xref: /freebsd/sbin/growfs/growfs.c (revision a0dd79dbdf917a8fbe2762d668f05a7c9f682b22)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 /* ********************************************************** INCLUDES ***** */
53 #include <sys/param.h>
54 #include <sys/disklabel.h>
55 #include <sys/ioctl.h>
56 #include <sys/stat.h>
57 #include <sys/disk.h>
58 
59 #include <stdio.h>
60 #include <paths.h>
61 #include <ctype.h>
62 #include <err.h>
63 #include <fcntl.h>
64 #include <limits.h>
65 #include <stdlib.h>
66 #include <stdint.h>
67 #include <string.h>
68 #include <time.h>
69 #include <unistd.h>
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ffs/fs.h>
72 
73 #include "debug.h"
74 
75 /* *************************************************** GLOBALS & TYPES ***** */
76 #ifdef FS_DEBUG
77 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
78 #endif /* FS_DEBUG */
79 
80 static union {
81 	struct fs	fs;
82 	char	pad[SBLOCKSIZE];
83 } fsun1, fsun2;
84 #define	sblock	fsun1.fs	/* the new superblock */
85 #define	osblock	fsun2.fs	/* the old superblock */
86 
87 /*
88  * Possible superblock locations ordered from most to least likely.
89  */
90 static int sblock_try[] = SBLOCKSEARCH;
91 static ufs2_daddr_t sblockloc;
92 
93 static union {
94 	struct cg	cg;
95 	char	pad[MAXBSIZE];
96 } cgun1, cgun2;
97 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
98 #define	aocg	cgun2.cg	/* an old cylinder group */
99 
100 static char	ablk[MAXBSIZE];	/* a block */
101 
102 static struct csum	*fscs;	/* cylinder summary */
103 
104 union dinode {
105 	struct ufs1_dinode dp1;
106 	struct ufs2_dinode dp2;
107 };
108 #define	DIP(dp, field) \
109 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
110 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
111 #define	DIP_SET(dp, field, val) do { \
112 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
113 		(dp)->dp1.field = (val); \
114 	else \
115 		(dp)->dp2.field = (val); \
116 	} while (0)
117 static ufs2_daddr_t 	inoblk;			/* inode block address */
118 static char		inobuf[MAXBSIZE];	/* inode block */
119 static ino_t		maxino;			/* last valid inode */
120 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
121 
122 /*
123  * An array of elements of type struct gfs_bpp describes all blocks to
124  * be relocated in order to free the space needed for the cylinder group
125  * summary for all cylinder groups located in the first cylinder group.
126  */
127 struct gfs_bpp {
128 	ufs2_daddr_t	old;		/* old block number */
129 	ufs2_daddr_t	new;		/* new block number */
130 #define GFS_FL_FIRST	1
131 #define GFS_FL_LAST	2
132 	unsigned int	flags;	/* special handling required */
133 	int	found;		/* how many references were updated */
134 };
135 
136 /* ******************************************************** PROTOTYPES ***** */
137 static void	growfs(int, int, unsigned int);
138 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
139 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
140 static ufs2_daddr_t alloc(void);
141 static int	charsperline(void);
142 static void	usage(void);
143 static int	isblock(struct fs *, unsigned char *, int);
144 static void	clrblock(struct fs *, unsigned char *, int);
145 static void	setblock(struct fs *, unsigned char *, int);
146 static void	initcg(int, time_t, int, unsigned int);
147 static void	updjcg(int, time_t, int, int, unsigned int);
148 static void	updcsloc(time_t, int, int, unsigned int);
149 static struct disklabel	*get_disklabel(int);
150 static void	return_disklabel(int, struct disklabel *, unsigned int);
151 static union dinode *ginode(ino_t, int, int);
152 static void	frag_adjust(ufs2_daddr_t, int);
153 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
154 		    unsigned int);
155 static void	updclst(int);
156 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
157 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
158 		    struct gfs_bpp *, int, int, unsigned int);
159 static void	get_dev_size(int, int *);
160 
161 /* ************************************************************ growfs ***** */
162 /*
163  * Here we actually start growing the file system. We basically read the
164  * cylinder summary from the first cylinder group as we want to update
165  * this on the fly during our various operations. First we handle the
166  * changes in the former last cylinder group. Afterwards we create all new
167  * cylinder groups.  Now we handle the cylinder group containing the
168  * cylinder summary which might result in a relocation of the whole
169  * structure.  In the end we write back the updated cylinder summary, the
170  * new superblock, and slightly patched versions of the super block
171  * copies.
172  */
173 static void
174 growfs(int fsi, int fso, unsigned int Nflag)
175 {
176 	DBG_FUNC("growfs")
177 	time_t	modtime;
178 	uint	cylno;
179 	int	i, j, width;
180 	char	tmpbuf[100];
181 #ifdef FSIRAND
182 	static int	randinit=0;
183 
184 	DBG_ENTER;
185 
186 	if (!randinit) {
187 		randinit = 1;
188 		srandomdev();
189 	}
190 #else /* not FSIRAND */
191 
192 	DBG_ENTER;
193 
194 #endif /* FSIRAND */
195 	time(&modtime);
196 
197 	/*
198 	 * Get the cylinder summary into the memory.
199 	 */
200 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
201 	if(fscs == NULL) {
202 		errx(1, "calloc failed");
203 	}
204 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
205 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
206 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
207 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
208 	}
209 
210 #ifdef FS_DEBUG
211 {
212 	struct csum	*dbg_csp;
213 	int	dbg_csc;
214 	char	dbg_line[80];
215 
216 	dbg_csp=fscs;
217 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
218 		snprintf(dbg_line, sizeof(dbg_line),
219 		    "%d. old csum in old location", dbg_csc);
220 		DBG_DUMP_CSUM(&osblock,
221 		    dbg_line,
222 		    dbg_csp++);
223 	}
224 }
225 #endif /* FS_DEBUG */
226 	DBG_PRINT0("fscs read\n");
227 
228 	/*
229 	 * Do all needed changes in the former last cylinder group.
230 	 */
231 	updjcg(osblock.fs_ncg-1, modtime, fsi, fso, Nflag);
232 
233 	/*
234 	 * Dump out summary information about file system.
235 	 */
236 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
237 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
238 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
239 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
240 	    sblock.fs_fsize);
241 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
242 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
243 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
244 	if (sblock.fs_flags & FS_DOSOFTDEP)
245 		printf("\twith soft updates\n");
246 #	undef B2MBFACTOR
247 
248 	/*
249 	 * Now build the cylinders group blocks and
250 	 * then print out indices of cylinder groups.
251 	 */
252 	printf("super-block backups (for fsck -b #) at:\n");
253 	i = 0;
254 	width = charsperline();
255 
256 	/*
257 	 * Iterate for only the new cylinder groups.
258 	 */
259 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
260 		initcg(cylno, modtime, fso, Nflag);
261 		j = sprintf(tmpbuf, " %jd%s",
262 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
263 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
264 		if (i + j >= width) {
265 			printf("\n");
266 			i = 0;
267 		}
268 		i += j;
269 		printf("%s", tmpbuf);
270 		fflush(stdout);
271 	}
272 	printf("\n");
273 
274 	/*
275 	 * Do all needed changes in the first cylinder group.
276 	 * allocate blocks in new location
277 	 */
278 	updcsloc(modtime, fsi, fso, Nflag);
279 
280 	/*
281 	 * Now write the cylinder summary back to disk.
282 	 */
283 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
284 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
285 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
286 		    (void *)(((char *)fscs) + i), fso, Nflag);
287 	}
288 	DBG_PRINT0("fscs written\n");
289 
290 #ifdef FS_DEBUG
291 {
292 	struct csum	*dbg_csp;
293 	int	dbg_csc;
294 	char	dbg_line[80];
295 
296 	dbg_csp=fscs;
297 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
298 		snprintf(dbg_line, sizeof(dbg_line),
299 		    "%d. new csum in new location", dbg_csc);
300 		DBG_DUMP_CSUM(&sblock,
301 		    dbg_line,
302 		    dbg_csp++);
303 	}
304 }
305 #endif /* FS_DEBUG */
306 
307 	/*
308 	 * Now write the new superblock back to disk.
309 	 */
310 	sblock.fs_time = modtime;
311 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
312 	DBG_PRINT0("sblock written\n");
313 	DBG_DUMP_FS(&sblock,
314 	    "new initial sblock");
315 
316 	/*
317 	 * Clean up the dynamic fields in our superblock copies.
318 	 */
319 	sblock.fs_fmod = 0;
320 	sblock.fs_clean = 1;
321 	sblock.fs_ronly = 0;
322 	sblock.fs_cgrotor = 0;
323 	sblock.fs_state = 0;
324 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
325 	sblock.fs_flags &= FS_DOSOFTDEP;
326 
327 	/*
328 	 * XXX
329 	 * The following fields are currently distributed from the superblock
330 	 * to the copies:
331 	 *     fs_minfree
332 	 *     fs_rotdelay
333 	 *     fs_maxcontig
334 	 *     fs_maxbpg
335 	 *     fs_minfree,
336 	 *     fs_optim
337 	 *     fs_flags regarding SOFTPDATES
338 	 *
339 	 * We probably should rather change the summary for the cylinder group
340 	 * statistics here to the value of what would be in there, if the file
341 	 * system were created initially with the new size. Therefor we still
342 	 * need to find an easy way of calculating that.
343 	 * Possibly we can try to read the first superblock copy and apply the
344 	 * "diffed" stats between the old and new superblock by still copying
345 	 * certain parameters onto that.
346 	 */
347 
348 	/*
349 	 * Write out the duplicate super blocks.
