xref: /freebsd/sbin/growfs/growfs.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 /* ********************************************************** INCLUDES ***** */
53 #include <sys/param.h>
54 #include <sys/disklabel.h>
55 #include <sys/ioctl.h>
56 #include <sys/stat.h>
57 #include <sys/disk.h>
58 
59 #include <stdio.h>
60 #include <paths.h>
61 #include <ctype.h>
62 #include <err.h>
63 #include <fcntl.h>
64 #include <limits.h>
65 #include <stdlib.h>
66 #include <stdint.h>
67 #include <string.h>
68 #include <time.h>
69 #include <unistd.h>
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ffs/fs.h>
72 
73 #include "debug.h"
74 
75 /* *************************************************** GLOBALS & TYPES ***** */
76 #ifdef FS_DEBUG
77 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
78 #endif /* FS_DEBUG */
79 
80 static union {
81 	struct fs	fs;
82 	char	pad[SBLOCKSIZE];
83 } fsun1, fsun2;
84 #define	sblock	fsun1.fs	/* the new superblock */
85 #define	osblock	fsun2.fs	/* the old superblock */
86 
87 /*
88  * Possible superblock locations ordered from most to least likely.
89  */
90 static int sblock_try[] = SBLOCKSEARCH;
91 static ufs2_daddr_t sblockloc;
92 
93 static union {
94 	struct cg	cg;
95 	char	pad[MAXBSIZE];
96 } cgun1, cgun2;
97 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
98 #define	aocg	cgun2.cg	/* an old cylinder group */
99 
100 static char	ablk[MAXBSIZE];	/* a block */
101 
102 static struct csum	*fscs;	/* cylinder summary */
103 
104 union dinode {
105 	struct ufs1_dinode dp1;
106 	struct ufs2_dinode dp2;
107 };
108 #define	DIP(dp, field) \
109 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
110 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
111 #define	DIP_SET(dp, field, val) do { \
112 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
113 		(dp)->dp1.field = (val); \
114 	else \
115 		(dp)->dp2.field = (val); \
116 	} while (0)
117 static ufs2_daddr_t 	inoblk;			/* inode block address */
118 static char		inobuf[MAXBSIZE];	/* inode block */
119 ino_t			maxino;			/* last valid inode */
120 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
121 
122 /*
123  * An array of elements of type struct gfs_bpp describes all blocks to
124  * be relocated in order to free the space needed for the cylinder group
125  * summary for all cylinder groups located in the first cylinder group.
126  */
127 struct gfs_bpp {
128 	ufs2_daddr_t	old;		/* old block number */
129 	ufs2_daddr_t	new;		/* new block number */
130 #define GFS_FL_FIRST	1
131 #define GFS_FL_LAST	2
132 	unsigned int	flags;	/* special handling required */
133 	int	found;		/* how many references were updated */
134 };
135 
136 /* ******************************************************** PROTOTYPES ***** */
137 static void	growfs(int, int, unsigned int);
138 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
139 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
140 static ufs2_daddr_t alloc(void);
141 static int	charsperline(void);
142 static void	usage(void);
143 static int	isblock(struct fs *, unsigned char *, int);
144 static void	clrblock(struct fs *, unsigned char *, int);
145 static void	setblock(struct fs *, unsigned char *, int);
146 static void	initcg(int, time_t, int, unsigned int);
147 static void	updjcg(int, time_t, int, int, unsigned int);
148 static void	updcsloc(time_t, int, int, unsigned int);
149 static struct disklabel	*get_disklabel(int);
150 static void	return_disklabel(int, struct disklabel *, unsigned int);
151 static union dinode *ginode(ino_t, int, int);
152 static void	frag_adjust(ufs2_daddr_t, int);
153 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
154 		    unsigned int);
155 static void	updclst(int);
156 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
157 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
158 		    struct gfs_bpp *, int, int, unsigned int);
159 static void	get_dev_size(int, int *);
160 
161 /* ************************************************************ growfs ***** */
162 /*
163  * Here we actually start growing the file system. We basically read the
164  * cylinder summary from the first cylinder group as we want to update
165  * this on the fly during our various operations. First we handle the
166  * changes in the former last cylinder group. Afterwards we create all new
167  * cylinder groups.  Now we handle the cylinder group containing the
168  * cylinder summary which might result in a relocation of the whole
169  * structure.  In the end we write back the updated cylinder summary, the
170  * new superblock, and slightly patched versions of the super block
171  * copies.
172  */
173 static void
174 growfs(int fsi, int fso, unsigned int Nflag)
175 {
176 	DBG_FUNC("growfs")
177 	time_t	utime;
178 	uint	cylno;
179 	int	i, j, width;
180 	char	tmpbuf[100];
181 #ifdef FSIRAND
182 	static int	randinit=0;
183 
184 	DBG_ENTER;
185 
186 	if (!randinit) {
187 		randinit = 1;
188 		srandomdev();
189 	}
190 #else /* not FSIRAND */
191 
192 	DBG_ENTER;
193 
194 #endif /* FSIRAND */
195 	time(&utime);
196 
197 	/*
198 	 * Get the cylinder summary into the memory.
199 	 */
200 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
201 	if(fscs == NULL) {
202 		errx(1, "calloc failed");
203 	}
204 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
205 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
206 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
207 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
208 	}
209 
210 #ifdef FS_DEBUG
211 {
212 	struct csum	*dbg_csp;
213 	int	dbg_csc;
214 	char	dbg_line[80];
215 
216 	dbg_csp=fscs;
217 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
218 		snprintf(dbg_line, sizeof(dbg_line),
219 		    "%d. old csum in old location", dbg_csc);
220 		DBG_DUMP_CSUM(&osblock,
221 		    dbg_line,
222 		    dbg_csp++);
223 	}
224 }
225 #endif /* FS_DEBUG */
226 	DBG_PRINT0("fscs read\n");
227 
228 	/*
229 	 * Do all needed changes in the former last cylinder group.
230 	 */
231 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
232 
233 	/*
234 	 * Dump out summary information about file system.
235 	 */
236 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
237 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
238 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
239 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
240 	    sblock.fs_fsize);
241 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
242 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
243 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
244 	if (sblock.fs_flags & FS_DOSOFTDEP)
245 		printf("\twith soft updates\n");
246 #	undef B2MBFACTOR
247 
248 	/*
249 	 * Now build the cylinders group blocks and
250 	 * then print out indices of cylinder groups.
251 	 */
252 	printf("super-block backups (for fsck -b #) at:\n");
253 	i = 0;
254 	width = charsperline();
255 
256 	/*
257 	 * Iterate for only the new cylinder groups.
258 	 */
259 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
260 		initcg(cylno, utime, fso, Nflag);
261 		j = sprintf(tmpbuf, " %jd%s",
262 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
263 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
264 		if (i + j >= width) {
265 			printf("\n");
266 			i = 0;
267 		}
268 		i += j;
269 		printf("%s", tmpbuf);
270 		fflush(stdout);
271 	}
272 	printf("\n");
273 
274 	/*
275 	 * Do all needed changes in the first cylinder group.
276 	 * allocate blocks in new location
277 	 */
278 	updcsloc(utime, fsi, fso, Nflag);
279 
280 	/*
281 	 * Now write the cylinder summary back to disk.
282 	 */
283 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
284 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
285 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
286 		    (void *)(((char *)fscs) + i), fso, Nflag);
287 	}
288 	DBG_PRINT0("fscs written\n");
289 
290 #ifdef FS_DEBUG
291 {
292 	struct csum	*dbg_csp;
293 	int	dbg_csc;
294 	char	dbg_line[80];
295 
296 	dbg_csp=fscs;
297 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
298 		snprintf(dbg_line, sizeof(dbg_line),
299 		    "%d. new csum in new location", dbg_csc);
300 		DBG_DUMP_CSUM(&sblock,
301 		    dbg_line,
302 		    dbg_csp++);
303 	}
304 }
305 #endif /* FS_DEBUG */
306 
307 	/*
308 	 * Now write the new superblock back to disk.
309 	 */
310 	sblock.fs_time = utime;
311 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
312 	DBG_PRINT0("sblock written\n");
313 	DBG_DUMP_FS(&sblock,
314 	    "new initial sblock");
315 
316 	/*
317 	 * Clean up the dynamic fields in our superblock copies.
318 	 */
319 	sblock.fs_fmod = 0;
320 	sblock.fs_clean = 1;
321 	sblock.fs_ronly = 0;
322 	sblock.fs_cgrotor = 0;
323 	sblock.fs_state = 0;
324 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
325 	sblock.fs_flags &= FS_DOSOFTDEP;
326 
327 	/*
328 	 * XXX
329 	 * The following fields are currently distributed from the superblock
330 	 * to the copies:
331 	 *     fs_minfree
332 	 *     fs_rotdelay
333 	 *     fs_maxcontig
334 	 *     fs_maxbpg
335 	 *     fs_minfree,
336 	 *     fs_optim
337 	 *     fs_flags regarding SOFTPDATES
338 	 *
339 	 * We probably should rather change the summary for the cylinder group
340 	 * statistics here to the value of what would be in there, if the file
341 	 * system were created initially with the new size. Therefor we still
342 	 * need to find an easy way of calculating that.
343 	 * Possibly we can try to read the first superblock copy and apply the
344 	 * "diffed" stats between the old and new superblock by still copying
345 	 * certain parameters onto that.
346 	 */
347 
348 	/*
349 	 * Write out the duplicate super blocks.
350 	 */
351 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
352 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
353 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
354 	}
355 	DBG_PRINT0("sblock copies written\n");
356 	DBG_DUMP_FS(&sblock,
357 	    "new other sblocks");
358 
359 	DBG_LEAVE;
360 	return;
361 }
362 
363 /* ************************************************************ initcg ***** */
364 /*
365  * This creates a new cylinder group structure, for more details please see
366  * the source of newfs(8), as this function is taken over almost unchanged.
