xref: /freebsd/sbin/growfs/growfs.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*
2  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
3  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
4  * Copyright (c) 2012 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
9  *
10  * Portions of this software were developed by Edward Tomasz Napierala
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgment:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors, as well as Christoph
25  *      Herrmann and Thomas-Henning von Kamptz.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
43  *
44  */
45 
46 #ifndef lint
47 static const char copyright[] =
48 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
49 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
50 All rights reserved.\n";
51 #endif /* not lint */
52 
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55 
56 #include <sys/param.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 #include <sys/disk.h>
60 #include <sys/ucred.h>
61 #include <sys/mount.h>
62 
63 #include <stdio.h>
64 #include <paths.h>
65 #include <ctype.h>
66 #include <err.h>
67 #include <fcntl.h>
68 #include <fstab.h>
69 #include <inttypes.h>
70 #include <limits.h>
71 #include <mntopts.h>
72 #include <stdlib.h>
73 #include <stdint.h>
74 #include <string.h>
75 #include <time.h>
76 #include <unistd.h>
77 #include <ufs/ufs/dinode.h>
78 #include <ufs/ffs/fs.h>
79 #include <libutil.h>
80 
81 #include "debug.h"
82 
83 #ifdef FS_DEBUG
84 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
85 #endif /* FS_DEBUG */
86 
87 static union {
88 	struct fs	fs;
89 	char		pad[SBLOCKSIZE];
90 } fsun1, fsun2;
91 #define	sblock	fsun1.fs	/* the new superblock */
92 #define	osblock	fsun2.fs	/* the old superblock */
93 
94 /*
95  * Possible superblock locations ordered from most to least likely.
96  */
97 static int sblock_try[] = SBLOCKSEARCH;
98 static ufs2_daddr_t sblockloc;
99 
100 static union {
101 	struct cg	cg;
102 	char		pad[MAXBSIZE];
103 } cgun1, cgun2;
104 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
105 #define	aocg	cgun2.cg	/* an old cylinder group */
106 
107 static struct csum	*fscs;	/* cylinder summary */
108 
109 static void	growfs(int, int, unsigned int);
110 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
111 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
112 static int	charsperline(void);
113 static void	usage(void);
114 static int	isblock(struct fs *, unsigned char *, int);
115 static void	clrblock(struct fs *, unsigned char *, int);
116 static void	setblock(struct fs *, unsigned char *, int);
117 static void	initcg(int, time_t, int, unsigned int);
118 static void	updjcg(int, time_t, int, int, unsigned int);
119 static void	updcsloc(time_t, int, int, unsigned int);
120 static void	frag_adjust(ufs2_daddr_t, int);
121 static void	updclst(int);
122 static void	mount_reload(const struct statfs *stfs);
123 
124 /*
125  * Here we actually start growing the file system. We basically read the
126  * cylinder summary from the first cylinder group as we want to update
127  * this on the fly during our various operations. First we handle the
128  * changes in the former last cylinder group. Afterwards we create all new
129  * cylinder groups.  Now we handle the cylinder group containing the
130  * cylinder summary which might result in a relocation of the whole
131  * structure.  In the end we write back the updated cylinder summary, the
132  * new superblock, and slightly patched versions of the super block
133  * copies.
134  */
135 static void
136 growfs(int fsi, int fso, unsigned int Nflag)
137 {
138 	DBG_FUNC("growfs")
139 	time_t modtime;
140 	uint cylno;
141 	int i, j, width;
142 	char tmpbuf[100];
143 	static int randinit = 0;
144 
145 	DBG_ENTER;
146 
147 	if (!randinit) {
148 		randinit = 1;
149 		srandomdev();
150 	}
151 	time(&modtime);
152 
153 	/*
154 	 * Get the cylinder summary into the memory.
155 	 */
156 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
157 	if (fscs == NULL)
158 		errx(1, "calloc failed");
159 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
160 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
161 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
162 		    osblock.fs_bsize), (void *)(((char *)fscs) + i), fsi);
163 	}
164 
165 #ifdef FS_DEBUG
166 	{
167 		struct csum *dbg_csp;
168 		int dbg_csc;
169 		char dbg_line[80];
170 
171 		dbg_csp = fscs;
172 
173 		for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) {
174 			snprintf(dbg_line, sizeof(dbg_line),
175 			    "%d. old csum in old location", dbg_csc);
176 			DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++);
177 		}
178 	}
179 #endif /* FS_DEBUG */
180 	DBG_PRINT0("fscs read\n");
181 
182 	/*
183 	 * Do all needed changes in the former last cylinder group.
184 	 */
185 	updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag);
186 
187 	/*
188 	 * Dump out summary information about file system.
189 	 */
190 #ifdef FS_DEBUG
191 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
192 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
193 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
194 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
195 	    sblock.fs_fsize);
196 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
197 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
198 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
199 	if (sblock.fs_flags & FS_DOSOFTDEP)
200 		printf("\twith soft updates\n");
201 #undef B2MBFACTOR
202 #endif /* FS_DEBUG */
203 
204 	/*
205 	 * Now build the cylinders group blocks and
206 	 * then print out indices of cylinder groups.
207 	 */
208 	printf("super-block backups (for fsck -b #) at:\n");
209 	i = 0;
210 	width = charsperline();
211 
212 	/*
213 	 * Iterate for only the new cylinder groups.
214 	 */
215 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
216 		initcg(cylno, modtime, fso, Nflag);
217 		j = sprintf(tmpbuf, " %jd%s",
218 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
219 		    cylno < (sblock.fs_ncg - 1) ? "," : "" );
220 		if (i + j >= width) {
221 			printf("\n");
222 			i = 0;
223 		}
224 		i += j;
225 		printf("%s", tmpbuf);
226 		fflush(stdout);
227 	}
228 	printf("\n");
229 
230 	/*
231 	 * Do all needed changes in the first cylinder group.
232 	 * allocate blocks in new location
233 	 */
234 	updcsloc(modtime, fsi, fso, Nflag);
235 
236 	/*
237 	 * Now write the cylinder summary back to disk.
238 	 */
239 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
240 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
241 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
242 		    (void *)(((char *)fscs) + i), fso, Nflag);
243 	}
244 	DBG_PRINT0("fscs written\n");
245 
246 #ifdef FS_DEBUG
247 	{
248 		struct csum	*dbg_csp;
249 		int	dbg_csc;
250 		char	dbg_line[80];
251 
252 		dbg_csp = fscs;
253 		for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) {
254 			snprintf(dbg_line, sizeof(dbg_line),
255 			    "%d. new csum in new location", dbg_csc);
256 			DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++);
257 		}
258 	}
259 #endif /* FS_DEBUG */
260 
261 	/*
262 	 * Now write the new superblock back to disk.
263 	 */
264 	sblock.fs_time = modtime;
265 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
266 	DBG_PRINT0("sblock written\n");
267 	DBG_DUMP_FS(&sblock, "new initial sblock");
268 
269 	/*
270 	 * Clean up the dynamic fields in our superblock copies.
