xref: /freebsd/sbin/growfs/growfs.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD$";
52 #endif /* not lint */
53 
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 
60 #include <stdio.h>
61 #include <paths.h>
62 #include <ctype.h>
63 #include <err.h>
64 #include <fcntl.h>
65 #include <limits.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #include <ufs/ufs/dinode.h>
70 #include <ufs/ffs/fs.h>
71 
72 #include "debug.h"
73 
74 /* *************************************************** GLOBALS & TYPES ***** */
75 #ifdef FS_DEBUG
76 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
77 #endif /* FS_DEBUG */
78 
79 static union {
80 	struct fs	fs;
81 	char	pad[SBLOCKSIZE];
82 } fsun1, fsun2;
83 #define	sblock	fsun1.fs	/* the new superblock */
84 #define	osblock	fsun2.fs	/* the old superblock */
85 
86 /*
87  * Possible superblock locations ordered from most to least likely.
88  */
89 static int sblock_try[] = SBLOCKSEARCH;
90 static ufs2_daddr_t sblockloc;
91 
92 static union {
93 	struct cg	cg;
94 	char	pad[MAXBSIZE];
95 } cgun1, cgun2;
96 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
97 #define	aocg	cgun2.cg	/* an old cylinder group */
98 
99 static char	ablk[MAXBSIZE];	/* a block */
100 
101 static struct csum	*fscs;	/* cylinder summary */
102 
103 union dinode {
104 	struct ufs1_dinode dp1;
105 	struct ufs2_dinode dp2;
106 };
107 #define	DIP(dp, field) \
108 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
109 	(dp)->dp1.field : (dp)->dp2.field)
110 static ufs2_daddr_t 	inoblk;			/* inode block address */
111 static char		inobuf[MAXBSIZE];	/* inode block */
112 static int		maxino;			/* last valid inode */
113 
114 /*
115  * An array of elements of type struct gfs_bpp describes all blocks to
116  * be relocated in order to free the space needed for the cylinder group
117  * summary for all cylinder groups located in the first cylinder group.
118  */
119 struct gfs_bpp {
120 	ufs2_daddr_t	old;		/* old block number */
121 	ufs2_daddr_t	new;		/* new block number */
122 #define GFS_FL_FIRST	1
123 #define GFS_FL_LAST	2
124 	unsigned int	flags;	/* special handling required */
125 	int	found;		/* how many references were updated */
126 };
127 
128 /* ******************************************************** PROTOTYPES ***** */
129 static void	growfs(int, int, unsigned int);
130 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
131 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
132 static ufs2_daddr_t alloc(void);
133 static int	charsperline(void);
134 static void	usage(void);
135 static int	isblock(struct fs *, unsigned char *, int);
136 static void	clrblock(struct fs *, unsigned char *, int);
137 static void	setblock(struct fs *, unsigned char *, int);
138 static void	initcg(int, time_t, int, unsigned int);
139 static void	updjcg(int, time_t, int, int, unsigned int);
140 static void	updcsloc(time_t, int, int, unsigned int);
141 static struct disklabel	*get_disklabel(int);
142 static void	return_disklabel(int, struct disklabel *, unsigned int);
143 static union dinode *ginode(ino_t, int, int);
144 static void	frag_adjust(ufs2_daddr_t, int);
145 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
146 		    unsigned int);
147 static void	updclst(int);
148 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
149 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
150 		    struct gfs_bpp *, int, int, unsigned int);
151 
152 /* ************************************************************ growfs ***** */
153 /*
154  * Here we actually start growing the file system. We basically read the
155  * cylinder summary from the first cylinder group as we want to update
156  * this on the fly during our various operations. First we handle the
157  * changes in the former last cylinder group. Afterwards we create all new
158  * cylinder groups.  Now we handle the cylinder group containing the
159  * cylinder summary which might result in a relocation of the whole
160  * structure.  In the end we write back the updated cylinder summary, the
161  * new superblock, and slightly patched versions of the super block
162  * copies.