367  * As this is never called for the first cylinder group, the special
368  * provisions for that case are removed here.
369  */
370 static void
371 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
372 {
373 	DBG_FUNC("initcg")
374 	static void *iobuf;
375 	long blkno, start;
376 	ufs2_daddr_t i, cbase, dmax;
377 	struct ufs1_dinode *dp1;
378 	struct csum *cs;
379 	uint d, dupper, dlower;
380 
381 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
382 		errx(37, "panic: cannot allocate I/O buffer");
383 	}
384 	/*
385 	 * Determine block bounds for cylinder group.
386 	 * Allow space for super block summary information in first
387 	 * cylinder group.
388 	 */
389 	cbase = cgbase(&sblock, cylno);
390 	dmax = cbase + sblock.fs_fpg;
391 	if (dmax > sblock.fs_size)
392 		dmax = sblock.fs_size;
393 	dlower = cgsblock(&sblock, cylno) - cbase;
394 	dupper = cgdmin(&sblock, cylno) - cbase;
395 	if (cylno == 0)	/* XXX fscs may be relocated */
396 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
397 	cs = &fscs[cylno];
398 	memset(&acg, 0, sblock.fs_cgsize);
399 	/*
400 	 * Note that we do not set cg_initediblk at all.
401 	 * In this extension of a previous filesystem
402 	 * we have no inodes initialized for the cylinder
403 	 * group at all. The first access to that cylinder
404 	 * group will do the correct initialization.
405 	 */
406 	acg.cg_time = utime;
407 	acg.cg_magic = CG_MAGIC;
408 	acg.cg_cgx = cylno;
409 	acg.cg_niblk = sblock.fs_ipg;
410 	acg.cg_ndblk = dmax - cbase;
411 	if (sblock.fs_contigsumsize > 0)
412 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
413 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
414 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
415 		acg.cg_iusedoff = start;
416 	} else {
417 		acg.cg_old_ncyl = sblock.fs_old_cpg;
418 		acg.cg_old_time = acg.cg_time;
419 		acg.cg_time = 0;
420 		acg.cg_old_niblk = acg.cg_niblk;
421 		acg.cg_niblk = 0;
422 		acg.cg_old_btotoff = start;
423 		acg.cg_old_boff = acg.cg_old_btotoff +
424 		    sblock.fs_old_cpg * sizeof(int32_t);
425 		acg.cg_iusedoff = acg.cg_old_boff +
426 		    sblock.fs_old_cpg * sizeof(u_int16_t);
427 	}
428 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
429 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
430 	if (sblock.fs_contigsumsize > 0) {
431 		acg.cg_clustersumoff =
432 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
433 		acg.cg_clustersumoff -= sizeof(u_int32_t);
434 		acg.cg_clusteroff = acg.cg_clustersumoff +
435 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
436 		acg.cg_nextfreeoff = acg.cg_clusteroff +
437 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
438 	}
439 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
440 		/*
441 		 * This should never happen as we would have had that panic
442 		 * already on file system creation
443 		 */
444 		errx(37, "panic: cylinder group too big");
445 	}
446 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
447 	if (cylno == 0)
448 		for (i = 0; i < ROOTINO; i++) {
449 			setbit(cg_inosused(&acg), i);
450 			acg.cg_cs.cs_nifree--;
451 		}
452 	/*
453 	 * For the old file system, we have to initialize all the inodes.
454 	 */
455 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
456 		bzero(iobuf, sblock.fs_bsize);
457 		for (i = 0; i < sblock.fs_ipg / INOPF(&sblock);
458 		     i += sblock.fs_frag) {
459 			dp1 = (struct ufs1_dinode *)iobuf;
460 #ifdef FSIRAND
461 			for (j = 0; j < INOPB(&sblock); j++) {
462 				dp1->di_gen = random();
463 				dp1++;
464 			}
465 #endif
466 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
467 			    sblock.fs_bsize, iobuf, fso, Nflag);
468 		}
469 	}
470 	if (cylno > 0) {
471 		/*
472 		 * In cylno 0, beginning space is reserved
473 		 * for boot and super blocks.
474 		 */
475 		for (d = 0; d < dlower; d += sblock.fs_frag) {
476 			blkno = d / sblock.fs_frag;
477 			setblock(&sblock, cg_blksfree(&acg), blkno);
478 			if (sblock.fs_contigsumsize > 0)
479 				setbit(cg_clustersfree(&acg), blkno);
480 			acg.cg_cs.cs_nbfree++;
481 		}
482 		sblock.fs_dsize += dlower;
483 	}
484 	sblock.fs_dsize += acg.cg_ndblk - dupper;
485 	if ((i = dupper % sblock.fs_frag)) {
486 		acg.cg_frsum[sblock.fs_frag - i]++;
487 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
488 			setbit(cg_blksfree(&acg), dupper);
489 			acg.cg_cs.cs_nffree++;
490 		}
491 	}
492 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
493 	     d += sblock.fs_frag) {
494 		blkno = d / sblock.fs_frag;
495 		setblock(&sblock, cg_blksfree(&acg), blkno);
496 		if (sblock.fs_contigsumsize > 0)
497 			setbit(cg_clustersfree(&acg), blkno);
498 		acg.cg_cs.cs_nbfree++;
499 	}
500 	if (d < acg.cg_ndblk) {
501 		acg.cg_frsum[acg.cg_ndblk - d]++;
502 		for (; d < acg.cg_ndblk; d++) {
503 			setbit(cg_blksfree(&acg), d);
504 			acg.cg_cs.cs_nffree++;
505 		}
506 	}
507 	if (sblock.fs_contigsumsize > 0) {
508 		int32_t *sump = cg_clustersum(&acg);
509 		u_char *mapp = cg_clustersfree(&acg);
510 		int map = *mapp++;
511 		int bit = 1;
512 		int run = 0;
513 
514 		for (i = 0; i < acg.cg_nclusterblks; i++) {
515 			if ((map & bit) != 0)
516 				run++;
517 			else if (run != 0) {
518 				if (run > sblock.fs_contigsumsize)
519 					run = sblock.fs_contigsumsize;
520 				sump[run]++;
521 				run = 0;
522 			}
523 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
524 				bit <<= 1;
525 			else {
526 				map = *mapp++;
527 				bit = 1;
528 			}
529 		}
530 		if (run != 0) {
531 			if (run > sblock.fs_contigsumsize)
532 				run = sblock.fs_contigsumsize;
533 			sump[run]++;
534 		}
535 	}
536 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
537 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
538 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
539 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
540 	*cs = acg.cg_cs;
541 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
542 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
543 	DBG_DUMP_CG(&sblock,
544 	    "new cg",
545 	    &acg);
546 
547 	DBG_LEAVE;
548 	return;
549 }
550 
551 /* ******************************************************* frag_adjust ***** */
552 /*
553  * Here we add or subtract (sign +1/-1) the available fragments in a given
554  * block to or from the fragment statistics. By subtracting before and adding
555  * after an operation on the free frag map we can easy update the fragment
556  * statistic, which seems to be otherwise a rather complex operation.
557  */
558 static void
559 frag_adjust(ufs2_daddr_t frag, int sign)
560 {
561 	DBG_FUNC("frag_adjust")
562 	int fragsize;
563 	int f;
564 
565 	DBG_ENTER;
566 
567 	fragsize=0;
568 	/*
569 	 * Here frag only needs to point to any fragment in the block we want
570 	 * to examine.
571 	 */
572 	for(f=rounddown(frag, sblock.fs_frag);
573 	    f<roundup(frag+1, sblock.fs_frag);
574 	    f++) {
575 		/*
576 		 * Count contiguous free fragments.
577 		 */
578 		if(isset(cg_blksfree(&acg), f)) {
579 			fragsize++;
580 		} else {
581 			if(fragsize && fragsize<sblock.fs_frag) {
582 				/*
583 				 * We found something in between.
584 				 */
585 				acg.cg_frsum[fragsize]+=sign;
586 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
587 				    fragsize,
588 				    sign);
589 			}
590 			fragsize=0;
591 		}
592 	}
593 	if(fragsize && fragsize<sblock.fs_frag) {
594 		/*
595 		 * We found something.
596 		 */
597 		acg.cg_frsum[fragsize]+=sign;
598 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
599 		    fragsize,
600 		    sign);
601 	}
602 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
603 	    fragsize,
604 	    sign);
605 
606 	DBG_LEAVE;
607 	return;
608 }
609 
610 /* ******************************************************* cond_bl_upd ***** */
611 /*
612  * Here we conditionally update a pointer to a fragment. We check for all
613  * relocated blocks if any of its fragments is referenced by the current
614  * field, and update the pointer to the respective fragment in our new
615  * block.  If we find a reference we write back the block immediately,
616  * as there is no easy way for our general block reading engine to figure
617  * out if a write back operation is needed.
618  */
619 static int
620 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
621     unsigned int Nflag)
622 {
623 	DBG_FUNC("cond_bl_upd")
624 	struct gfs_bpp *f;
625 	ufs2_daddr_t src, dst;
626 	int fragnum;
627 	void *ibuf;
628 
629 	DBG_ENTER;
630 
631 	for (f = field; f->old != 0; f++) {
632 		src = *block;
633 		if (fragstoblks(&sblock, src) != f->old)
634 			continue;
635 		/*
636 		 * The fragment is part of the block, so update.
637 		 */
638 		dst = blkstofrags(&sblock, f->new);
639 		fragnum = fragnum(&sblock, src);
640 		*block = dst + fragnum;
641 		f->found++;
642 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
643 		    (intmax_t)f->old,
644 		    (intmax_t)f->new,
645 		    fragnum);
646 
647 		/*
648 		 * Copy the block back immediately.