271 	 */
272 	sblock.fs_fmod = 0;
273 	sblock.fs_clean = 1;
274 	sblock.fs_ronly = 0;
275 	sblock.fs_cgrotor = 0;
276 	sblock.fs_state = 0;
277 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
278 	sblock.fs_flags &= FS_DOSOFTDEP;
279 
280 	/*
281 	 * XXX
282 	 * The following fields are currently distributed from the superblock
283 	 * to the copies:
284 	 *     fs_minfree
285 	 *     fs_rotdelay
286 	 *     fs_maxcontig
287 	 *     fs_maxbpg
288 	 *     fs_minfree,
289 	 *     fs_optim
290 	 *     fs_flags regarding SOFTPDATES
291 	 *
292 	 * We probably should rather change the summary for the cylinder group
293 	 * statistics here to the value of what would be in there, if the file
294 	 * system were created initially with the new size. Therefor we still
295 	 * need to find an easy way of calculating that.
296 	 * Possibly we can try to read the first superblock copy and apply the
297 	 * "diffed" stats between the old and new superblock by still copying
298 	 * certain parameters onto that.
299 	 */
300 
301 	/*
302 	 * Write out the duplicate super blocks.
303 	 */
304 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
305 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
306 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
307 	}
308 	DBG_PRINT0("sblock copies written\n");
309 	DBG_DUMP_FS(&sblock, "new other sblocks");
310 
311 	DBG_LEAVE;
312 	return;
313 }
314 
315 /*
316  * This creates a new cylinder group structure, for more details please see
317  * the source of newfs(8), as this function is taken over almost unchanged.
318  * As this is never called for the first cylinder group, the special
319  * provisions for that case are removed here.
320  */
321 static void
322 initcg(int cylno, time_t modtime, int fso, unsigned int Nflag)
323 {
324 	DBG_FUNC("initcg")
325 	static caddr_t iobuf;
326 	long blkno, start;
327 	ino_t ino;
328 	ufs2_daddr_t i, cbase, dmax;
329 	struct ufs1_dinode *dp1;
330 	struct csum *cs;
331 	uint j, d, dupper, dlower;
332 
333 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize * 3)) == NULL)
334 		errx(37, "panic: cannot allocate I/O buffer");
335 
336 	/*
337 	 * Determine block bounds for cylinder group.
338 	 * Allow space for super block summary information in first
339 	 * cylinder group.
340 	 */
341 	cbase = cgbase(&sblock, cylno);
342 	dmax = cbase + sblock.fs_fpg;
343 	if (dmax > sblock.fs_size)
344 		dmax = sblock.fs_size;
345 	dlower = cgsblock(&sblock, cylno) - cbase;
346 	dupper = cgdmin(&sblock, cylno) - cbase;
347 	if (cylno == 0)	/* XXX fscs may be relocated */
348 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
349 	cs = &fscs[cylno];
350 	memset(&acg, 0, sblock.fs_cgsize);
351 	acg.cg_time = modtime;
352 	acg.cg_magic = CG_MAGIC;
353 	acg.cg_cgx = cylno;
354 	acg.cg_niblk = sblock.fs_ipg;
355 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
356 	    sblock.fs_ipg : 2 * INOPB(&sblock);
357 	acg.cg_ndblk = dmax - cbase;
358 	if (sblock.fs_contigsumsize > 0)
359 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
360 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
361 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
362 		acg.cg_iusedoff = start;
363 	} else {
364 		acg.cg_old_ncyl = sblock.fs_old_cpg;
365 		acg.cg_old_time = acg.cg_time;
366 		acg.cg_time = 0;
367 		acg.cg_old_niblk = acg.cg_niblk;
368 		acg.cg_niblk = 0;
369 		acg.cg_initediblk = 0;
370 		acg.cg_old_btotoff = start;
371 		acg.cg_old_boff = acg.cg_old_btotoff +
372 		    sblock.fs_old_cpg * sizeof(int32_t);
373 		acg.cg_iusedoff = acg.cg_old_boff +
374 		    sblock.fs_old_cpg * sizeof(u_int16_t);
375 	}
376 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
377 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
378 	if (sblock.fs_contigsumsize > 0) {
379 		acg.cg_clustersumoff =
380 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
381 		acg.cg_clustersumoff -= sizeof(u_int32_t);
382 		acg.cg_clusteroff = acg.cg_clustersumoff +
383 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
384 		acg.cg_nextfreeoff = acg.cg_clusteroff +
385 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
386 	}
387 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
388 		/*
389 		 * This should never happen as we would have had that panic
390 		 * already on file system creation
391 		 */
392 		errx(37, "panic: cylinder group too big");
393 	}
394 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
395 	if (cylno == 0)
396 		for (ino = 0; ino < ROOTINO; ino++) {
397 			setbit(cg_inosused(&acg), ino);
398 			acg.cg_cs.cs_nifree--;
399 		}
400 	/*
401 	 * For the old file system, we have to initialize all the inodes.
402 	 */
403 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
404 		bzero(iobuf, sblock.fs_bsize);
405 		for (i = 0; i < sblock.fs_ipg / INOPF(&sblock);
406 		    i += sblock.fs_frag) {
407 			dp1 = (struct ufs1_dinode *)(void *)iobuf;
408 			for (j = 0; j < INOPB(&sblock); j++) {
409 				dp1->di_gen = random();
410 				dp1++;
411 			}
412 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
413 			    sblock.fs_bsize, iobuf, fso, Nflag);
414 		}
415 	}
416 	if (cylno > 0) {
417 		/*
418 		 * In cylno 0, beginning space is reserved
419 		 * for boot and super blocks.
