almost full, and the remaining 1046 * space is less then the maximum cluster size. This is 1047 * probably not needed, as you would hardly find a file 1048 * system which has only MAXCSBUFS+FS_MAXCONTIG of free 1049 * space right behind the cylinder group information in 1050 * any new cylinder group. 1051 */ 1052 1053 /* 1054 * Update our statistics in the cylinder summary. 1055 */ 1056 *cs = acg.cg_cs; 1057 1058 /* 1059 * Write the new cylinder group containing the cylinder summary 1060 * back to disk. 1061 */ 1062 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), 1063 (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); 1064 DBG_PRINT0("nscg written\n"); 1065 DBG_DUMP_CG(&sblock, "new summary cg", &acg); 1066 1067 DBG_LEAVE; 1068 return; 1069 } 1070 1071 /* 1072 * Here we read some block(s) from disk. 1073 */ 1074 static void 1075 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi) 1076 { 1077 DBG_FUNC("rdfs") 1078 ssize_t n; 1079 1080 DBG_ENTER; 1081 1082 if (bno < 0) 1083 err(32, "rdfs: attempting to read negative block number"); 1084 if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) 1085 err(33, "rdfs: seek error: %jd", (intmax_t)bno); 1086 n = read(fsi, bf, size); 1087 if (n != (ssize_t)size) 1088 err(34, "rdfs: read error: %jd", (intmax_t)bno); 1089 1090 DBG_LEAVE; 1091 return; 1092 } 1093 1094 /* 1095 * Here we write some block(s) to disk. 1096 */ 1097 static void 1098 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag) 1099 { 1100 DBG_FUNC("wtfs") 1101 ssize_t n; 1102 1103 DBG_ENTER; 1104 1105 if (Nflag) { 1106 DBG_LEAVE; 1107 return; 1108 } 1109 if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) 1110 err(35, "wtfs: seek error: %ld", (long)bno); 1111 n = write(fso, bf, size); 1112 if (n != (ssize_t)size) 1113 err(36, "wtfs: write error: %ld", (long)bno); 1114 1115 DBG_LEAVE; 1116 return; 1117 } 1118 1119 /* 1120 * Here we check if all frags of a block are free. For more details again 1121 * please see the source of newfs(8), as this function is taken over almost 1122 * unchanged. 1123 */ 1124 static int 1125 isblock(struct fs *fs, unsigned char *cp, int h) 1126 { 1127 DBG_FUNC("isblock") 1128 unsigned char mask; 1129 1130 DBG_ENTER; 1131 1132 switch (fs->fs_frag) { 1133 case 8: 1134 DBG_LEAVE; 1135 return (cp[h] == 0xff); 1136 case 4: 1137 mask = 0x0f << ((h & 0x1) << 2); 1138 DBG_LEAVE; 1139 return ((cp[h >> 1] & mask) == mask); 1140 case 2: 1141 mask = 0x03 << ((h & 0x3) << 1); 1142 DBG_LEAVE; 1143 return ((cp[h >> 2] & mask) == mask); 1144 case 1: 1145 mask = 0x01 << (h & 0x7); 1146 DBG_LEAVE; 1147 return ((cp[h >> 3] & mask) == mask); 1148 default: 1149 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1150 DBG_LEAVE; 1151 return (0); 1152 } 1153 } 1154 1155 /* 1156 * Here we allocate a complete block in the block map. For more details again 1157 * please see the source of newfs(8), as this function is taken over almost 1158 * unchanged. 1159 */ 1160 static void 1161 clrblock(struct fs *fs, unsigned char *cp, int h) 1162 { 1163 DBG_FUNC("clrblock") 1164 1165 DBG_ENTER; 1166 1167 switch ((fs)->fs_frag) { 1168 case 8: 1169 cp[h] = 0; 1170 break; 1171 case 4: 1172 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1173 break; 1174 case 2: 1175 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1176 break; 1177 case 1: 1178 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1179 break; 1180 default: 1181 warnx("clrblock bad fs_frag %d", fs->fs_frag); 1182 break; 1183 } 1184 1185 DBG_LEAVE; 1186 return; 1187 } 1188 1189 /* 1190 * Here we free a complete block in the free block map. For more details again 1191 * please see the source of newfs(8), as this function is taken over almost 1192 * unchanged. 