649 		 *
650 		 * XXX	If src is is from an indirect block we have
651 		 *	to implement copy on write here in case of
652 		 *	active snapshots.
653 		 */
654 		ibuf = malloc(sblock.fs_bsize);
655 		if (!ibuf)
656 			errx(1, "malloc failed");
657 		src -= fragnum;
658 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
659 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
660 		free(ibuf);
661 		/*
662 		 * The same block can't be found again in this loop.
663 		 */
664 		return (1);
665 	}
666 
667 	DBG_LEAVE;
668 	return (0);
669 }
670 
671 /* ************************************************************ updjcg ***** */
672 /*
673  * Here we do all needed work for the former last cylinder group. It has to be
674  * changed in any case, even if the file system ended exactly on the end of
675  * this group, as there is some slightly inconsistent handling of the number
676  * of cylinders in the cylinder group. We start again by reading the cylinder
677  * group from disk. If the last block was not fully available, we first handle
678  * the missing fragments, then we handle all new full blocks in that file
679  * system and finally we handle the new last fragmented block in the file
680  * system.  We again have to handle the fragment statistics rotational layout
681  * tables and cluster summary during all those operations.
682  */
683 static void
684 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
685 {
686 	DBG_FUNC("updjcg")
687 	ufs2_daddr_t	cbase, dmax, dupper;
688 	struct csum	*cs;
689 	int	i,k;
690 	int	j=0;
691 
692 	DBG_ENTER;
693 
694 	/*
695 	 * Read the former last (joining) cylinder group from disk, and make
696 	 * a copy.
697 	 */
698 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
699 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
700 	DBG_PRINT0("jcg read\n");
701 	DBG_DUMP_CG(&sblock,
702 	    "old joining cg",
703 	    &aocg);
704 
705 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
706 
707 	/*
708 	 * If the cylinder group had already its new final size almost
709 	 * nothing is to be done ... except:
710 	 * For some reason the value of cg_ncyl in the last cylinder group has
711 	 * to be zero instead of fs_cpg. As this is now no longer the last
712 	 * cylinder group we have to change that value now to fs_cpg.
713 	 */
714 
715 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
716 		if (sblock.fs_magic == FS_UFS1_MAGIC)
717 			acg.cg_old_ncyl=sblock.fs_old_cpg;
718 
719 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
720 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
721 		DBG_PRINT0("jcg written\n");
722 		DBG_DUMP_CG(&sblock,
723 		    "new joining cg",
724 		    &acg);
725 
726 		DBG_LEAVE;
727 		return;
728 	}
729 
730 	/*
731 	 * Set up some variables needed later.
732 	 */
733 	cbase = cgbase(&sblock, cylno);
734 	dmax = cbase + sblock.fs_fpg;
735 	if (dmax > sblock.fs_size)
736 		dmax = sblock.fs_size;
737 	dupper = cgdmin(&sblock, cylno) - cbase;
738 	if (cylno == 0) { /* XXX fscs may be relocated */
739 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
740 	}
741 
742 	/*
743 	 * Set pointer to the cylinder summary for our cylinder group.
744 	 */
745 	cs = fscs + cylno;
746 
747 	/*
748 	 * Touch the cylinder group, update all fields in the cylinder group as
749 	 * needed, update the free space in the superblock.
750 	 */
751 	acg.cg_time = utime;
752 	if ((unsigned)cylno == sblock.fs_ncg - 1) {
753 		/*
754 		 * This is still the last cylinder group.
755 		 */
756 		if (sblock.fs_magic == FS_UFS1_MAGIC)
757 			acg.cg_old_ncyl =
758 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
759 	} else {
760 		acg.cg_old_ncyl = sblock.fs_old_cpg;
761 	}
762 	DBG_PRINT2("jcg dbg: %d %u",
763 	    cylno,
764 	    sblock.fs_ncg);
765 #ifdef FS_DEBUG
766 	if (sblock.fs_magic == FS_UFS1_MAGIC)
767 		DBG_PRINT2("%d %u",
768 		    acg.cg_old_ncyl,
769 		    sblock.fs_old_cpg);
770 #endif
771 	DBG_PRINT0("\n");
772 	acg.cg_ndblk = dmax - cbase;
773 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
774 	if (sblock.fs_contigsumsize > 0) {
775 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
776 	}
777 
778 	/*
779 	 * Now we have to update the free fragment bitmap for our new free
780 	 * space.  There again we have to handle the fragmentation and also
781 	 * the rotational layout tables and the cluster summary.  This is
782 	 * also done per fragment for the first new block if the old file
783 	 * system end was not on a block boundary, per fragment for the new
784 	 * last block if the new file system end is not on a block boundary,
785 	 * and per block for all space in between.
786 	 *
787 	 * Handle the first new block here if it was partially available
788 	 * before.
789 	 */
790 	if(osblock.fs_size % sblock.fs_frag) {
791 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
792 			/*
793 			 * The new space is enough to fill at least this
794 			 * block
795 			 */
796 			j=0;
797 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
798 			    i>=osblock.fs_size-cbase;
799 			    i--) {
800 				setbit(cg_blksfree(&acg), i);
801 				acg.cg_cs.cs_nffree++;
802 				j++;
803 			}
804 
805 			/*
806 			 * Check if the fragment just created could join an
807 			 * already existing fragment at the former end of the
808 			 * file system.
809 			 */
810 			if(isblock(&sblock, cg_blksfree(&acg),
811 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
812 			    sblock.fs_frag))) {
813 				/*
814 				 * The block is now completely available.
815 				 */
816 				DBG_PRINT0("block was\n");
817 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
818 				acg.cg_cs.cs_nbfree++;
819 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
820 				k=rounddown(osblock.fs_size-cbase,
821 				    sblock.fs_frag);
822 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
823 			} else {
824 				/*
825 				 * Lets rejoin a possible partially growed
826 				 * fragment.
827 				 */
828 				k=0;
829 				while(isset(cg_blksfree(&acg), i) &&
830 				    (i>=rounddown(osblock.fs_size-cbase,
831 				    sblock.fs_frag))) {
832 					i--;
833 					k++;
834 				}
835 				if(k) {
836 					acg.cg_frsum[k]--;
837 				}
838 				acg.cg_frsum[k+j]++;
839 			}
840 		} else {
841 			/*
842 			 * We only grow by some fragments within this last
843 			 * block.
844 			 */
845 			for(i=sblock.fs_size-cbase-1;
846 				i>=osblock.fs_size-cbase;
847 				i--) {
848 				setbit(cg_blksfree(&acg), i);
849 				acg.cg_cs.cs_nffree++;
850 				j++;
851 			}
852 			/*
853 			 * Lets rejoin a possible partially growed fragment.
854 			 */
855 			k=0;
856 			while(isset(cg_blksfree(&acg), i) &&
857 			    (i>=rounddown(osblock.fs_size-cbase,
858 			    sblock.fs_frag))) {
859 				i--;
860 				k++;
861 			}
862 			if(k) {
863 				acg.cg_frsum[k]--;
864 			}
865 			acg.cg_frsum[k+j]++;
866 		}
867 	}
868 
869 	/*
870 	 * Handle all new complete blocks here.
871 	 */
872 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
873 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
874 	    i+=sblock.fs_frag) {
875 		j = i / sblock.fs_frag;
876 		setblock(&sblock, cg_blksfree(&acg), j);
877 		updclst(j);
878 		acg.cg_cs.cs_nbfree++;
879 	}
880 
881 	/*
882 	 * Handle the last new block if there are stll some new fragments left.
883 	 * Here we don't have to bother about the cluster summary or the even
884 	 * the rotational layout table.
885 	 */
886 	if (i < (dmax - cbase)) {
887 		acg.cg_frsum[dmax - cbase - i]++;
888 		for (; i < dmax - cbase; i++) {
889 			setbit(cg_blksfree(&acg), i);
890 			acg.cg_cs.cs_nffree++;
891 		}
892 	}
893 
894 	sblock.fs_cstotal.cs_nffree +=
895 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
896 	sblock.fs_cstotal.cs_nbfree +=
897 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
898 	/*
899 	 * The following statistics are not changed here:
900 	 *     sblock.fs_cstotal.cs_ndir
901 	 *     sblock.fs_cstotal.cs_nifree
902 	 * As the statistics for this cylinder group are ready, copy it to
903 	 * the summary information array.
904 	 */
905 	*cs = acg.cg_cs;
906 
907 	/*
908 	 * Write the updated "joining" cylinder group back to disk.
909 	 */
910 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
911 	    (void *)&acg, fso, Nflag);
912 	DBG_PRINT0("jcg written\n");
913 	DBG_DUMP_CG(&sblock,
914 	    "new joining cg",
915 	    &acg);
916 
917 	DBG_LEAVE;
918 	return;
919 }
920 
921 /* ********************************************************** updcsloc ***** */
922 /*
923  * Here we update the location of the cylinder summary. We have two possible
924  * ways of growing the cylinder summary.
925  * (1)	We can try to grow the summary in the current location, and relocate
926  *	possibly used blocks within the current cylinder group.
927  * (2)	Alternatively we can relocate the whole cylinder summary to the first
928  *	new completely empty cylinder group. Once the cylinder summary is no
929  *	longer in the beginning of the first cylinder group you should never
930  *	use a version of fsck which is not aware of the possibility to have
931  *	this structure in a non standard place.
932  * Option (1) is considered to be less intrusive to the structure of the file-
933  * system. So we try to stick to that whenever possible. If there is not enough
934  * space in the cylinder group containing the cylinder summary we have to use
935  * method (2). In case of active snapshots in the file system we probably can
936  * completely avoid implementing copy on write if we stick to method (2) only.
