xref: /freebsd/sbin/growfs/growfs.c (revision 9336e0699bda8a301cd2bfa37106b6ec5e32012e)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 /* ********************************************************** INCLUDES ***** */
53 #include <sys/param.h>
54 #include <sys/disklabel.h>
55 #include <sys/ioctl.h>
56 #include <sys/stat.h>
57 #include <sys/disk.h>
58 
59 #include <stdio.h>
60 #include <paths.h>
61 #include <ctype.h>
62 #include <err.h>
63 #include <fcntl.h>
64 #include <limits.h>
65 #include <stdlib.h>
66 #include <stdint.h>
67 #include <string.h>
68 #include <time.h>
69 #include <unistd.h>
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ffs/fs.h>
72 
73 #include "debug.h"
74 
75 /* *************************************************** GLOBALS & TYPES ***** */
76 #ifdef FS_DEBUG
77 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
78 #endif /* FS_DEBUG */
79 
80 static union {
81 	struct fs	fs;
82 	char	pad[SBLOCKSIZE];
83 } fsun1, fsun2;
84 #define	sblock	fsun1.fs	/* the new superblock */
85 #define	osblock	fsun2.fs	/* the old superblock */
86 
87 /*
88  * Possible superblock locations ordered from most to least likely.
89  */
90 static int sblock_try[] = SBLOCKSEARCH;
91 static ufs2_daddr_t sblockloc;
92 
93 static union {
94 	struct cg	cg;
95 	char	pad[MAXBSIZE];
96 } cgun1, cgun2;
97 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
98 #define	aocg	cgun2.cg	/* an old cylinder group */
99 
100 static char	ablk[MAXBSIZE];	/* a block */
101 
102 static struct csum	*fscs;	/* cylinder summary */
103 
104 union dinode {
105 	struct ufs1_dinode dp1;
106 	struct ufs2_dinode dp2;
107 };
108 #define	DIP(dp, field) \
109 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
110 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
111 #define	DIP_SET(dp, field, val) do { \
112 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
113 		(dp)->dp1.field = (val); \
114 	else \
115 		(dp)->dp2.field = (val); \
116 	} while (0)
117 static ufs2_daddr_t 	inoblk;			/* inode block address */
118 static char		inobuf[MAXBSIZE];	/* inode block */
119 ino_t			maxino;			/* last valid inode */
120 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
121 
122 /*
123  * An array of elements of type struct gfs_bpp describes all blocks to
124  * be relocated in order to free the space needed for the cylinder group
125  * summary for all cylinder groups located in the first cylinder group.
126  */
127 struct gfs_bpp {
128 	ufs2_daddr_t	old;		/* old block number */
129 	ufs2_daddr_t	new;		/* new block number */
130 #define GFS_FL_FIRST	1
131 #define GFS_FL_LAST	2
132 	unsigned int	flags;	/* special handling required */
133 	int	found;		/* how many references were updated */
134 };
135 
136 /* ******************************************************** PROTOTYPES ***** */
137 static void	growfs(int, int, unsigned int);
138 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
139 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
140 static ufs2_daddr_t alloc(void);
141 static int	charsperline(void);
142 static void	usage(void);
143 static int	isblock(struct fs *, unsigned char *, int);
144 static void	clrblock(struct fs *, unsigned char *, int);
145 static void	setblock(struct fs *, unsigned char *, int);
146 static void	initcg(int, time_t, int, unsigned int);
147 static void	updjcg(int, time_t, int, int, unsigned int);
148 static void	updcsloc(time_t, int, int, unsigned int);
149 static struct disklabel	*get_disklabel(int);
150 static void	return_disklabel(int, struct disklabel *, unsigned int);
151 static union dinode *ginode(ino_t, int, int);
152 static void	frag_adjust(ufs2_daddr_t, int);
153 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
154 		    unsigned int);
155 static void	updclst(int);
156 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
157 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
158 		    struct gfs_bpp *, int, int, unsigned int);
159 static void	get_dev_size(int, int *);
160 
161 /* ************************************************************ growfs ***** */
162 /*
163  * Here we actually start growing the file system. We basically read the
164  * cylinder summary from the first cylinder group as we want to update
165  * this on the fly during our various operations. First we handle the
166  * changes in the former last cylinder group. Afterwards we create all new
167  * cylinder groups.  Now we handle the cylinder group containing the
168  * cylinder summary which might result in a relocation of the whole
169  * structure.  In the end we write back the updated cylinder summary, the
170  * new superblock, and slightly patched versions of the super block
171  * copies.
172  */
173 static void
174 growfs(int fsi, int fso, unsigned int Nflag)
175 {
176 	DBG_FUNC("growfs")
177 	int	i;
178 	int	cylno, j;
179 	time_t	utime;
180 	int	width;
181 	char	tmpbuf[100];
182 #ifdef FSIRAND
183 	static int	randinit=0;
184 
185 	DBG_ENTER;
186 
187 	if (!randinit) {
188 		randinit = 1;
189 		srandomdev();
190 	}
191 #else /* not FSIRAND */
192 
193 	DBG_ENTER;
194 
195 #endif /* FSIRAND */
196 	time(&utime);
197 
198 	/*
199 	 * Get the cylinder summary into the memory.
200 	 */
201 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
202 	if(fscs == NULL) {
203 		errx(1, "calloc failed");
204 	}
205 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
206 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
207 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
208 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
209 	}
210 
211 #ifdef FS_DEBUG
212 {
213 	struct csum	*dbg_csp;
214 	int	dbg_csc;
215 	char	dbg_line[80];
216 
217 	dbg_csp=fscs;
218 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
219 		snprintf(dbg_line, sizeof(dbg_line),
220 		    "%d. old csum in old location", dbg_csc);
221 		DBG_DUMP_CSUM(&osblock,
222 		    dbg_line,
223 		    dbg_csp++);
224 	}
225 }
226 #endif /* FS_DEBUG */
227 	DBG_PRINT0("fscs read\n");
228 
229 	/*
230 	 * Do all needed changes in the former last cylinder group.
231 	 */
232 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
233 
234 	/*
235 	 * Dump out summary information about file system.
236 	 */
237 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
238 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
239 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
240 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
241 	    sblock.fs_fsize);
242 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
243 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
244 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
245 	if (sblock.fs_flags & FS_DOSOFTDEP)
246 		printf("\twith soft updates\n");
247 #	undef B2MBFACTOR
248 
249 	/*
250 	 * Now build the cylinders group blocks and
251 	 * then print out indices of cylinder groups.
252 	 */
253 	printf("super-block backups (for fsck -b #) at:\n");
254 	i = 0;
255 	width = charsperline();
256 
257 	/*
258 	 * Iterate for only the new cylinder groups.
259 	 */
260 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
261 		initcg(cylno, utime, fso, Nflag);
262 		j = sprintf(tmpbuf, " %jd%s",
263 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
264 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
265 		if (i + j >= width) {
266 			printf("\n");
267 			i = 0;
268 		}
269 		i += j;
270 		printf("%s", tmpbuf);
271 		fflush(stdout);
272 	}
273 	printf("\n");
274 
275 	/*
276 	 * Do all needed changes in the first cylinder group.
277 	 * allocate blocks in new location
278 	 */
279 	updcsloc(utime, fsi, fso, Nflag);
280 
281 	/*
282 	 * Now write the cylinder summary back to disk.
283 	 */
284 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
285 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
286 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
287 		    (void *)(((char *)fscs) + i), fso, Nflag);
288 	}
289 	DBG_PRINT0("fscs written\n");
290 
291 #ifdef FS_DEBUG
292 {
293 	struct csum	*dbg_csp;
294 	int	dbg_csc;
295 	char	dbg_line[80];
296 
297 	dbg_csp=fscs;
298 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
299 		snprintf(dbg_line, sizeof(dbg_line),
300 		    "%d. new csum in new location", dbg_csc);
301 		DBG_DUMP_CSUM(&sblock,
302 		    dbg_line,
303 		    dbg_csp++);
304 	}
305 }
306 #endif /* FS_DEBUG */
307 
308 	/*
309 	 * Now write the new superblock back to disk.
310 	 */
311 	sblock.fs_time = utime;
312 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
313 	DBG_PRINT0("sblock written\n");
314 	DBG_DUMP_FS(&sblock,
315 	    "new initial sblock");
316 
317 	/*
318 	 * Clean up the dynamic fields in our superblock copies.
319 	 */
320 	sblock.fs_fmod = 0;
321 	sblock.fs_clean = 1;
322 	sblock.fs_ronly = 0;
323 	sblock.fs_cgrotor = 0;
324 	sblock.fs_state = 0;
325 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
326 	sblock.fs_flags &= FS_DOSOFTDEP;
327 
328 	/*
329 	 * XXX
330 	 * The following fields are currently distributed from the superblock
331 	 * to the copies:
332 	 *     fs_minfree
333 	 *     fs_rotdelay
334 	 *     fs_maxcontig
335 	 *     fs_maxbpg
336 	 *     fs_minfree,
337 	 *     fs_optim
338 	 *     fs_flags regarding SOFTPDATES
339 	 *
340 	 * We probably should rather change the summary for the cylinder group
341 	 * statistics here to the value of what would be in there, if the file
342 	 * system were created initially with the new size. Therefor we still
343 	 * need to find an easy way of calculating that.
344 	 * Possibly we can try to read the first superblock copy and apply the
345 	 * "diffed" stats between the old and new superblock by still copying
346 	 * certain parameters onto that.
347 	 */
348 
349 	/*
350 	 * Write out the duplicate super blocks.