163  */
164 static void
165 growfs(int fsi, int fso, unsigned int Nflag)
166 {
167 	DBG_FUNC("growfs")
168 	int	i;
169 	int	cylno, j;
170 	time_t	utime;
171 	int	width;
172 	char	tmpbuf[100];
173 #ifdef FSIRAND
174 	static int	randinit=0;
175 
176 	DBG_ENTER;
177 
178 	if (!randinit) {
179 		randinit = 1;
180 		srandomdev();
181 	}
182 #else /* not FSIRAND */
183 
184 	DBG_ENTER;
185 
186 #endif /* FSIRAND */
187 	time(&utime);
188 
189 	/*
190 	 * Get the cylinder summary into the memory.
191 	 */
192 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
193 	if(fscs == NULL) {
194 		errx(1, "calloc failed");
195 	}
196 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
197 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
198 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
199 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
200 	}
201 
202 #ifdef FS_DEBUG
203 {
204 	struct csum	*dbg_csp;
205 	int	dbg_csc;
206 	char	dbg_line[80];
207 
208 	dbg_csp=fscs;
209 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
210 		snprintf(dbg_line, sizeof(dbg_line),
211 		    "%d. old csum in old location", dbg_csc);
212 		DBG_DUMP_CSUM(&osblock,
213 		    dbg_line,
214 		    dbg_csp++);
215 	}
216 }
217 #endif /* FS_DEBUG */
218 	DBG_PRINT0("fscs read\n");
219 
220 	/*
221 	 * Do all needed changes in the former last cylinder group.
222 	 */
223 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
224 
225 	/*
226 	 * Dump out summary information about file system.
227 	 */
228 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
229 	printf("growfs: %.1fMB (%qd sectors) block size %d, fragment size %d\n",
230 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
231 	    fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize);
232 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
233 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
234 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
235 	if (sblock.fs_flags & FS_DOSOFTDEP)
236 		printf("\twith soft updates\n");
237 #	undef B2MBFACTOR
238 
239 	/*
240 	 * Now build the cylinders group blocks and
241 	 * then print out indices of cylinder groups.
242 	 */
243 	printf("super-block backups (for fsck -b #) at:\n");
244 	i = 0;
245 	width = charsperline();
246 
247 	/*
248 	 * Iterate for only the new cylinder groups.
249 	 */
250 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
251 		initcg(cylno, utime, fso, Nflag);
252 		j = sprintf(tmpbuf, " %d%s",
253 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
254 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
255 		if (i + j >= width) {
256 			printf("\n");
257 			i = 0;
258 		}
259 		i += j;
260 		printf("%s", tmpbuf);
261 		fflush(stdout);
262 	}
263 	printf("\n");
264 
265 	/*
266 	 * Do all needed changes in the first cylinder group.
267 	 * allocate blocks in new location
268 	 */
269 	updcsloc(utime, fsi, fso, Nflag);
270 
271 	/*
272 	 * Now write the cylinder summary back to disk.
273 	 */
274 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
275 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
276 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
277 		    (void *)(((char *)fscs) + i), fso, Nflag);
278 	}
279 	DBG_PRINT0("fscs written\n");
280 
281 #ifdef FS_DEBUG
282 {
283 	struct csum	*dbg_csp;
284 	int	dbg_csc;
285 	char	dbg_line[80];
286 
287 	dbg_csp=fscs;
288 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
289 		snprintf(dbg_line, sizeof(dbg_line),
290 		    "%d. new csum in new location", dbg_csc);
291 		DBG_DUMP_CSUM(&sblock,
292 		    dbg_line,
293 		    dbg_csp++);
294 	}
295 }
296 #endif /* FS_DEBUG */
297 
298 	/*
299 	 * Now write the new superblock back to disk.
300 	 */
301 	sblock.fs_time = utime;
302 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
303 	DBG_PRINT0("sblock written\n");
304 	DBG_DUMP_FS(&sblock,
305 	    "new initial sblock");
306 
307 	/*
308 	 * Clean up the dynamic fields in our superblock copies.