937  */
938 static void
939 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
940 {
941 	DBG_FUNC("updcsloc")
942 	struct csum	*cs;
943 	int	ocscg, ncscg;
944 	int	blocks;
945 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
946 	int	ind, inc;
947 	uint	cylno;
948 	struct gfs_bpp	*bp;
949 	int	i, l;
950 	int	lcs=0;
951 	int	block;
952 
953 	DBG_ENTER;
954 
955 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
956 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
957 		/*
958 		 * No new fragment needed.
959 		 */
960 		DBG_LEAVE;
961 		return;
962 	}
963 	ocscg=dtog(&osblock, osblock.fs_csaddr);
964 	cs=fscs+ocscg;
965 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
966 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
967 
968 	/*
969 	 * Read original cylinder group from disk, and make a copy.
970 	 * XXX	If Nflag is set in some very rare cases we now miss
971 	 *	some changes done in updjcg by reading the unmodified
972 	 *	block from disk.
973 	 */
974 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
975 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
976 	DBG_PRINT0("oscg read\n");
977 	DBG_DUMP_CG(&sblock,
978 	    "old summary cg",
979 	    &aocg);
980 
981 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
982 
983 	/*
984 	 * Touch the cylinder group, set up local variables needed later
985 	 * and update the superblock.
986 	 */
987 	acg.cg_time = utime;
988 
989 	/*
990 	 * XXX	In the case of having active snapshots we may need much more
991 	 *	blocks for the copy on write. We need each block twice, and
992 	 *	also up to 8*3 blocks for indirect blocks for all possible
993 	 *	references.
994 	 */
995 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
996 		/*
997 		 * There is not enough space in the old cylinder group to
998 		 * relocate all blocks as needed, so we relocate the whole
999 		 * cylinder group summary to a new group. We try to use the
1000 		 * first complete new cylinder group just created. Within the
1001 		 * cylinder group we align the area immediately after the
1002 		 * cylinder group information location in order to be as
1003 		 * close as possible to the original implementation of ffs.
1004 		 *
1005 		 * First we have to make sure we'll find enough space in the
1006 		 * new cylinder group. If not, then we currently give up.
1007 		 * We start with freeing everything which was used by the
1008 		 * fragments of the old cylinder summary in the current group.
1009 		 * Now we write back the group meta data, read in the needed
1010 		 * meta data from the new cylinder group, and start allocating
1011 		 * within that group. Here we can assume, the group to be
1012 		 * completely empty. Which makes the handling of fragments and
1013 		 * clusters a lot easier.
1014 		 */
1015 		DBG_TRC;
1016 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1017 			errx(2, "panic: not enough space");
1018 		}
1019 
1020 		/*
1021 		 * Point "d" to the first fragment not used by the cylinder
1022 		 * summary.
1023 		 */
1024 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1025 
1026 		/*
1027 		 * Set up last cluster size ("lcs") already here. Calculate
1028 		 * the size for the trailing cluster just behind where "d"
1029 		 * points to.
1030 		 */
1031 		if(sblock.fs_contigsumsize > 0) {
1032 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1033 			    lcs=0; lcs<sblock.fs_contigsumsize;
1034 			    block++, lcs++) {
1035 				if(isclr(cg_clustersfree(&acg), block)){
1036 					break;
1037 				}
1038 			}
1039 		}
1040 
1041 		/*
1042 		 * Point "d" to the last frag used by the cylinder summary.
1043 		 */
1044 		d--;
1045 
1046 		DBG_PRINT1("d=%jd\n",
1047 		    (intmax_t)d);
1048 		if((d+1)%sblock.fs_frag) {
1049 			/*
1050 			 * The end of the cylinder summary is not a complete
1051 			 * block.
1052 			 */
1053 			DBG_TRC;
1054 			frag_adjust(d%sblock.fs_fpg, -1);
1055 			for(; (d+1)%sblock.fs_frag; d--) {
1056 				DBG_PRINT1("d=%jd\n",
1057 				    (intmax_t)d);
1058 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1059 				acg.cg_cs.cs_nffree++;
1060 				sblock.fs_cstotal.cs_nffree++;
1061 			}
1062 			/*
1063 			 * Point "d" to the last fragment of the last
1064 			 * (incomplete) block of the cylinder summary.
1065 			 */
1066 			d++;
1067 			frag_adjust(d%sblock.fs_fpg, 1);
1068 
1069 			if(isblock(&sblock, cg_blksfree(&acg),
1070 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1071 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1072 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1073 				acg.cg_cs.cs_nbfree++;
1074 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1075 				sblock.fs_cstotal.cs_nbfree++;
1076 				if(sblock.fs_contigsumsize > 0) {
1077 					setbit(cg_clustersfree(&acg),
1078 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1079 					if(lcs < sblock.fs_contigsumsize) {
1080 						if(lcs) {
1081 							cg_clustersum(&acg)
1082 							    [lcs]--;
1083 						}
1084 						lcs++;
1085 						cg_clustersum(&acg)[lcs]++;
1086 					}
1087 				}
1088 			}
1089 			/*
1090 			 * Point "d" to the first fragment of the block before
1091 			 * the last incomplete block.
1092 			 */
1093 			d--;
1094 		}
1095 
1096 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1097 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1098 		    d-=sblock.fs_frag) {
1099 			DBG_TRC;
1100 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1101 			setblock(&sblock, cg_blksfree(&acg),
1102 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1103 			acg.cg_cs.cs_nbfree++;
1104 			sblock.fs_cstotal.cs_nbfree++;
1105 			if(sblock.fs_contigsumsize > 0) {
1106 				setbit(cg_clustersfree(&acg),
1107 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1108 				/*
1109 				 * The last cluster size is already set up.
1110 				 */
1111 				if(lcs < sblock.fs_contigsumsize) {
1112 					if(lcs) {
1113 						cg_clustersum(&acg)[lcs]--;
1114 					}
1115 					lcs++;
1116 					cg_clustersum(&acg)[lcs]++;
1117 				}
1118 			}
1119 		}
1120 		*cs = acg.cg_cs;
1121 
1122 		/*
1123 		 * Now write the former cylinder group containing the cylinder
1124 		 * summary back to disk.
1125 		 */
1126 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1127 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1128 		DBG_PRINT0("oscg written\n");
1129 		DBG_DUMP_CG(&sblock,
1130 		    "old summary cg",
1131 		    &acg);
1132 
1133 		/*
1134 		 * Find the beginning of the new cylinder group containing the
1135 		 * cylinder summary.
1136 		 */
1137 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1138 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1139 		cs=fscs+ncscg;
1140 
1141 
1142 		/*
1143 		 * If Nflag is specified, we would now read random data instead
1144 		 * of an empty cg structure from disk. So we can't simulate that
1145 		 * part for now.
1146 		 */
1147 		if(Nflag) {
1148 			DBG_PRINT0("nscg update skipped\n");
1149 			DBG_LEAVE;
1150 			return;
1151 		}
1152 
1153 		/*
1154 		 * Read the future cylinder group containing the cylinder
1155 		 * summary from disk, and make a copy.
1156 		 */
1157 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1158 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1159 		DBG_PRINT0("nscg read\n");
1160 		DBG_DUMP_CG(&sblock,
1161 		    "new summary cg",
1162 		    &aocg);
1163 
1164 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1165 
1166 		/*
1167 		 * Allocate all complete blocks used by the new cylinder
1168 		 * summary.
1169 		 */
1170 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1171 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1172 		    d+=sblock.fs_frag) {
1173 			clrblock(&sblock, cg_blksfree(&acg),
1174 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1175 			acg.cg_cs.cs_nbfree--;
1176 			sblock.fs_cstotal.cs_nbfree--;
1177 			if(sblock.fs_contigsumsize > 0) {
1178 				clrbit(cg_clustersfree(&acg),
1179 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1180 			}
1181 		}
1182 
1183 		/*
1184 		 * Allocate all fragments used by the cylinder summary in the
1185 		 * last block.
1186 		 */
1187 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1188 			for(; d-sblock.fs_csaddr<
1189 			    sblock.fs_cssize/sblock.fs_fsize;
1190 			    d++) {
1191 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1192 				acg.cg_cs.cs_nffree--;
1193 				sblock.fs_cstotal.cs_nffree--;
1194 			}
1195 			acg.cg_cs.cs_nbfree--;
1196 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1197 			sblock.fs_cstotal.cs_nbfree--;
1198 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1199 			if(sblock.fs_contigsumsize > 0) {
1200 				clrbit(cg_clustersfree(&acg),
1201 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1202 			}
1203 
1204 			frag_adjust(d%sblock.fs_fpg, +1);
1205 		}
1206 		/*
1207 		 * XXX	Handle the cluster statistics here in the case this
1208 		 *	cylinder group is now almost full, and the remaining
1209 		 *	space is less then the maximum cluster size. This is
1210 		 *	probably not needed, as you would hardly find a file
1211 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1212 		 *	space right behind the cylinder group information in
1213 		 *	any new cylinder group.
1214 		 */
1215 
1216 		/*
1217 		 * Update our statistics in the cylinder summary.
1218 		 */
1219 		*cs = acg.cg_cs;
1220 
1221 		/*
1222 		 * Write the new cylinder group containing the cylinder summary
1223 		 * back to disk.
1224 		 */
1225 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1226 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1227 		DBG_PRINT0("nscg written\n");
1228 		DBG_DUMP_CG(&sblock,
1229 		    "new summary cg",
1230 		    &acg);
1231 
1232 		DBG_LEAVE;
1233 		return;
1234 	}
1235 	/*
1236 	 * We have got enough of space in the current cylinder group, so we
1237 	 * can relocate just a few blocks, and let the summary information
1238 	 * grow in place where it is right now.