420 		 */
421 		for (d = 0; d < dlower; d += sblock.fs_frag) {
422 			blkno = d / sblock.fs_frag;
423 			setblock(&sblock, cg_blksfree(&acg), blkno);
424 			if (sblock.fs_contigsumsize > 0)
425 				setbit(cg_clustersfree(&acg), blkno);
426 			acg.cg_cs.cs_nbfree++;
427 		}
428 		sblock.fs_dsize += dlower;
429 	}
430 	sblock.fs_dsize += acg.cg_ndblk - dupper;
431 	if ((i = dupper % sblock.fs_frag)) {
432 		acg.cg_frsum[sblock.fs_frag - i]++;
433 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
434 			setbit(cg_blksfree(&acg), dupper);
435 			acg.cg_cs.cs_nffree++;
436 		}
437 	}
438 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
439 	    d += sblock.fs_frag) {
440 		blkno = d / sblock.fs_frag;
441 		setblock(&sblock, cg_blksfree(&acg), blkno);
442 		if (sblock.fs_contigsumsize > 0)
443 			setbit(cg_clustersfree(&acg), blkno);
444 		acg.cg_cs.cs_nbfree++;
445 	}
446 	if (d < acg.cg_ndblk) {
447 		acg.cg_frsum[acg.cg_ndblk - d]++;
448 		for (; d < acg.cg_ndblk; d++) {
449 			setbit(cg_blksfree(&acg), d);
450 			acg.cg_cs.cs_nffree++;
451 		}
452 	}
453 	if (sblock.fs_contigsumsize > 0) {
454 		int32_t *sump = cg_clustersum(&acg);
455 		u_char *mapp = cg_clustersfree(&acg);
456 		int map = *mapp++;
457 		int bit = 1;
458 		int run = 0;
459 
460 		for (i = 0; i < acg.cg_nclusterblks; i++) {
461 			if ((map & bit) != 0)
462 				run++;
463 			else if (run != 0) {
464 				if (run > sblock.fs_contigsumsize)
465 					run = sblock.fs_contigsumsize;
466 				sump[run]++;
467 				run = 0;
468 			}
469 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
470 				bit <<= 1;
471 			else {
472 				map = *mapp++;
473 				bit = 1;
474 			}
475 		}
476 		if (run != 0) {
477 			if (run > sblock.fs_contigsumsize)
478 				run = sblock.fs_contigsumsize;
479 			sump[run]++;
480 		}
481 	}
482 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
483 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
484 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
485 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
486 	*cs = acg.cg_cs;
487 
488 	memcpy(iobuf, &acg, sblock.fs_cgsize);
489 	memset(iobuf + sblock.fs_cgsize, '\0',
490 	    sblock.fs_bsize * 3 - sblock.fs_cgsize);
491 
492 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
493 	    sblock.fs_bsize * 3, iobuf, fso, Nflag);
494 	DBG_DUMP_CG(&sblock, "new cg", &acg);
495 
496 	DBG_LEAVE;
497 	return;
498 }
499 
500 /*
501  * Here we add or subtract (sign +1/-1) the available fragments in a given
502  * block to or from the fragment statistics. By subtracting before and adding
503  * after an operation on the free frag map we can easy update the fragment
504  * statistic, which seems to be otherwise a rather complex operation.
505  */
506 static void
507 frag_adjust(ufs2_daddr_t frag, int sign)
508 {
509 	DBG_FUNC("frag_adjust")
510 	int fragsize;
511 	int f;
512 
513 	DBG_ENTER;
514 
515 	fragsize = 0;
516 	/*
517 	 * Here frag only needs to point to any fragment in the block we want
518 	 * to examine.
519 	 */
520 	for (f = rounddown(frag, sblock.fs_frag);
521 	    f < roundup(frag + 1, sblock.fs_frag); f++) {
522 		/*
523 		 * Count contiguous free fragments.
524 		 */
525 		if (isset(cg_blksfree(&acg), f)) {
526 			fragsize++;
527 		} else {
528 			if (fragsize && fragsize < sblock.fs_frag) {
529 				/*
530 				 * We found something in between.
531 				 */
532 				acg.cg_frsum[fragsize] += sign;
533 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
534 				    fragsize, sign);
535 			}
536 			fragsize = 0;
537 		}
538 	}
539 	if (fragsize && fragsize < sblock.fs_frag) {
540 		/*
541 		 * We found something.
542 		 */
543 		acg.cg_frsum[fragsize] += sign;
544 		DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign);
545 	}
546 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign);
547 
548 	DBG_LEAVE;
549 	return;
550 }
551 
552 /*
553  * Here we do all needed work for the former last cylinder group. It has to be
554  * changed in any case, even if the file system ended exactly on the end of
555  * this group, as there is some slightly inconsistent handling of the number
556  * of cylinders in the cylinder group. We start again by reading the cylinder
557  * group from disk. If the last block was not fully available, we first handle
558  * the missing fragments, then we handle all new full blocks in that file
559  * system and finally we handle the new last fragmented block in the file
560  * system.  We again have to handle the fragment statistics rotational layout
561  * tables and cluster summary during all those operations.
562  */
563 static void
564 updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag)
565 {
566 	DBG_FUNC("updjcg")
567 	ufs2_daddr_t cbase, dmax, dupper;
568 	struct csum *cs;
569 	int i, k;
570 	int j = 0;
571 
572 	DBG_ENTER;
573 
574 	/*
575 	 * Read the former last (joining) cylinder group from disk, and make
576 	 * a copy.
577 	 */
578 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
579 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
580 	DBG_PRINT0("jcg read\n");
581 	DBG_DUMP_CG(&sblock, "old joining cg", &aocg);
582 
583 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
584 
585 	/*
586 	 * If the cylinder group had already its new final size almost
587 	 * nothing is to be done ... except:
588 	 * For some reason the value of cg_ncyl in the last cylinder group has
589 	 * to be zero instead of fs_cpg. As this is now no longer the last
590 	 * cylinder group we have to change that value now to fs_cpg.
591 	 */
592 
593 	if (cgbase(&osblock, cylno + 1) == osblock.fs_size) {
594 		if (sblock.fs_magic == FS_UFS1_MAGIC)
595 			acg.cg_old_ncyl = sblock.fs_old_cpg;
596 
597 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
598 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
599 		DBG_PRINT0("jcg written\n");
600 		DBG_DUMP_CG(&sblock, "new joining cg", &acg);
601 
602 		DBG_LEAVE;
603 		return;
604 	}
605 
606 	/*
607 	 * Set up some variables needed later.
608 	 */
609 	cbase = cgbase(&sblock, cylno);
610 	dmax = cbase + sblock.fs_fpg;
611 	if (dmax > sblock.fs_size)
612 		dmax = sblock.fs_size;
613 	dupper = cgdmin(&sblock, cylno) - cbase;
614 	if (cylno == 0) /* XXX fscs may be relocated */
615 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
616 
617 	/*
618 	 * Set pointer to the cylinder summary for our cylinder group.
619 	 */
620 	cs = fscs + cylno;
621 
622 	/*
623 	 * Touch the cylinder group, update all fields in the cylinder group as
624 	 * needed, update the free space in the superblock.
625 	 */
626 	acg.cg_time = modtime;
627 	if ((unsigned)cylno == sblock.fs_ncg - 1) {
628 		/*
629 		 * This is still the last cylinder group.
630 		 */
631 		if (sblock.fs_magic == FS_UFS1_MAGIC)
632 			acg.cg_old_ncyl =
633 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
634 	} else {
635 		acg.cg_old_ncyl = sblock.fs_old_cpg;
636 	}
637 	DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg);
638 #ifdef FS_DEBUG
639 	if (sblock.fs_magic == FS_UFS1_MAGIC)
640 		DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg);
641 #endif
642 	DBG_PRINT0("\n");
643 	acg.cg_ndblk = dmax - cbase;
644 	sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk;
645 	if (sblock.fs_contigsumsize > 0)
646 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
647 
648 	/*
649 	 * Now we have to update the free fragment bitmap for our new free
650 	 * space.  There again we have to handle the fragmentation and also
651 	 * the rotational layout tables and the cluster summary.  This is
652 	 * also done per fragment for the first new block if the old file
653 	 * system end was not on a block boundary, per fragment for the new
654 	 * last block if the new file system end is not on a block boundary,
655 	 * and per block for all space in between.
656 	 *
657 	 * Handle the first new block here if it was partially available
658 	 * before.