351 	 */
352 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
353 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
354 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
355 	}
356 	DBG_PRINT0("sblock copies written\n");
357 	DBG_DUMP_FS(&sblock,
358 	    "new other sblocks");
359 
360 	DBG_LEAVE;
361 	return;
362 }
363 
364 /* ************************************************************ initcg ***** */
365 /*
366  * This creates a new cylinder group structure, for more details please see
367  * the source of newfs(8), as this function is taken over almost unchanged.
368  * As this is never called for the first cylinder group, the special
369  * provisions for that case are removed here.
370  */
371 static void
372 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
373 {
374 	DBG_FUNC("initcg")
375 	static void *iobuf;
376 	long d, dlower, dupper, blkno, start;
377 	ufs2_daddr_t i, cbase, dmax;
378 	struct ufs1_dinode *dp1;
379 	struct ufs2_dinode *dp2;
380 	struct csum *cs;
381 
382 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
383 		errx(37, "panic: cannot allocate I/O buffer");
384 	}
385 	/*
386 	 * Determine block bounds for cylinder group.
387 	 * Allow space for super block summary information in first
388 	 * cylinder group.
389 	 */
390 	cbase = cgbase(&sblock, cylno);
391 	dmax = cbase + sblock.fs_fpg;
392 	if (dmax > sblock.fs_size)
393 		dmax = sblock.fs_size;
394 	dlower = cgsblock(&sblock, cylno) - cbase;
395 	dupper = cgdmin(&sblock, cylno) - cbase;
396 	if (cylno == 0)	/* XXX fscs may be relocated */
397 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
398 	cs = &fscs[cylno];
399 	memset(&acg, 0, sblock.fs_cgsize);
400 	acg.cg_time = utime;
401 	acg.cg_magic = CG_MAGIC;
402 	acg.cg_cgx = cylno;
403 	acg.cg_niblk = sblock.fs_ipg;
404 	acg.cg_initediblk = sblock.fs_ipg;
405 	acg.cg_ndblk = dmax - cbase;
406 	if (sblock.fs_contigsumsize > 0)
407 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
408 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
409 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
410 		acg.cg_iusedoff = start;
411 	} else {
412 		acg.cg_old_ncyl = sblock.fs_old_cpg;
413 		acg.cg_old_time = acg.cg_time;
414 		acg.cg_time = 0;
415 		acg.cg_old_niblk = acg.cg_niblk;
416 		acg.cg_niblk = 0;
417 		acg.cg_initediblk = 0;
418 		acg.cg_old_btotoff = start;
419 		acg.cg_old_boff = acg.cg_old_btotoff +
420 		    sblock.fs_old_cpg * sizeof(int32_t);
421 		acg.cg_iusedoff = acg.cg_old_boff +
422 		    sblock.fs_old_cpg * sizeof(u_int16_t);
423 	}
424 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
425 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
426 	if (sblock.fs_contigsumsize > 0) {
427 		acg.cg_clustersumoff =
428 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
429 		acg.cg_clustersumoff -= sizeof(u_int32_t);
430 		acg.cg_clusteroff = acg.cg_clustersumoff +
431 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
432 		acg.cg_nextfreeoff = acg.cg_clusteroff +
433 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
434 	}
435 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
436 		/*
437 		 * This should never happen as we would have had that panic
438 		 * already on file system creation
439 		 */
440 		errx(37, "panic: cylinder group too big");
441 	}
442 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
443 	if (cylno == 0)
444 		for (i = 0; i < ROOTINO; i++) {
445 			setbit(cg_inosused(&acg), i);
446 			acg.cg_cs.cs_nifree--;
447 		}
448 	/*
449 	 * XXX Newfs writes out two blocks of initialized inodes
450 	 *     unconditionally.  Should we check here to make sure that they
451 	 *     were actually written?
452 	 */
453 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
454 		bzero(iobuf, sblock.fs_bsize);
455 		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
456 		     i += sblock.fs_frag) {
457 			dp1 = (struct ufs1_dinode *)iobuf;
458 			dp2 = (struct ufs2_dinode *)iobuf;
459 #ifdef FSIRAND
460 			for (j = 0; j < INOPB(&sblock); j++)
461 				if (sblock.fs_magic == FS_UFS1_MAGIC) {
462 					dp1->di_gen = random();
463 					dp1++;
464 				} else {
465 					dp2->di_gen = random();
466 					dp2++;
467 				}
468 #endif
469 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
470 			    sblock.fs_bsize, iobuf, fso, Nflag);
471 		}
472 	}
473 	if (cylno > 0) {
474 		/*
475 		 * In cylno 0, beginning space is reserved
476 		 * for boot and super blocks.
477 		 */
478 		for (d = 0; d < dlower; d += sblock.fs_frag) {
479 			blkno = d / sblock.fs_frag;
480 			setblock(&sblock, cg_blksfree(&acg), blkno);
481 			if (sblock.fs_contigsumsize > 0)
482 				setbit(cg_clustersfree(&acg), blkno);
483 			acg.cg_cs.cs_nbfree++;
484 		}
485 		sblock.fs_dsize += dlower;
486 	}
487 	sblock.fs_dsize += acg.cg_ndblk - dupper;
488 	if ((i = dupper % sblock.fs_frag)) {
489 		acg.cg_frsum[sblock.fs_frag - i]++;
490 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
491 			setbit(cg_blksfree(&acg), dupper);
492 			acg.cg_cs.cs_nffree++;
493 		}
494 	}
495 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
496 	     d += sblock.fs_frag) {
497 		blkno = d / sblock.fs_frag;
498 		setblock(&sblock, cg_blksfree(&acg), blkno);
499 		if (sblock.fs_contigsumsize > 0)
500 			setbit(cg_clustersfree(&acg), blkno);
501 		acg.cg_cs.cs_nbfree++;
502 	}
503 	if (d < acg.cg_ndblk) {
504 		acg.cg_frsum[acg.cg_ndblk - d]++;
505 		for (; d < acg.cg_ndblk; d++) {
506 			setbit(cg_blksfree(&acg), d);
507 			acg.cg_cs.cs_nffree++;
508 		}
509 	}
510 	if (sblock.fs_contigsumsize > 0) {
511 		int32_t *sump = cg_clustersum(&acg);
512 		u_char *mapp = cg_clustersfree(&acg);
513 		int map = *mapp++;
514 		int bit = 1;
515 		int run = 0;
516 
517 		for (i = 0; i < acg.cg_nclusterblks; i++) {
518 			if ((map & bit) != 0)
519 				run++;
520 			else if (run != 0) {
521 				if (run > sblock.fs_contigsumsize)
522 					run = sblock.fs_contigsumsize;
523 				sump[run]++;
524 				run = 0;
525 			}
526 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
527 				bit <<= 1;
528 			else {
529 				map = *mapp++;
530 				bit = 1;
531 			}
532 		}
533 		if (run != 0) {
534 			if (run > sblock.fs_contigsumsize)
535 				run = sblock.fs_contigsumsize;
536 			sump[run]++;
537 		}
538 	}
539 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
540 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
541 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
542 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
543 	*cs = acg.cg_cs;
544 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
545 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
546 	DBG_DUMP_CG(&sblock,
547 	    "new cg",
548 	    &acg);
549 
550 	DBG_LEAVE;
551 	return;
552 }
553 
554 /* ******************************************************* frag_adjust ***** */
555 /*
556  * Here we add or subtract (sign +1/-1) the available fragments in a given
557  * block to or from the fragment statistics. By subtracting before and adding
558  * after an operation on the free frag map we can easy update the fragment
559  * statistic, which seems to be otherwise a rather complex operation.
560  */
561 static void
562 frag_adjust(ufs2_daddr_t frag, int sign)
563 {
564 	DBG_FUNC("frag_adjust")
565 	int fragsize;
566 	int f;
567 
568 	DBG_ENTER;
569 
570 	fragsize=0;
571 	/*
572 	 * Here frag only needs to point to any fragment in the block we want
573 	 * to examine.
574 	 */
575 	for(f=rounddown(frag, sblock.fs_frag);
576 	    f<roundup(frag+1, sblock.fs_frag);
577 	    f++) {
578 		/*
579 		 * Count contiguous free fragments.
580 		 */
581 		if(isset(cg_blksfree(&acg), f)) {
582 			fragsize++;
583 		} else {
584 			if(fragsize && fragsize<sblock.fs_frag) {
585 				/*
586 				 * We found something in between.
587 				 */
588 				acg.cg_frsum[fragsize]+=sign;
589 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
590 				    fragsize,
591 				    sign);
592 			}
593 			fragsize=0;
594 		}
595 	}
596 	if(fragsize && fragsize<sblock.fs_frag) {
597 		/*
598 		 * We found something.
599 		 */
600 		acg.cg_frsum[fragsize]+=sign;
601 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
602 		    fragsize,
603 		    sign);
604 	}
605 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
606 	    fragsize,
607 	    sign);
608 
609 	DBG_LEAVE;
610 	return;
611 }
612 
613 /* ******************************************************* cond_bl_upd ***** */
614 /*
615  * Here we conditionally update a pointer to a fragment. We check for all
616  * relocated blocks if any of its fragments is referenced by the current
617  * field, and update the pointer to the respective fragment in our new
618  * block.  If we find a reference we write back the block immediately,
619  * as there is no easy way for our general block reading engine to figure
620  * out if a write back operation is needed.
621  */
622 static int
623 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
624     unsigned int Nflag)
625 {
626 	DBG_FUNC("cond_bl_upd")
627 	struct gfs_bpp *f;
628 	ufs2_daddr_t src, dst;
629 	int fragnum;
630 	void *ibuf;
631 
632 	DBG_ENTER;
633 
634 	for (f = field; f->old != 0; f++) {
635 		src = *block;
636 		if (fragstoblks(&sblock, src) != f->old)
637 			continue;
638 		/*
639 		 * The fragment is part of the block, so update.