350 	 */
351 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
352 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
353 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
354 	}
355 	DBG_PRINT0("sblock copies written\n");
356 	DBG_DUMP_FS(&sblock,
357 	    "new other sblocks");
358 
359 	DBG_LEAVE;
360 	return;
361 }
362 
363 /* ************************************************************ initcg ***** */
364 /*
365  * This creates a new cylinder group structure, for more details please see
366  * the source of newfs(8), as this function is taken over almost unchanged.
367  * As this is never called for the first cylinder group, the special
368  * provisions for that case are removed here.
369  */
370 static void
371 initcg(int cylno, time_t modtime, int fso, unsigned int Nflag)
372 {
373 	DBG_FUNC("initcg")
374 	static caddr_t iobuf;
375 	long blkno, start;
376 	ufs2_daddr_t i, cbase, dmax;
377 #ifdef FSIRAND
378 	struct ufs1_dinode *dp1;
379 #endif
380 	struct csum *cs;
381 	uint d, dupper, dlower;
382 
383 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize * 3)) == NULL)
384 		errx(37, "panic: cannot allocate I/O buffer");
385 
386 	/*
387 	 * Determine block bounds for cylinder group.
388 	 * Allow space for super block summary information in first
389 	 * cylinder group.
390 	 */
391 	cbase = cgbase(&sblock, cylno);
392 	dmax = cbase + sblock.fs_fpg;
393 	if (dmax > sblock.fs_size)
394 		dmax = sblock.fs_size;
395 	dlower = cgsblock(&sblock, cylno) - cbase;
396 	dupper = cgdmin(&sblock, cylno) - cbase;
397 	if (cylno == 0)	/* XXX fscs may be relocated */
398 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
399 	cs = &fscs[cylno];
400 	memset(&acg, 0, sblock.fs_cgsize);
401 	acg.cg_time = modtime;
402 	acg.cg_magic = CG_MAGIC;
403 	acg.cg_cgx = cylno;
404 	acg.cg_niblk = sblock.fs_ipg;
405 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
406 	    sblock.fs_ipg : 2 * INOPB(&sblock);
407 	acg.cg_ndblk = dmax - cbase;
408 	if (sblock.fs_contigsumsize > 0)
409 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
410 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
411 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
412 		acg.cg_iusedoff = start;
413 	} else {
414 		acg.cg_old_ncyl = sblock.fs_old_cpg;
415 		acg.cg_old_time = acg.cg_time;
416 		acg.cg_time = 0;
417 		acg.cg_old_niblk = acg.cg_niblk;
418 		acg.cg_niblk = 0;
419 		acg.cg_initediblk = 0;
420 		acg.cg_old_btotoff = start;
421 		acg.cg_old_boff = acg.cg_old_btotoff +
422 		    sblock.fs_old_cpg * sizeof(int32_t);
423 		acg.cg_iusedoff = acg.cg_old_boff +
424 		    sblock.fs_old_cpg * sizeof(u_int16_t);
425 	}
426 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
427 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
428 	if (sblock.fs_contigsumsize > 0) {
429 		acg.cg_clustersumoff =
430 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
431 		acg.cg_clustersumoff -= sizeof(u_int32_t);
432 		acg.cg_clusteroff = acg.cg_clustersumoff +
433 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
434 		acg.cg_nextfreeoff = acg.cg_clusteroff +
435 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
436 	}
437 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
438 		/*
439 		 * This should never happen as we would have had that panic
440 		 * already on file system creation
441 		 */
442 		errx(37, "panic: cylinder group too big");
443 	}
444 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
445 	if (cylno == 0)
446 		for (i = 0; i < ROOTINO; i++) {
447 			setbit(cg_inosused(&acg), i);
448 			acg.cg_cs.cs_nifree--;
449 		}
450 	/*
451 	 * For the old file system, we have to initialize all the inodes.
452 	 */
453 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
454 		bzero(iobuf, sblock.fs_bsize);
455 		for (i = 0; i < sblock.fs_ipg / INOPF(&sblock);
456 		     i += sblock.fs_frag) {
457 #ifdef FSIRAND
458 			dp1 = (struct ufs1_dinode *)(void *)iobuf;
459 			for (j = 0; j < INOPB(&sblock); j++) {
460 				dp1->di_gen = random();
461 				dp1++;
462 			}
463 #endif
464 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
465 			    sblock.fs_bsize, iobuf, fso, Nflag);
466 		}
467 	}
468 	if (cylno > 0) {
469 		/*
470 		 * In cylno 0, beginning space is reserved
471 		 * for boot and super blocks.
472 		 */
473 		for (d = 0; d < dlower; d += sblock.fs_frag) {
474 			blkno = d / sblock.fs_frag;
475 			setblock(&sblock, cg_blksfree(&acg), blkno);
476 			if (sblock.fs_contigsumsize > 0)
477 				setbit(cg_clustersfree(&acg), blkno);
478 			acg.cg_cs.cs_nbfree++;
479 		}
480 		sblock.fs_dsize += dlower;
481 	}
482 	sblock.fs_dsize += acg.cg_ndblk - dupper;
483 	if ((i = dupper % sblock.fs_frag)) {
484 		acg.cg_frsum[sblock.fs_frag - i]++;
485 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
486 			setbit(cg_blksfree(&acg), dupper);
487 			acg.cg_cs.cs_nffree++;
488 		}
489 	}
490 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
491 	     d += sblock.fs_frag) {
492 		blkno = d / sblock.fs_frag;
493 		setblock(&sblock, cg_blksfree(&acg), blkno);
494 		if (sblock.fs_contigsumsize > 0)
495 			setbit(cg_clustersfree(&acg), blkno);
496 		acg.cg_cs.cs_nbfree++;
497 	}
498 	if (d < acg.cg_ndblk) {
499 		acg.cg_frsum[acg.cg_ndblk - d]++;
500 		for (; d < acg.cg_ndblk; d++) {
501 			setbit(cg_blksfree(&acg), d);
502 			acg.cg_cs.cs_nffree++;
503 		}
504 	}
505 	if (sblock.fs_contigsumsize > 0) {
506 		int32_t *sump = cg_clustersum(&acg);
507 		u_char *mapp = cg_clustersfree(&acg);
508 		int map = *mapp++;
509 		int bit = 1;
510 		int run = 0;
511 
512 		for (i = 0; i < acg.cg_nclusterblks; i++) {
513 			if ((map & bit) != 0)
514 				run++;
515 			else if (run != 0) {
516 				if (run > sblock.fs_contigsumsize)
517 					run = sblock.fs_contigsumsize;
518 				sump[run]++;
519 				run = 0;
520 			}
521 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
522 				bit <<= 1;
523 			else {
524 				map = *mapp++;
525 				bit = 1;
526 			}
527 		}
528 		if (run != 0) {
529 			if (run > sblock.fs_contigsumsize)
530 				run = sblock.fs_contigsumsize;
531 			sump[run]++;
532 		}
533 	}
534 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
535 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
536 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
537 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
538 	*cs = acg.cg_cs;
539 
540 	memcpy(iobuf, &acg, sblock.fs_cgsize);
541 	memset(iobuf + sblock.fs_cgsize, '\0',
542 	    sblock.fs_bsize * 3 - sblock.fs_cgsize);
543 
544 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
545 	    sblock.fs_bsize * 3, iobuf, fso, Nflag);
546 	DBG_DUMP_CG(&sblock, "new cg", &acg);
547 
548 	DBG_LEAVE;
549 	return;
550 }
551 
552 /* ******************************************************* frag_adjust ***** */
553 /*
554  * Here we add or subtract (sign +1/-1) the available fragments in a given
555  * block to or from the fragment statistics. By subtracting before and adding
556  * after an operation on the free frag map we can easy update the fragment
557  * statistic, which seems to be otherwise a rather complex operation.
558  */
559 static void
560 frag_adjust(ufs2_daddr_t frag, int sign)
561 {
562 	DBG_FUNC("frag_adjust")
563 	int fragsize;
564 	int f;
565 
566 	DBG_ENTER;
567 
568 	fragsize=0;
569 	/*
570 	 * Here frag only needs to point to any fragment in the block we want
571 	 * to examine.
572 	 */
573 	for(f=rounddown(frag, sblock.fs_frag);
574 	    f<roundup(frag+1, sblock.fs_frag);
575 	    f++) {
576 		/*
577 		 * Count contiguous free fragments.
578 		 */
579 		if(isset(cg_blksfree(&acg), f)) {
580 			fragsize++;
581 		} else {
582 			if(fragsize && fragsize<sblock.fs_frag) {
583 				/*
584 				 * We found something in between.
585 				 */
586 				acg.cg_frsum[fragsize]+=sign;
587 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
588 				    fragsize,
589 				    sign);
590 			}
591 			fragsize=0;
592 		}
593 	}
594 	if(fragsize && fragsize<sblock.fs_frag) {
595 		/*
596 		 * We found something.
597 		 */
598 		acg.cg_frsum[fragsize]+=sign;
599 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
600 		    fragsize,
601 		    sign);
602 	}
603 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
604 	    fragsize,
605 	    sign);
606 
607 	DBG_LEAVE;
608 	return;
609 }
610 
611 /* ******************************************************* cond_bl_upd ***** */
612 /*
613  * Here we conditionally update a pointer to a fragment. We check for all
614  * relocated blocks if any of its fragments is referenced by the current
615  * field, and update the pointer to the respective fragment in our new
616  * block.  If we find a reference we write back the block immediately,
617  * as there is no easy way for our general block reading engine to figure
618  * out if a write back operation is needed.
619  */
620 static int
621 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
622     unsigned int Nflag)
623 {
624 	DBG_FUNC("cond_bl_upd")
625 	struct gfs_bpp *f;
626 	ufs2_daddr_t src, dst;
627 	int fragnum;
628 	void *ibuf;
629 
630 	DBG_ENTER;
631 
632 	for (f = field; f->old != 0; f++) {
633 		src = *block;
634 		if (fragstoblks(&sblock, src) != f->old)
635 			continue;
636 		/*
637 		 * The fragment is part of the block, so update.