659 	 */
660 	if (osblock.fs_size % sblock.fs_frag) {
661 		if (roundup(osblock.fs_size, sblock.fs_frag) <=
662 		    sblock.fs_size) {
663 			/*
664 			 * The new space is enough to fill at least this
665 			 * block
666 			 */
667 			j = 0;
668 			for (i = roundup(osblock.fs_size - cbase,
669 			    sblock.fs_frag) - 1; i >= osblock.fs_size - cbase;
670 			    i--) {
671 				setbit(cg_blksfree(&acg), i);
672 				acg.cg_cs.cs_nffree++;
673 				j++;
674 			}
675 
676 			/*
677 			 * Check if the fragment just created could join an
678 			 * already existing fragment at the former end of the
679 			 * file system.
680 			 */
681 			if (isblock(&sblock, cg_blksfree(&acg),
682 			    ((osblock.fs_size - cgbase(&sblock, cylno)) /
683 			     sblock.fs_frag))) {
684 				/*
685 				 * The block is now completely available.
686 				 */
687 				DBG_PRINT0("block was\n");
688 				acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--;
689 				acg.cg_cs.cs_nbfree++;
690 				acg.cg_cs.cs_nffree -= sblock.fs_frag;
691 				k = rounddown(osblock.fs_size - cbase,
692 				    sblock.fs_frag);
693 				updclst((osblock.fs_size - cbase) /
694 				    sblock.fs_frag);
695 			} else {
696 				/*
697 				 * Lets rejoin a possible partially growed
698 				 * fragment.
699 				 */
700 				k = 0;
701 				while (isset(cg_blksfree(&acg), i) &&
702 				    (i >= rounddown(osblock.fs_size - cbase,
703 				    sblock.fs_frag))) {
704 					i--;
705 					k++;
706 				}
707 				if (k)
708 					acg.cg_frsum[k]--;
709 				acg.cg_frsum[k + j]++;
710 			}
711 		} else {
712 			/*
713 			 * We only grow by some fragments within this last
714 			 * block.
715 			 */
716 			for (i = sblock.fs_size - cbase - 1;
717 			    i >= osblock.fs_size - cbase; i--) {
718 				setbit(cg_blksfree(&acg), i);
719 				acg.cg_cs.cs_nffree++;
720 				j++;
721 			}
722 			/*
723 			 * Lets rejoin a possible partially growed fragment.
724 			 */
725 			k = 0;
726 			while (isset(cg_blksfree(&acg), i) &&
727 			    (i >= rounddown(osblock.fs_size - cbase,
728 			    sblock.fs_frag))) {
729 				i--;
730 				k++;
731 			}
732 			if (k)
733 				acg.cg_frsum[k]--;
734 			acg.cg_frsum[k + j]++;
735 		}
736 	}
737 
738 	/*
739 	 * Handle all new complete blocks here.
740 	 */
741 	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
742 	    i + sblock.fs_frag <= dmax - cbase;	/* XXX <= or only < ? */
743 	    i += sblock.fs_frag) {
744 		j = i / sblock.fs_frag;
745 		setblock(&sblock, cg_blksfree(&acg), j);
746 		updclst(j);
747 		acg.cg_cs.cs_nbfree++;
748 	}
749 
750 	/*
751 	 * Handle the last new block if there are stll some new fragments left.
752 	 * Here we don't have to bother about the cluster summary or the even
753 	 * the rotational layout table.
754 	 */
755 	if (i < (dmax - cbase)) {
756 		acg.cg_frsum[dmax - cbase - i]++;
757 		for (; i < dmax - cbase; i++) {
758 			setbit(cg_blksfree(&acg), i);
759 			acg.cg_cs.cs_nffree++;
760 		}
761 	}
762 
763 	sblock.fs_cstotal.cs_nffree +=
764 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
765 	sblock.fs_cstotal.cs_nbfree +=
766 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
767 	/*
768 	 * The following statistics are not changed here:
769 	 *     sblock.fs_cstotal.cs_ndir
770 	 *     sblock.fs_cstotal.cs_nifree
771 	 * As the statistics for this cylinder group are ready, copy it to
772 	 * the summary information array.
773 	 */
774 	*cs = acg.cg_cs;
775 
776 	/*
777 	 * Write the updated "joining" cylinder group back to disk.
778 	 */
779 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
780 	    (void *)&acg, fso, Nflag);
781 	DBG_PRINT0("jcg written\n");
782 	DBG_DUMP_CG(&sblock, "new joining cg", &acg);
783 
784 	DBG_LEAVE;
785 	return;
786 }
787 
788 /*
789  * Here we update the location of the cylinder summary. We have two possible
790  * ways of growing the cylinder summary:
791  * (1)	We can try to grow the summary in the current location, and relocate
792  *	possibly used blocks within the current cylinder group.
793  * (2)	Alternatively we can relocate the whole cylinder summary to the first
794  *	new completely empty cylinder group. Once the cylinder summary is no
795  *	longer in the beginning of the first cylinder group you should never
796  *	use a version of fsck which is not aware of the possibility to have
797  *	this structure in a non standard place.
798  * Option (2) is considered to be less intrusive to the structure of the file-
799  * system, so that's the one being used.
800  */
801 static void
802 updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag)
803 {
804 	DBG_FUNC("updcsloc")
805 	struct csum *cs;
806 	int ocscg, ncscg;
807 	ufs2_daddr_t d;
808 	int lcs = 0;
809 	int block;
810 
811 	DBG_ENTER;
812 
813 	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
814 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
815 		/*
816 		 * No new fragment needed.
817 		 */
818 		DBG_LEAVE;
819 		return;
820 	}
821 	ocscg = dtog(&osblock, osblock.fs_csaddr);
822 	cs = fscs + ocscg;
823 
824 	/*
825 	 * Read original cylinder group from disk, and make a copy.
826 	 * XXX	If Nflag is set in some very rare cases we now miss
827 	 *	some changes done in updjcg by reading the unmodified
828 	 *	block from disk.
829 	 */
830 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
831 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
832 	DBG_PRINT0("oscg read\n");
833 	DBG_DUMP_CG(&sblock, "old summary cg", &aocg);
834 
835 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
836 
837 	/*
838 	 * Touch the cylinder group, set up local variables needed later
839 	 * and update the superblock.
840 	 */
841 	acg.cg_time = modtime;
842 
843 	/*
844 	 * XXX	In the case of having active snapshots we may need much more
845 	 *	blocks for the copy on write. We need each block twice, and
846 	 *	also up to 8*3 blocks for indirect blocks for all possible
847 	 *	references.
848 	 */
849 	/*
850 	 * There is not enough space in the old cylinder group to
851 	 * relocate all blocks as needed, so we relocate the whole
852 	 * cylinder group summary to a new group. We try to use the
853 	 * first complete new cylinder group just created. Within the
854 	 * cylinder group we align the area immediately after the
855 	 * cylinder group information location in order to be as
856 	 * close as possible to the original implementation of ffs.
857 	 *
858 	 * First we have to make sure we'll find enough space in the
859 	 * new cylinder group. If not, then we currently give up.