640 		 */
641 		dst = blkstofrags(&sblock, f->new);
642 		fragnum = fragnum(&sblock, src);
643 		*block = dst + fragnum;
644 		f->found++;
645 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
646 		    (intmax_t)f->old,
647 		    (intmax_t)f->new,
648 		    fragnum);
649 
650 		/*
651 		 * Copy the block back immediately.
652 		 *
653 		 * XXX	If src is is from an indirect block we have
654 		 *	to implement copy on write here in case of
655 		 *	active snapshots.
656 		 */
657 		ibuf = malloc(sblock.fs_bsize);
658 		if (!ibuf)
659 			errx(1, "malloc failed");
660 		src -= fragnum;
661 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
662 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
663 		free(ibuf);
664 		/*
665 		 * The same block can't be found again in this loop.
666 		 */
667 		return (1);
668 	}
669 
670 	DBG_LEAVE;
671 	return (0);
672 }
673 
674 /* ************************************************************ updjcg ***** */
675 /*
676  * Here we do all needed work for the former last cylinder group. It has to be
677  * changed in any case, even if the file system ended exactly on the end of
678  * this group, as there is some slightly inconsistent handling of the number
679  * of cylinders in the cylinder group. We start again by reading the cylinder
680  * group from disk. If the last block was not fully available, we first handle
681  * the missing fragments, then we handle all new full blocks in that file
682  * system and finally we handle the new last fragmented block in the file
683  * system.  We again have to handle the fragment statistics rotational layout
684  * tables and cluster summary during all those operations.
685  */
686 static void
687 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
688 {
689 	DBG_FUNC("updjcg")
690 	ufs2_daddr_t	cbase, dmax, dupper;
691 	struct csum	*cs;
692 	int	i,k;
693 	int	j=0;
694 
695 	DBG_ENTER;
696 
697 	/*
698 	 * Read the former last (joining) cylinder group from disk, and make
699 	 * a copy.
700 	 */
701 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
702 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
703 	DBG_PRINT0("jcg read\n");
704 	DBG_DUMP_CG(&sblock,
705 	    "old joining cg",
706 	    &aocg);
707 
708 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
709 
710 	/*
711 	 * If the cylinder group had already its new final size almost
712 	 * nothing is to be done ... except:
713 	 * For some reason the value of cg_ncyl in the last cylinder group has
714 	 * to be zero instead of fs_cpg. As this is now no longer the last
715 	 * cylinder group we have to change that value now to fs_cpg.
716 	 */
717 
718 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
719 		if (sblock.fs_magic == FS_UFS1_MAGIC)
720 			acg.cg_old_ncyl=sblock.fs_old_cpg;
721 
722 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
723 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
724 		DBG_PRINT0("jcg written\n");
725 		DBG_DUMP_CG(&sblock,
726 		    "new joining cg",
727 		    &acg);
728 
729 		DBG_LEAVE;
730 		return;
731 	}
732 
733 	/*
734 	 * Set up some variables needed later.
735 	 */
736 	cbase = cgbase(&sblock, cylno);
737 	dmax = cbase + sblock.fs_fpg;
738 	if (dmax > sblock.fs_size)
739 		dmax = sblock.fs_size;
740 	dupper = cgdmin(&sblock, cylno) - cbase;
741 	if (cylno == 0) { /* XXX fscs may be relocated */
742 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
743 	}
744 
745 	/*
746 	 * Set pointer to the cylinder summary for our cylinder group.
747 	 */
748 	cs = fscs + cylno;
749 
750 	/*
751 	 * Touch the cylinder group, update all fields in the cylinder group as
752 	 * needed, update the free space in the superblock.
753 	 */
754 	acg.cg_time = utime;
755 	if (cylno == sblock.fs_ncg - 1) {
756 		/*
757 		 * This is still the last cylinder group.
758 		 */
759 		if (sblock.fs_magic == FS_UFS1_MAGIC)
760 			acg.cg_old_ncyl =
761 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
762 	} else {
763 		acg.cg_old_ncyl = sblock.fs_old_cpg;
764 	}
765 	DBG_PRINT2("jcg dbg: %d %u",
766 	    cylno,
767 	    sblock.fs_ncg);
768 #ifdef FS_DEBUG
769 	if (sblock.fs_magic == FS_UFS1_MAGIC)
770 		DBG_PRINT2("%d %u",
771 		    acg.cg_old_ncyl,
772 		    sblock.fs_old_cpg);
773 #endif
774 	DBG_PRINT0("\n");
775 	acg.cg_ndblk = dmax - cbase;
776 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
777 	if (sblock.fs_contigsumsize > 0) {
778 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
779 	}
780 
781 	/*
782 	 * Now we have to update the free fragment bitmap for our new free
783 	 * space.  There again we have to handle the fragmentation and also
784 	 * the rotational layout tables and the cluster summary.  This is
785 	 * also done per fragment for the first new block if the old file
786 	 * system end was not on a block boundary, per fragment for the new
787 	 * last block if the new file system end is not on a block boundary,
788 	 * and per block for all space in between.
789 	 *
790 	 * Handle the first new block here if it was partially available
791 	 * before.
792 	 */
793 	if(osblock.fs_size % sblock.fs_frag) {
794 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
795 			/*
796 			 * The new space is enough to fill at least this
797 			 * block
798 			 */
799 			j=0;
800 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
801 			    i>=osblock.fs_size-cbase;
802 			    i--) {
803 				setbit(cg_blksfree(&acg), i);
804 				acg.cg_cs.cs_nffree++;
805 				j++;
806 			}
807 
808 			/*
809 			 * Check if the fragment just created could join an
810 			 * already existing fragment at the former end of the
811 			 * file system.
812 			 */
813 			if(isblock(&sblock, cg_blksfree(&acg),
814 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
815 			    sblock.fs_frag))) {
816 				/*
817 				 * The block is now completely available.
818 				 */
819 				DBG_PRINT0("block was\n");
820 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
821 				acg.cg_cs.cs_nbfree++;
822 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
823 				k=rounddown(osblock.fs_size-cbase,
824 				    sblock.fs_frag);
825 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
826 			} else {
827 				/*
828 				 * Lets rejoin a possible partially growed
829 				 * fragment.
830 				 */
831 				k=0;
832 				while(isset(cg_blksfree(&acg), i) &&
833 				    (i>=rounddown(osblock.fs_size-cbase,
834 				    sblock.fs_frag))) {
835 					i--;
836 					k++;
837 				}
838 				if(k) {
839 					acg.cg_frsum[k]--;
840 				}
841 				acg.cg_frsum[k+j]++;
842 			}
843 		} else {
844 			/*
845 			 * We only grow by some fragments within this last
846 			 * block.
847 			 */
848 			for(i=sblock.fs_size-cbase-1;
849 				i>=osblock.fs_size-cbase;
850 				i--) {
851 				setbit(cg_blksfree(&acg), i);
852 				acg.cg_cs.cs_nffree++;
853 				j++;
854 			}
855 			/*
856 			 * Lets rejoin a possible partially growed fragment.
857 			 */
858 			k=0;
859 			while(isset(cg_blksfree(&acg), i) &&
860 			    (i>=rounddown(osblock.fs_size-cbase,
861 			    sblock.fs_frag))) {
862 				i--;
863 				k++;
864 			}
865 			if(k) {
866 				acg.cg_frsum[k]--;
867 			}
868 			acg.cg_frsum[k+j]++;
869 		}
870 	}
871 
872 	/*
873 	 * Handle all new complete blocks here.
874 	 */
875 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
876 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
877 	    i+=sblock.fs_frag) {
878 		j = i / sblock.fs_frag;
879 		setblock(&sblock, cg_blksfree(&acg), j);
880 		updclst(j);
881 		acg.cg_cs.cs_nbfree++;
882 	}
883 
884 	/*
885 	 * Handle the last new block if there are stll some new fragments left.
886 	 * Here we don't have to bother about the cluster summary or the even
887 	 * the rotational layout table.
888 	 */
889 	if (i < (dmax - cbase)) {
890 		acg.cg_frsum[dmax - cbase - i]++;
891 		for (; i < dmax - cbase; i++) {
892 			setbit(cg_blksfree(&acg), i);
893 			acg.cg_cs.cs_nffree++;
894 		}
895 	}
896 
897 	sblock.fs_cstotal.cs_nffree +=
898 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
899 	sblock.fs_cstotal.cs_nbfree +=
900 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
901 	/*
902 	 * The following statistics are not changed here:
903 	 *     sblock.fs_cstotal.cs_ndir
904 	 *     sblock.fs_cstotal.cs_nifree
905 	 * As the statistics for this cylinder group are ready, copy it to
906 	 * the summary information array.
907 	 */
908 	*cs = acg.cg_cs;
909 
910 	/*
911 	 * Write the updated "joining" cylinder group back to disk.
912 	 */
913 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
914 	    (void *)&acg, fso, Nflag);
915 	DBG_PRINT0("jcg written\n");
916 	DBG_DUMP_CG(&sblock,
917 	    "new joining cg",
918 	    &acg);
919 
920 	DBG_LEAVE;
921 	return;
922 }
923 
924 /* ********************************************************** updcsloc ***** */
925 /*
926  * Here we update the location of the cylinder summary. We have two possible
927  * ways of growing the cylinder summary.
928  * (1)	We can try to grow the summary in the current location, and relocate
929  *	possibly used blocks within the current cylinder group.
930  * (2)	Alternatively we can relocate the whole cylinder summary to the first
931  *	new completely empty cylinder group. Once the cylinder summary is no
932  *	longer in the beginning of the first cylinder group you should never
933  *	use a version of fsck which is not aware of the possibility to have
934  *	this structure in a non standard place.