1239 	 */
1240 	DBG_TRC;
1241 
1242 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1243 	dupper = sblock.fs_csaddr - cbase +
1244 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1245 	odupper = osblock.fs_csaddr - cbase +
1246 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1247 
1248 	sblock.fs_dsize -= dupper-odupper;
1249 
1250 	/*
1251 	 * Allocate the space for the array of blocks to be relocated.
1252 	 */
1253  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1254 	    sizeof(struct gfs_bpp));
1255 	if(bp == NULL) {
1256 		errx(1, "malloc failed");
1257 	}
1258 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1259 	    sizeof(struct gfs_bpp));
1260 
1261 	/*
1262 	 * Lock all new frags needed for the cylinder group summary. This is
1263 	 * done per fragment in the first and last block of the new required
1264 	 * area, and per block for all other blocks.
1265 	 *
1266 	 * Handle the first new block here (but only if some fragments where
1267 	 * already used for the cylinder summary).
1268 	 */
1269 	ind=0;
1270 	frag_adjust(odupper, -1);
1271 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1272 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1273 		    (intmax_t)d);
1274 		if(isclr(cg_blksfree(&acg), d)) {
1275 			if (!ind) {
1276 				bp[ind].old=d/sblock.fs_frag;
1277 				bp[ind].flags|=GFS_FL_FIRST;
1278 				if(roundup(d, sblock.fs_frag) >= dupper) {
1279 					bp[ind].flags|=GFS_FL_LAST;
1280 				}
1281 				ind++;
1282 			}
1283 		} else {
1284 			clrbit(cg_blksfree(&acg), d);
1285 			acg.cg_cs.cs_nffree--;
1286 			sblock.fs_cstotal.cs_nffree--;
1287 		}
1288 		/*
1289 		 * No cluster handling is needed here, as there was at least
1290 		 * one fragment in use by the cylinder summary in the old
1291 		 * file system.
1292 		 * No block-free counter handling here as this block was not
1293 		 * a free block.
1294 		 */
1295 	}
1296 	frag_adjust(odupper, 1);
1297 
1298 	/*
1299 	 * Handle all needed complete blocks here.
1300 	 */
1301 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1302 		DBG_PRINT1("scg block check loop d=%jd\n",
1303 		    (intmax_t)d);
1304 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1305 			for(f=d; f<d+sblock.fs_frag; f++) {
1306 				if(isset(cg_blksfree(&aocg), f)) {
1307 					acg.cg_cs.cs_nffree--;
1308 					sblock.fs_cstotal.cs_nffree--;
1309 				}
1310 			}
1311 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1312 			bp[ind].old=d/sblock.fs_frag;
1313 			ind++;
1314 		} else {
1315 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1316 			acg.cg_cs.cs_nbfree--;
1317 			sblock.fs_cstotal.cs_nbfree--;
1318 			if(sblock.fs_contigsumsize > 0) {
1319 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1320 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1321 				    lcs<sblock.fs_contigsumsize;
1322 				    l++, lcs++ ) {
1323 					if(isclr(cg_clustersfree(&acg),l)){
1324 						break;
1325 					}
1326 				}
1327 				if(lcs < sblock.fs_contigsumsize) {
1328 					cg_clustersum(&acg)[lcs+1]--;
1329 					if(lcs) {
1330 						cg_clustersum(&acg)[lcs]++;
1331 					}
1332 				}
1333 			}
1334 		}
1335 		/*
1336 		 * No fragment counter handling is needed here, as this finally
1337 		 * doesn't change after the relocation.
1338 		 */
1339 	}
1340 
1341 	/*
1342 	 * Handle all fragments needed in the last new affected block.
1343 	 */
1344 	if(d<dupper) {
1345 		frag_adjust(dupper-1, -1);
1346 
1347 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1348 			acg.cg_cs.cs_nbfree--;
1349 			sblock.fs_cstotal.cs_nbfree--;
1350 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1351 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1352 			if(sblock.fs_contigsumsize > 0) {
1353 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1354 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1355 				    lcs<sblock.fs_contigsumsize;
1356 				    l++, lcs++ ) {
1357 					if(isclr(cg_clustersfree(&acg),l)){
1358 						break;
1359 					}
1360 				}
1361 				if(lcs < sblock.fs_contigsumsize) {
1362 					cg_clustersum(&acg)[lcs+1]--;
1363 					if(lcs) {
1364 						cg_clustersum(&acg)[lcs]++;
1365 					}
1366 				}
1367 			}
1368 		}
1369 
1370 		for(; d<dupper; d++) {
1371 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1372 			    (intmax_t)d);
1373 			if(isclr(cg_blksfree(&acg), d)) {
1374 				bp[ind].old=d/sblock.fs_frag;
1375 				bp[ind].flags|=GFS_FL_LAST;
1376 			} else {
1377 				clrbit(cg_blksfree(&acg), d);
1378 				acg.cg_cs.cs_nffree--;
1379 				sblock.fs_cstotal.cs_nffree--;
1380 			}
1381 		}
1382 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1383 			ind++;
1384 		}
1385 		frag_adjust(dupper-1, 1);
1386 	}
1387 
1388 	/*
1389 	 * If we found a block to relocate just do so.
1390 	 */
1391 	if(ind) {
1392 		for(i=0; i<ind; i++) {
1393 			if(!bp[i].old) { /* no more blocks listed */
1394 				/*
1395 				 * XXX	A relative blocknumber should not be
1396 				 *	zero, which is not explicitly
1397 				 *	guaranteed by our code.
1398 				 */
1399 				break;
1400 			}
1401 			/*
1402 			 * Allocate a complete block in the same (current)
1403 			 * cylinder group.
1404 			 */
1405 			bp[i].new=alloc()/sblock.fs_frag;
1406 
1407 			/*
1408 			 * There is no frag_adjust() needed for the new block
1409 			 * as it will have no fragments yet :-).
1410 			 */
1411 			for(f=bp[i].old*sblock.fs_frag,
1412 			    g=bp[i].new*sblock.fs_frag;
1413 			    f<(bp[i].old+1)*sblock.fs_frag;
1414 			    f++, g++) {
1415 				if(isset(cg_blksfree(&aocg), f)) {
1416 					setbit(cg_blksfree(&acg), g);
1417 					acg.cg_cs.cs_nffree++;
1418 					sblock.fs_cstotal.cs_nffree++;
1419 				}
1420 			}
1421 
1422 			/*
1423 			 * Special handling is required if this was the first
1424 			 * block. We have to consider the fragments which were
1425 			 * used by the cylinder summary in the original block
1426 			 * which re to be free in the copy of our block.  We
1427 			 * have to be careful if this first block happens to
1428 			 * be also the last block to be relocated.
1429 			 */
1430 			if(bp[i].flags & GFS_FL_FIRST) {
1431 				for(f=bp[i].old*sblock.fs_frag,
1432 				    g=bp[i].new*sblock.fs_frag;
1433 				    f<odupper;
1434 				    f++, g++) {
1435 					setbit(cg_blksfree(&acg), g);
1436 					acg.cg_cs.cs_nffree++;
1437 					sblock.fs_cstotal.cs_nffree++;
1438 				}
1439 				if(!(bp[i].flags & GFS_FL_LAST)) {
1440 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1441 				}
1442 			}
1443 
1444 			/*
1445 			 * Special handling is required if this is the last
1446 			 * block to be relocated.
1447 			 */
1448 			if(bp[i].flags & GFS_FL_LAST) {
1449 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1450 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1451 				for(f=dupper;
1452 				    f<roundup(dupper, sblock.fs_frag);
1453 				    f++) {
1454 					if(isclr(cg_blksfree(&acg), f)) {
1455 						setbit(cg_blksfree(&acg), f);
1456 						acg.cg_cs.cs_nffree++;
1457 						sblock.fs_cstotal.cs_nffree++;
1458 					}
1459 				}
1460 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1461 			}
1462 
1463 			/*
1464 			 * !!! Attach the cylindergroup offset here.
1465 			 */
1466 			bp[i].old+=cbase/sblock.fs_frag;
1467 			bp[i].new+=cbase/sblock.fs_frag;
1468 
1469 			/*
1470 			 * Copy the content of the block.
1471 			 */
1472 			/*
1473 			 * XXX	Here we will have to implement a copy on write
1474 			 *	in the case we have any active snapshots.
1475 			 */
1476 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1477 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1478 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1479 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1480 			DBG_DUMP_HEX(&sblock,
1481 			    "copied full block",
1482 			    (unsigned char *)&ablk);
1483 
1484 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1485 			    (intmax_t)bp[i].old,
1486 			    (intmax_t)bp[i].new);
1487 		}
1488 
1489 		/*
1490 		 * Now we have to update all references to any fragment which
1491 		 * belongs to any block relocated. We iterate now over all
1492 		 * cylinder groups, within those over all non zero length
1493 		 * inodes.
1494 		 */
1495 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1496 			DBG_PRINT1("scg doing cg (%d)\n",
1497 			    cylno);
1498 			for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1499 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1500 			}
1501 		}
1502 
1503 		/*
1504 		 * All inodes are checked, now make sure the number of
1505 		 * references found make sense.
1506 		 */
1507 		for(i=0; i<ind; i++) {
1508 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1509 				warnx("error: %jd refs found for block %jd.",
1510 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1511 			}
1512 
1513 		}
1514 	}
1515 	/*
1516 	 * The following statistics are not changed here:
1517 	 *     sblock.fs_cstotal.cs_ndir
1518 	 *     sblock.fs_cstotal.cs_nifree
1519 	 * The following statistics were already updated on the fly:
1520 	 *     sblock.fs_cstotal.cs_nffree
1521 	 *     sblock.fs_cstotal.cs_nbfree
1522 	 * As the statistics for this cylinder group are ready, copy it to
1523 	 * the summary information array.