638 		 */
639 		dst = blkstofrags(&sblock, f->new);
640 		fragnum = fragnum(&sblock, src);
641 		*block = dst + fragnum;
642 		f->found++;
643 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
644 		    (intmax_t)f->old,
645 		    (intmax_t)f->new,
646 		    fragnum);
647 
648 		/*
649 		 * Copy the block back immediately.
650 		 *
651 		 * XXX	If src is from an indirect block we have
652 		 *	to implement copy on write here in case of
653 		 *	active snapshots.
654 		 */
655 		ibuf = malloc(sblock.fs_bsize);
656 		if (!ibuf)
657 			errx(1, "malloc failed");
658 		src -= fragnum;
659 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
660 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
661 		free(ibuf);
662 		/*
663 		 * The same block can't be found again in this loop.
664 		 */
665 		return (1);
666 	}
667 
668 	DBG_LEAVE;
669 	return (0);
670 }
671 
672 /* ************************************************************ updjcg ***** */
673 /*
674  * Here we do all needed work for the former last cylinder group. It has to be
675  * changed in any case, even if the file system ended exactly on the end of
676  * this group, as there is some slightly inconsistent handling of the number
677  * of cylinders in the cylinder group. We start again by reading the cylinder
678  * group from disk. If the last block was not fully available, we first handle
679  * the missing fragments, then we handle all new full blocks in that file
680  * system and finally we handle the new last fragmented block in the file
681  * system.  We again have to handle the fragment statistics rotational layout
682  * tables and cluster summary during all those operations.
683  */
684 static void
685 updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag)
686 {
687 	DBG_FUNC("updjcg")
688 	ufs2_daddr_t	cbase, dmax, dupper;
689 	struct csum	*cs;
690 	int	i,k;
691 	int	j=0;
692 
693 	DBG_ENTER;
694 
695 	/*
696 	 * Read the former last (joining) cylinder group from disk, and make
697 	 * a copy.
698 	 */
699 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
700 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
701 	DBG_PRINT0("jcg read\n");
702 	DBG_DUMP_CG(&sblock,
703 	    "old joining cg",
704 	    &aocg);
705 
706 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
707 
708 	/*
709 	 * If the cylinder group had already its new final size almost
710 	 * nothing is to be done ... except:
711 	 * For some reason the value of cg_ncyl in the last cylinder group has
712 	 * to be zero instead of fs_cpg. As this is now no longer the last
713 	 * cylinder group we have to change that value now to fs_cpg.
714 	 */
715 
716 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
717 		if (sblock.fs_magic == FS_UFS1_MAGIC)
718 			acg.cg_old_ncyl=sblock.fs_old_cpg;
719 
720 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
721 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
722 		DBG_PRINT0("jcg written\n");
723 		DBG_DUMP_CG(&sblock,
724 		    "new joining cg",
725 		    &acg);
726 
727 		DBG_LEAVE;
728 		return;
729 	}
730 
731 	/*
732 	 * Set up some variables needed later.
733 	 */
734 	cbase = cgbase(&sblock, cylno);
735 	dmax = cbase + sblock.fs_fpg;
736 	if (dmax > sblock.fs_size)
737 		dmax = sblock.fs_size;
738 	dupper = cgdmin(&sblock, cylno) - cbase;
739 	if (cylno == 0) { /* XXX fscs may be relocated */
740 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
741 	}
742 
743 	/*
744 	 * Set pointer to the cylinder summary for our cylinder group.
745 	 */
746 	cs = fscs + cylno;
747 
748 	/*
749 	 * Touch the cylinder group, update all fields in the cylinder group as
750 	 * needed, update the free space in the superblock.
751 	 */
752 	acg.cg_time = modtime;
753 	if ((unsigned)cylno == sblock.fs_ncg - 1) {
754 		/*
755 		 * This is still the last cylinder group.
756 		 */
757 		if (sblock.fs_magic == FS_UFS1_MAGIC)
758 			acg.cg_old_ncyl =
759 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
760 	} else {
761 		acg.cg_old_ncyl = sblock.fs_old_cpg;
762 	}
763 	DBG_PRINT2("jcg dbg: %d %u",
764 	    cylno,
765 	    sblock.fs_ncg);
766 #ifdef FS_DEBUG
767 	if (sblock.fs_magic == FS_UFS1_MAGIC)
768 		DBG_PRINT2("%d %u",
769 		    acg.cg_old_ncyl,
770 		    sblock.fs_old_cpg);
771 #endif
772 	DBG_PRINT0("\n");
773 	acg.cg_ndblk = dmax - cbase;
774 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
775 	if (sblock.fs_contigsumsize > 0) {
776 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
777 	}
778 
779 	/*
780 	 * Now we have to update the free fragment bitmap for our new free
781 	 * space.  There again we have to handle the fragmentation and also
782 	 * the rotational layout tables and the cluster summary.  This is
783 	 * also done per fragment for the first new block if the old file
784 	 * system end was not on a block boundary, per fragment for the new
785 	 * last block if the new file system end is not on a block boundary,
786 	 * and per block for all space in between.
787 	 *
788 	 * Handle the first new block here if it was partially available
789 	 * before.
790 	 */
791 	if(osblock.fs_size % sblock.fs_frag) {
792 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
793 			/*
794 			 * The new space is enough to fill at least this
795 			 * block
796 			 */
797 			j=0;
798 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
799 			    i>=osblock.fs_size-cbase;
800 			    i--) {
801 				setbit(cg_blksfree(&acg), i);
802 				acg.cg_cs.cs_nffree++;
803 				j++;
804 			}
805 
806 			/*
807 			 * Check if the fragment just created could join an
808 			 * already existing fragment at the former end of the
809 			 * file system.
810 			 */
811 			if(isblock(&sblock, cg_blksfree(&acg),
812 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
813 			    sblock.fs_frag))) {
814 				/*
815 				 * The block is now completely available.
816 				 */
817 				DBG_PRINT0("block was\n");
818 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
819 				acg.cg_cs.cs_nbfree++;
820 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
821 				k=rounddown(osblock.fs_size-cbase,
822 				    sblock.fs_frag);
823 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
824 			} else {
825 				/*
826 				 * Lets rejoin a possible partially growed
827 				 * fragment.
828 				 */
829 				k=0;
830 				while(isset(cg_blksfree(&acg), i) &&
831 				    (i>=rounddown(osblock.fs_size-cbase,
832 				    sblock.fs_frag))) {
833 					i--;
834 					k++;
835 				}
836 				if(k) {
837 					acg.cg_frsum[k]--;
838 				}
839 				acg.cg_frsum[k+j]++;
840 			}
841 		} else {
842 			/*
843 			 * We only grow by some fragments within this last
844 			 * block.
845 			 */
846 			for(i=sblock.fs_size-cbase-1;
847 				i>=osblock.fs_size-cbase;
848 				i--) {
849 				setbit(cg_blksfree(&acg), i);
850 				acg.cg_cs.cs_nffree++;
851 				j++;
852 			}
853 			/*
854 			 * Lets rejoin a possible partially growed fragment.
855 			 */
856 			k=0;
857 			while(isset(cg_blksfree(&acg), i) &&
858 			    (i>=rounddown(osblock.fs_size-cbase,
859 			    sblock.fs_frag))) {
860 				i--;
861 				k++;
862 			}
863 			if(k) {
864 				acg.cg_frsum[k]--;
865 			}
866 			acg.cg_frsum[k+j]++;
867 		}
868 	}
869 
870 	/*
871 	 * Handle all new complete blocks here.
872 	 */
873 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
874 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
875 	    i+=sblock.fs_frag) {
876 		j = i / sblock.fs_frag;
877 		setblock(&sblock, cg_blksfree(&acg), j);
878 		updclst(j);
879 		acg.cg_cs.cs_nbfree++;
880 	}
881 
882 	/*
883 	 * Handle the last new block if there are stll some new fragments left.
884 	 * Here we don't have to bother about the cluster summary or the even
885 	 * the rotational layout table.
886 	 */
887 	if (i < (dmax - cbase)) {
888 		acg.cg_frsum[dmax - cbase - i]++;
889 		for (; i < dmax - cbase; i++) {
890 			setbit(cg_blksfree(&acg), i);
891 			acg.cg_cs.cs_nffree++;
892 		}
893 	}
894 
895 	sblock.fs_cstotal.cs_nffree +=
896 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
897 	sblock.fs_cstotal.cs_nbfree +=
898 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
899 	/*
900 	 * The following statistics are not changed here:
901 	 *     sblock.fs_cstotal.cs_ndir
902 	 *     sblock.fs_cstotal.cs_nifree
903 	 * As the statistics for this cylinder group are ready, copy it to
904 	 * the summary information array.
905 	 */
906 	*cs = acg.cg_cs;
907 
908 	/*
909 	 * Write the updated "joining" cylinder group back to disk.
910 	 */
911 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
912 	    (void *)&acg, fso, Nflag);
913 	DBG_PRINT0("jcg written\n");
914 	DBG_DUMP_CG(&sblock,
915 	    "new joining cg",
916 	    &acg);
917 
918 	DBG_LEAVE;
919 	return;
920 }
921 
922 /* ********************************************************** updcsloc ***** */
923 /*
924  * Here we update the location of the cylinder summary. We have two possible
925  * ways of growing the cylinder summary.
926  * (1)	We can try to grow the summary in the current location, and relocate
927  *	possibly used blocks within the current cylinder group.
928  * (2)	Alternatively we can relocate the whole cylinder summary to the first
929  *	new completely empty cylinder group. Once the cylinder summary is no
930  *	longer in the beginning of the first cylinder group you should never
931  *	use a version of fsck which is not aware of the possibility to have
932  *	this structure in a non standard place.