1193 */ 1194 static void 1195 setblock(struct fs *fs, unsigned char *cp, int h) 1196 { 1197 DBG_FUNC("setblock") 1198 1199 DBG_ENTER; 1200 1201 switch (fs->fs_frag) { 1202 case 8: 1203 cp[h] = 0xff; 1204 break; 1205 case 4: 1206 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1207 break; 1208 case 2: 1209 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1210 break; 1211 case 1: 1212 cp[h >> 3] |= (0x01 << (h & 0x7)); 1213 break; 1214 default: 1215 warnx("setblock bad fs_frag %d", fs->fs_frag); 1216 break; 1217 } 1218 1219 DBG_LEAVE; 1220 return; 1221 } 1222 1223 /* 1224 * Figure out how many lines our current terminal has. For more details again 1225 * please see the source of newfs(8), as this function is taken over almost 1226 * unchanged. 1227 */ 1228 static int 1229 charsperline(void) 1230 { 1231 DBG_FUNC("charsperline") 1232 int columns; 1233 char *cp; 1234 struct winsize ws; 1235 1236 DBG_ENTER; 1237 1238 columns = 0; 1239 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1240 columns = ws.ws_col; 1241 if (columns == 0 && (cp = getenv("COLUMNS"))) 1242 columns = atoi(cp); 1243 if (columns == 0) 1244 columns = 80; /* last resort */ 1245 1246 DBG_LEAVE; 1247 return (columns); 1248 } 1249 1250 static int 1251 is_dev(const char *name) 1252 { 1253 struct stat devstat; 1254 1255 if (stat(name, &devstat) != 0) 1256 return (0); 1257 if (!S_ISCHR(devstat.st_mode)) 1258 return (0); 1259 return (1); 1260 } 1261 1262 /* 1263 * Return mountpoint on which the device is currently mounted. 1264 */ 1265 static const struct statfs * 1266 dev_to_statfs(const char *dev) 1267 { 1268 struct stat devstat, mntdevstat; 1269 struct statfs *mntbuf, *statfsp; 1270 char device[MAXPATHLEN]; 1271 char *mntdevname; 1272 int i, mntsize; 1273 1274 /* 1275 * First check the mounted filesystems. 1276 */ 1277 if (stat(dev, &devstat) != 0) 1278 return (NULL); 1279 if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode)) 1280 return (NULL); 1281 1282 mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); 1283 for (i = 0; i < mntsize; i++) { 1284 statfsp = &mntbuf[i]; 1285 mntdevname = statfsp->f_mntfromname; 1286 if (*mntdevname != '/') { 1287 strcpy(device, _PATH_DEV); 1288 strcat(device, mntdevname); 1289 mntdevname = device; 1290 } 1291 if (stat(mntdevname, &mntdevstat) == 0 && 1292 mntdevstat.st_rdev == devstat.st_rdev) 1293 return (statfsp); 1294 } 1295 1296 return (NULL); 1297 } 1298 1299 static const char * 1300 mountpoint_to_dev(const char *mountpoint) 1301 { 1302 struct statfs *mntbuf, *statfsp; 1303 struct fstab *fs; 1304 int i, mntsize; 1305 1306 /* 1307 * First check the mounted filesystems. 1308 */ 1309 mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); 1310 for (i = 0; i < mntsize; i++) { 1311 statfsp = &mntbuf[i]; 1312 1313 if (strcmp(statfsp->f_mntonname, mountpoint) == 0) 1314 return (statfsp->f_mntfromname); 1315 } 1316 1317 /* 1318 * Check the fstab. 1319 */ 1320 fs = getfsfile(mountpoint); 1321 if (fs != NULL) 1322 return (fs->fs_spec); 1323 1324 return (NULL); 1325 } 1326 1327 static const char * 1328 getdev(const char *name) 1329 { 1330 static char device[MAXPATHLEN]; 1331 const char *cp, *dev; 1332 1333 if (is_dev(name)) 1334 return (name); 1335 1336 cp = strrchr(name, '/'); 1337 if (cp == 0) { 1338 snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name); 1339 if (is_dev(device)) 1340 return (device); 1341 } 1342 1343 dev = mountpoint_to_dev(name); 1344 if (dev != NULL && is_dev(dev)) 1345 return (dev); 1346 1347 return (NULL); 1348 } 1349 1350 /* 1351 * growfs(8) is a utility which allows to increase the size of an existing 1352 * ufs file system. Currently this can only be done on unmounted file system. 