935  * Option (1) is considered to be less intrusive to the structure of the file-
936  * system. So we try to stick to that whenever possible. If there is not enough
937  * space in the cylinder group containing the cylinder summary we have to use
938  * method (2). In case of active snapshots in the file system we probably can
939  * completely avoid implementing copy on write if we stick to method (2) only.
940  */
941 static void
942 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
943 {
944 	DBG_FUNC("updcsloc")
945 	struct csum	*cs;
946 	int	ocscg, ncscg;
947 	int	blocks;
948 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
949 	int	ind;
950 	int	cylno, inc;
951 	struct gfs_bpp	*bp;
952 	int	i, l;
953 	int	lcs=0;
954 	int	block;
955 
956 	DBG_ENTER;
957 
958 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
959 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
960 		/*
961 		 * No new fragment needed.
962 		 */
963 		DBG_LEAVE;
964 		return;
965 	}
966 	ocscg=dtog(&osblock, osblock.fs_csaddr);
967 	cs=fscs+ocscg;
968 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
969 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
970 
971 	/*
972 	 * Read original cylinder group from disk, and make a copy.
973 	 * XXX	If Nflag is set in some very rare cases we now miss
974 	 *	some changes done in updjcg by reading the unmodified
975 	 *	block from disk.
976 	 */
977 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
978 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
979 	DBG_PRINT0("oscg read\n");
980 	DBG_DUMP_CG(&sblock,
981 	    "old summary cg",
982 	    &aocg);
983 
984 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
985 
986 	/*
987 	 * Touch the cylinder group, set up local variables needed later
988 	 * and update the superblock.
989 	 */
990 	acg.cg_time = utime;
991 
992 	/*
993 	 * XXX	In the case of having active snapshots we may need much more
994 	 *	blocks for the copy on write. We need each block twice, and
995 	 *	also up to 8*3 blocks for indirect blocks for all possible
996 	 *	references.
997 	 */
998 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
999 		/*
1000 		 * There is not enough space in the old cylinder group to
1001 		 * relocate all blocks as needed, so we relocate the whole
1002 		 * cylinder group summary to a new group. We try to use the
1003 		 * first complete new cylinder group just created. Within the
1004 		 * cylinder group we align the area immediately after the
1005 		 * cylinder group information location in order to be as
1006 		 * close as possible to the original implementation of ffs.
1007 		 *
1008 		 * First we have to make sure we'll find enough space in the
1009 		 * new cylinder group. If not, then we currently give up.
1010 		 * We start with freeing everything which was used by the
1011 		 * fragments of the old cylinder summary in the current group.
1012 		 * Now we write back the group meta data, read in the needed
1013 		 * meta data from the new cylinder group, and start allocating
1014 		 * within that group. Here we can assume, the group to be
1015 		 * completely empty. Which makes the handling of fragments and
1016 		 * clusters a lot easier.
1017 		 */
1018 		DBG_TRC;
1019 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1020 			errx(2, "panic: not enough space");
1021 		}
1022 
1023 		/*
1024 		 * Point "d" to the first fragment not used by the cylinder
1025 		 * summary.
1026 		 */
1027 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1028 
1029 		/*
1030 		 * Set up last cluster size ("lcs") already here. Calculate
1031 		 * the size for the trailing cluster just behind where "d"
1032 		 * points to.
1033 		 */
1034 		if(sblock.fs_contigsumsize > 0) {
1035 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1036 			    lcs=0; lcs<sblock.fs_contigsumsize;
1037 			    block++, lcs++) {
1038 				if(isclr(cg_clustersfree(&acg), block)){
1039 					break;
1040 				}
1041 			}
1042 		}
1043 
1044 		/*
1045 		 * Point "d" to the last frag used by the cylinder summary.
1046 		 */
1047 		d--;
1048 
1049 		DBG_PRINT1("d=%jd\n",
1050 		    (intmax_t)d);
1051 		if((d+1)%sblock.fs_frag) {
1052 			/*
1053 			 * The end of the cylinder summary is not a complete
1054 			 * block.
1055 			 */
1056 			DBG_TRC;
1057 			frag_adjust(d%sblock.fs_fpg, -1);
1058 			for(; (d+1)%sblock.fs_frag; d--) {
1059 				DBG_PRINT1("d=%jd\n",
1060 				    (intmax_t)d);
1061 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1062 				acg.cg_cs.cs_nffree++;
1063 				sblock.fs_cstotal.cs_nffree++;
1064 			}
1065 			/*
1066 			 * Point "d" to the last fragment of the last
1067 			 * (incomplete) block of the cylinder summary.
1068 			 */
1069 			d++;
1070 			frag_adjust(d%sblock.fs_fpg, 1);
1071 
1072 			if(isblock(&sblock, cg_blksfree(&acg),
1073 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1074 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1075 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1076 				acg.cg_cs.cs_nbfree++;
1077 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1078 				sblock.fs_cstotal.cs_nbfree++;
1079 				if(sblock.fs_contigsumsize > 0) {
1080 					setbit(cg_clustersfree(&acg),
1081 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1082 					if(lcs < sblock.fs_contigsumsize) {
1083 						if(lcs) {
1084 							cg_clustersum(&acg)
1085 							    [lcs]--;
1086 						}
1087 						lcs++;
1088 						cg_clustersum(&acg)[lcs]++;
1089 					}
1090 				}
1091 			}
1092 			/*
1093 			 * Point "d" to the first fragment of the block before
1094 			 * the last incomplete block.
1095 			 */
1096 			d--;
1097 		}
1098 
1099 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1100 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1101 		    d-=sblock.fs_frag) {
1102 			DBG_TRC;
1103 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1104 			setblock(&sblock, cg_blksfree(&acg),
1105 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1106 			acg.cg_cs.cs_nbfree++;
1107 			sblock.fs_cstotal.cs_nbfree++;
1108 			if(sblock.fs_contigsumsize > 0) {
1109 				setbit(cg_clustersfree(&acg),
1110 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1111 				/*
1112 				 * The last cluster size is already set up.
1113 				 */
1114 				if(lcs < sblock.fs_contigsumsize) {
1115 					if(lcs) {
1116 						cg_clustersum(&acg)[lcs]--;
1117 					}
1118 					lcs++;
1119 					cg_clustersum(&acg)[lcs]++;
1120 				}
1121 			}
1122 		}
1123 		*cs = acg.cg_cs;
1124 
1125 		/*
1126 		 * Now write the former cylinder group containing the cylinder
1127 		 * summary back to disk.
1128 		 */
1129 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1130 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1131 		DBG_PRINT0("oscg written\n");
1132 		DBG_DUMP_CG(&sblock,
1133 		    "old summary cg",
1134 		    &acg);
1135 
1136 		/*
1137 		 * Find the beginning of the new cylinder group containing the
1138 		 * cylinder summary.
1139 		 */
1140 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1141 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1142 		cs=fscs+ncscg;
1143 
1144 
1145 		/*
1146 		 * If Nflag is specified, we would now read random data instead
1147 		 * of an empty cg structure from disk. So we can't simulate that
1148 		 * part for now.
1149 		 */
1150 		if(Nflag) {
1151 			DBG_PRINT0("nscg update skipped\n");
1152 			DBG_LEAVE;
1153 			return;
1154 		}
1155 
1156 		/*
1157 		 * Read the future cylinder group containing the cylinder
1158 		 * summary from disk, and make a copy.
1159 		 */
1160 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1161 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1162 		DBG_PRINT0("nscg read\n");
1163 		DBG_DUMP_CG(&sblock,
1164 		    "new summary cg",
1165 		    &aocg);
1166 
1167 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1168 
1169 		/*
1170 		 * Allocate all complete blocks used by the new cylinder
1171 		 * summary.
1172 		 */
1173 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1174 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1175 		    d+=sblock.fs_frag) {
1176 			clrblock(&sblock, cg_blksfree(&acg),
1177 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1178 			acg.cg_cs.cs_nbfree--;
1179 			sblock.fs_cstotal.cs_nbfree--;
1180 			if(sblock.fs_contigsumsize > 0) {
1181 				clrbit(cg_clustersfree(&acg),
1182 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1183 			}
1184 		}
1185 
1186 		/*
1187 		 * Allocate all fragments used by the cylinder summary in the
1188 		 * last block.
1189 		 */
1190 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1191 			for(; d-sblock.fs_csaddr<
1192 			    sblock.fs_cssize/sblock.fs_fsize;
1193 			    d++) {
1194 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1195 				acg.cg_cs.cs_nffree--;
1196 				sblock.fs_cstotal.cs_nffree--;
1197 			}
1198 			acg.cg_cs.cs_nbfree--;
1199 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1200 			sblock.fs_cstotal.cs_nbfree--;
1201 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1202 			if(sblock.fs_contigsumsize > 0) {
1203 				clrbit(cg_clustersfree(&acg),
1204 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1205 			}
1206 
1207 			frag_adjust(d%sblock.fs_fpg, +1);
1208 		}
1209 		/*
1210 		 * XXX	Handle the cluster statistics here in the case this
1211 		 *	cylinder group is now almost full, and the remaining
1212 		 *	space is less then the maximum cluster size. This is
1213 		 *	probably not needed, as you would hardly find a file
1214 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1215 		 *	space right behind the cylinder group information in
1216 		 *	any new cylinder group.
1217 		 */
1218 
1219 		/*
1220 		 * Update our statistics in the cylinder summary.
1221 		 */
1222 		*cs = acg.cg_cs;
1223 
1224 		/*
1225 		 * Write the new cylinder group containing the cylinder summary
1226 		 * back to disk.
1227 		 */
1228 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1229 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1230 		DBG_PRINT0("nscg written\n");
1231 		DBG_DUMP_CG(&sblock,
1232 		    "new summary cg",
1233 		    &acg);
1234 
1235 		DBG_LEAVE;
1236 		return;
1237 	}
1238 	/*
1239 	 * We have got enough of space in the current cylinder group, so we
1240 	 * can relocate just a few blocks, and let the summary information
1241 	 * grow in place where it is right now.