933  * Option (1) is considered to be less intrusive to the structure of the file-
934  * system. So we try to stick to that whenever possible. If there is not enough
935  * space in the cylinder group containing the cylinder summary we have to use
936  * method (2). In case of active snapshots in the file system we probably can
937  * completely avoid implementing copy on write if we stick to method (2) only.
938  */
939 static void
940 updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag)
941 {
942 	DBG_FUNC("updcsloc")
943 	struct csum	*cs;
944 	int	ocscg, ncscg;
945 	int	blocks;
946 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
947 	int	ind, inc;
948 	uint	cylno;
949 	struct gfs_bpp	*bp;
950 	int	i, l;
951 	int	lcs=0;
952 	int	block;
953 
954 	DBG_ENTER;
955 
956 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
957 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
958 		/*
959 		 * No new fragment needed.
960 		 */
961 		DBG_LEAVE;
962 		return;
963 	}
964 	ocscg=dtog(&osblock, osblock.fs_csaddr);
965 	cs=fscs+ocscg;
966 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
967 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
968 
969 	/*
970 	 * Read original cylinder group from disk, and make a copy.
971 	 * XXX	If Nflag is set in some very rare cases we now miss
972 	 *	some changes done in updjcg by reading the unmodified
973 	 *	block from disk.
974 	 */
975 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
976 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
977 	DBG_PRINT0("oscg read\n");
978 	DBG_DUMP_CG(&sblock,
979 	    "old summary cg",
980 	    &aocg);
981 
982 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
983 
984 	/*
985 	 * Touch the cylinder group, set up local variables needed later
986 	 * and update the superblock.
987 	 */
988 	acg.cg_time = modtime;
989 
990 	/*
991 	 * XXX	In the case of having active snapshots we may need much more
992 	 *	blocks for the copy on write. We need each block twice, and
993 	 *	also up to 8*3 blocks for indirect blocks for all possible
994 	 *	references.
995 	 */
996 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
997 		/*
998 		 * There is not enough space in the old cylinder group to
999 		 * relocate all blocks as needed, so we relocate the whole
1000 		 * cylinder group summary to a new group. We try to use the
1001 		 * first complete new cylinder group just created. Within the
1002 		 * cylinder group we align the area immediately after the
1003 		 * cylinder group information location in order to be as
1004 		 * close as possible to the original implementation of ffs.
1005 		 *
1006 		 * First we have to make sure we'll find enough space in the
1007 		 * new cylinder group. If not, then we currently give up.
1008 		 * We start with freeing everything which was used by the
1009 		 * fragments of the old cylinder summary in the current group.
1010 		 * Now we write back the group meta data, read in the needed
1011 		 * meta data from the new cylinder group, and start allocating
1012 		 * within that group. Here we can assume, the group to be
1013 		 * completely empty. Which makes the handling of fragments and
1014 		 * clusters a lot easier.
1015 		 */
1016 		DBG_TRC;
1017 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1018 			errx(2, "panic: not enough space");
1019 		}
1020 
1021 		/*
1022 		 * Point "d" to the first fragment not used by the cylinder
1023 		 * summary.
1024 		 */
1025 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1026 
1027 		/*
1028 		 * Set up last cluster size ("lcs") already here. Calculate
1029 		 * the size for the trailing cluster just behind where "d"
1030 		 * points to.
1031 		 */
1032 		if(sblock.fs_contigsumsize > 0) {
1033 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1034 			    lcs=0; lcs<sblock.fs_contigsumsize;
1035 			    block++, lcs++) {
1036 				if(isclr(cg_clustersfree(&acg), block)){
1037 					break;
1038 				}
1039 			}
1040 		}
1041 
1042 		/*
1043 		 * Point "d" to the last frag used by the cylinder summary.
1044 		 */
1045 		d--;
1046 
1047 		DBG_PRINT1("d=%jd\n",
1048 		    (intmax_t)d);
1049 		if((d+1)%sblock.fs_frag) {
1050 			/*
1051 			 * The end of the cylinder summary is not a complete
1052 			 * block.
1053 			 */
1054 			DBG_TRC;
1055 			frag_adjust(d%sblock.fs_fpg, -1);
1056 			for(; (d+1)%sblock.fs_frag; d--) {
1057 				DBG_PRINT1("d=%jd\n",
1058 				    (intmax_t)d);
1059 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1060 				acg.cg_cs.cs_nffree++;
1061 				sblock.fs_cstotal.cs_nffree++;
1062 			}
1063 			/*
1064 			 * Point "d" to the last fragment of the last
1065 			 * (incomplete) block of the cylinder summary.
1066 			 */
1067 			d++;
1068 			frag_adjust(d%sblock.fs_fpg, 1);
1069 
1070 			if(isblock(&sblock, cg_blksfree(&acg),
1071 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1072 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1073 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1074 				acg.cg_cs.cs_nbfree++;
1075 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1076 				sblock.fs_cstotal.cs_nbfree++;
1077 				if(sblock.fs_contigsumsize > 0) {
1078 					setbit(cg_clustersfree(&acg),
1079 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1080 					if(lcs < sblock.fs_contigsumsize) {
1081 						if(lcs) {
1082 							cg_clustersum(&acg)
1083 							    [lcs]--;
1084 						}
1085 						lcs++;
1086 						cg_clustersum(&acg)[lcs]++;
1087 					}
1088 				}
1089 			}
1090 			/*
1091 			 * Point "d" to the first fragment of the block before
1092 			 * the last incomplete block.
1093 			 */
1094 			d--;
1095 		}
1096 
1097 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1098 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1099 		    d-=sblock.fs_frag) {
1100 			DBG_TRC;
1101 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1102 			setblock(&sblock, cg_blksfree(&acg),
1103 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1104 			acg.cg_cs.cs_nbfree++;
1105 			sblock.fs_cstotal.cs_nbfree++;
1106 			if(sblock.fs_contigsumsize > 0) {
1107 				setbit(cg_clustersfree(&acg),
1108 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1109 				/*
1110 				 * The last cluster size is already set up.
1111 				 */
1112 				if(lcs < sblock.fs_contigsumsize) {
1113 					if(lcs) {
1114 						cg_clustersum(&acg)[lcs]--;
1115 					}
1116 					lcs++;
1117 					cg_clustersum(&acg)[lcs]++;
1118 				}
1119 			}
1120 		}
1121 		*cs = acg.cg_cs;
1122 
1123 		/*
1124 		 * Now write the former cylinder group containing the cylinder
1125 		 * summary back to disk.
1126 		 */
1127 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1128 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1129 		DBG_PRINT0("oscg written\n");
1130 		DBG_DUMP_CG(&sblock,
1131 		    "old summary cg",
1132 		    &acg);
1133 
1134 		/*
1135 		 * Find the beginning of the new cylinder group containing the
1136 		 * cylinder summary.
1137 		 */
1138 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1139 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1140 		cs=fscs+ncscg;
1141 
1142 
1143 		/*
1144 		 * If Nflag is specified, we would now read random data instead
1145 		 * of an empty cg structure from disk. So we can't simulate that
1146 		 * part for now.
1147 		 */
1148 		if(Nflag) {
1149 			DBG_PRINT0("nscg update skipped\n");
1150 			DBG_LEAVE;
1151 			return;
1152 		}
1153 
1154 		/*
1155 		 * Read the future cylinder group containing the cylinder
1156 		 * summary from disk, and make a copy.
1157 		 */
1158 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1159 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1160 		DBG_PRINT0("nscg read\n");
1161 		DBG_DUMP_CG(&sblock,
1162 		    "new summary cg",
1163 		    &aocg);
1164 
1165 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1166 
1167 		/*
1168 		 * Allocate all complete blocks used by the new cylinder
1169 		 * summary.
1170 		 */
1171 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1172 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1173 		    d+=sblock.fs_frag) {
1174 			clrblock(&sblock, cg_blksfree(&acg),
1175 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1176 			acg.cg_cs.cs_nbfree--;
1177 			sblock.fs_cstotal.cs_nbfree--;
1178 			if(sblock.fs_contigsumsize > 0) {
1179 				clrbit(cg_clustersfree(&acg),
1180 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1181 			}
1182 		}
1183 
1184 		/*
1185 		 * Allocate all fragments used by the cylinder summary in the
1186 		 * last block.
1187 		 */
1188 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1189 			for(; d-sblock.fs_csaddr<
1190 			    sblock.fs_cssize/sblock.fs_fsize;
1191 			    d++) {
1192 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1193 				acg.cg_cs.cs_nffree--;
1194 				sblock.fs_cstotal.cs_nffree--;
1195 			}
1196 			acg.cg_cs.cs_nbfree--;
1197 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1198 			sblock.fs_cstotal.cs_nbfree--;
1199 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1200 			if(sblock.fs_contigsumsize > 0) {
1201 				clrbit(cg_clustersfree(&acg),
1202 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1203 			}
1204 
1205 			frag_adjust(d%sblock.fs_fpg, +1);
1206 		}
1207 		/*
1208 		 * XXX	Handle the cluster statistics here in the case this
1209 		 *	cylinder group is now almost full, and the remaining
1210 		 *	space is less then the maximum cluster size. This is
1211 		 *	probably not needed, as you would hardly find a file
1212 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1213 		 *	space right behind the cylinder group information in
1214 		 *	any new cylinder group.
1215 		 */
1216 
1217 		/*
1218 		 * Update our statistics in the cylinder summary.
1219 		 */
1220 		*cs = acg.cg_cs;
1221 
1222 		/*
1223 		 * Write the new cylinder group containing the cylinder summary
1224 		 * back to disk.