309 	 */
310 	sblock.fs_fmod = 0;
311 	sblock.fs_clean = 1;
312 	sblock.fs_ronly = 0;
313 	sblock.fs_cgrotor = 0;
314 	sblock.fs_state = 0;
315 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
316 	sblock.fs_flags &= FS_DOSOFTDEP;
317 
318 	/*
319 	 * XXX
320 	 * The following fields are currently distributed from the superblock
321 	 * to the copies:
322 	 *     fs_minfree
323 	 *     fs_rotdelay
324 	 *     fs_maxcontig
325 	 *     fs_maxbpg
326 	 *     fs_minfree,
327 	 *     fs_optim
328 	 *     fs_flags regarding SOFTPDATES
329 	 *
330 	 * We probably should rather change the summary for the cylinder group
331 	 * statistics here to the value of what would be in there, if the file
332 	 * system were created initially with the new size. Therefor we still
333 	 * need to find an easy way of calculating that.
334 	 * Possibly we can try to read the first superblock copy and apply the
335 	 * "diffed" stats between the old and new superblock by still copying
336 	 * certain parameters onto that.
337 	 */
338 
339 	/*
340 	 * Write out the duplicate super blocks.
341 	 */
342 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
343 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
344 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
345 	}
346 	DBG_PRINT0("sblock copies written\n");
347 	DBG_DUMP_FS(&sblock,
348 	    "new other sblocks");
349 
350 	DBG_LEAVE;
351 	return;
352 }
353 
354 /* ************************************************************ initcg ***** */
355 /*
356  * This creates a new cylinder group structure, for more details please see
357  * the source of newfs(8), as this function is taken over almost unchanged.
358  * As this is never called for the first cylinder group, the special
359  * provisions for that case are removed here.
360  */
361 static void
362 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
363 {
364 	DBG_FUNC("initcg")
365 	static caddr_t iobuf;
366 	long i, j, d, dlower, dupper, blkno, start;
367 	ufs2_daddr_t cbase, dmax;
368 	struct ufs1_dinode *dp1;
369 	struct ufs2_dinode *dp2;
370 	struct csum *cs;
371 
372 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
373 		errx(37, "panic: cannot allocate I/O buffer");
374 	}
375 	/*
376 	 * Determine block bounds for cylinder group.
377 	 * Allow space for super block summary information in first
378 	 * cylinder group.
379 	 */
380 	cbase = cgbase(&sblock, cylno);
381 	dmax = cbase + sblock.fs_fpg;
382 	if (dmax > sblock.fs_size)
383 		dmax = sblock.fs_size;
384 	dlower = cgsblock(&sblock, cylno) - cbase;
385 	dupper = cgdmin(&sblock, cylno) - cbase;
386 	if (cylno == 0)	/* XXX fscs may be relocated */
387 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
388 	cs = &fscs[cylno];
389 	memset(&acg, 0, sblock.fs_cgsize);
390 	acg.cg_time = utime;
391 	acg.cg_magic = CG_MAGIC;
392 	acg.cg_cgx = cylno;
393 	acg.cg_niblk = sblock.fs_ipg;
394 	acg.cg_initediblk = sblock.fs_ipg;
395 	acg.cg_ndblk = dmax - cbase;
396 	if (sblock.fs_contigsumsize > 0)
397 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
398 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
399 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
400 		acg.cg_iusedoff = start;
401 	} else {
402 		acg.cg_old_ncyl = sblock.fs_old_cpg;
403 		acg.cg_old_time = acg.cg_time;
404 		acg.cg_time = 0;
405 		acg.cg_old_niblk = acg.cg_niblk;
406 		acg.cg_niblk = 0;
407 		acg.cg_initediblk = 0;
408 		acg.cg_old_btotoff = start;
409 		acg.cg_old_boff = acg.cg_old_btotoff +
410 		    sblock.fs_old_cpg * sizeof(int32_t);
411 		acg.cg_iusedoff = acg.cg_old_boff +
412 		    sblock.fs_old_cpg * sizeof(u_int16_t);
413 	}
414 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
415 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
416 	if (sblock.fs_contigsumsize > 0) {
417 		acg.cg_clustersumoff =
418 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
419 		acg.cg_clustersumoff -= sizeof(u_int32_t);
420 		acg.cg_clusteroff = acg.cg_clustersumoff +
421 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
422 		acg.cg_nextfreeoff = acg.cg_clusteroff +
423 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
424 	}
425 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
426 		/*
427 		 * This should never happen as we would have had that panic
428 		 * already on file system creation
429 		 */
430 		errx(37, "panic: cylinder group too big");
431 	}
432 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
433 	if (cylno == 0)
434 		for (i = 0; i < ROOTINO; i++) {
435 			setbit(cg_inosused(&acg), i);
436 			acg.cg_cs.cs_nifree--;
437 		}
438 	bzero(iobuf, sblock.fs_bsize);
439 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
440 		dp1 = (struct ufs1_dinode *)iobuf;
441 		dp2 = (struct ufs2_dinode *)iobuf;
442 #ifdef FSIRAND
443 		for (j = 0; j < INOPB(&sblock); j++)
444 			if (sblock.fs_magic == FS_UFS1_MAGIC) {
445 				dp1->di_gen = random();
446 				dp1++;
447 			} else {
448 				dp2->di_gen = random();
449 				dp2++;
450 			}
451 #endif
452 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
453 		    sblock.fs_bsize, iobuf, fso, Nflag);
454 	}
455 	if (cylno > 0) {
456 		/*
457 		 * In cylno 0, beginning space is reserved
458 		 * for boot and super blocks.