1524 	 */
1525 
1526 	*cs = acg.cg_cs;
1527 
1528 	/*
1529 	 * Write summary cylinder group back to disk.
1530 	 */
1531 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1532 	    (void *)&acg, fso, Nflag);
1533 	DBG_PRINT0("scg written\n");
1534 	DBG_DUMP_CG(&sblock,
1535 	    "new summary cg",
1536 	    &acg);
1537 
1538 	DBG_LEAVE;
1539 	return;
1540 }
1541 
1542 /* ************************************************************** rdfs ***** */
1543 /*
1544  * Here we read some block(s) from disk.
1545  */
1546 static void
1547 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1548 {
1549 	DBG_FUNC("rdfs")
1550 	ssize_t	n;
1551 
1552 	DBG_ENTER;
1553 
1554 	if (bno < 0) {
1555 		err(32, "rdfs: attempting to read negative block number");
1556 	}
1557 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1558 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1559 	}
1560 	n = read(fsi, bf, size);
1561 	if (n != (ssize_t)size) {
1562 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1563 	}
1564 
1565 	DBG_LEAVE;
1566 	return;
1567 }
1568 
1569 /* ************************************************************** wtfs ***** */
1570 /*
1571  * Here we write some block(s) to disk.
1572  */
1573 static void
1574 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1575 {
1576 	DBG_FUNC("wtfs")
1577 	ssize_t	n;
1578 
1579 	DBG_ENTER;
1580 
1581 	if (Nflag) {
1582 		DBG_LEAVE;
1583 		return;
1584 	}
1585 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1586 		err(35, "wtfs: seek error: %ld", (long)bno);
1587 	}
1588 	n = write(fso, bf, size);
1589 	if (n != (ssize_t)size) {
1590 		err(36, "wtfs: write error: %ld", (long)bno);
1591 	}
1592 
1593 	DBG_LEAVE;
1594 	return;
1595 }
1596 
1597 /* ************************************************************* alloc ***** */
1598 /*
1599  * Here we allocate a free block in the current cylinder group. It is assumed,
1600  * that acg contains the current cylinder group. As we may take a block from
1601  * somewhere in the file system we have to handle cluster summary here.
1602  */
1603 static ufs2_daddr_t
1604 alloc(void)
1605 {
1606 	DBG_FUNC("alloc")
1607 	ufs2_daddr_t	d, blkno;
1608 	int	lcs1, lcs2;
1609 	int	l;
1610 	int	csmin, csmax;
1611 	int	dlower, dupper, dmax;
1612 
1613 	DBG_ENTER;
1614 
1615 	if (acg.cg_magic != CG_MAGIC) {
1616 		warnx("acg: bad magic number");
1617 		DBG_LEAVE;
1618 		return (0);
1619 	}
1620 	if (acg.cg_cs.cs_nbfree == 0) {
1621 		warnx("error: cylinder group ran out of space");
1622 		DBG_LEAVE;
1623 		return (0);
1624 	}
1625 	/*
1626 	 * We start seeking for free blocks only from the space available after
1627 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1628 	 * block here which we have to relocate a couple of seconds later again
1629 	 * again, and we are not prepared to to this anyway.
1630 	 */
1631 	blkno=-1;
1632 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1633 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1634 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1635 	if (dmax > sblock.fs_size) {
1636 		dmax = sblock.fs_size;
1637 	}
1638 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1639 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1640 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1641 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1642 	    dlower,
1643 	    dupper,
1644 	    dmax);
1645 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1646 	    csmin,
1647 	    csmax);
1648 
1649 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1650 		if(d>=csmin && d<=csmax) {
1651 			continue;
1652 		}
1653 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1654 		    d))) {
1655 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1656 			break;
1657 		}
1658 	}
1659 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1660 		if(d>=csmin && d<=csmax) {
1661 			continue;
1662 		}
1663 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1664 		    d))) {
1665 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1666 			break;
1667 		}
1668 	}
1669 	if(blkno==-1) {
1670 		warnx("internal error: couldn't find promised block in cg");
1671 		DBG_LEAVE;
1672 		return (0);
1673 	}
1674 
1675 	/*
1676 	 * This is needed if the block was found already in the first loop.
1677 	 */
1678 	d=blkstofrags(&sblock, blkno);
1679 
1680 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1681 	if (sblock.fs_contigsumsize > 0) {
1682 		/*
1683 		 * Handle the cluster allocation bitmap.
1684 		 */
1685 		clrbit(cg_clustersfree(&acg), blkno);
1686 		/*
1687 		 * We possibly have split a cluster here, so we have to do
1688 		 * recalculate the sizes of the remaining cluster halves now,
1689 		 * and use them for updating the cluster summary information.
1690 		 *
1691 		 * Lets start with the blocks before our allocated block ...
1692 		 */
1693 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1694 		    l--, lcs1++ ) {
1695 			if(isclr(cg_clustersfree(&acg),l)){
1696 				break;
1697 			}
1698 		}
1699 		/*
1700 		 * ... and continue with the blocks right after our allocated
1701 		 * block.
1702 		 */
1703 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1704 		    l++, lcs2++ ) {
1705 			if(isclr(cg_clustersfree(&acg),l)){
1706 				break;
1707 			}
1708 		}
1709 
1710 		/*
1711 		 * Now update all counters.
1712 		 */
1713 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1714 		if(lcs1) {
1715 			cg_clustersum(&acg)[lcs1]++;
1716 		}
1717 		if(lcs2) {
1718 			cg_clustersum(&acg)[lcs2]++;
1719 		}
1720 	}
1721 	/*
1722 	 * Update all statistics based on blocks.
1723 	 */
1724 	acg.cg_cs.cs_nbfree--;
1725 	sblock.fs_cstotal.cs_nbfree--;
1726 
1727 	DBG_LEAVE;
1728 	return (d);
1729 }
1730 
1731 /* *********************************************************** isblock ***** */
1732 /*
1733  * Here we check if all frags of a block are free. For more details again
1734  * please see the source of newfs(8), as this function is taken over almost
1735  * unchanged.
1736  */
1737 static int
1738 isblock(struct fs *fs, unsigned char *cp, int h)
1739 {
1740 	DBG_FUNC("isblock")
1741 	unsigned char	mask;
1742 
1743 	DBG_ENTER;
1744 
1745 	switch (fs->fs_frag) {
1746 	case 8:
1747 		DBG_LEAVE;
1748 		return (cp[h] == 0xff);
1749 	case 4:
1750 		mask = 0x0f << ((h & 0x1) << 2);
1751 		DBG_LEAVE;
1752 		return ((cp[h >> 1] & mask) == mask);
1753 	case 2:
1754 		mask = 0x03 << ((h & 0x3) << 1);
1755 		DBG_LEAVE;
1756 		return ((cp[h >> 2] & mask) == mask);
1757 	case 1:
1758 		mask = 0x01 << (h & 0x7);
1759 		DBG_LEAVE;
1760 		return ((cp[h >> 3] & mask) == mask);
1761 	default:
1762 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1763 		DBG_LEAVE;
1764 		return (0);
1765 	}
1766 }
1767 
1768 /* ********************************************************** clrblock ***** */
1769 /*
1770  * Here we allocate a complete block in the block map. For more details again
1771  * please see the source of newfs(8), as this function is taken over almost
1772  * unchanged.
1773  */
1774 static void
1775 clrblock(struct fs *fs, unsigned char *cp, int h)
1776 {
1777 	DBG_FUNC("clrblock")
1778 
1779 	DBG_ENTER;
1780 
1781 	switch ((fs)->fs_frag) {
1782 	case 8:
1783 		cp[h] = 0;
1784 		break;
1785 	case 4:
1786 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1787 		break;
1788 	case 2:
1789 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1790 		break;
1791 	case 1:
1792 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1793 		break;
1794 	default:
1795 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1796 		break;
1797 	}
1798 
1799 	DBG_LEAVE;
1800 	return;
1801 }
1802 
1803 /* ********************************************************** setblock ***** */
1804 /*
1805  * Here we free a complete block in the free block map. For more details again
1806  * please see the source of newfs(8), as this function is taken over almost
1807  * unchanged.
1808  */
1809 static void
1810 setblock(struct fs *fs, unsigned char *cp, int h)
1811 {
1812 	DBG_FUNC("setblock")
1813 
1814 	DBG_ENTER;
1815 
1816 	switch (fs->fs_frag) {
1817 	case 8:
1818 		cp[h] = 0xff;
1819 		break;
1820 	case 4:
1821 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1822 		break;
1823 	case 2:
1824 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1825 		break;
1826 	case 1:
1827 		cp[h >> 3] |= (0x01 << (h & 0x7));
1828 		break;
1829 	default:
1830 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1831 		break;
1832 	}
1833 
1834 	DBG_LEAVE;
1835 	return;
1836 }
1837 
1838 /* ************************************************************ ginode ***** */
1839 /*
1840  * This function provides access to an individual inode. We find out in which
1841  * block the requested inode is located, read it from disk if needed, and
1842  * return the pointer into that block. We maintain a cache of one block to
1843  * not read the same block again and again if we iterate linearly over all
1844  * inodes.
1845  */
1846 static union dinode *
1847 ginode(ino_t inumber, int fsi, int cg)
1848 {
1849 	DBG_FUNC("ginode")
1850 	static ino_t	startinum = 0;	/* first inode in cached block */
1851 
1852 	DBG_ENTER;
1853 
1854 	/*
1855 	 * The inumber passed in is relative to the cg, so use it here to see
1856 	 * if the inode has been allocated yet.