860 	 * We start with freeing everything which was used by the
861 	 * fragments of the old cylinder summary in the current group.
862 	 * Now we write back the group meta data, read in the needed
863 	 * meta data from the new cylinder group, and start allocating
864 	 * within that group. Here we can assume, the group to be
865 	 * completely empty. Which makes the handling of fragments and
866 	 * clusters a lot easier.
867 	 */
868 	DBG_TRC;
869 	if (sblock.fs_ncg - osblock.fs_ncg < 2)
870 		errx(2, "panic: not enough space");
871 
872 	/*
873 	 * Point "d" to the first fragment not used by the cylinder
874 	 * summary.
875 	 */
876 	d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
877 
878 	/*
879 	 * Set up last cluster size ("lcs") already here. Calculate
880 	 * the size for the trailing cluster just behind where "d"
881 	 * points to.
882 	 */
883 	if (sblock.fs_contigsumsize > 0) {
884 		for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
885 		    lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) {
886 			if (isclr(cg_clustersfree(&acg), block))
887 				break;
888 		}
889 	}
890 
891 	/*
892 	 * Point "d" to the last frag used by the cylinder summary.
893 	 */
894 	d--;
895 
896 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
897 	if ((d + 1) % sblock.fs_frag) {
898 		/*
899 		 * The end of the cylinder summary is not a complete
900 		 * block.
901 		 */
902 		DBG_TRC;
903 		frag_adjust(d % sblock.fs_fpg, -1);
904 		for (; (d + 1) % sblock.fs_frag; d--) {
905 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
906 			setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
907 			acg.cg_cs.cs_nffree++;
908 			sblock.fs_cstotal.cs_nffree++;
909 		}
910 		/*
911 		 * Point "d" to the last fragment of the last
912 		 * (incomplete) block of the cylinder summary.
913 		 */
914 		d++;
915 		frag_adjust(d % sblock.fs_fpg, 1);
916 
917 		if (isblock(&sblock, cg_blksfree(&acg),
918 		    (d % sblock.fs_fpg) / sblock.fs_frag)) {
919 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
920 			acg.cg_cs.cs_nffree -= sblock.fs_frag;
921 			acg.cg_cs.cs_nbfree++;
922 			sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
923 			sblock.fs_cstotal.cs_nbfree++;
924 			if (sblock.fs_contigsumsize > 0) {
925 				setbit(cg_clustersfree(&acg),
926 				    (d % sblock.fs_fpg) / sblock.fs_frag);
927 				if (lcs < sblock.fs_contigsumsize) {
928 					if (lcs)
929 						cg_clustersum(&acg)[lcs]--;
930 					lcs++;
931 					cg_clustersum(&acg)[lcs]++;
932 				}
933 			}
934 		}
935 		/*
936 		 * Point "d" to the first fragment of the block before
937 		 * the last incomplete block.
938 		 */
939 		d--;
940 	}
941 
942 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
943 	for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
944 	    d -= sblock.fs_frag) {
945 		DBG_TRC;
946 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
947 		setblock(&sblock, cg_blksfree(&acg),
948 		    (d % sblock.fs_fpg) / sblock.fs_frag);
949 		acg.cg_cs.cs_nbfree++;
950 		sblock.fs_cstotal.cs_nbfree++;
951 		if (sblock.fs_contigsumsize > 0) {
952 			setbit(cg_clustersfree(&acg),
953 			    (d % sblock.fs_fpg) / sblock.fs_frag);
954 			/*
955 			 * The last cluster size is already set up.
956 			 */
957 			if (lcs < sblock.fs_contigsumsize) {
958 				if (lcs)
959 					cg_clustersum(&acg)[lcs]--;
960 				lcs++;
961 				cg_clustersum(&acg)[lcs]++;
962 			}
963 		}
964 	}
965 	*cs = acg.cg_cs;
966 
967 	/*
968 	 * Now write the former cylinder group containing the cylinder
969 	 * summary back to disk.
970 	 */
971 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
972 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
973 	DBG_PRINT0("oscg written\n");
974 	DBG_DUMP_CG(&sblock, "old summary cg", &acg);
975 
976 	/*
977 	 * Find the beginning of the new cylinder group containing the
978 	 * cylinder summary.
979 	 */
980 	sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
981 	ncscg = dtog(&sblock, sblock.fs_csaddr);
982 	cs = fscs + ncscg;
983 
984 	/*
985 	 * If Nflag is specified, we would now read random data instead
986 	 * of an empty cg structure from disk. So we can't simulate that
987 	 * part for now.
988 	 */
989 	if (Nflag) {
990 		DBG_PRINT0("nscg update skipped\n");
991 		DBG_LEAVE;
992 		return;
993 	}
994 
995 	/*
996 	 * Read the future cylinder group containing the cylinder
997 	 * summary from disk, and make a copy.
998 	 */
999 	rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1000 	    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1001 	DBG_PRINT0("nscg read\n");
1002 	DBG_DUMP_CG(&sblock, "new summary cg", &aocg);
1003 
1004 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1005 
1006 	/*
1007 	 * Allocate all complete blocks used by the new cylinder
1008 	 * summary.
1009 	 */
1010 	for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
1011 	    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
1012 	    d += sblock.fs_frag) {
1013 		clrblock(&sblock, cg_blksfree(&acg),
1014 		    (d % sblock.fs_fpg) / sblock.fs_frag);
1015 		acg.cg_cs.cs_nbfree--;
1016 		sblock.fs_cstotal.cs_nbfree--;
1017 		if (sblock.fs_contigsumsize > 0) {
1018 			clrbit(cg_clustersfree(&acg),
1019 			    (d % sblock.fs_fpg) / sblock.fs_frag);
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * Allocate all fragments used by the cylinder summary in the
1025 	 * last block.
1026 	 */
1027 	if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1028 		for (; d - sblock.fs_csaddr <
1029 		    sblock.fs_cssize/sblock.fs_fsize; d++) {
1030 			clrbit(cg_blksfree(&acg), d % sblock.fs_fpg);
1031 			acg.cg_cs.cs_nffree--;
1032 			sblock.fs_cstotal.cs_nffree--;
1033 		}
1034 		acg.cg_cs.cs_nbfree--;
1035 		acg.cg_cs.cs_nffree += sblock.fs_frag;
1036 		sblock.fs_cstotal.cs_nbfree--;
1037 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1038 		if (sblock.fs_contigsumsize > 0)
1039 			clrbit(cg_clustersfree(&acg),
1040 			    (d % sblock.fs_fpg) / sblock.fs_frag);
1041 
1042 		frag_adjust(d % sblock.fs_fpg, 1);
1043 	}
1044 	/*
1045 	 * XXX	Handle the cluster statistics here in the case this
1046 	 *	cylinder group is now almost full, and the remaining
1047 	 *	space is less then the maximum cluster size. This is
1048 	 *	probably not needed, as you would hardly find a file
1049 	 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1050 	 *	space right behind the cylinder group information in
1051 	 *	any new cylinder group.