459 		 */
460 		for (d = 0; d < dlower; d += sblock.fs_frag) {
461 			blkno = d / sblock.fs_frag;
462 			setblock(&sblock, cg_blksfree(&acg), blkno);
463 			if (sblock.fs_contigsumsize > 0)
464 				setbit(cg_clustersfree(&acg), blkno);
465 			acg.cg_cs.cs_nbfree++;
466 		}
467 		sblock.fs_dsize += dlower;
468 	}
469 	sblock.fs_dsize += acg.cg_ndblk - dupper;
470 	if ((i = dupper % sblock.fs_frag)) {
471 		acg.cg_frsum[sblock.fs_frag - i]++;
472 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
473 			setbit(cg_blksfree(&acg), dupper);
474 			acg.cg_cs.cs_nffree++;
475 		}
476 	}
477 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
478 	     d += sblock.fs_frag) {
479 		blkno = d / sblock.fs_frag;
480 		setblock(&sblock, cg_blksfree(&acg), blkno);
481 		if (sblock.fs_contigsumsize > 0)
482 			setbit(cg_clustersfree(&acg), blkno);
483 		acg.cg_cs.cs_nbfree++;
484 	}
485 	if (d < acg.cg_ndblk) {
486 		acg.cg_frsum[acg.cg_ndblk - d]++;
487 		for (; d < acg.cg_ndblk; d++) {
488 			setbit(cg_blksfree(&acg), d);
489 			acg.cg_cs.cs_nffree++;
490 		}
491 	}
492 	if (sblock.fs_contigsumsize > 0) {
493 		int32_t *sump = cg_clustersum(&acg);
494 		u_char *mapp = cg_clustersfree(&acg);
495 		int map = *mapp++;
496 		int bit = 1;
497 		int run = 0;
498 
499 		for (i = 0; i < acg.cg_nclusterblks; i++) {
500 			if ((map & bit) != 0)
501 				run++;
502 			else if (run != 0) {
503 				if (run > sblock.fs_contigsumsize)
504 					run = sblock.fs_contigsumsize;
505 				sump[run]++;
506 				run = 0;
507 			}
508 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
509 				bit <<= 1;
510 			else {
511 				map = *mapp++;
512 				bit = 1;
513 			}
514 		}
515 		if (run != 0) {
516 			if (run > sblock.fs_contigsumsize)
517 				run = sblock.fs_contigsumsize;
518 			sump[run]++;
519 		}
520 	}
521 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
522 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
523 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
524 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
525 	*cs = acg.cg_cs;
526 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
527 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
528 	DBG_DUMP_CG(&sblock,
529 	    "new cg",
530 	    &acg);
531 
532 	DBG_LEAVE;
533 	return;
534 }
535 
536 /* ******************************************************* frag_adjust ***** */
537 /*
538  * Here we add or subtract (sign +1/-1) the available fragments in a given
539  * block to or from the fragment statistics. By subtracting before and adding
540  * after an operation on the free frag map we can easy update the fragment
541  * statistic, which seems to be otherwise a rather complex operation.