1242 	 */
1243 	DBG_TRC;
1244 
1245 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1246 	dupper = sblock.fs_csaddr - cbase +
1247 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1248 	odupper = osblock.fs_csaddr - cbase +
1249 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1250 
1251 	sblock.fs_dsize -= dupper-odupper;
1252 
1253 	/*
1254 	 * Allocate the space for the array of blocks to be relocated.
1255 	 */
1256  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1257 	    sizeof(struct gfs_bpp));
1258 	if(bp == NULL) {
1259 		errx(1, "malloc failed");
1260 	}
1261 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1262 	    sizeof(struct gfs_bpp));
1263 
1264 	/*
1265 	 * Lock all new frags needed for the cylinder group summary. This is
1266 	 * done per fragment in the first and last block of the new required
1267 	 * area, and per block for all other blocks.
1268 	 *
1269 	 * Handle the first new block here (but only if some fragments where
1270 	 * already used for the cylinder summary).
1271 	 */
1272 	ind=0;
1273 	frag_adjust(odupper, -1);
1274 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1275 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1276 		    (intmax_t)d);
1277 		if(isclr(cg_blksfree(&acg), d)) {
1278 			if (!ind) {
1279 				bp[ind].old=d/sblock.fs_frag;
1280 				bp[ind].flags|=GFS_FL_FIRST;
1281 				if(roundup(d, sblock.fs_frag) >= dupper) {
1282 					bp[ind].flags|=GFS_FL_LAST;
1283 				}
1284 				ind++;
1285 			}
1286 		} else {
1287 			clrbit(cg_blksfree(&acg), d);
1288 			acg.cg_cs.cs_nffree--;
1289 			sblock.fs_cstotal.cs_nffree--;
1290 		}
1291 		/*
1292 		 * No cluster handling is needed here, as there was at least
1293 		 * one fragment in use by the cylinder summary in the old
1294 		 * file system.
1295 		 * No block-free counter handling here as this block was not
1296 		 * a free block.
1297 		 */
1298 	}
1299 	frag_adjust(odupper, 1);
1300 
1301 	/*
1302 	 * Handle all needed complete blocks here.
1303 	 */
1304 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1305 		DBG_PRINT1("scg block check loop d=%jd\n",
1306 		    (intmax_t)d);
1307 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1308 			for(f=d; f<d+sblock.fs_frag; f++) {
1309 				if(isset(cg_blksfree(&aocg), f)) {
1310 					acg.cg_cs.cs_nffree--;
1311 					sblock.fs_cstotal.cs_nffree--;
1312 				}
1313 			}
1314 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1315 			bp[ind].old=d/sblock.fs_frag;
1316 			ind++;
1317 		} else {
1318 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1319 			acg.cg_cs.cs_nbfree--;
1320 			sblock.fs_cstotal.cs_nbfree--;
1321 			if(sblock.fs_contigsumsize > 0) {
1322 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1323 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1324 				    lcs<sblock.fs_contigsumsize;
1325 				    l++, lcs++ ) {
1326 					if(isclr(cg_clustersfree(&acg),l)){
1327 						break;
1328 					}
1329 				}
1330 				if(lcs < sblock.fs_contigsumsize) {
1331 					cg_clustersum(&acg)[lcs+1]--;
1332 					if(lcs) {
1333 						cg_clustersum(&acg)[lcs]++;
1334 					}
1335 				}
1336 			}
1337 		}
1338 		/*
1339 		 * No fragment counter handling is needed here, as this finally
1340 		 * doesn't change after the relocation.
1341 		 */
1342 	}
1343 
1344 	/*
1345 	 * Handle all fragments needed in the last new affected block.
1346 	 */
1347 	if(d<dupper) {
1348 		frag_adjust(dupper-1, -1);
1349 
1350 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1351 			acg.cg_cs.cs_nbfree--;
1352 			sblock.fs_cstotal.cs_nbfree--;
1353 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1354 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1355 			if(sblock.fs_contigsumsize > 0) {
1356 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1357 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1358 				    lcs<sblock.fs_contigsumsize;
1359 				    l++, lcs++ ) {
1360 					if(isclr(cg_clustersfree(&acg),l)){
1361 						break;
1362 					}
1363 				}
1364 				if(lcs < sblock.fs_contigsumsize) {
1365 					cg_clustersum(&acg)[lcs+1]--;
1366 					if(lcs) {
1367 						cg_clustersum(&acg)[lcs]++;
1368 					}
1369 				}
1370 			}
1371 		}
1372 
1373 		for(; d<dupper; d++) {
1374 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1375 			    (intmax_t)d);
1376 			if(isclr(cg_blksfree(&acg), d)) {
1377 				bp[ind].old=d/sblock.fs_frag;
1378 				bp[ind].flags|=GFS_FL_LAST;
1379 			} else {
1380 				clrbit(cg_blksfree(&acg), d);
1381 				acg.cg_cs.cs_nffree--;
1382 				sblock.fs_cstotal.cs_nffree--;
1383 			}
1384 		}
1385 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1386 			ind++;
1387 		}
1388 		frag_adjust(dupper-1, 1);
1389 	}
1390 
1391 	/*
1392 	 * If we found a block to relocate just do so.
1393 	 */
1394 	if(ind) {
1395 		for(i=0; i<ind; i++) {
1396 			if(!bp[i].old) { /* no more blocks listed */
1397 				/*
1398 				 * XXX	A relative blocknumber should not be
1399 				 *	zero, which is not explicitly
1400 				 *	guaranteed by our code.
1401 				 */
1402 				break;
1403 			}
1404 			/*
1405 			 * Allocate a complete block in the same (current)
1406 			 * cylinder group.
1407 			 */
1408 			bp[i].new=alloc()/sblock.fs_frag;
1409 
1410 			/*
1411 			 * There is no frag_adjust() needed for the new block
1412 			 * as it will have no fragments yet :-).
1413 			 */
1414 			for(f=bp[i].old*sblock.fs_frag,
1415 			    g=bp[i].new*sblock.fs_frag;
1416 			    f<(bp[i].old+1)*sblock.fs_frag;
1417 			    f++, g++) {
1418 				if(isset(cg_blksfree(&aocg), f)) {
1419 					setbit(cg_blksfree(&acg), g);
1420 					acg.cg_cs.cs_nffree++;
1421 					sblock.fs_cstotal.cs_nffree++;
1422 				}
1423 			}
1424 
1425 			/*
1426 			 * Special handling is required if this was the first
1427 			 * block. We have to consider the fragments which were
1428 			 * used by the cylinder summary in the original block
1429 			 * which re to be free in the copy of our block.  We
1430 			 * have to be careful if this first block happens to
1431 			 * be also the last block to be relocated.
1432 			 */
1433 			if(bp[i].flags & GFS_FL_FIRST) {
1434 				for(f=bp[i].old*sblock.fs_frag,
1435 				    g=bp[i].new*sblock.fs_frag;
1436 				    f<odupper;
1437 				    f++, g++) {
1438 					setbit(cg_blksfree(&acg), g);
1439 					acg.cg_cs.cs_nffree++;
1440 					sblock.fs_cstotal.cs_nffree++;
1441 				}
1442 				if(!(bp[i].flags & GFS_FL_LAST)) {
1443 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1444 				}
1445 			}
1446 
1447 			/*
1448 			 * Special handling is required if this is the last
1449 			 * block to be relocated.
1450 			 */
1451 			if(bp[i].flags & GFS_FL_LAST) {
1452 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1453 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1454 				for(f=dupper;
1455 				    f<roundup(dupper, sblock.fs_frag);
1456 				    f++) {
1457 					if(isclr(cg_blksfree(&acg), f)) {
1458 						setbit(cg_blksfree(&acg), f);
1459 						acg.cg_cs.cs_nffree++;
1460 						sblock.fs_cstotal.cs_nffree++;
1461 					}
1462 				}
1463 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1464 			}
1465 
1466 			/*
1467 			 * !!! Attach the cylindergroup offset here.
1468 			 */
1469 			bp[i].old+=cbase/sblock.fs_frag;
1470 			bp[i].new+=cbase/sblock.fs_frag;
1471 
1472 			/*
1473 			 * Copy the content of the block.
1474 			 */
1475 			/*
1476 			 * XXX	Here we will have to implement a copy on write
1477 			 *	in the case we have any active snapshots.
1478 			 */
1479 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1480 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1481 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1482 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1483 			DBG_DUMP_HEX(&sblock,
1484 			    "copied full block",
1485 			    (unsigned char *)&ablk);
1486 
1487 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1488 			    (intmax_t)bp[i].old,
1489 			    (intmax_t)bp[i].new);
1490 		}
1491 
1492 		/*
1493 		 * Now we have to update all references to any fragment which
1494 		 * belongs to any block relocated. We iterate now over all
1495 		 * cylinder groups, within those over all non zero length
1496 		 * inodes.
1497 		 */
1498 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1499 			DBG_PRINT1("scg doing cg (%d)\n",
1500 			    cylno);
1501 			for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1502 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1503 			}
1504 		}
1505 
1506 		/*
1507 		 * All inodes are checked, now make sure the number of
1508 		 * references found make sense.
1509 		 */
1510 		for(i=0; i<ind; i++) {
1511 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1512 				warnx("error: %jd refs found for block %jd.",
1513 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1514 			}
1515 
1516 		}
1517 	}
1518 	/*
1519 	 * The following statistics are not changed here:
1520 	 *     sblock.fs_cstotal.cs_ndir
1521 	 *     sblock.fs_cstotal.cs_nifree
1522 	 * The following statistics were already updated on the fly:
1523 	 *     sblock.fs_cstotal.cs_nffree
1524 	 *     sblock.fs_cstotal.cs_nbfree
1525 	 * As the statistics for this cylinder group are ready, copy it to
1526 	 * the summary information array.