1052 	 */
1053 
1054 	/*
1055 	 * Update our statistics in the cylinder summary.
1056 	 */
1057 	*cs = acg.cg_cs;
1058 
1059 	/*
1060 	 * Write the new cylinder group containing the cylinder summary
1061 	 * back to disk.
1062 	 */
1063 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1064 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1065 	DBG_PRINT0("nscg written\n");
1066 	DBG_DUMP_CG(&sblock, "new summary cg", &acg);
1067 
1068 	DBG_LEAVE;
1069 	return;
1070 }
1071 
1072 /*
1073  * Here we read some block(s) from disk.
1074  */
1075 static void
1076 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1077 {
1078 	DBG_FUNC("rdfs")
1079 	ssize_t	n;
1080 
1081 	DBG_ENTER;
1082 
1083 	if (bno < 0)
1084 		err(32, "rdfs: attempting to read negative block number");
1085 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0)
1086 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1087 	n = read(fsi, bf, size);
1088 	if (n != (ssize_t)size)
1089 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1090 
1091 	DBG_LEAVE;
1092 	return;
1093 }
1094 
1095 /*
1096  * Here we write some block(s) to disk.
1097  */
1098 static void
1099 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1100 {
1101 	DBG_FUNC("wtfs")
1102 	ssize_t	n;
1103 
1104 	DBG_ENTER;
1105 
1106 	if (Nflag) {
1107 		DBG_LEAVE;
1108 		return;
1109 	}
1110 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0)
1111 		err(35, "wtfs: seek error: %ld", (long)bno);
1112 	n = write(fso, bf, size);
1113 	if (n != (ssize_t)size)
1114 		err(36, "wtfs: write error: %ld", (long)bno);
1115 
1116 	DBG_LEAVE;
1117 	return;
1118 }
1119 
1120 /*
1121  * Here we check if all frags of a block are free. For more details again
1122  * please see the source of newfs(8), as this function is taken over almost
1123  * unchanged.
1124  */
1125 static int
1126 isblock(struct fs *fs, unsigned char *cp, int h)
1127 {
1128 	DBG_FUNC("isblock")
1129 	unsigned char mask;
1130 
1131 	DBG_ENTER;
1132 
1133 	switch (fs->fs_frag) {
1134 	case 8:
1135 		DBG_LEAVE;
1136 		return (cp[h] == 0xff);
1137 	case 4:
1138 		mask = 0x0f << ((h & 0x1) << 2);
1139 		DBG_LEAVE;
1140 		return ((cp[h >> 1] & mask) == mask);
1141 	case 2:
1142 		mask = 0x03 << ((h & 0x3) << 1);
1143 		DBG_LEAVE;
1144 		return ((cp[h >> 2] & mask) == mask);
1145 	case 1:
1146 		mask = 0x01 << (h & 0x7);
1147 		DBG_LEAVE;
1148 		return ((cp[h >> 3] & mask) == mask);
1149 	default:
1150 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1151 		DBG_LEAVE;
1152 		return (0);
1153 	}
1154 }
1155 
1156 /*
1157  * Here we allocate a complete block in the block map. For more details again
1158  * please see the source of newfs(8), as this function is taken over almost
1159  * unchanged.
1160  */
1161 static void
1162 clrblock(struct fs *fs, unsigned char *cp, int h)
1163 {
1164 	DBG_FUNC("clrblock")
1165 
1166 	DBG_ENTER;
1167 
1168 	switch ((fs)->fs_frag) {
1169 	case 8:
1170 		cp[h] = 0;
1171 		break;
1172 	case 4:
1173 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1174 		break;
1175 	case 2:
1176 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1177 		break;
1178 	case 1:
1179 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1180 		break;
1181 	default:
1182 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1183 		break;
1184 	}
1185 
1186 	DBG_LEAVE;
1187 	return;
1188 }
1189 
1190 /*
1191  * Here we free a complete block in the free block map. For more details again
1192  * please see the source of newfs(8), as this function is taken over almost
1193  * unchanged.
1194  */
1195 static void
1196 setblock(struct fs *fs, unsigned char *cp, int h)
1197 {
1198 	DBG_FUNC("setblock")
1199 
1200 	DBG_ENTER;
1201 
1202 	switch (fs->fs_frag) {
1203 	case 8:
1204 		cp[h] = 0xff;
1205 		break;
1206 	case 4:
1207 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1208 		break;
1209 	case 2:
1210 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1211 		break;
1212 	case 1:
1213 		cp[h >> 3] |= (0x01 << (h & 0x7));
1214 		break;
1215 	default:
1216 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1217 		break;
1218 	}
1219 
1220 	DBG_LEAVE;
1221 	return;
1222 }
1223 
1224 /*
1225  * Figure out how many lines our current terminal has. For more details again
1226  * please see the source of newfs(8), as this function is taken over almost
1227  * unchanged.
1228  */
1229 static int
1230 charsperline(void)
1231 {
1232 	DBG_FUNC("charsperline")
1233 	int columns;
1234 	char *cp;
1235 	struct winsize ws;
1236 
1237 	DBG_ENTER;
1238 
1239 	columns = 0;
1240 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1241 		columns = ws.ws_col;
1242 	if (columns == 0 && (cp = getenv("COLUMNS")))
1243 		columns = atoi(cp);
1244 	if (columns == 0)
1245 		columns = 80;	/* last resort */
1246 
1247 	DBG_LEAVE;
1248 	return (columns);
1249 }
1250 
1251 static int
1252 is_dev(const char *name)
1253 {
1254 	struct stat devstat;
1255 
1256 	if (stat(name, &devstat) != 0)
1257 		return (0);
1258 	if (!S_ISCHR(devstat.st_mode))
1259 		return (0);
1260 	return (1);
1261 }
1262 
1263 /*
1264  * Return mountpoint on which the device is currently mounted.
1265  */
1266 static const struct statfs *
1267 dev_to_statfs(const char *dev)
1268 {
1269 	struct stat devstat, mntdevstat;
1270 	struct statfs *mntbuf, *statfsp;
1271 	char device[MAXPATHLEN];
1272 	char *mntdevname;
1273 	int i, mntsize;
1274 
1275 	/*
1276 	 * First check the mounted filesystems.
1277 	 */
1278 	if (stat(dev, &devstat) != 0)
1279 		return (NULL);
1280 	if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode))
1281 		return (NULL);
1282 
1283 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1284 	for (i = 0; i < mntsize; i++) {
1285 		statfsp = &mntbuf[i];
1286 		mntdevname = statfsp->f_mntfromname;
1287 		if (*mntdevname != '/') {
1288 			strcpy(device, _PATH_DEV);
1289 			strcat(device, mntdevname);
1290 			mntdevname = device;
1291 		}
1292 		if (stat(mntdevname, &mntdevstat) == 0 &&
1293 		    mntdevstat.st_rdev == devstat.st_rdev)
1294 			return (statfsp);
1295 	}
1296 
1297 	return (NULL);
1298 }
1299 
1300 static const char *
1301 mountpoint_to_dev(const char *mountpoint)
1302 {
1303 	struct statfs *mntbuf, *statfsp;
1304 	struct fstab *fs;
1305 	int i, mntsize;
1306 
1307 	/*
1308 	 * First check the mounted filesystems.