542  */
543 static void
544 frag_adjust(ufs2_daddr_t frag, int sign)
545 {
546 	DBG_FUNC("frag_adjust")
547 	int fragsize;
548 	int f;
549 
550 	DBG_ENTER;
551 
552 	fragsize=0;
553 	/*
554 	 * Here frag only needs to point to any fragment in the block we want
555 	 * to examine.
556 	 */
557 	for(f=rounddown(frag, sblock.fs_frag);
558 	    f<roundup(frag+1, sblock.fs_frag);
559 	    f++) {
560 		/*
561 		 * Count contiguous free fragments.
562 		 */
563 		if(isset(cg_blksfree(&acg), f)) {
564 			fragsize++;
565 		} else {
566 			if(fragsize && fragsize<sblock.fs_frag) {
567 				/*
568 				 * We found something in between.
569 				 */
570 				acg.cg_frsum[fragsize]+=sign;
571 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
572 				    fragsize,
573 				    sign);
574 			}
575 			fragsize=0;
576 		}
577 	}
578 	if(fragsize && fragsize<sblock.fs_frag) {
579 		/*
580 		 * We found something.
581 		 */
582 		acg.cg_frsum[fragsize]+=sign;
583 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
584 		    fragsize,
585 		    sign);
586 	}
587 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
588 	    fragsize,
589 	    sign);
590 
591 	DBG_LEAVE;
592 	return;
593 }
594 
595 /* ******************************************************* cond_bl_upd ***** */
596 /*
597  * Here we conditionally update a pointer to a fragment. We check for all
598  * relocated blocks if any of its fragments is referenced by the current
599  * field, and update the pointer to the respective fragment in our new
600  * block.  If we find a reference we write back the block immediately,
601  * as there is no easy way for our general block reading engine to figure
602  * out if a write back operation is needed.
603  */
604 static int
605 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
606     unsigned int Nflag)
607 {
608 	DBG_FUNC("cond_bl_upd")
609 	struct gfs_bpp *f;
610 	ufs2_daddr_t src, dst;
611 	int fragnum;
612 	void *ibuf;
613 
614 	DBG_ENTER;
615 
616 	f = field;
617 	for (f = field; f->old != 0; f++) {
618 		src = *block;
619 		if (fragstoblks(&sblock, src) != f->old)
620 			continue;
621 		/*
622 		 * The fragment is part of the block, so update.
623 		 */
624 		dst = blkstofrags(&sblock, f->new);
625 		fragnum = fragnum(&sblock, src);
626 		*block = dst + fragnum;
627 		f->found++;
628 		DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
629 		    f->old,
630 		    f->new,
631 		    fragnum);
632 
633 		/*
634 		 * Copy the block back immediately.
635 		 *
636 		 * XXX	If src is is from an indirect block we have
637 		 *	to implement copy on write here in case of
638 		 *	active snapshots.
639 		 */
640 		ibuf = malloc(sblock.fs_bsize);
641 		if (!ibuf)
642 			errx(1, "malloc failed");
643 		src -= fragnum;
644 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
645 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
646 		free(ibuf);
647 		/*
648 		 * The same block can't be found again in this loop.
649 		 */
650 		return (1);
651 	}
652 
653 	DBG_LEAVE;
654 	return (0);
655 }
656 
657 /* ************************************************************ updjcg ***** */
658 /*
659  * Here we do all needed work for the former last cylinder group. It has to be
660  * changed in any case, even if the file system ended exactly on the end of
661  * this group, as there is some slightly inconsistent handling of the number
662  * of cylinders in the cylinder group. We start again by reading the cylinder
663  * group from disk. If the last block was not fully available, we first handle
664  * the missing fragments, then we handle all new full blocks in that file
665  * system and finally we handle the new last fragmented block in the file
666  * system.  We again have to handle the fragment statistics rotational layout
667  * tables and cluster summary during all those operations.
668  */
669 static void
670 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
671 {
672 	DBG_FUNC("updjcg")
673 	ufs2_daddr_t	cbase, dmax, dupper;
674 	struct csum	*cs;
675 	int	i,k;
676 	int	j=0;
677 
678 	DBG_ENTER;
679 
680 	/*
681 	 * Read the former last (joining) cylinder group from disk, and make
682 	 * a copy.