1527 	 */
1528 
1529 	*cs = acg.cg_cs;
1530 
1531 	/*
1532 	 * Write summary cylinder group back to disk.
1533 	 */
1534 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1535 	    (void *)&acg, fso, Nflag);
1536 	DBG_PRINT0("scg written\n");
1537 	DBG_DUMP_CG(&sblock,
1538 	    "new summary cg",
1539 	    &acg);
1540 
1541 	DBG_LEAVE;
1542 	return;
1543 }
1544 
1545 /* ************************************************************** rdfs ***** */
1546 /*
1547  * Here we read some block(s) from disk.
1548  */
1549 static void
1550 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1551 {
1552 	DBG_FUNC("rdfs")
1553 	ssize_t	n;
1554 
1555 	DBG_ENTER;
1556 
1557 	if (bno < 0) {
1558 		err(32, "rdfs: attempting to read negative block number");
1559 	}
1560 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1561 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1562 	}
1563 	n = read(fsi, bf, size);
1564 	if (n != (ssize_t)size) {
1565 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1566 	}
1567 
1568 	DBG_LEAVE;
1569 	return;
1570 }
1571 
1572 /* ************************************************************** wtfs ***** */
1573 /*
1574  * Here we write some block(s) to disk.
1575  */
1576 static void
1577 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1578 {
1579 	DBG_FUNC("wtfs")
1580 	ssize_t	n;
1581 
1582 	DBG_ENTER;
1583 
1584 	if (Nflag) {
1585 		DBG_LEAVE;
1586 		return;
1587 	}
1588 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1589 		err(35, "wtfs: seek error: %ld", (long)bno);
1590 	}
1591 	n = write(fso, bf, size);
1592 	if (n != (ssize_t)size) {
1593 		err(36, "wtfs: write error: %ld", (long)bno);
1594 	}
1595 
1596 	DBG_LEAVE;
1597 	return;
1598 }
1599 
1600 /* ************************************************************* alloc ***** */
1601 /*
1602  * Here we allocate a free block in the current cylinder group. It is assumed,
1603  * that acg contains the current cylinder group. As we may take a block from
1604  * somewhere in the file system we have to handle cluster summary here.
1605  */
1606 static ufs2_daddr_t
1607 alloc(void)
1608 {
1609 	DBG_FUNC("alloc")
1610 	ufs2_daddr_t	d, blkno;
1611 	int	lcs1, lcs2;
1612 	int	l;
1613 	int	csmin, csmax;
1614 	int	dlower, dupper, dmax;
1615 
1616 	DBG_ENTER;
1617 
1618 	if (acg.cg_magic != CG_MAGIC) {
1619 		warnx("acg: bad magic number");
1620 		DBG_LEAVE;
1621 		return (0);
1622 	}
1623 	if (acg.cg_cs.cs_nbfree == 0) {
1624 		warnx("error: cylinder group ran out of space");
1625 		DBG_LEAVE;
1626 		return (0);
1627 	}
1628 	/*
1629 	 * We start seeking for free blocks only from the space available after
1630 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1631 	 * block here which we have to relocate a couple of seconds later again
1632 	 * again, and we are not prepared to to this anyway.
1633 	 */
1634 	blkno=-1;
1635 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1636 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1637 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1638 	if (dmax > sblock.fs_size) {
1639 		dmax = sblock.fs_size;
1640 	}
1641 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1642 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1643 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1644 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1645 	    dlower,
1646 	    dupper,
1647 	    dmax);
1648 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1649 	    csmin,
1650 	    csmax);
1651 
1652 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1653 		if(d>=csmin && d<=csmax) {
1654 			continue;
1655 		}
1656 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1657 		    d))) {
1658 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1659 			break;
1660 		}
1661 	}
1662 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1663 		if(d>=csmin && d<=csmax) {
1664 			continue;
1665 		}
1666 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1667 		    d))) {
1668 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1669 			break;
1670 		}
1671 	}
1672 	if(blkno==-1) {
1673 		warnx("internal error: couldn't find promised block in cg");
1674 		DBG_LEAVE;
1675 		return (0);
1676 	}
1677 
1678 	/*
1679 	 * This is needed if the block was found already in the first loop.
1680 	 */
1681 	d=blkstofrags(&sblock, blkno);
1682 
1683 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1684 	if (sblock.fs_contigsumsize > 0) {
1685 		/*
1686 		 * Handle the cluster allocation bitmap.
1687 		 */
1688 		clrbit(cg_clustersfree(&acg), blkno);
1689 		/*
1690 		 * We possibly have split a cluster here, so we have to do
1691 		 * recalculate the sizes of the remaining cluster halves now,
1692 		 * and use them for updating the cluster summary information.
1693 		 *
1694 		 * Lets start with the blocks before our allocated block ...
1695 		 */
1696 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1697 		    l--, lcs1++ ) {
1698 			if(isclr(cg_clustersfree(&acg),l)){
1699 				break;
1700 			}
1701 		}
1702 		/*
1703 		 * ... and continue with the blocks right after our allocated
1704 		 * block.
1705 		 */
1706 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1707 		    l++, lcs2++ ) {
1708 			if(isclr(cg_clustersfree(&acg),l)){
1709 				break;
1710 			}
1711 		}
1712 
1713 		/*
1714 		 * Now update all counters.
1715 		 */
1716 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1717 		if(lcs1) {
1718 			cg_clustersum(&acg)[lcs1]++;
1719 		}
1720 		if(lcs2) {
1721 			cg_clustersum(&acg)[lcs2]++;
1722 		}
1723 	}
1724 	/*
1725 	 * Update all statistics based on blocks.
1726 	 */
1727 	acg.cg_cs.cs_nbfree--;
1728 	sblock.fs_cstotal.cs_nbfree--;
1729 
1730 	DBG_LEAVE;
1731 	return (d);
1732 }
1733 
1734 /* *********************************************************** isblock ***** */
1735 /*
1736  * Here we check if all frags of a block are free. For more details again
1737  * please see the source of newfs(8), as this function is taken over almost
1738  * unchanged.
1739  */
1740 static int
1741 isblock(struct fs *fs, unsigned char *cp, int h)
1742 {
1743 	DBG_FUNC("isblock")
1744 	unsigned char	mask;
1745 
1746 	DBG_ENTER;
1747 
1748 	switch (fs->fs_frag) {
1749 	case 8:
1750 		DBG_LEAVE;
1751 		return (cp[h] == 0xff);
1752 	case 4:
1753 		mask = 0x0f << ((h & 0x1) << 2);
1754 		DBG_LEAVE;
1755 		return ((cp[h >> 1] & mask) == mask);
1756 	case 2:
1757 		mask = 0x03 << ((h & 0x3) << 1);
1758 		DBG_LEAVE;
1759 		return ((cp[h >> 2] & mask) == mask);
1760 	case 1:
1761 		mask = 0x01 << (h & 0x7);
1762 		DBG_LEAVE;
1763 		return ((cp[h >> 3] & mask) == mask);
1764 	default:
1765 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1766 		DBG_LEAVE;
1767 		return (0);
1768 	}
1769 }
1770 
1771 /* ********************************************************** clrblock ***** */
1772 /*
1773  * Here we allocate a complete block in the block map. For more details again
1774  * please see the source of newfs(8), as this function is taken over almost
1775  * unchanged.
1776  */
1777 static void
1778 clrblock(struct fs *fs, unsigned char *cp, int h)
1779 {
1780 	DBG_FUNC("clrblock")
1781 
1782 	DBG_ENTER;
1783 
1784 	switch ((fs)->fs_frag) {
1785 	case 8:
1786 		cp[h] = 0;
1787 		break;
1788 	case 4:
1789 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1790 		break;
1791 	case 2:
1792 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1793 		break;
1794 	case 1:
1795 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1796 		break;
1797 	default:
1798 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1799 		break;
1800 	}
1801 
1802 	DBG_LEAVE;
1803 	return;
1804 }
1805 
1806 /* ********************************************************** setblock ***** */
1807 /*
1808  * Here we free a complete block in the free block map. For more details again
1809  * please see the source of newfs(8), as this function is taken over almost
1810  * unchanged.
1811  */
1812 static void
1813 setblock(struct fs *fs, unsigned char *cp, int h)
1814 {
1815 	DBG_FUNC("setblock")
1816 
1817 	DBG_ENTER;
1818 
1819 	switch (fs->fs_frag) {
1820 	case 8:
1821 		cp[h] = 0xff;
1822 		break;
1823 	case 4:
1824 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1825 		break;
1826 	case 2:
1827 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1828 		break;
1829 	case 1:
1830 		cp[h >> 3] |= (0x01 << (h & 0x7));
1831 		break;
1832 	default:
1833 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1834 		break;
1835 	}
1836 
1837 	DBG_LEAVE;
1838 	return;
1839 }
1840 
1841 /* ************************************************************ ginode ***** */
1842 /*
1843  * This function provides access to an individual inode. We find out in which
1844  * block the requested inode is located, read it from disk if needed, and
1845  * return the pointer into that block. We maintain a cache of one block to
1846  * not read the same block again and again if we iterate linearly over all
1847  * inodes.
1848  */
1849 static union dinode *
1850 ginode(ino_t inumber, int fsi, int cg)
1851 {
1852 	DBG_FUNC("ginode")
1853 	static ino_t	startinum = 0;	/* first inode in cached block */
1854 
1855 	DBG_ENTER;
1856 
1857 	/*
1858 	 * The inumber passed in is relative to the cg, so use it here to see
1859 	 * if the inode has been allocated yet.