1309 	 */
1310 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1311 	for (i = 0; i < mntsize; i++) {
1312 		statfsp = &mntbuf[i];
1313 
1314 		if (strcmp(statfsp->f_mntonname, mountpoint) == 0)
1315 			return (statfsp->f_mntfromname);
1316 	}
1317 
1318 	/*
1319 	 * Check the fstab.
1320 	 */
1321 	fs = getfsfile(mountpoint);
1322 	if (fs != NULL)
1323 		return (fs->fs_spec);
1324 
1325 	return (NULL);
1326 }
1327 
1328 static const char *
1329 getdev(const char *name)
1330 {
1331 	static char device[MAXPATHLEN];
1332 	const char *cp, *dev;
1333 
1334 	if (is_dev(name))
1335 		return (name);
1336 
1337 	cp = strrchr(name, '/');
1338 	if (cp == 0) {
1339 		snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name);
1340 		if (is_dev(device))
1341 			return (device);
1342 	}
1343 
1344 	dev = mountpoint_to_dev(name);
1345 	if (dev != NULL && is_dev(dev))
1346 		return (dev);
1347 
1348 	return (NULL);
1349 }
1350 
1351 /*
1352  * growfs(8) is a utility which allows to increase the size of an existing
1353  * ufs file system. Currently this can only be done on unmounted file system.
1354  * It recognizes some command line options to specify the new desired size,
1355  * and it does some basic checkings. The old file system size is determined
1356  * and after some more checks like we can really access the new last block
1357  * on the disk etc. we calculate the new parameters for the superblock. After
1358  * having done this we just call growfs() which will do the work.
1359  * We still have to provide support for snapshots. Therefore we first have to
1360  * understand what data structures are always replicated in the snapshot on
1361  * creation, for all other blocks we touch during our procedure, we have to
1362  * keep the old blocks unchanged somewhere available for the snapshots. If we
1363  * are lucky, then we only have to handle our blocks to be relocated in that
1364  * way.
1365  * Also we have to consider in what order we actually update the critical
1366  * data structures of the file system to make sure, that in case of a disaster
1367  * fsck(8) is still able to restore any lost data.
1368  * The foreseen last step then will be to provide for growing even mounted
1369  * file systems. There we have to extend the mount() system call to provide
1370  * userland access to the file system locking facility.
1371  */
1372 int
1373 main(int argc, char **argv)
1374 {
1375 	DBG_FUNC("main")
1376 	const char *device;
1377 	const struct statfs *statfsp;
1378 	uint64_t size = 0;
1379 	off_t mediasize;
1380 	int error, i, j, fsi, fso, ch, Nflag = 0, yflag = 0;
1381 	char *p, reply[5], oldsizebuf[6], newsizebuf[6];
1382 	void *testbuf;
1383 
1384 	DBG_ENTER;
1385 
1386 	while ((ch = getopt(argc, argv, "Ns:vy")) != -1) {
1387 		switch(ch) {
1388 		case 'N':
1389 			Nflag = 1;
1390 			break;
1391 		case 's':
1392 			size = (off_t)strtoumax(optarg, &p, 0);
1393 			if (p == NULL || *p == '\0')
1394 				size *= DEV_BSIZE;
1395 			else if (*p == 'b' || *p == 'B')
1396 				; /* do nothing */
1397 			else if (*p == 'k' || *p == 'K')
1398 				size <<= 10;
1399 			else if (*p == 'm' || *p == 'M')
1400 				size <<= 20;
1401 			else if (*p == 'g' || *p == 'G')
1402 				size <<= 30;
1403 			else if (*p == 't' || *p == 'T') {
1404 				size <<= 30;
1405 				size <<= 10;
1406 			} else
1407 				errx(1, "unknown suffix on -s argument");
1408 			break;
1409 		case 'v': /* for compatibility to newfs */
1410 			break;
1411 		case 'y':
1412 			yflag = 1;
1413 			break;
1414 		case '?':
1415 			/* FALLTHROUGH */
1416 		default:
1417 			usage();
1418 		}
1419 	}
1420 	argc -= optind;
1421 	argv += optind;
1422 
1423 	if (argc != 1)
1424 		usage();
1425 
1426 	/*
1427 	 * Now try to guess the device name.
1428 	 */
1429 	device = getdev(*argv);
1430 	if (device == NULL)
1431 		errx(1, "cannot find special device for %s", *argv);
1432 
1433 	statfsp = dev_to_statfs(device);
1434 
1435 	fsi = open(device, O_RDONLY);
1436 	if (fsi < 0)
1437 		err(1, "%s", device);
1438 
1439 	/*
1440 	 * Try to guess the slice size if not specified.
1441 	 */
1442 	if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1)
1443 		err(1,"DIOCGMEDIASIZE");
1444 
1445 	/*
1446 	 * Check if that partition is suitable for growing a file system.
1447 	 */
1448 	if (mediasize < 1)
1449 		errx(1, "partition is unavailable");
1450 
1451 	/*
1452 	 * Read the current superblock, and take a backup.
1453 	 */
1454 	for (i = 0; sblock_try[i] != -1; i++) {
1455 		sblockloc = sblock_try[i] / DEV_BSIZE;
1456 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
1457 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
1458 		    (osblock.fs_magic == FS_UFS2_MAGIC &&
1459 		    osblock.fs_sblockloc == sblock_try[i])) &&
1460 		    osblock.fs_bsize <= MAXBSIZE &&
1461 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
1462 			break;
1463 	}
1464 	if (sblock_try[i] == -1)
1465 		errx(1, "superblock not recognized");
1466 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
1467 
1468 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
1469 	DBG_DUMP_FS(&sblock, "old sblock");
1470 
1471 	/*
1472 	 * Determine size to grow to. Default to the device size.
1473 	 */
1474 	if (size == 0)
1475 		size = mediasize;
1476 	else {
1477 		if (size > (uint64_t)mediasize) {
1478 			humanize_number(oldsizebuf, sizeof(oldsizebuf), size,
1479 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1480 			humanize_number(newsizebuf, sizeof(newsizebuf),
1481 			    mediasize,
1482 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1483 
1484 			errx(1, "requested size %s is larger "
1485 			    "than the available %s", oldsizebuf, newsizebuf);
1486 		}
1487 	}
1488 
1489 	if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) {
1490 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1491 		    osblock.fs_size * osblock.fs_fsize,
1492 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1493 		humanize_number(newsizebuf, sizeof(newsizebuf), size,
1494 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1495 
1496 		errx(1, "requested size %s is not larger than the current "
1497 		   "filesystem size %s", newsizebuf, oldsizebuf);
1498 	}
1499 
1500 	sblock.fs_size = dbtofsb(&osblock, size / DEV_BSIZE);
1501 
1502 	/*
1503 	 * Are we really growing?