683 	 */
684 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
685 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
686 	DBG_PRINT0("jcg read\n");
687 	DBG_DUMP_CG(&sblock,
688 	    "old joining cg",
689 	    &aocg);
690 
691 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
692 
693 	/*
694 	 * If the cylinder group had already its new final size almost
695 	 * nothing is to be done ... except:
696 	 * For some reason the value of cg_ncyl in the last cylinder group has
697 	 * to be zero instead of fs_cpg. As this is now no longer the last
698 	 * cylinder group we have to change that value now to fs_cpg.
699 	 */
700 
701 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
702 		if (sblock.fs_magic == FS_UFS1_MAGIC)
703 			acg.cg_old_ncyl=sblock.fs_old_cpg;
704 
705 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
706 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
707 		DBG_PRINT0("jcg written\n");
708 		DBG_DUMP_CG(&sblock,
709 		    "new joining cg",
710 		    &acg);
711 
712 		DBG_LEAVE;
713 		return;
714 	}
715 
716 	/*
717 	 * Set up some variables needed later.
718 	 */
719 	cbase = cgbase(&sblock, cylno);
720 	dmax = cbase + sblock.fs_fpg;
721 	if (dmax > sblock.fs_size)
722 		dmax = sblock.fs_size;
723 	dupper = cgdmin(&sblock, cylno) - cbase;
724 	if (cylno == 0) { /* XXX fscs may be relocated */
725 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
726 	}
727 
728 	/*
729 	 * Set pointer to the cylinder summary for our cylinder group.
730 	 */
731 	cs = fscs + cylno;
732 
733 	/*
734 	 * Touch the cylinder group, update all fields in the cylinder group as
735 	 * needed, update the free space in the superblock.
736 	 */
737 	acg.cg_time = utime;
738 	if (cylno == sblock.fs_ncg - 1) {
739 		/*
740 		 * This is still the last cylinder group.
741 		 */
742 		if (sblock.fs_magic == FS_UFS1_MAGIC)
743 			acg.cg_old_ncyl =
744 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
745 	} else {
746 		acg.cg_old_ncyl = sblock.fs_old_cpg;
747 	}
748 	DBG_PRINT2("jcg dbg: %d %u",
749 	    cylno,
750 	    sblock.fs_ncg);
751 	if (sblock.fs_magic == FS_UFS1_MAGIC)
752 		DBG_PRINT2("%d %u",
753 		    acg.cg_old_ncyl,
754 		    sblock.fs_old_cpg);
755 	DBG_PRINT0("\n");
756 	acg.cg_ndblk = dmax - cbase;
757 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
758 	if (sblock.fs_contigsumsize > 0) {
759 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
760 	}
761 
762 	/*
763 	 * Now we have to update the free fragment bitmap for our new free
764 	 * space.  There again we have to handle the fragmentation and also
765 	 * the rotational layout tables and the cluster summary.  This is
766 	 * also done per fragment for the first new block if the old file
767 	 * system end was not on a block boundary, per fragment for the new
768 	 * last block if the new file system end is not on a block boundary,
769 	 * and per block for all space in between.
770 	 *
771 	 * Handle the first new block here if it was partially available
772 	 * before.
773 	 */
774 	if(osblock.fs_size % sblock.fs_frag) {
775 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
776 			/*
777 			 * The new space is enough to fill at least this
778 			 * block
779 			 */
780 			j=0;
781 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
782 			    i>=osblock.fs_size-cbase;
783 			    i--) {
784 				setbit(cg_blksfree(&acg), i);
785 				acg.cg_cs.cs_nffree++;
786 				j++;
787 			}
788 
789 			/*
790 			 * Check if the fragment just created could join an
791 			 * already existing fragment at the former end of the
792 			 * file system.
793 			 */
794 			if(isblock(&sblock, cg_blksfree(&acg),
795 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
796 			    sblock.fs_frag))) {
797 				/*
798 				 * The block is now completely available.