1857 	 */
1858 	if (isclr(cg_inosused(&aocg), inumber)) {
1859 		DBG_LEAVE;
1860 		return NULL;
1861 	}
1862 	/*
1863 	 * Now make the inumber relative to the entire inode space so it can
1864 	 * be sanity checked.
1865 	 */
1866 	inumber += (cg * sblock.fs_ipg);
1867 	if (inumber < ROOTINO) {
1868 		DBG_LEAVE;
1869 		return NULL;
1870 	}
1871 	if (inumber > maxino)
1872 		errx(8, "bad inode number %d to ginode", inumber);
1873 	if (startinum == 0 ||
1874 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1875 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1876 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1877 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1878 	}
1879 	DBG_LEAVE;
1880 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1881 		return (union dinode *)((uintptr_t)inobuf +
1882 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1883 	return (union dinode *)((uintptr_t)inobuf +
1884 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1885 }
1886 
1887 /* ****************************************************** charsperline ***** */
1888 /*
1889  * Figure out how many lines our current terminal has. For more details again
1890  * please see the source of newfs(8), as this function is taken over almost
1891  * unchanged.
1892  */
1893 static int
1894 charsperline(void)
1895 {
1896 	DBG_FUNC("charsperline")
1897 	int	columns;
1898 	char	*cp;
1899 	struct winsize	ws;
1900 
1901 	DBG_ENTER;
1902 
1903 	columns = 0;
1904 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1905 		columns = ws.ws_col;
1906 	}
1907 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1908 		columns = atoi(cp);
1909 	}
1910 	if (columns == 0) {
1911 		columns = 80;	/* last resort */
1912 	}
1913 
1914 	DBG_LEAVE;
1915 	return columns;
1916 }
1917 
1918 /* ****************************************************** get_dev_size ***** */
1919 /*
1920  * Get the size of the partition if we can't figure it out from the disklabel,
1921  * e.g. from vinum volumes.
1922  */
1923 static void
1924 get_dev_size(int fd, int *size)
1925 {
1926    int sectorsize;
1927    off_t mediasize;
1928 
1929    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1930         err(1,"DIOCGSECTORSIZE");
1931    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1932         err(1,"DIOCGMEDIASIZE");
1933 
1934    if (sectorsize <= 0)
1935        errx(1, "bogus sectorsize: %d", sectorsize);
1936 
1937    *size = mediasize / sectorsize;
1938 }
1939 
1940 /* ************************************************************** main ***** */
1941 /*
1942  * growfs(8)  is a utility which allows to increase the size of an existing
1943  * ufs file system. Currently this can only be done on unmounted file system.
1944  * It recognizes some command line options to specify the new desired size,
1945  * and it does some basic checkings. The old file system size is determined
1946  * and after some more checks like we can really access the new last block
1947  * on the disk etc. we calculate the new parameters for the superblock. After
1948  * having done this we just call growfs() which will do the work.  Before
1949  * we finish the only thing left is to update the disklabel.
1950  * We still have to provide support for snapshots. Therefore we first have to
1951  * understand what data structures are always replicated in the snapshot on
1952  * creation, for all other blocks we touch during our procedure, we have to
1953  * keep the old blocks unchanged somewhere available for the snapshots. If we
1954  * are lucky, then we only have to handle our blocks to be relocated in that
1955  * way.
1956  * Also we have to consider in what order we actually update the critical
1957  * data structures of the file system to make sure, that in case of a disaster
1958  * fsck(8) is still able to restore any lost data.
1959  * The foreseen last step then will be to provide for growing even mounted
1960  * file systems. There we have to extend the mount() system call to provide
1961  * userland access to the file system locking facility.
1962  */
1963 int
1964 main(int argc, char **argv)
1965 {
1966 	DBG_FUNC("main")
1967 	char	*device, *special, *cp;
1968 	int	ch;
1969 	unsigned int	size=0;
1970 	size_t	len;
1971 	unsigned int	Nflag=0;
1972 	int	ExpertFlag=0;
1973 	struct stat	st;
1974 	struct disklabel	*lp;
1975 	struct partition	*pp;
1976 	int	i,fsi,fso;
1977     u_int32_t p_size;
1978 	char	reply[5];
1979 #ifdef FSMAXSNAP
1980 	int	j;
1981 #endif /* FSMAXSNAP */
1982 
1983 	DBG_ENTER;
1984 
1985 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1986 		switch(ch) {
1987 		case 'N':
1988 			Nflag=1;
1989 			break;
1990 		case 's':
1991 			size=(size_t)atol(optarg);
1992 			if(size<1) {
1993 				usage();
1994 			}
1995 			break;
1996 		case 'v': /* for compatibility to newfs */
1997 			break;
1998 		case 'y':
1999 			ExpertFlag=1;
2000 			break;
2001 		case '?':
2002 			/* FALLTHROUGH */
2003 		default:
2004 			usage();
2005 		}
2006 	}
2007 	argc -= optind;
2008 	argv += optind;
2009 
2010 	if(argc != 1) {
2011 		usage();
2012 	}
2013 	device=*argv;
2014 
2015 	/*
2016 	 * Now try to guess the (raw)device name.
2017 	 */
2018 	if (0 == strrchr(device, '/')) {
2019 		/*
2020 		 * No path prefix was given, so try in that order:
2021 		 *     /dev/r%s
2022 		 *     /dev/%s
2023 		 *     /dev/vinum/r%s
2024 		 *     /dev/vinum/%s.
2025 		 *
2026 		 * FreeBSD now doesn't distinguish between raw and block
2027 		 * devices any longer, but it should still work this way.
2028 		 */
2029 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2030 		special=(char *)malloc(len);
2031 		if(special == NULL) {
2032 			errx(1, "malloc failed");
2033 		}
2034 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2035 		if (stat(special, &st) == -1) {
2036 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2037 			if (stat(special, &st) == -1) {
2038 				snprintf(special, len, "%svinum/r%s",
2039 				    _PATH_DEV, device);
2040 				if (stat(special, &st) == -1) {
2041 					/* For now this is the 'last resort' */
2042 					snprintf(special, len, "%svinum/%s",
2043 					    _PATH_DEV, device);
2044 				}
2045 			}
2046 		}
2047 		device = special;
2048 	}
2049 
2050 	/*
2051 	 * Try to access our devices for writing ...
2052 	 */
2053 	if (Nflag) {
2054 		fso = -1;
2055 	} else {
2056 		fso = open(device, O_WRONLY);
2057 		if (fso < 0) {
2058 			err(1, "%s", device);
2059 		}
2060 	}
2061 
2062 	/*
2063 	 * ... and reading.
2064 	 */
2065 	fsi = open(device, O_RDONLY);
2066 	if (fsi < 0) {
2067 		err(1, "%s", device);
2068 	}
2069 
2070 	/*
2071 	 * Try to read a label and guess the slice if not specified. This
2072 	 * code should guess the right thing and avoid to bother the user
2073 	 * with the task of specifying the option -v on vinum volumes.
2074 	 */
2075 	cp=device+strlen(device)-1;
2076 	lp = get_disklabel(fsi);
2077 	pp = NULL;
2078     if (lp != NULL) {
2079         if (isdigit(*cp)) {
2080             pp = &lp->d_partitions[2];
2081         } else if (*cp>='a' && *cp<='h') {
2082             pp = &lp->d_partitions[*cp - 'a'];
2083         } else {
2084             errx(1, "unknown device");
2085         }
2086         p_size = pp->p_size;
2087     } else {
2088         get_dev_size(fsi, &p_size);
2089     }
2090 
2091 	/*
2092 	 * Check if that partition is suitable for growing a file system.
2093 	 */
2094 	if (p_size < 1) {
2095 		errx(1, "partition is unavailable");
2096 	}
2097 
2098 	/*
2099 	 * Read the current superblock, and take a backup.
2100 	 */
2101 	for (i = 0; sblock_try[i] != -1; i++) {
2102 		sblockloc = sblock_try[i] / DEV_BSIZE;
2103 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2104 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2105 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2106 		      osblock.fs_sblockloc == sblock_try[i])) &&
2107 		    osblock.fs_bsize <= MAXBSIZE &&
2108 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2109 			break;
2110 	}
2111 	if (sblock_try[i] == -1) {
2112 		errx(1, "superblock not recognized");
2113 	}
2114 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2115 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2116 
2117 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2118 	DBG_DUMP_FS(&sblock,
2119 	    "old sblock");
2120 
2121 	/*
2122 	 * Determine size to grow to. Default to the full size specified in
2123 	 * the disk label.
2124 	 */
2125 	sblock.fs_size = dbtofsb(&osblock, p_size);
2126 	if (size != 0) {
2127 		if (size > p_size){
2128 			errx(1, "there is not enough space (%d < %d)",
2129 			    p_size, size);
2130 		}
2131 		sblock.fs_size = dbtofsb(&osblock, size);
2132 	}
2133 
2134 	/*
2135 	 * Are we really growing ?
2136 	 */
2137 	if(osblock.fs_size >= sblock.fs_size) {
2138 		errx(1, "we are not growing (%jd->%jd)",
2139 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2140 	}
2141 
2142 
2143 #ifdef FSMAXSNAP
2144 	/*
2145 	 * Check if we find an active snapshot.
2146 	 */
2147 	if(ExpertFlag == 0) {
2148 		for(j=0; j<FSMAXSNAP; j++) {
2149 			if(sblock.fs_snapinum[j]) {
2150 				errx(1, "active snapshot found in file system\n"
2151 				    "	please remove all snapshots before "
2152 				    "using growfs");
2153 			}
2154 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2155 				break;
2156 			}
2157 		}
2158 	}
2159 #endif
2160 
2161 	if (ExpertFlag == 0 && Nflag == 0) {
2162 		printf("We strongly recommend you to make a backup "
2163 		    "before growing the Filesystem\n\n"
2164 		    " Did you backup your data (Yes/No) ? ");
2165 		fgets(reply, (int)sizeof(reply), stdin);
2166 		if (strcmp(reply, "Yes\n")){
2167 			printf("\n Nothing done \n");
2168 			exit (0);
2169 		}
2170 	}
2171 
2172 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2173 
2174 	/*
2175 	 * Try to access our new last block in the file system. Even if we
2176 	 * later on realize we have to abort our operation, on that block
2177 	 * there should be no data, so we can't destroy something yet.