1353 * It recognizes some command line options to specify the new desired size, 1354 * and it does some basic checkings. The old file system size is determined 1355 * and after some more checks like we can really access the new last block 1356 * on the disk etc. we calculate the new parameters for the superblock. After 1357 * having done this we just call growfs() which will do the work. 1358 * We still have to provide support for snapshots. Therefore we first have to 1359 * understand what data structures are always replicated in the snapshot on 1360 * creation, for all other blocks we touch during our procedure, we have to 1361 * keep the old blocks unchanged somewhere available for the snapshots. If we 1362 * are lucky, then we only have to handle our blocks to be relocated in that 1363 * way. 1364 * Also we have to consider in what order we actually update the critical 1365 * data structures of the file system to make sure, that in case of a disaster 1366 * fsck(8) is still able to restore any lost data. 1367 * The foreseen last step then will be to provide for growing even mounted 1368 * file systems. There we have to extend the mount() system call to provide 1369 * userland access to the file system locking facility. 1370 */ 1371 int 1372 main(int argc, char **argv) 1373 { 1374 DBG_FUNC("main") 1375 const char *device; 1376 const struct statfs *statfsp; 1377 uint64_t size = 0; 1378 off_t mediasize; 1379 int error, i, j, fsi, fso, ch, Nflag = 0, yflag = 0; 1380 char *p, reply[5], oldsizebuf[6], newsizebuf[6]; 1381 void *testbuf; 1382 1383 DBG_ENTER; 1384 1385 while ((ch = getopt(argc, argv, "Ns:vy")) != -1) { 1386 switch(ch) { 1387 case 'N': 1388 Nflag = 1; 1389 break; 1390 case 's': 1391 size = (off_t)strtoumax(optarg, &p, 0); 1392 if (p == NULL || *p == '\0') 1393 size *= DEV_BSIZE; 1394 else if (*p == 'b' || *p == 'B') 1395 ; /* do nothing */ 1396 else if (*p == 'k' || *p == 'K') 1397 size <<= 10; 1398 else if (*p == 'm' || *p == 'M') 1399 size <<= 20; 1400 else if (*p == 'g' || *p == 'G') 1401 size <<= 30; 1402 else if (*p == 't' || *p == 'T') { 1403 size <<= 30; 1404 size <<= 10; 1405 } else 1406 errx(1, "unknown suffix on -s argument"); 1407 break; 1408 case 'v': /* for compatibility to newfs */ 1409 break; 1410 case 'y': 1411 yflag = 1; 1412 break; 1413 case '?': 1414 /* FALLTHROUGH */ 1415 default: 1416 usage(); 1417 } 1418 } 1419 argc -= optind; 1420 argv += optind; 1421 1422 if (argc != 1) 1423 usage(); 1424 1425 /* 1426 * Now try to guess the device name. 1427 */ 1428 device = getdev(*argv); 1429 if (device == NULL) 1430 errx(1, "cannot find special device for %s", *argv); 1431 1432 statfsp = dev_to_statfs(device); 1433 1434 fsi = open(device, O_RDONLY); 1435 if (fsi < 0) 1436 err(1, "%s", device); 1437 1438 /* 1439 * Try to guess the slice size if not specified. 1440 */ 1441 if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1) 1442 err(1,"DIOCGMEDIASIZE"); 1443 1444 /* 1445 * Check if that partition is suitable for growing a file system. 1446 */ 1447 if (mediasize < 1) 1448 errx(1, "partition is unavailable"); 1449 1450 /* 1451 * Read the current superblock, and take a backup. 