1225 		 */
1226 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1227 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1228 		DBG_PRINT0("nscg written\n");
1229 		DBG_DUMP_CG(&sblock,
1230 		    "new summary cg",
1231 		    &acg);
1232 
1233 		DBG_LEAVE;
1234 		return;
1235 	}
1236 	/*
1237 	 * We have got enough of space in the current cylinder group, so we
1238 	 * can relocate just a few blocks, and let the summary information
1239 	 * grow in place where it is right now.
1240 	 */
1241 	DBG_TRC;
1242 
1243 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1244 	dupper = sblock.fs_csaddr - cbase +
1245 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1246 	odupper = osblock.fs_csaddr - cbase +
1247 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1248 
1249 	sblock.fs_dsize -= dupper-odupper;
1250 
1251 	/*
1252 	 * Allocate the space for the array of blocks to be relocated.
1253 	 */
1254  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1255 	    sizeof(struct gfs_bpp));
1256 	if(bp == NULL) {
1257 		errx(1, "malloc failed");
1258 	}
1259 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1260 	    sizeof(struct gfs_bpp));
1261 
1262 	/*
1263 	 * Lock all new frags needed for the cylinder group summary. This is
1264 	 * done per fragment in the first and last block of the new required
1265 	 * area, and per block for all other blocks.
1266 	 *
1267 	 * Handle the first new block here (but only if some fragments where
1268 	 * already used for the cylinder summary).
1269 	 */
1270 	ind=0;
1271 	frag_adjust(odupper, -1);
1272 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1273 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1274 		    (intmax_t)d);
1275 		if(isclr(cg_blksfree(&acg), d)) {
1276 			if (!ind) {
1277 				bp[ind].old=d/sblock.fs_frag;
1278 				bp[ind].flags|=GFS_FL_FIRST;
1279 				if(roundup(d, sblock.fs_frag) >= dupper) {
1280 					bp[ind].flags|=GFS_FL_LAST;
1281 				}
1282 				ind++;
1283 			}
1284 		} else {
1285 			clrbit(cg_blksfree(&acg), d);
1286 			acg.cg_cs.cs_nffree--;
1287 			sblock.fs_cstotal.cs_nffree--;
1288 		}
1289 		/*
1290 		 * No cluster handling is needed here, as there was at least
1291 		 * one fragment in use by the cylinder summary in the old
1292 		 * file system.
1293 		 * No block-free counter handling here as this block was not
1294 		 * a free block.
1295 		 */
1296 	}
1297 	frag_adjust(odupper, 1);
1298 
1299 	/*
1300 	 * Handle all needed complete blocks here.
1301 	 */
1302 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1303 		DBG_PRINT1("scg block check loop d=%jd\n",
1304 		    (intmax_t)d);
1305 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1306 			for(f=d; f<d+sblock.fs_frag; f++) {
1307 				if(isset(cg_blksfree(&aocg), f)) {
1308 					acg.cg_cs.cs_nffree--;
1309 					sblock.fs_cstotal.cs_nffree--;
1310 				}
1311 			}
1312 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1313 			bp[ind].old=d/sblock.fs_frag;
1314 			ind++;
1315 		} else {
1316 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1317 			acg.cg_cs.cs_nbfree--;
1318 			sblock.fs_cstotal.cs_nbfree--;
1319 			if(sblock.fs_contigsumsize > 0) {
1320 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1321 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1322 				    lcs<sblock.fs_contigsumsize;
1323 				    l++, lcs++ ) {
1324 					if(isclr(cg_clustersfree(&acg),l)){
1325 						break;
1326 					}
1327 				}
1328 				if(lcs < sblock.fs_contigsumsize) {
1329 					cg_clustersum(&acg)[lcs+1]--;
1330 					if(lcs) {
1331 						cg_clustersum(&acg)[lcs]++;
1332 					}
1333 				}
1334 			}
1335 		}
1336 		/*
1337 		 * No fragment counter handling is needed here, as this finally
1338 		 * doesn't change after the relocation.
1339 		 */
1340 	}
1341 
1342 	/*
1343 	 * Handle all fragments needed in the last new affected block.
1344 	 */
1345 	if(d<dupper) {
1346 		frag_adjust(dupper-1, -1);
1347 
1348 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1349 			acg.cg_cs.cs_nbfree--;
1350 			sblock.fs_cstotal.cs_nbfree--;
1351 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1352 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1353 			if(sblock.fs_contigsumsize > 0) {
1354 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1355 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1356 				    lcs<sblock.fs_contigsumsize;
1357 				    l++, lcs++ ) {
1358 					if(isclr(cg_clustersfree(&acg),l)){
1359 						break;
1360 					}
1361 				}
1362 				if(lcs < sblock.fs_contigsumsize) {
1363 					cg_clustersum(&acg)[lcs+1]--;
1364 					if(lcs) {
1365 						cg_clustersum(&acg)[lcs]++;
1366 					}
1367 				}
1368 			}
1369 		}
1370 
1371 		for(; d<dupper; d++) {
1372 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1373 			    (intmax_t)d);
1374 			if(isclr(cg_blksfree(&acg), d)) {
1375 				bp[ind].old=d/sblock.fs_frag;
1376 				bp[ind].flags|=GFS_FL_LAST;
1377 			} else {
1378 				clrbit(cg_blksfree(&acg), d);
1379 				acg.cg_cs.cs_nffree--;
1380 				sblock.fs_cstotal.cs_nffree--;
1381 			}
1382 		}
1383 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1384 			ind++;
1385 		}
1386 		frag_adjust(dupper-1, 1);
1387 	}
1388 
1389 	/*
1390 	 * If we found a block to relocate just do so.
1391 	 */
1392 	if(ind) {
1393 		for(i=0; i<ind; i++) {
1394 			if(!bp[i].old) { /* no more blocks listed */
1395 				/*
1396 				 * XXX	A relative blocknumber should not be
1397 				 *	zero, which is not explicitly
1398 				 *	guaranteed by our code.
1399 				 */
1400 				break;
1401 			}
1402 			/*
1403 			 * Allocate a complete block in the same (current)
1404 			 * cylinder group.
1405 			 */
1406 			bp[i].new=alloc()/sblock.fs_frag;
1407 
1408 			/*
1409 			 * There is no frag_adjust() needed for the new block
1410 			 * as it will have no fragments yet :-).
1411 			 */
1412 			for(f=bp[i].old*sblock.fs_frag,
1413 			    g=bp[i].new*sblock.fs_frag;
1414 			    f<(bp[i].old+1)*sblock.fs_frag;
1415 			    f++, g++) {
1416 				if(isset(cg_blksfree(&aocg), f)) {
1417 					setbit(cg_blksfree(&acg), g);
1418 					acg.cg_cs.cs_nffree++;
1419 					sblock.fs_cstotal.cs_nffree++;
1420 				}
1421 			}
1422 
1423 			/*
1424 			 * Special handling is required if this was the first
1425 			 * block. We have to consider the fragments which were
1426 			 * used by the cylinder summary in the original block
1427 			 * which re to be free in the copy of our block.  We
1428 			 * have to be careful if this first block happens to
1429 			 * be also the last block to be relocated.
1430 			 */
1431 			if(bp[i].flags & GFS_FL_FIRST) {
1432 				for(f=bp[i].old*sblock.fs_frag,
1433 				    g=bp[i].new*sblock.fs_frag;
1434 				    f<odupper;
1435 				    f++, g++) {
1436 					setbit(cg_blksfree(&acg), g);
1437 					acg.cg_cs.cs_nffree++;
1438 					sblock.fs_cstotal.cs_nffree++;
1439 				}
1440 				if(!(bp[i].flags & GFS_FL_LAST)) {
1441 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1442 				}
1443 			}
1444 
1445 			/*
1446 			 * Special handling is required if this is the last
1447 			 * block to be relocated.
1448 			 */
1449 			if(bp[i].flags & GFS_FL_LAST) {
1450 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1451 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1452 				for(f=dupper;
1453 				    f<roundup(dupper, sblock.fs_frag);
1454 				    f++) {
1455 					if(isclr(cg_blksfree(&acg), f)) {
1456 						setbit(cg_blksfree(&acg), f);
1457 						acg.cg_cs.cs_nffree++;
1458 						sblock.fs_cstotal.cs_nffree++;
1459 					}
1460 				}
1461 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1462 			}
1463 
1464 			/*
1465 			 * !!! Attach the cylindergroup offset here.
1466 			 */
1467 			bp[i].old+=cbase/sblock.fs_frag;
1468 			bp[i].new+=cbase/sblock.fs_frag;
1469 
1470 			/*
1471 			 * Copy the content of the block.
1472 			 */
1473 			/*
1474 			 * XXX	Here we will have to implement a copy on write
1475 			 *	in the case we have any active snapshots.
1476 			 */
1477 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1478 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1479 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1480 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1481 			DBG_DUMP_HEX(&sblock,
1482 			    "copied full block",
1483 			    (unsigned char *)&ablk);
1484 
1485 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1486 			    (intmax_t)bp[i].old,
1487 			    (intmax_t)bp[i].new);
1488 		}
1489 
1490 		/*
1491 		 * Now we have to update all references to any fragment which
1492 		 * belongs to any block relocated. We iterate now over all
1493 		 * cylinder groups, within those over all non zero length
1494 		 * inodes.
1495 		 */
1496 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1497 			DBG_PRINT1("scg doing cg (%d)\n",
1498 			    cylno);
1499 			for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1500 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1501 			}
1502 		}
1503 
1504 		/*
1505 		 * All inodes are checked, now make sure the number of
1506 		 * references found make sense.
1507 		 */
1508 		for(i=0; i<ind; i++) {
1509 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1510 				warnx("error: %jd refs found for block %jd.",
1511 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1512 			}
1513 
1514 		}
1515 	}
1516 	/*
1517 	 * The following statistics are not changed here:
1518 	 *     sblock.fs_cstotal.cs_ndir
1519 	 *     sblock.fs_cstotal.cs_nifree
1520 	 * The following statistics were already updated on the fly:
1521 	 *     sblock.fs_cstotal.cs_nffree
1522 	 *     sblock.fs_cstotal.cs_nbfree
1523 	 * As the statistics for this cylinder group are ready, copy it to
1524 	 * the summary information array.