1860 	 */
1861 	if (isclr(cg_inosused(&aocg), inumber)) {
1862 		DBG_LEAVE;
1863 		return NULL;
1864 	}
1865 	/*
1866 	 * Now make the inumber relative to the entire inode space so it can
1867 	 * be sanity checked.
1868 	 */
1869 	inumber += (cg * sblock.fs_ipg);
1870 	if (inumber < ROOTINO) {
1871 		DBG_LEAVE;
1872 		return NULL;
1873 	}
1874 	if (inumber > maxino)
1875 		errx(8, "bad inode number %d to ginode", inumber);
1876 	if (startinum == 0 ||
1877 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1878 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1879 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1880 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1881 	}
1882 	DBG_LEAVE;
1883 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1884 		return (union dinode *)((uintptr_t)inobuf +
1885 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1886 	return (union dinode *)((uintptr_t)inobuf +
1887 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1888 }
1889 
1890 /* ****************************************************** charsperline ***** */
1891 /*
1892  * Figure out how many lines our current terminal has. For more details again
1893  * please see the source of newfs(8), as this function is taken over almost
1894  * unchanged.
1895  */
1896 static int
1897 charsperline(void)
1898 {
1899 	DBG_FUNC("charsperline")
1900 	int	columns;
1901 	char	*cp;
1902 	struct winsize	ws;
1903 
1904 	DBG_ENTER;
1905 
1906 	columns = 0;
1907 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1908 		columns = ws.ws_col;
1909 	}
1910 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1911 		columns = atoi(cp);
1912 	}
1913 	if (columns == 0) {
1914 		columns = 80;	/* last resort */
1915 	}
1916 
1917 	DBG_LEAVE;
1918 	return columns;
1919 }
1920 
1921 /* ****************************************************** get_dev_size ***** */
1922 /*
1923  * Get the size of the partition if we can't figure it out from the disklabel,
1924  * e.g. from vinum volumes.
1925  */
1926 static void
1927 get_dev_size(int fd, int *size)
1928 {
1929    int sectorsize;
1930    off_t mediasize;
1931 
1932    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1933         err(1,"DIOCGSECTORSIZE");
1934    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1935         err(1,"DIOCGMEDIASIZE");
1936 
1937    if (sectorsize <= 0)
1938        errx(1, "bogus sectorsize: %d", sectorsize);
1939 
1940    *size = mediasize / sectorsize;
1941 }
1942 
1943 /* ************************************************************** main ***** */
1944 /*
1945  * growfs(8)  is a utility which allows to increase the size of an existing
1946  * ufs file system. Currently this can only be done on unmounted file system.
1947  * It recognizes some command line options to specify the new desired size,
1948  * and it does some basic checkings. The old file system size is determined
1949  * and after some more checks like we can really access the new last block
1950  * on the disk etc. we calculate the new parameters for the superblock. After
1951  * having done this we just call growfs() which will do the work.  Before
1952  * we finish the only thing left is to update the disklabel.
1953  * We still have to provide support for snapshots. Therefore we first have to
1954  * understand what data structures are always replicated in the snapshot on
1955  * creation, for all other blocks we touch during our procedure, we have to
1956  * keep the old blocks unchanged somewhere available for the snapshots. If we
1957  * are lucky, then we only have to handle our blocks to be relocated in that
1958  * way.
1959  * Also we have to consider in what order we actually update the critical
1960  * data structures of the file system to make sure, that in case of a disaster
1961  * fsck(8) is still able to restore any lost data.
1962  * The foreseen last step then will be to provide for growing even mounted
1963  * file systems. There we have to extend the mount() system call to provide
1964  * userland access to the file system locking facility.
1965  */
1966 int
1967 main(int argc, char **argv)
1968 {
1969 	DBG_FUNC("main")
1970 	char	*device, *special, *cp;
1971 	int	ch;
1972 	unsigned int	size=0;
1973 	size_t	len;
1974 	unsigned int	Nflag=0;
1975 	int	ExpertFlag=0;
1976 	struct stat	st;
1977 	struct disklabel	*lp;
1978 	struct partition	*pp;
1979 	int	i,fsi,fso;
1980     u_int32_t p_size;
1981 	char	reply[5];
1982 #ifdef FSMAXSNAP
1983 	int	j;
1984 #endif /* FSMAXSNAP */
1985 
1986 	DBG_ENTER;
1987 
1988 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1989 		switch(ch) {
1990 		case 'N':
1991 			Nflag=1;
1992 			break;
1993 		case 's':
1994 			size=(size_t)atol(optarg);
1995 			if(size<1) {
1996 				usage();
1997 			}
1998 			break;
1999 		case 'v': /* for compatibility to newfs */
2000 			break;
2001 		case 'y':
2002 			ExpertFlag=1;
2003 			break;
2004 		case '?':
2005 			/* FALLTHROUGH */
2006 		default:
2007 			usage();
2008 		}
2009 	}
2010 	argc -= optind;
2011 	argv += optind;
2012 
2013 	if(argc != 1) {
2014 		usage();
2015 	}
2016 	device=*argv;
2017 
2018 	/*
2019 	 * Now try to guess the (raw)device name.
2020 	 */
2021 	if (0 == strrchr(device, '/')) {
2022 		/*
2023 		 * No path prefix was given, so try in that order:
2024 		 *     /dev/r%s
2025 		 *     /dev/%s
2026 		 *     /dev/vinum/r%s
2027 		 *     /dev/vinum/%s.
2028 		 *
2029 		 * FreeBSD now doesn't distinguish between raw and block
2030 		 * devices any longer, but it should still work this way.
2031 		 */
2032 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2033 		special=(char *)malloc(len);
2034 		if(special == NULL) {
2035 			errx(1, "malloc failed");
2036 		}
2037 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2038 		if (stat(special, &st) == -1) {
2039 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2040 			if (stat(special, &st) == -1) {
2041 				snprintf(special, len, "%svinum/r%s",
2042 				    _PATH_DEV, device);
2043 				if (stat(special, &st) == -1) {
2044 					/* For now this is the 'last resort' */
2045 					snprintf(special, len, "%svinum/%s",
2046 					    _PATH_DEV, device);
2047 				}
2048 			}
2049 		}
2050 		device = special;
2051 	}
2052 
2053 	/*
2054 	 * Try to access our devices for writing ...
2055 	 */
2056 	if (Nflag) {
2057 		fso = -1;
2058 	} else {
2059 		fso = open(device, O_WRONLY);
2060 		if (fso < 0) {
2061 			err(1, "%s", device);
2062 		}
2063 	}
2064 
2065 	/*
2066 	 * ... and reading.
2067 	 */
2068 	fsi = open(device, O_RDONLY);
2069 	if (fsi < 0) {
2070 		err(1, "%s", device);
2071 	}
2072 
2073 	/*
2074 	 * Try to read a label and guess the slice if not specified. This
2075 	 * code should guess the right thing and avoid to bother the user
2076 	 * with the task of specifying the option -v on vinum volumes.
2077 	 */
2078 	cp=device+strlen(device)-1;
2079 	lp = get_disklabel(fsi);
2080 	pp = NULL;
2081     if (lp != NULL) {
2082         if (isdigit(*cp)) {
2083             pp = &lp->d_partitions[2];
2084         } else if (*cp>='a' && *cp<='h') {
2085             pp = &lp->d_partitions[*cp - 'a'];
2086         } else {
2087             errx(1, "unknown device");
2088         }
2089         p_size = pp->p_size;
2090     } else {
2091         get_dev_size(fsi, &p_size);
2092     }
2093 
2094 	/*
2095 	 * Check if that partition is suitable for growing a file system.
2096 	 */
2097 	if (p_size < 1) {
2098 		errx(1, "partition is unavailable");
2099 	}
2100 
2101 	/*
2102 	 * Read the current superblock, and take a backup.
2103 	 */
2104 	for (i = 0; sblock_try[i] != -1; i++) {
2105 		sblockloc = sblock_try[i] / DEV_BSIZE;
2106 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2107 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2108 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2109 		      osblock.fs_sblockloc == sblock_try[i])) &&
2110 		    osblock.fs_bsize <= MAXBSIZE &&
2111 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2112 			break;
2113 	}
2114 	if (sblock_try[i] == -1) {
2115 		errx(1, "superblock not recognized");
2116 	}
2117 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2118 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2119 
2120 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2121 	DBG_DUMP_FS(&sblock,
2122 	    "old sblock");
2123 
2124 	/*
2125 	 * Determine size to grow to. Default to the full size specified in
2126 	 * the disk label.
2127 	 */
2128 	sblock.fs_size = dbtofsb(&osblock, p_size);
2129 	if (size != 0) {
2130 		if (size > p_size){
2131 			errx(1, "there is not enough space (%d < %d)",
2132 			    p_size, size);
2133 		}
2134 		sblock.fs_size = dbtofsb(&osblock, size);
2135 	}
2136 
2137 	/*
2138 	 * Are we really growing ?
2139 	 */
2140 	if(osblock.fs_size >= sblock.fs_size) {
2141 		errx(1, "we are not growing (%jd->%jd)",
2142 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2143 	}
2144 
2145 
2146 #ifdef FSMAXSNAP
2147 	/*
2148 	 * Check if we find an active snapshot.