1452 */ 1453 for (i = 0; sblock_try[i] != -1; i++) { 1454 sblockloc = sblock_try[i] / DEV_BSIZE; 1455 rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi); 1456 if ((osblock.fs_magic == FS_UFS1_MAGIC || 1457 (osblock.fs_magic == FS_UFS2_MAGIC && 1458 osblock.fs_sblockloc == sblock_try[i])) && 1459 osblock.fs_bsize <= MAXBSIZE && 1460 osblock.fs_bsize >= (int32_t) sizeof(struct fs)) 1461 break; 1462 } 1463 if (sblock_try[i] == -1) 1464 errx(1, "superblock not recognized"); 1465 memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2)); 1466 1467 DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */ 1468 DBG_DUMP_FS(&sblock, "old sblock"); 1469 1470 /* 1471 * Determine size to grow to. Default to the device size. 1472 */ 1473 if (size == 0) 1474 size = mediasize; 1475 else { 1476 if (size > (uint64_t)mediasize) { 1477 humanize_number(oldsizebuf, sizeof(oldsizebuf), size, 1478 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1479 humanize_number(newsizebuf, sizeof(newsizebuf), 1480 mediasize, 1481 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1482 1483 errx(1, "requested size %s is larger " 1484 "than the available %s", oldsizebuf, newsizebuf); 1485 } 1486 } 1487 1488 if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) { 1489 humanize_number(oldsizebuf, sizeof(oldsizebuf), 1490 osblock.fs_size * osblock.fs_fsize, 1491 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1492 humanize_number(newsizebuf, sizeof(newsizebuf), size, 1493 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1494 1495 errx(1, "requested size %s is not larger than the current " 1496 "filesystem size %s", newsizebuf, oldsizebuf); 1497 } 1498 1499 sblock.fs_size = dbtofsb(&osblock, size / DEV_BSIZE); 1500 1501 /* 1502 * Are we really growing? 1503 */ 1504 if (osblock.fs_size >= sblock.fs_size) { 1505 errx(1, "we are not growing (%jd->%jd)", 1506 (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size); 1507 } 1508 1509 /* 1510 * Check if we find an active snapshot. 1511 */ 1512 if (yflag == 0) { 1513 for (j = 0; j < FSMAXSNAP; j++) { 1514 if (sblock.fs_snapinum[j]) { 1515 errx(1, "active snapshot found in file system; " 1516 "please remove all snapshots before " 1517 "using growfs"); 1518 } 1519 if (!sblock.fs_snapinum[j]) /* list is dense */ 1520 break; 1521 } 1522 } 1523 1524 if (yflag == 0 && Nflag == 0) { 1525 if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) 1526 errx(1, "%s is mounted read-write on %s", 1527 statfsp->f_mntfromname, statfsp->f_mntonname); 1528 printf("It's strongly recommended to make a backup " 1529 "before growing the file system.\n" 1530 "OK to grow filesystem on %s", device); 1531 if (statfsp != NULL) 1532 printf(", mounted on %s,", statfsp->f_mntonname); 1533 humanize_number(oldsizebuf, sizeof(oldsizebuf), 1534 osblock.fs_size * osblock.fs_fsize, 1535 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1536 humanize_number(newsizebuf, sizeof(newsizebuf), 1537 sblock.fs_size * sblock.fs_fsize, 1538 "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); 1539 printf(" from %s to %s? [Yes/No] ", oldsizebuf, newsizebuf); 1540 fflush(stdout); 1541 fgets(reply, (int)sizeof(reply), stdin); 1542 if (strcmp(reply, "Yes\n")){ 1543 printf("\nNothing done\n"); 1544 exit (0); 1545 } 1546 } 1547 1548 /* 1549 * Try to access our device for writing. If it's not mounted, 1550 * or mounted read-only, simply open it; otherwise, use UFS 1551 * suspension mechanism. 1552 */ 1553 if (Nflag) { 1554 fso = -1; 1555 } else { 1556 fso = open(device, O_WRONLY); 1557 if (fso < 0) 1558 err(1, "%s", device); 1559 } 1560 1561 /* 1562 * Try to access our new last block in the file system. 1563 */ 1564 testbuf = malloc(sblock.fs_fsize); 1565 if (testbuf == NULL) 1566 err(1, "malloc"); 1567 rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE), 1568 sblock.fs_fsize, testbuf, fsi); 1569 wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE), 1570 sblock.fs_fsize, testbuf, fso, Nflag); 1571 free(testbuf); 1572 1573 /* 1574 * Now calculate new superblock values and check for reasonable 1575 * bound for new file system size: 1576 * fs_size: is derived from user input 1577 * fs_dsize: should get updated in the routines creating or 1578 * updating the cylinder groups on the fly 1579 * fs_cstotal: should get updated in the routines creating or 1580 * updating the cylinder groups 1581 */ 1582 1583 /* 1584 * Update the number of cylinders and cylinder groups in the file system. 