1525 	 */
1526 
1527 	*cs = acg.cg_cs;
1528 
1529 	/*
1530 	 * Write summary cylinder group back to disk.
1531 	 */
1532 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1533 	    (void *)&acg, fso, Nflag);
1534 	DBG_PRINT0("scg written\n");
1535 	DBG_DUMP_CG(&sblock,
1536 	    "new summary cg",
1537 	    &acg);
1538 
1539 	DBG_LEAVE;
1540 	return;
1541 }
1542 
1543 /* ************************************************************** rdfs ***** */
1544 /*
1545  * Here we read some block(s) from disk.
1546  */
1547 static void
1548 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1549 {
1550 	DBG_FUNC("rdfs")
1551 	ssize_t	n;
1552 
1553 	DBG_ENTER;
1554 
1555 	if (bno < 0) {
1556 		err(32, "rdfs: attempting to read negative block number");
1557 	}
1558 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1559 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1560 	}
1561 	n = read(fsi, bf, size);
1562 	if (n != (ssize_t)size) {
1563 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1564 	}
1565 
1566 	DBG_LEAVE;
1567 	return;
1568 }
1569 
1570 /* ************************************************************** wtfs ***** */
1571 /*
1572  * Here we write some block(s) to disk.
1573  */
1574 static void
1575 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1576 {
1577 	DBG_FUNC("wtfs")
1578 	ssize_t	n;
1579 
1580 	DBG_ENTER;
1581 
1582 	if (Nflag) {
1583 		DBG_LEAVE;
1584 		return;
1585 	}
1586 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1587 		err(35, "wtfs: seek error: %ld", (long)bno);
1588 	}
1589 	n = write(fso, bf, size);
1590 	if (n != (ssize_t)size) {
1591 		err(36, "wtfs: write error: %ld", (long)bno);
1592 	}
1593 
1594 	DBG_LEAVE;
1595 	return;
1596 }
1597 
1598 /* ************************************************************* alloc ***** */
1599 /*
1600  * Here we allocate a free block in the current cylinder group. It is assumed,
1601  * that acg contains the current cylinder group. As we may take a block from
1602  * somewhere in the file system we have to handle cluster summary here.
1603  */
1604 static ufs2_daddr_t
1605 alloc(void)
1606 {
1607 	DBG_FUNC("alloc")
1608 	ufs2_daddr_t	d, blkno;
1609 	int	lcs1, lcs2;
1610 	int	l;
1611 	int	csmin, csmax;
1612 	int	dlower, dupper, dmax;
1613 
1614 	DBG_ENTER;
1615 
1616 	if (acg.cg_magic != CG_MAGIC) {
1617 		warnx("acg: bad magic number");
1618 		DBG_LEAVE;
1619 		return (0);
1620 	}
1621 	if (acg.cg_cs.cs_nbfree == 0) {
1622 		warnx("error: cylinder group ran out of space");
1623 		DBG_LEAVE;
1624 		return (0);
1625 	}
1626 	/*
1627 	 * We start seeking for free blocks only from the space available after
1628 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1629 	 * block here which we have to relocate a couple of seconds later again
1630 	 * again, and we are not prepared to to this anyway.
1631 	 */
1632 	blkno=-1;
1633 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1634 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1635 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1636 	if (dmax > sblock.fs_size) {
1637 		dmax = sblock.fs_size;
1638 	}
1639 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1640 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1641 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1642 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1643 	    dlower,
1644 	    dupper,
1645 	    dmax);
1646 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1647 	    csmin,
1648 	    csmax);
1649 
1650 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1651 		if(d>=csmin && d<=csmax) {
1652 			continue;
1653 		}
1654 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1655 		    d))) {
1656 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1657 			break;
1658 		}
1659 	}
1660 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1661 		if(d>=csmin && d<=csmax) {
1662 			continue;
1663 		}
1664 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1665 		    d))) {
1666 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1667 			break;
1668 		}
1669 	}
1670 	if(blkno==-1) {
1671 		warnx("internal error: couldn't find promised block in cg");
1672 		DBG_LEAVE;
1673 		return (0);
1674 	}
1675 
1676 	/*
1677 	 * This is needed if the block was found already in the first loop.
1678 	 */
1679 	d=blkstofrags(&sblock, blkno);
1680 
1681 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1682 	if (sblock.fs_contigsumsize > 0) {
1683 		/*
1684 		 * Handle the cluster allocation bitmap.
1685 		 */
1686 		clrbit(cg_clustersfree(&acg), blkno);
1687 		/*
1688 		 * We possibly have split a cluster here, so we have to do
1689 		 * recalculate the sizes of the remaining cluster halves now,
1690 		 * and use them for updating the cluster summary information.
1691 		 *
1692 		 * Lets start with the blocks before our allocated block ...
1693 		 */
1694 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1695 		    l--, lcs1++ ) {
1696 			if(isclr(cg_clustersfree(&acg),l)){
1697 				break;
1698 			}
1699 		}
1700 		/*
1701 		 * ... and continue with the blocks right after our allocated
1702 		 * block.
1703 		 */
1704 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1705 		    l++, lcs2++ ) {
1706 			if(isclr(cg_clustersfree(&acg),l)){
1707 				break;
1708 			}
1709 		}
1710 
1711 		/*
1712 		 * Now update all counters.
1713 		 */
1714 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1715 		if(lcs1) {
1716 			cg_clustersum(&acg)[lcs1]++;
1717 		}
1718 		if(lcs2) {
1719 			cg_clustersum(&acg)[lcs2]++;
1720 		}
1721 	}
1722 	/*
1723 	 * Update all statistics based on blocks.
1724 	 */
1725 	acg.cg_cs.cs_nbfree--;
1726 	sblock.fs_cstotal.cs_nbfree--;
1727 
1728 	DBG_LEAVE;
1729 	return (d);
1730 }
1731 
1732 /* *********************************************************** isblock ***** */
1733 /*
1734  * Here we check if all frags of a block are free. For more details again
1735  * please see the source of newfs(8), as this function is taken over almost
1736  * unchanged.
1737  */
1738 static int
1739 isblock(struct fs *fs, unsigned char *cp, int h)
1740 {
1741 	DBG_FUNC("isblock")
1742 	unsigned char	mask;
1743 
1744 	DBG_ENTER;
1745 
1746 	switch (fs->fs_frag) {
1747 	case 8:
1748 		DBG_LEAVE;
1749 		return (cp[h] == 0xff);
1750 	case 4:
1751 		mask = 0x0f << ((h & 0x1) << 2);
1752 		DBG_LEAVE;
1753 		return ((cp[h >> 1] & mask) == mask);
1754 	case 2:
1755 		mask = 0x03 << ((h & 0x3) << 1);
1756 		DBG_LEAVE;
1757 		return ((cp[h >> 2] & mask) == mask);
1758 	case 1:
1759 		mask = 0x01 << (h & 0x7);
1760 		DBG_LEAVE;
1761 		return ((cp[h >> 3] & mask) == mask);
1762 	default:
1763 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1764 		DBG_LEAVE;
1765 		return (0);
1766 	}
1767 }
1768 
1769 /* ********************************************************** clrblock ***** */
1770 /*
1771  * Here we allocate a complete block in the block map. For more details again
1772  * please see the source of newfs(8), as this function is taken over almost
1773  * unchanged.
1774  */
1775 static void
1776 clrblock(struct fs *fs, unsigned char *cp, int h)
1777 {
1778 	DBG_FUNC("clrblock")
1779 
1780 	DBG_ENTER;
1781 
1782 	switch ((fs)->fs_frag) {
1783 	case 8:
1784 		cp[h] = 0;
1785 		break;
1786 	case 4:
1787 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1788 		break;
1789 	case 2:
1790 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1791 		break;
1792 	case 1:
1793 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1794 		break;
1795 	default:
1796 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1797 		break;
1798 	}
1799 
1800 	DBG_LEAVE;
1801 	return;
1802 }
1803 
1804 /* ********************************************************** setblock ***** */
1805 /*
1806  * Here we free a complete block in the free block map. For more details again
1807  * please see the source of newfs(8), as this function is taken over almost
1808  * unchanged.
1809  */
1810 static void
1811 setblock(struct fs *fs, unsigned char *cp, int h)
1812 {
1813 	DBG_FUNC("setblock")
1814 
1815 	DBG_ENTER;
1816 
1817 	switch (fs->fs_frag) {
1818 	case 8:
1819 		cp[h] = 0xff;
1820 		break;
1821 	case 4:
1822 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1823 		break;
1824 	case 2:
1825 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1826 		break;
1827 	case 1:
1828 		cp[h >> 3] |= (0x01 << (h & 0x7));
1829 		break;
1830 	default:
1831 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1832 		break;
1833 	}
1834 
1835 	DBG_LEAVE;
1836 	return;
1837 }
1838 
1839 /* ************************************************************ ginode ***** */
1840 /*
1841  * This function provides access to an individual inode. We find out in which
1842  * block the requested inode is located, read it from disk if needed, and
1843  * return the pointer into that block. We maintain a cache of one block to
1844  * not read the same block again and again if we iterate linearly over all
1845  * inodes.
1846  */
1847 static union dinode *
1848 ginode(ino_t inumber, int fsi, int cg)
1849 {
1850 	DBG_FUNC("ginode")
1851 	static ino_t	startinum = 0;	/* first inode in cached block */
1852 
1853 	DBG_ENTER;
1854 
1855 	/*
1856 	 * The inumber passed in is relative to the cg, so use it here to see
1857 	 * if the inode has been allocated yet.