799 				 */
800 				DBG_PRINT0("block was\n");
801 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
802 				acg.cg_cs.cs_nbfree++;
803 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
804 				k=rounddown(osblock.fs_size-cbase,
805 				    sblock.fs_frag);
806 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
807 			} else {
808 				/*
809 				 * Lets rejoin a possible partially growed
810 				 * fragment.
811 				 */
812 				k=0;
813 				while(isset(cg_blksfree(&acg), i) &&
814 				    (i>=rounddown(osblock.fs_size-cbase,
815 				    sblock.fs_frag))) {
816 					i--;
817 					k++;
818 				}
819 				if(k) {
820 					acg.cg_frsum[k]--;
821 				}
822 				acg.cg_frsum[k+j]++;
823 			}
824 		} else {
825 			/*
826 			 * We only grow by some fragments within this last
827 			 * block.
828 			 */
829 			for(i=sblock.fs_size-cbase-1;
830 				i>=osblock.fs_size-cbase;
831 				i--) {
832 				setbit(cg_blksfree(&acg), i);
833 				acg.cg_cs.cs_nffree++;
834 				j++;
835 			}
836 			/*
837 			 * Lets rejoin a possible partially growed fragment.
838 			 */
839 			k=0;
840 			while(isset(cg_blksfree(&acg), i) &&
841 			    (i>=rounddown(osblock.fs_size-cbase,
842 			    sblock.fs_frag))) {
843 				i--;
844 				k++;
845 			}
846 			if(k) {
847 				acg.cg_frsum[k]--;
848 			}
849 			acg.cg_frsum[k+j]++;
850 		}
851 	}
852 
853 	/*
854 	 * Handle all new complete blocks here.
855 	 */
856 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
857 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
858 	    i+=sblock.fs_frag) {
859 		j = i / sblock.fs_frag;
860 		setblock(&sblock, cg_blksfree(&acg), j);
861 		updclst(j);
862 		acg.cg_cs.cs_nbfree++;
863 	}
864 
865 	/*
866 	 * Handle the last new block if there are stll some new fragments left.
867 	 * Here we don't have to bother about the cluster summary or the even
868 	 * the rotational layout table.
869 	 */
870 	if (i < (dmax - cbase)) {
871 		acg.cg_frsum[dmax - cbase - i]++;
872 		for (; i < dmax - cbase; i++) {
873 			setbit(cg_blksfree(&acg), i);
874 			acg.cg_cs.cs_nffree++;
875 		}
876 	}
877 
878 	sblock.fs_cstotal.cs_nffree +=
879 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
880 	sblock.fs_cstotal.cs_nbfree +=
881 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
882 	/*
883 	 * The following statistics are not changed here:
884 	 *     sblock.fs_cstotal.cs_ndir
885 	 *     sblock.fs_cstotal.cs_nifree
886 	 * As the statistics for this cylinder group are ready, copy it to
887 	 * the summary information array.
888 	 */
889 	*cs = acg.cg_cs;
890 
891 	/*
892 	 * Write the updated "joining" cylinder group back to disk.
893 	 */
894 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
895 	    (void *)&acg, fso, Nflag);
896 	DBG_PRINT0("jcg written\n");
897 	DBG_DUMP_CG(&sblock,
898 	    "new joining cg",
899 	    &acg);
900 
901 	DBG_LEAVE;
902 	return;
903 }
904 
905 /* ********************************************************** updcsloc ***** */
906 /*
907  * Here we update the location of the cylinder summary. We have two possible
908  * ways of growing the cylinder summary.
909  * (1)	We can try to grow the summary in the current location, and relocate
910  *	possibly used blocks within the current cylinder group.
911  * (2)	Alternatively we can relocate the whole cylinder summary to the first
912  *	new completely empty cylinder group. Once the cylinder summary is no
913  *	longer in the beginning of the first cylinder group you should never
914  *	use a version of fsck which is not aware of the possibility to have
915  *	this structure in a non standard place.
916  * Option (1) is considered to be less intrusive to the structure of the file-
917  * system. So we try to stick to that whenever possible. If there is not enough
918  * space in the cylinder group containing the cylinder summary we have to use
919  * method (2). In case of active snapshots in the file system we probably can
920  * completely avoid implementing copy on write if we stick to method (2) only.