1585 */ 1586 if (sblock.fs_magic == FS_UFS1_MAGIC) { 1587 sblock.fs_old_ncyl = 1588 sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc; 1589 if (sblock.fs_size * sblock.fs_old_nspf > 1590 sblock.fs_old_ncyl * sblock.fs_old_spc) 1591 sblock.fs_old_ncyl++; 1592 } 1593 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 1594 1595 if (sblock.fs_size % sblock.fs_fpg != 0 && 1596 sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) { 1597 /* 1598 * The space in the new last cylinder group is too small, 1599 * so revert back. 1600 */ 1601 sblock.fs_ncg--; 1602 if (sblock.fs_magic == FS_UFS1_MAGIC) 1603 sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg; 1604 printf("Warning: %jd sector(s) cannot be allocated.\n", 1605 (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg)); 1606 sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg; 1607 } 1608 1609 /* 1610 * Update the space for the cylinder group summary information in the 1611 * respective cylinder group data area. 1612 */ 1613 sblock.fs_cssize = 1614 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 1615 1616 if (osblock.fs_size >= sblock.fs_size) 1617 errx(1, "not enough new space"); 1618 1619 DBG_PRINT0("sblock calculated\n"); 1620 1621 /* 1622 * Ok, everything prepared, so now let's do the tricks. 1623 */ 1624 growfs(fsi, fso, Nflag); 1625 1626 close(fsi); 1627 if (fso > -1) { 1628 error = close(fso); 1629 if (error != 0) 1630 err(1, "close"); 1631 } 1632 if (statfsp != NULL) 1633 mount_reload(statfsp); 1634 1635 DBG_CLOSE; 1636 1637 DBG_LEAVE; 1638 return (0); 1639 } 1640 1641 /* 1642 * Dump a line of usage. 1643 */ 1644 static void 1645 usage(void) 1646 { 1647 DBG_FUNC("usage") 1648 1649 DBG_ENTER; 1650 1651 fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n"); 1652 1653 DBG_LEAVE; 1654 exit(1); 1655 } 1656 1657 /* 1658 * This updates most parameters and the bitmap related to cluster. We have to 1659 * assume that sblock, osblock, acg are set up. 1660 */ 1661 static void 1662 updclst(int block) 1663 { 1664 DBG_FUNC("updclst") 1665 static int lcs = 0; 1666 1667 DBG_ENTER; 1668 1669 if (sblock.fs_contigsumsize < 1) /* no clustering */ 1670 return; 1671 /* 1672 * update cluster allocation map 1673 */ 1674 setbit(cg_clustersfree(&acg), block); 1675 1676 /* 1677 * update cluster summary table 1678 */ 1679 if (!lcs) { 1680 /* 1681 * calculate size for the trailing cluster 1682 */ 1683 for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) { 1684 if (isclr(cg_clustersfree(&acg), block)) 1685 break; 1686 } 1687 } 1688 if (lcs < sblock.fs_contigsumsize) { 1689 if (lcs) 1690 cg_clustersum(&acg)[lcs]--; 1691 lcs++; 1692 cg_clustersum(&acg)[lcs]++; 1693 } 1694 1695 DBG_LEAVE; 1696 return; 1697 } 1698 1699 static void 1700 mount_reload(const struct statfs *stfs) 1701 { 1702 char errmsg[255]; 1703 struct iovec *iov; 1704 int iovlen; 1705 1706 iov = NULL; 1707 iovlen = 0; 1708 *errmsg = '\0'; 1709 build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4); 1710 build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1); 1711 build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg)); 1712 build_iovec(&iov, &iovlen, "update", NULL, 0); 1713 build_iovec(&iov, &iovlen, "reload", NULL, 0); 1714 1715 if (nmount(iov, iovlen, stfs->f_flags) < 0) { 1716 errmsg[sizeof(errmsg) - 1] = '\0'; 1717 err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname, 1718 *errmsg != '\0' ? ": " : "", errmsg); 1719 } 1720 } 1721