1858 	 */
1859 	if (isclr(cg_inosused(&aocg), inumber)) {
1860 		DBG_LEAVE;
1861 		return NULL;
1862 	}
1863 	/*
1864 	 * Now make the inumber relative to the entire inode space so it can
1865 	 * be sanity checked.
1866 	 */
1867 	inumber += (cg * sblock.fs_ipg);
1868 	if (inumber < ROOTINO) {
1869 		DBG_LEAVE;
1870 		return NULL;
1871 	}
1872 	if (inumber > maxino)
1873 		errx(8, "bad inode number %d to ginode", inumber);
1874 	if (startinum == 0 ||
1875 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1876 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1877 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1878 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1879 	}
1880 	DBG_LEAVE;
1881 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1882 		return (union dinode *)((uintptr_t)inobuf +
1883 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1884 	return (union dinode *)((uintptr_t)inobuf +
1885 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1886 }
1887 
1888 /* ****************************************************** charsperline ***** */
1889 /*
1890  * Figure out how many lines our current terminal has. For more details again
1891  * please see the source of newfs(8), as this function is taken over almost
1892  * unchanged.
1893  */
1894 static int
1895 charsperline(void)
1896 {
1897 	DBG_FUNC("charsperline")
1898 	int	columns;
1899 	char	*cp;
1900 	struct winsize	ws;
1901 
1902 	DBG_ENTER;
1903 
1904 	columns = 0;
1905 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1906 		columns = ws.ws_col;
1907 	}
1908 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1909 		columns = atoi(cp);
1910 	}
1911 	if (columns == 0) {
1912 		columns = 80;	/* last resort */
1913 	}
1914 
1915 	DBG_LEAVE;
1916 	return columns;
1917 }
1918 
1919 /* ****************************************************** get_dev_size ***** */
1920 /*
1921  * Get the size of the partition if we can't figure it out from the disklabel,
1922  * e.g. from vinum volumes.
1923  */
1924 static void
1925 get_dev_size(int fd, int *size)
1926 {
1927    int sectorsize;
1928    off_t mediasize;
1929 
1930    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1931         err(1,"DIOCGSECTORSIZE");
1932    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1933         err(1,"DIOCGMEDIASIZE");
1934 
1935    if (sectorsize <= 0)
1936        errx(1, "bogus sectorsize: %d", sectorsize);
1937 
1938    *size = mediasize / sectorsize;
1939 }
1940 
1941 /* ************************************************************** main ***** */
1942 /*
1943  * growfs(8)  is a utility which allows to increase the size of an existing
1944  * ufs file system. Currently this can only be done on unmounted file system.
1945  * It recognizes some command line options to specify the new desired size,
1946  * and it does some basic checkings. The old file system size is determined
1947  * and after some more checks like we can really access the new last block
1948  * on the disk etc. we calculate the new parameters for the superblock. After
1949  * having done this we just call growfs() which will do the work.  Before
1950  * we finish the only thing left is to update the disklabel.
1951  * We still have to provide support for snapshots. Therefore we first have to
1952  * understand what data structures are always replicated in the snapshot on
1953  * creation, for all other blocks we touch during our procedure, we have to
1954  * keep the old blocks unchanged somewhere available for the snapshots. If we
1955  * are lucky, then we only have to handle our blocks to be relocated in that
1956  * way.
1957  * Also we have to consider in what order we actually update the critical
1958  * data structures of the file system to make sure, that in case of a disaster
1959  * fsck(8) is still able to restore any lost data.
1960  * The foreseen last step then will be to provide for growing even mounted
1961  * file systems. There we have to extend the mount() system call to provide
1962  * userland access to the file system locking facility.
1963  */
1964 int
1965 main(int argc, char **argv)
1966 {
1967 	DBG_FUNC("main")
1968 	char	*device, *special, *cp;
1969 	int	ch;
1970 	unsigned int	size=0;
1971 	size_t	len;
1972 	unsigned int	Nflag=0;
1973 	int	ExpertFlag=0;
1974 	struct stat	st;
1975 	struct disklabel	*lp;
1976 	struct partition	*pp;
1977 	int	i,fsi,fso;
1978     u_int32_t p_size;
1979 	char	reply[5];
1980 #ifdef FSMAXSNAP
1981 	int	j;
1982 #endif /* FSMAXSNAP */
1983 
1984 	DBG_ENTER;
1985 
1986 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1987 		switch(ch) {
1988 		case 'N':
1989 			Nflag=1;
1990 			break;
1991 		case 's':
1992 			size=(size_t)atol(optarg);
1993 			if(size<1) {
1994 				usage();
1995 			}
1996 			break;
1997 		case 'v': /* for compatibility to newfs */
1998 			break;
1999 		case 'y':
2000 			ExpertFlag=1;
2001 			break;
2002 		case '?':
2003 			/* FALLTHROUGH */
2004 		default:
2005 			usage();
2006 		}
2007 	}
2008 	argc -= optind;
2009 	argv += optind;
2010 
2011 	if(argc != 1) {
2012 		usage();
2013 	}
2014 	device=*argv;
2015 
2016 	/*
2017 	 * Now try to guess the (raw)device name.
2018 	 */
2019 	if (0 == strrchr(device, '/')) {
2020 		/*
2021 		 * No path prefix was given, so try in that order:
2022 		 *     /dev/r%s
2023 		 *     /dev/%s
2024 		 *     /dev/vinum/r%s
2025 		 *     /dev/vinum/%s.
2026 		 *
2027 		 * FreeBSD now doesn't distinguish between raw and block
2028 		 * devices any longer, but it should still work this way.
2029 		 */
2030 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2031 		special=(char *)malloc(len);
2032 		if(special == NULL) {
2033 			errx(1, "malloc failed");
2034 		}
2035 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2036 		if (stat(special, &st) == -1) {
2037 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2038 			if (stat(special, &st) == -1) {
2039 				snprintf(special, len, "%svinum/r%s",
2040 				    _PATH_DEV, device);
2041 				if (stat(special, &st) == -1) {
2042 					/* For now this is the 'last resort' */
2043 					snprintf(special, len, "%svinum/%s",
2044 					    _PATH_DEV, device);
2045 				}
2046 			}
2047 		}
2048 		device = special;
2049 	}
2050 
2051 	/*
2052 	 * Try to access our devices for writing ...
2053 	 */
2054 	if (Nflag) {
2055 		fso = -1;
2056 	} else {
2057 		fso = open(device, O_WRONLY);
2058 		if (fso < 0) {
2059 			err(1, "%s", device);
2060 		}
2061 	}
2062 
2063 	/*
2064 	 * ... and reading.
2065 	 */
2066 	fsi = open(device, O_RDONLY);
2067 	if (fsi < 0) {
2068 		err(1, "%s", device);
2069 	}
2070 
2071 	/*
2072 	 * Try to read a label and guess the slice if not specified. This
2073 	 * code should guess the right thing and avoid to bother the user
2074 	 * with the task of specifying the option -v on vinum volumes.
2075 	 */
2076 	cp=device+strlen(device)-1;
2077 	lp = get_disklabel(fsi);
2078 	pp = NULL;
2079     if (lp != NULL) {
2080         if (isdigit(*cp)) {
2081             pp = &lp->d_partitions[2];
2082         } else if (*cp>='a' && *cp<='h') {
2083             pp = &lp->d_partitions[*cp - 'a'];
2084         } else {
2085             errx(1, "unknown device");
2086         }
2087         p_size = pp->p_size;
2088     } else {
2089         get_dev_size(fsi, &p_size);
2090     }
2091 
2092 	/*
2093 	 * Check if that partition is suitable for growing a file system.
2094 	 */
2095 	if (p_size < 1) {
2096 		errx(1, "partition is unavailable");
2097 	}
2098 
2099 	/*
2100 	 * Read the current superblock, and take a backup.
2101 	 */
2102 	for (i = 0; sblock_try[i] != -1; i++) {
2103 		sblockloc = sblock_try[i] / DEV_BSIZE;
2104 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2105 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2106 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2107 		      osblock.fs_sblockloc == sblock_try[i])) &&
2108 		    osblock.fs_bsize <= MAXBSIZE &&
2109 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2110 			break;
2111 	}
2112 	if (sblock_try[i] == -1) {
2113 		errx(1, "superblock not recognized");
2114 	}
2115 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2116 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2117 
2118 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2119 	DBG_DUMP_FS(&sblock,
2120 	    "old sblock");
2121 
2122 	/*
2123 	 * Determine size to grow to. Default to the full size specified in
2124 	 * the disk label.
2125 	 */
2126 	sblock.fs_size = dbtofsb(&osblock, p_size);
2127 	if (size != 0) {
2128 		if (size > p_size){
2129 			errx(1, "there is not enough space (%d < %d)",
2130 			    p_size, size);
2131 		}
2132 		sblock.fs_size = dbtofsb(&osblock, size);
2133 	}
2134 
2135 	/*
2136 	 * Are we really growing ?
2137 	 */
2138 	if(osblock.fs_size >= sblock.fs_size) {
2139 		errx(1, "we are not growing (%jd->%jd)",
2140 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2141 	}
2142 
2143 
2144 #ifdef FSMAXSNAP
2145 	/*
2146 	 * Check if we find an active snapshot.
2147 	 */
2148 	if(ExpertFlag == 0) {
2149 		for(j=0; j<FSMAXSNAP; j++) {
2150 			if(sblock.fs_snapinum[j]) {
2151 				errx(1, "active snapshot found in file system; "
2152 				    "please remove all snapshots before "
2153 				    "using growfs");
2154 			}
2155 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2156 				break;
2157 			}
2158 		}
2159 	}
2160 #endif
2161 
2162 	if (ExpertFlag == 0 && Nflag == 0) {
2163 		printf("We strongly recommend you to make a backup "
2164 		    "before growing the file system.\n"
2165 		    "Did you backup your data (Yes/No)? ");
2166 		fgets(reply, (int)sizeof(reply), stdin);
2167 		if (strcmp(reply, "Yes\n")){
2168 			printf("\nNothing done\n");
2169 			exit (0);
2170 		}
2171 	}
2172 
2173 	printf("New file system size is %jd frags\n", (intmax_t)sblock.fs_size);
2174 
2175 	/*
2176 	 * Try to access our new last block in the file system. Even if we
2177 	 * later on realize we have to abort our operation, on that block
2178 	 * there should be no data, so we can't destroy something yet.