2178 	 */
2179 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2180 	    fso, Nflag);
2181 
2182 	/*
2183 	 * Now calculate new superblock values and check for reasonable
2184 	 * bound for new file system size:
2185 	 *     fs_size:    is derived from label or user input
2186 	 *     fs_dsize:   should get updated in the routines creating or
2187 	 *                 updating the cylinder groups on the fly
2188 	 *     fs_cstotal: should get updated in the routines creating or
2189 	 *                 updating the cylinder groups
2190 	 */
2191 
2192 	/*
2193 	 * Update the number of cylinders and cylinder groups in the file system.
2194 	 */
2195 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2196 		sblock.fs_old_ncyl =
2197 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2198 		if (sblock.fs_size * sblock.fs_old_nspf >
2199 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2200 			sblock.fs_old_ncyl++;
2201 	}
2202 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2203 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2204 
2205 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2206 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2207 		/*
2208 		 * The space in the new last cylinder group is too small,
2209 		 * so revert back.
2210 		 */
2211 		sblock.fs_ncg--;
2212 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2213 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2214 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2215 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2216 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2217 		maxino -= sblock.fs_ipg;
2218 	}
2219 
2220 	/*
2221 	 * Update the space for the cylinder group summary information in the
2222 	 * respective cylinder group data area.
2223 	 */
2224 	sblock.fs_cssize =
2225 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2226 
2227 	if(osblock.fs_size >= sblock.fs_size) {
2228 		errx(1, "not enough new space");
2229 	}
2230 
2231 	DBG_PRINT0("sblock calculated\n");
2232 
2233 	/*
2234 	 * Ok, everything prepared, so now let's do the tricks.
2235 	 */
2236 	growfs(fsi, fso, Nflag);
2237 
2238 	/*
2239 	 * Update the disk label.
2240 	 */
2241     if (!unlabeled) {
2242         pp->p_fsize = sblock.fs_fsize;
2243         pp->p_frag = sblock.fs_frag;
2244         pp->p_cpg = sblock.fs_fpg;
2245 
2246         return_disklabel(fso, lp, Nflag);
2247         DBG_PRINT0("label rewritten\n");
2248     }
2249 
2250 	close(fsi);
2251 	if(fso>-1) close(fso);
2252 
2253 	DBG_CLOSE;
2254 
2255 	DBG_LEAVE;
2256 	return 0;
2257 }
2258 
2259 /* ************************************************** return_disklabel ***** */
2260 /*
2261  * Write the updated disklabel back to disk.
2262  */
2263 static void
2264 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2265 {
2266 	DBG_FUNC("return_disklabel")
2267 	u_short	sum;
2268 	u_short	*ptr;
2269 
2270 	DBG_ENTER;
2271 
2272 	if(!lp) {
2273 		DBG_LEAVE;
2274 		return;
2275 	}
2276 	if(!Nflag) {
2277 		lp->d_checksum=0;
2278 		sum = 0;
2279 		ptr=(u_short *)lp;
2280 
2281 		/*
2282 		 * recalculate checksum
2283 		 */
2284 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2285 			sum ^= *ptr++;
2286 		}
2287 		lp->d_checksum=sum;
2288 
2289 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2290 			errx(1, "DIOCWDINFO failed");
2291 		}
2292 	}
2293 	free(lp);
2294 
2295 	DBG_LEAVE;
2296 	return ;
2297 }
2298 
2299 /* ***************************************************** get_disklabel ***** */
2300 /*
2301  * Read the disklabel from disk.
2302  */
2303 static struct disklabel *
2304 get_disklabel(int fd)
2305 {
2306 	DBG_FUNC("get_disklabel")
2307 	static struct	disklabel *lab;
2308 
2309 	DBG_ENTER;
2310 
2311 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2312 	if (!lab)
2313 		errx(1, "malloc failed");
2314 
2315     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2316         return (lab);
2317 
2318     unlabeled++;
2319 
2320 	DBG_LEAVE;
2321 	return (NULL);
2322 }
2323 
2324 
2325 /* ************************************************************* usage ***** */
2326 /*
2327  * Dump a line of usage.
2328  */
2329 static void
2330 usage(void)
2331 {
2332 	DBG_FUNC("usage")
2333 
2334 	DBG_ENTER;
2335 
2336 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2337 
2338 	DBG_LEAVE;
2339 	exit(1);
2340 }
2341 
2342 /* *********************************************************** updclst ***** */
2343 /*
2344  * This updates most parameters and the bitmap related to cluster. We have to
2345  * assume that sblock, osblock, acg are set up.
2346  */
2347 static void
2348 updclst(int block)
2349 {
2350 	DBG_FUNC("updclst")
2351 	static int	lcs=0;
2352 
2353 	DBG_ENTER;
2354 
2355 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2356 		return;
2357 	}
2358 	/*
2359 	 * update cluster allocation map
2360 	 */
2361 	setbit(cg_clustersfree(&acg), block);
2362 
2363 	/*
2364 	 * update cluster summary table
2365 	 */
2366 	if(!lcs) {
2367 		/*
2368 		 * calculate size for the trailing cluster
2369 		 */
2370 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2371 			if(isclr(cg_clustersfree(&acg), block)){
2372 				break;
2373 			}
2374 		}
2375 	}
2376 	if(lcs < sblock.fs_contigsumsize) {
2377 		if(lcs) {
2378 			cg_clustersum(&acg)[lcs]--;
2379 		}
2380 		lcs++;
2381 		cg_clustersum(&acg)[lcs]++;
2382 	}
2383 
2384 	DBG_LEAVE;
2385 	return;
2386 }
2387 
2388 /* *********************************************************** updrefs ***** */
2389 /*
2390  * This updates all references to relocated blocks for the given inode.  The
2391  * inode is given as number within the cylinder group, and the number of the
2392  * cylinder group.
2393  */
2394 static void
2395 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2396     Nflag)
2397 {
2398 	DBG_FUNC("updrefs")
2399 	ufs_lbn_t	len, lbn, numblks;
2400 	ufs2_daddr_t	iptr, blksperindir;
2401 	union dinode	*ino;
2402 	int		i, mode, inodeupdated;
2403 
2404 	DBG_ENTER;
2405 
2406 	ino = ginode(in, fsi, cg);
2407 	if (ino == NULL) {
2408 		DBG_LEAVE;
2409 		return;
2410 	}
2411 	mode = DIP(ino, di_mode) & IFMT;
2412 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2413 		DBG_LEAVE;
2414 		return; /* only check DIR, FILE, LINK */
2415 	}
2416 	if (mode == IFLNK &&
2417 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2418 		DBG_LEAVE;
2419 		return;	/* skip short symlinks */
2420 	}
2421 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2422 	if (numblks == 0) {
2423 		DBG_LEAVE;
2424 		return;	/* skip empty file */
2425 	}
2426 	if (DIP(ino, di_blocks) == 0) {
2427 		DBG_LEAVE;
2428 		return;	/* skip empty swiss cheesy file or old fastlink */
2429 	}
2430 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2431 	    in,
2432 	    cg);
2433 
2434 	/*
2435 	 * Check all the blocks.
2436 	 */
2437 	inodeupdated = 0;
2438 	len = numblks < NDADDR ? numblks : NDADDR;
2439 	for (i = 0; i < len; i++) {
2440 		iptr = DIP(ino, di_db[i]);
2441 		if (iptr == 0)
2442 			continue;
2443 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2444 			DIP_SET(ino, di_db[i], iptr);
2445 			inodeupdated++;
2446 		}
2447 	}
2448 	DBG_PRINT0("~~scg direct blocks checked\n");
2449 
2450 	blksperindir = 1;
2451 	len = numblks - NDADDR;
2452 	lbn = NDADDR;
2453 	for (i = 0; len > 0 && i < NIADDR; i++) {
2454 		iptr = DIP(ino, di_ib[i]);
2455 		if (iptr == 0)
2456 			continue;
2457 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2458 			DIP_SET(ino, di_ib[i], iptr);
2459 			inodeupdated++;
2460 		}
2461 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2462 		blksperindir *= NINDIR(&sblock);
2463 		lbn += blksperindir;
2464 		len -= blksperindir;
2465 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2466 	}
2467 	if (inodeupdated)
2468 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2469 
2470 	DBG_LEAVE;
2471 	return;
2472 }
2473 
2474 /*
2475  * Recursively check all the indirect blocks.
2476  */
2477 static void
2478 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2479     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2480 {
2481 	DBG_FUNC("indirchk")
2482 	void *ibuf;
2483 	int i, last;
2484 	ufs2_daddr_t iptr;
2485 
2486 	DBG_ENTER;
2487 
2488 	/* read in the indirect block. */
2489 	ibuf = malloc(sblock.fs_bsize);
2490 	if (!ibuf)
2491 		errx(1, "malloc failed");
2492 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2493 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2494 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2495 	for (i = 0; i < last; i++) {
2496 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2497 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2498 		else
2499 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2500 		if (iptr == 0)
2501 			continue;
2502 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2503 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2504 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2505 			else
2506 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2507 		}
2508 		if (blksperindir == 1)
2509 			continue;
2510 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2511 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2512 	}
2513 	free(ibuf);
2514 
2515 	DBG_LEAVE;
2516 	return;
2517 }
2518