1504 	 */
1505 	if (osblock.fs_size >= sblock.fs_size) {
1506 		errx(1, "we are not growing (%jd->%jd)",
1507 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1508 	}
1509 
1510 	/*
1511 	 * Check if we find an active snapshot.
1512 	 */
1513 	if (yflag == 0) {
1514 		for (j = 0; j < FSMAXSNAP; j++) {
1515 			if (sblock.fs_snapinum[j]) {
1516 				errx(1, "active snapshot found in file system; "
1517 				    "please remove all snapshots before "
1518 				    "using growfs");
1519 			}
1520 			if (!sblock.fs_snapinum[j]) /* list is dense */
1521 				break;
1522 		}
1523 	}
1524 
1525 	if (yflag == 0 && Nflag == 0) {
1526 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0)
1527 			errx(1, "%s is mounted read-write on %s",
1528 			    statfsp->f_mntfromname, statfsp->f_mntonname);
1529 		printf("It's strongly recommended to make a backup "
1530 		    "before growing the file system.\n"
1531 		    "OK to grow filesystem on %s", device);
1532 		if (statfsp != NULL)
1533 			printf(", mounted on %s,", statfsp->f_mntonname);
1534 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1535 		    osblock.fs_size * osblock.fs_fsize,
1536 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1537 		humanize_number(newsizebuf, sizeof(newsizebuf),
1538 		    sblock.fs_size * sblock.fs_fsize,
1539 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1540 		printf(" from %s to %s? [Yes/No] ", oldsizebuf, newsizebuf);
1541 		fflush(stdout);
1542 		fgets(reply, (int)sizeof(reply), stdin);
1543 		if (strcmp(reply, "Yes\n")){
1544 			printf("\nNothing done\n");
1545 			exit (0);
1546 		}
1547 	}
1548 
1549 	/*
1550 	 * Try to access our device for writing.  If it's not mounted,
1551 	 * or mounted read-only, simply open it; otherwise, use UFS
1552 	 * suspension mechanism.
1553 	 */
1554 	if (Nflag) {
1555 		fso = -1;
1556 	} else {
1557 		fso = open(device, O_WRONLY);
1558 		if (fso < 0)
1559 			err(1, "%s", device);
1560 	}
1561 
1562 	/*
1563 	 * Try to access our new last block in the file system.
1564 	 */
1565 	testbuf = malloc(sblock.fs_fsize);
1566 	if (testbuf == NULL)
1567 		err(1, "malloc");
1568 	rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1569 	    sblock.fs_fsize, testbuf, fsi);
1570 	wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1571 	    sblock.fs_fsize, testbuf, fso, Nflag);
1572 	free(testbuf);
1573 
1574 	/*
1575 	 * Now calculate new superblock values and check for reasonable
1576 	 * bound for new file system size:
1577 	 *     fs_size:    is derived from user input
1578 	 *     fs_dsize:   should get updated in the routines creating or
1579 	 *                 updating the cylinder groups on the fly
1580 	 *     fs_cstotal: should get updated in the routines creating or
1581 	 *                 updating the cylinder groups
1582 	 */
1583 
1584 	/*
1585 	 * Update the number of cylinders and cylinder groups in the file system.
1586 	 */
1587 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1588 		sblock.fs_old_ncyl =
1589 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
1590 		if (sblock.fs_size * sblock.fs_old_nspf >
1591 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
1592 			sblock.fs_old_ncyl++;
1593 	}
1594 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1595 
1596 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1597 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
1598 		/*
1599 		 * The space in the new last cylinder group is too small,
1600 		 * so revert back.
1601 		 */
1602 		sblock.fs_ncg--;
1603 		if (sblock.fs_magic == FS_UFS1_MAGIC)
1604 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
1605 		printf("Warning: %jd sector(s) cannot be allocated.\n",
1606 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
1607 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
1608 	}
1609 
1610 	/*
1611 	 * Update the space for the cylinder group summary information in the
1612 	 * respective cylinder group data area.
1613 	 */
1614 	sblock.fs_cssize =
1615 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1616 
1617 	if (osblock.fs_size >= sblock.fs_size)
1618 		errx(1, "not enough new space");
1619 
1620 	DBG_PRINT0("sblock calculated\n");
1621 
1622 	/*
1623 	 * Ok, everything prepared, so now let's do the tricks.
1624 	 */
1625 	growfs(fsi, fso, Nflag);
1626 
1627 	close(fsi);
1628 	if (fso > -1) {
1629 		error = close(fso);
1630 		if (error != 0)
1631 			err(1, "close");
1632 	}
1633 	if (statfsp != NULL)
1634 		mount_reload(statfsp);
1635 
1636 	DBG_CLOSE;
1637 
1638 	DBG_LEAVE;
1639 	return (0);
1640 }
1641 
1642 /*
1643  * Dump a line of usage.
1644  */
1645 static void
1646 usage(void)
1647 {
1648 	DBG_FUNC("usage")
1649 
1650 	DBG_ENTER;
1651 
1652 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n");
1653 
1654 	DBG_LEAVE;
1655 	exit(1);
1656 }
1657 
1658 /*
1659  * This updates most parameters and the bitmap related to cluster. We have to
1660  * assume that sblock, osblock, acg are set up.
1661  */
1662 static void
1663 updclst(int block)
1664 {
1665 	DBG_FUNC("updclst")
1666 	static int lcs = 0;
1667 
1668 	DBG_ENTER;
1669 
1670 	if (sblock.fs_contigsumsize < 1) /* no clustering */
1671 		return;
1672 	/*
1673 	 * update cluster allocation map
1674 	 */
1675 	setbit(cg_clustersfree(&acg), block);
1676 
1677 	/*
1678 	 * update cluster summary table
1679 	 */
1680 	if (!lcs) {
1681 		/*
1682 		 * calculate size for the trailing cluster
1683 		 */
1684 		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) {
1685 			if (isclr(cg_clustersfree(&acg), block))
1686 				break;
1687 		}
1688 	}
1689 	if (lcs < sblock.fs_contigsumsize) {
1690 		if (lcs)
1691 			cg_clustersum(&acg)[lcs]--;
1692 		lcs++;
1693 		cg_clustersum(&acg)[lcs]++;
1694 	}
1695 
1696 	DBG_LEAVE;
1697 	return;
1698 }
1699 
1700 static void
1701 mount_reload(const struct statfs *stfs)
1702 {
1703 	char errmsg[255];
1704 	struct iovec *iov;
1705 	int iovlen;
1706 
1707 	iov = NULL;
1708 	iovlen = 0;
1709 	*errmsg = '\0';
1710 	build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4);
1711 	build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1);
1712 	build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg));
1713 	build_iovec(&iov, &iovlen, "update", NULL, 0);
1714 	build_iovec(&iov, &iovlen, "reload", NULL, 0);
1715 
1716 	if (nmount(iov, iovlen, stfs->f_flags) < 0) {
1717 		errmsg[sizeof(errmsg) - 1] = '\0';
1718 		err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname,
1719 		    *errmsg != '\0' ? ": " : "", errmsg);
1720 	}
1721 }
1722