2179 	 */
2180 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2181 	    fso, Nflag);
2182 
2183 	/*
2184 	 * Now calculate new superblock values and check for reasonable
2185 	 * bound for new file system size:
2186 	 *     fs_size:    is derived from label or user input
2187 	 *     fs_dsize:   should get updated in the routines creating or
2188 	 *                 updating the cylinder groups on the fly
2189 	 *     fs_cstotal: should get updated in the routines creating or
2190 	 *                 updating the cylinder groups
2191 	 */
2192 
2193 	/*
2194 	 * Update the number of cylinders and cylinder groups in the file system.
2195 	 */
2196 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2197 		sblock.fs_old_ncyl =
2198 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2199 		if (sblock.fs_size * sblock.fs_old_nspf >
2200 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2201 			sblock.fs_old_ncyl++;
2202 	}
2203 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2204 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2205 
2206 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2207 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2208 		/*
2209 		 * The space in the new last cylinder group is too small,
2210 		 * so revert back.
2211 		 */
2212 		sblock.fs_ncg--;
2213 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2214 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2215 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2216 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2217 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2218 		maxino -= sblock.fs_ipg;
2219 	}
2220 
2221 	/*
2222 	 * Update the space for the cylinder group summary information in the
2223 	 * respective cylinder group data area.
2224 	 */
2225 	sblock.fs_cssize =
2226 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2227 
2228 	if(osblock.fs_size >= sblock.fs_size) {
2229 		errx(1, "not enough new space");
2230 	}
2231 
2232 	DBG_PRINT0("sblock calculated\n");
2233 
2234 	/*
2235 	 * Ok, everything prepared, so now let's do the tricks.
2236 	 */
2237 	growfs(fsi, fso, Nflag);
2238 
2239 	/*
2240 	 * Update the disk label.
2241 	 */
2242     if (!unlabeled) {
2243         pp->p_fsize = sblock.fs_fsize;
2244         pp->p_frag = sblock.fs_frag;
2245         pp->p_cpg = sblock.fs_fpg;
2246 
2247         return_disklabel(fso, lp, Nflag);
2248         DBG_PRINT0("label rewritten\n");
2249     }
2250 
2251 	close(fsi);
2252 	if(fso>-1) close(fso);
2253 
2254 	DBG_CLOSE;
2255 
2256 	DBG_LEAVE;
2257 	return 0;
2258 }
2259 
2260 /* ************************************************** return_disklabel ***** */
2261 /*
2262  * Write the updated disklabel back to disk.
2263  */
2264 static void
2265 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2266 {
2267 	DBG_FUNC("return_disklabel")
2268 	u_short	sum;
2269 	u_short	*ptr;
2270 
2271 	DBG_ENTER;
2272 
2273 	if(!lp) {
2274 		DBG_LEAVE;
2275 		return;
2276 	}
2277 	if(!Nflag) {
2278 		lp->d_checksum=0;
2279 		sum = 0;
2280 		ptr=(u_short *)lp;
2281 
2282 		/*
2283 		 * recalculate checksum
2284 		 */
2285 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2286 			sum ^= *ptr++;
2287 		}
2288 		lp->d_checksum=sum;
2289 
2290 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2291 			errx(1, "DIOCWDINFO failed");
2292 		}
2293 	}
2294 	free(lp);
2295 
2296 	DBG_LEAVE;
2297 	return ;
2298 }
2299 
2300 /* ***************************************************** get_disklabel ***** */
2301 /*
2302  * Read the disklabel from disk.
2303  */
2304 static struct disklabel *
2305 get_disklabel(int fd)
2306 {
2307 	DBG_FUNC("get_disklabel")
2308 	static struct	disklabel *lab;
2309 
2310 	DBG_ENTER;
2311 
2312 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2313 	if (!lab)
2314 		errx(1, "malloc failed");
2315 
2316     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2317         return (lab);
2318 
2319     unlabeled++;
2320 
2321 	DBG_LEAVE;
2322 	return (NULL);
2323 }
2324 
2325 
2326 /* ************************************************************* usage ***** */
2327 /*
2328  * Dump a line of usage.
2329  */
2330 static void
2331 usage(void)
2332 {
2333 	DBG_FUNC("usage")
2334 
2335 	DBG_ENTER;
2336 
2337 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2338 
2339 	DBG_LEAVE;
2340 	exit(1);
2341 }
2342 
2343 /* *********************************************************** updclst ***** */
2344 /*
2345  * This updates most parameters and the bitmap related to cluster. We have to
2346  * assume that sblock, osblock, acg are set up.
2347  */
2348 static void
2349 updclst(int block)
2350 {
2351 	DBG_FUNC("updclst")
2352 	static int	lcs=0;
2353 
2354 	DBG_ENTER;
2355 
2356 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2357 		return;
2358 	}
2359 	/*
2360 	 * update cluster allocation map
2361 	 */
2362 	setbit(cg_clustersfree(&acg), block);
2363 
2364 	/*
2365 	 * update cluster summary table
2366 	 */
2367 	if(!lcs) {
2368 		/*
2369 		 * calculate size for the trailing cluster
2370 		 */
2371 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2372 			if(isclr(cg_clustersfree(&acg), block)){
2373 				break;
2374 			}
2375 		}
2376 	}
2377 	if(lcs < sblock.fs_contigsumsize) {
2378 		if(lcs) {
2379 			cg_clustersum(&acg)[lcs]--;
2380 		}
2381 		lcs++;
2382 		cg_clustersum(&acg)[lcs]++;
2383 	}
2384 
2385 	DBG_LEAVE;
2386 	return;
2387 }
2388 
2389 /* *********************************************************** updrefs ***** */
2390 /*
2391  * This updates all references to relocated blocks for the given inode.  The
2392  * inode is given as number within the cylinder group, and the number of the
2393  * cylinder group.
2394  */
2395 static void
2396 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2397     Nflag)
2398 {
2399 	DBG_FUNC("updrefs")
2400 	ufs_lbn_t	len, lbn, numblks;
2401 	ufs2_daddr_t	iptr, blksperindir;
2402 	union dinode	*ino;
2403 	int		i, mode, inodeupdated;
2404 
2405 	DBG_ENTER;
2406 
2407 	ino = ginode(in, fsi, cg);
2408 	if (ino == NULL) {
2409 		DBG_LEAVE;
2410 		return;
2411 	}
2412 	mode = DIP(ino, di_mode) & IFMT;
2413 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2414 		DBG_LEAVE;
2415 		return; /* only check DIR, FILE, LINK */
2416 	}
2417 	if (mode == IFLNK &&
2418 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2419 		DBG_LEAVE;
2420 		return;	/* skip short symlinks */
2421 	}
2422 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2423 	if (numblks == 0) {
2424 		DBG_LEAVE;
2425 		return;	/* skip empty file */
2426 	}
2427 	if (DIP(ino, di_blocks) == 0) {
2428 		DBG_LEAVE;
2429 		return;	/* skip empty swiss cheesy file or old fastlink */
2430 	}
2431 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2432 	    in,
2433 	    cg);
2434 
2435 	/*
2436 	 * Check all the blocks.
2437 	 */
2438 	inodeupdated = 0;
2439 	len = numblks < NDADDR ? numblks : NDADDR;
2440 	for (i = 0; i < len; i++) {
2441 		iptr = DIP(ino, di_db[i]);
2442 		if (iptr == 0)
2443 			continue;
2444 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2445 			DIP_SET(ino, di_db[i], iptr);
2446 			inodeupdated++;
2447 		}
2448 	}
2449 	DBG_PRINT0("~~scg direct blocks checked\n");
2450 
2451 	blksperindir = 1;
2452 	len = numblks - NDADDR;
2453 	lbn = NDADDR;
2454 	for (i = 0; len > 0 && i < NIADDR; i++) {
2455 		iptr = DIP(ino, di_ib[i]);
2456 		if (iptr == 0)
2457 			continue;
2458 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2459 			DIP_SET(ino, di_ib[i], iptr);
2460 			inodeupdated++;
2461 		}
2462 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2463 		blksperindir *= NINDIR(&sblock);
2464 		lbn += blksperindir;
2465 		len -= blksperindir;
2466 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2467 	}
2468 	if (inodeupdated)
2469 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2470 
2471 	DBG_LEAVE;
2472 	return;
2473 }
2474 
2475 /*
2476  * Recursively check all the indirect blocks.
2477  */
2478 static void
2479 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2480     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2481 {
2482 	DBG_FUNC("indirchk")
2483 	void *ibuf;
2484 	int i, last;
2485 	ufs2_daddr_t iptr;
2486 
2487 	DBG_ENTER;
2488 
2489 	/* read in the indirect block. */
2490 	ibuf = malloc(sblock.fs_bsize);
2491 	if (!ibuf)
2492 		errx(1, "malloc failed");
2493 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2494 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2495 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2496 	for (i = 0; i < last; i++) {
2497 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2498 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2499 		else
2500 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2501 		if (iptr == 0)
2502 			continue;
2503 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2504 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2505 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2506 			else
2507 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2508 		}
2509 		if (blksperindir == 1)
2510 			continue;
2511 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2512 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2513 	}
2514 	free(ibuf);
2515 
2516 	DBG_LEAVE;
2517 	return;
2518 }
2519