2149 	 */
2150 	if(ExpertFlag == 0) {
2151 		for(j=0; j<FSMAXSNAP; j++) {
2152 			if(sblock.fs_snapinum[j]) {
2153 				errx(1, "active snapshot found in file system\n"
2154 				    "	please remove all snapshots before "
2155 				    "using growfs");
2156 			}
2157 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2158 				break;
2159 			}
2160 		}
2161 	}
2162 #endif
2163 
2164 	if (ExpertFlag == 0 && Nflag == 0) {
2165 		printf("We strongly recommend you to make a backup "
2166 		    "before growing the Filesystem\n\n"
2167 		    " Did you backup your data (Yes/No) ? ");
2168 		fgets(reply, (int)sizeof(reply), stdin);
2169 		if (strcmp(reply, "Yes\n")){
2170 			printf("\n Nothing done \n");
2171 			exit (0);
2172 		}
2173 	}
2174 
2175 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2176 
2177 	/*
2178 	 * Try to access our new last block in the file system. Even if we
2179 	 * later on realize we have to abort our operation, on that block
2180 	 * there should be no data, so we can't destroy something yet.
2181 	 */
2182 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2183 	    fso, Nflag);
2184 
2185 	/*
2186 	 * Now calculate new superblock values and check for reasonable
2187 	 * bound for new file system size:
2188 	 *     fs_size:    is derived from label or user input
2189 	 *     fs_dsize:   should get updated in the routines creating or
2190 	 *                 updating the cylinder groups on the fly
2191 	 *     fs_cstotal: should get updated in the routines creating or
2192 	 *                 updating the cylinder groups
2193 	 */
2194 
2195 	/*
2196 	 * Update the number of cylinders and cylinder groups in the file system.
2197 	 */
2198 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2199 		sblock.fs_old_ncyl =
2200 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2201 		if (sblock.fs_size * sblock.fs_old_nspf >
2202 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2203 			sblock.fs_old_ncyl++;
2204 	}
2205 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2206 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2207 
2208 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2209 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2210 		/*
2211 		 * The space in the new last cylinder group is too small,
2212 		 * so revert back.
2213 		 */
2214 		sblock.fs_ncg--;
2215 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2216 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2217 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2218 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2219 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2220 	}
2221 
2222 	/*
2223 	 * Update the space for the cylinder group summary information in the
2224 	 * respective cylinder group data area.
2225 	 */
2226 	sblock.fs_cssize =
2227 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2228 
2229 	if(osblock.fs_size >= sblock.fs_size) {
2230 		errx(1, "not enough new space");
2231 	}
2232 
2233 	DBG_PRINT0("sblock calculated\n");
2234 
2235 	/*
2236 	 * Ok, everything prepared, so now let's do the tricks.
2237 	 */
2238 	growfs(fsi, fso, Nflag);
2239 
2240 	/*
2241 	 * Update the disk label.
2242 	 */
2243     if (!unlabeled) {
2244         pp->p_fsize = sblock.fs_fsize;
2245         pp->p_frag = sblock.fs_frag;
2246         pp->p_cpg = sblock.fs_fpg;
2247 
2248         return_disklabel(fso, lp, Nflag);
2249         DBG_PRINT0("label rewritten\n");
2250     }
2251 
2252 	close(fsi);
2253 	if(fso>-1) close(fso);
2254 
2255 	DBG_CLOSE;
2256 
2257 	DBG_LEAVE;
2258 	return 0;
2259 }
2260 
2261 /* ************************************************** return_disklabel ***** */
2262 /*
2263  * Write the updated disklabel back to disk.
2264  */
2265 static void
2266 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2267 {
2268 	DBG_FUNC("return_disklabel")
2269 	u_short	sum;
2270 	u_short	*ptr;
2271 
2272 	DBG_ENTER;
2273 
2274 	if(!lp) {
2275 		DBG_LEAVE;
2276 		return;
2277 	}
2278 	if(!Nflag) {
2279 		lp->d_checksum=0;
2280 		sum = 0;
2281 		ptr=(u_short *)lp;
2282 
2283 		/*
2284 		 * recalculate checksum
2285 		 */
2286 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2287 			sum ^= *ptr++;
2288 		}
2289 		lp->d_checksum=sum;
2290 
2291 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2292 			errx(1, "DIOCWDINFO failed");
2293 		}
2294 	}
2295 	free(lp);
2296 
2297 	DBG_LEAVE;
2298 	return ;
2299 }
2300 
2301 /* ***************************************************** get_disklabel ***** */
2302 /*
2303  * Read the disklabel from disk.
2304  */
2305 static struct disklabel *
2306 get_disklabel(int fd)
2307 {
2308 	DBG_FUNC("get_disklabel")
2309 	static struct	disklabel *lab;
2310 
2311 	DBG_ENTER;
2312 
2313 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2314 	if (!lab)
2315 		errx(1, "malloc failed");
2316 
2317     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2318         return (lab);
2319 
2320     unlabeled++;
2321 
2322 	DBG_LEAVE;
2323 	return (NULL);
2324 }
2325 
2326 
2327 /* ************************************************************* usage ***** */
2328 /*
2329  * Dump a line of usage.
2330  */
2331 static void
2332 usage(void)
2333 {
2334 	DBG_FUNC("usage")
2335 
2336 	DBG_ENTER;
2337 
2338 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2339 
2340 	DBG_LEAVE;
2341 	exit(1);
2342 }
2343 
2344 /* *********************************************************** updclst ***** */
2345 /*
2346  * This updates most parameters and the bitmap related to cluster. We have to
2347  * assume that sblock, osblock, acg are set up.
2348  */
2349 static void
2350 updclst(int block)
2351 {
2352 	DBG_FUNC("updclst")
2353 	static int	lcs=0;
2354 
2355 	DBG_ENTER;
2356 
2357 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2358 		return;
2359 	}
2360 	/*
2361 	 * update cluster allocation map
2362 	 */
2363 	setbit(cg_clustersfree(&acg), block);
2364 
2365 	/*
2366 	 * update cluster summary table
2367 	 */
2368 	if(!lcs) {
2369 		/*
2370 		 * calculate size for the trailing cluster
2371 		 */
2372 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2373 			if(isclr(cg_clustersfree(&acg), block)){
2374 				break;
2375 			}
2376 		}
2377 	}
2378 	if(lcs < sblock.fs_contigsumsize) {
2379 		if(lcs) {
2380 			cg_clustersum(&acg)[lcs]--;
2381 		}
2382 		lcs++;
2383 		cg_clustersum(&acg)[lcs]++;
2384 	}
2385 
2386 	DBG_LEAVE;
2387 	return;
2388 }
2389 
2390 /* *********************************************************** updrefs ***** */
2391 /*
2392  * This updates all references to relocated blocks for the given inode.  The
2393  * inode is given as number within the cylinder group, and the number of the
2394  * cylinder group.
2395  */
2396 static void
2397 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2398     Nflag)
2399 {
2400 	DBG_FUNC("updrefs")
2401 	ufs_lbn_t	len, lbn, numblks;
2402 	ufs2_daddr_t	iptr, blksperindir;
2403 	union dinode	*ino;
2404 	int		i, mode, inodeupdated;
2405 
2406 	DBG_ENTER;
2407 
2408 	ino = ginode(in, fsi, cg);
2409 	if (ino == NULL) {
2410 		DBG_LEAVE;
2411 		return;
2412 	}
2413 	mode = DIP(ino, di_mode) & IFMT;
2414 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2415 		DBG_LEAVE;
2416 		return; /* only check DIR, FILE, LINK */
2417 	}
2418 	if (mode == IFLNK &&
2419 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2420 		DBG_LEAVE;
2421 		return;	/* skip short symlinks */
2422 	}
2423 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2424 	if (numblks == 0) {
2425 		DBG_LEAVE;
2426 		return;	/* skip empty file */
2427 	}
2428 	if (DIP(ino, di_blocks) == 0) {
2429 		DBG_LEAVE;
2430 		return;	/* skip empty swiss cheesy file or old fastlink */
2431 	}
2432 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2433 	    in,
2434 	    cg);
2435 
2436 	/*
2437 	 * Check all the blocks.
2438 	 */
2439 	inodeupdated = 0;
2440 	len = numblks < NDADDR ? numblks : NDADDR;
2441 	for (i = 0; i < len; i++) {
2442 		iptr = DIP(ino, di_db[i]);
2443 		if (iptr == 0)
2444 			continue;
2445 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2446 			DIP_SET(ino, di_db[i], iptr);
2447 			inodeupdated++;
2448 		}
2449 	}
2450 	DBG_PRINT0("~~scg direct blocks checked\n");
2451 
2452 	blksperindir = 1;
2453 	len = numblks - NDADDR;
2454 	lbn = NDADDR;
2455 	for (i = 0; len > 0 && i < NIADDR; i++) {
2456 		iptr = DIP(ino, di_ib[i]);
2457 		if (iptr == 0)
2458 			continue;
2459 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2460 			DIP_SET(ino, di_ib[i], iptr);
2461 			inodeupdated++;
2462 		}
2463 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2464 		blksperindir *= NINDIR(&sblock);
2465 		lbn += blksperindir;
2466 		len -= blksperindir;
2467 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2468 	}
2469 	if (inodeupdated)
2470 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2471 
2472 	DBG_LEAVE;
2473 	return;
2474 }
2475 
2476 /*
2477  * Recursively check all the indirect blocks.
2478  */
2479 static void
2480 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2481     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2482 {
2483 	DBG_FUNC("indirchk")
2484 	void *ibuf;
2485 	int i, last;
2486 	ufs2_daddr_t iptr;
2487 
2488 	DBG_ENTER;
2489 
2490 	/* read in the indirect block. */
2491 	ibuf = malloc(sblock.fs_bsize);
2492 	if (!ibuf)
2493 		errx(1, "malloc failed");
2494 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2495 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2496 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2497 	for (i = 0; i < last; i++) {
2498 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2499 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2500 		else
2501 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2502 		if (iptr == 0)
2503 			continue;
2504 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2505 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2506 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2507 			else
2508 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2509 		}
2510 		if (blksperindir == 1)
2511 			continue;
2512 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2513 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2514 	}
2515 	free(ibuf);
2516 
2517 	DBG_LEAVE;
2518 	return;
2519 }
2520