921  */
922 static void
923 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
924 {
925 	DBG_FUNC("updcsloc")
926 	struct csum	*cs;
927 	int	ocscg, ncscg;
928 	int	blocks;
929 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
930 	int	ind;
931 	int	cylno, inc;
932 	struct gfs_bpp	*bp;
933 	int	i, l;
934 	int	lcs=0;
935 	int	block;
936 
937 	DBG_ENTER;
938 
939 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
940 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
941 		/*
942 		 * No new fragment needed.
943 		 */
944 		DBG_LEAVE;
945 		return;
946 	}
947 	ocscg=dtog(&osblock, osblock.fs_csaddr);
948 	cs=fscs+ocscg;
949 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
950 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
951 
952 	/*
953 	 * Read original cylinder group from disk, and make a copy.
954 	 * XXX	If Nflag is set in some very rare cases we now miss
955 	 *	some changes done in updjcg by reading the unmodified
956 	 *	block from disk.
957 	 */
958 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
959 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
960 	DBG_PRINT0("oscg read\n");
961 	DBG_DUMP_CG(&sblock,
962 	    "old summary cg",
963 	    &aocg);
964 
965 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
966 
967 	/*
968 	 * Touch the cylinder group, set up local variables needed later
969 	 * and update the superblock.
970 	 */
971 	acg.cg_time = utime;
972 
973 	/*
974 	 * XXX	In the case of having active snapshots we may need much more
975 	 *	blocks for the copy on write. We need each block twice, and
976 	 *	also up to 8*3 blocks for indirect blocks for all possible
977 	 *	references.
978 	 */
979 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
980 		/*
981 		 * There is not enough space in the old cylinder group to
982 		 * relocate all blocks as needed, so we relocate the whole
983 		 * cylinder group summary to a new group. We try to use the
984 		 * first complete new cylinder group just created. Within the
985 		 * cylinder group we align the area immediately after the
986 		 * cylinder group information location in order to be as
987 		 * close as possible to the original implementation of ffs.
988 		 *
989 		 * First we have to make sure we'll find enough space in the
990 		 * new cylinder group. If not, then we currently give up.
991 		 * We start with freeing everything which was used by the
992 		 * fragments of the old cylinder summary in the current group.
993 		 * Now we write back the group meta data, read in the needed
994 		 * meta data from the new cylinder group, and start allocating
995 		 * within that group. Here we can assume, the group to be
996 		 * completely empty. Which makes the handling of fragments and
997 		 * clusters a lot easier.
998 		 */
999 		DBG_TRC;
1000 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1001 			errx(2, "panic: not enough space");
1002 		}
1003 
1004 		/*
1005 		 * Point "d" to the first fragment not used by the cylinder
1006 		 * summary.
1007 		 */
1008 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1009 
1010 		/*
1011 		 * Set up last cluster size ("lcs") already here. Calculate
1012 		 * the size for the trailing cluster just behind where "d"
1013 		 * points to.
1014 		 */
1015 		if(sblock.fs_contigsumsize > 0) {
1016 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1017 			    lcs=0; lcs<sblock.fs_contigsumsize;
1018 			    block++, lcs++) {
1019 				if(isclr(cg_clustersfree(&acg), block)){
1020 					break;
1021 				}
1022 			}
1023 		}
1024 
1025 		/*
1026 		 * Point "d" to the last frag used by the cylinder summary.
1027 		 */
1028 		d--;
1029 
1030 		DBG_PRINT1("d=%d\n",
1031 		    d);
1032 		if((d+1)%sblock.fs_frag) {
1033 			/*
1034 			 * The end of the cylinder summary is not a complete
1035 			 * block.
1036 			 */
1037 			DBG_TRC;
1038 			frag_adjust(d%sblock.fs_fpg, -1);
1039 			for(; (d+1)%sblock.fs_frag; d--) {
1040 				DBG_PRINT1("d=%d\n",
1041 				    d);
1042 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1043 				acg.cg_cs.cs_nffree++;
1044 				sblock.fs_cstotal.cs_nffree++;
1045 			}
1046 			/*
1047 			 * Point "d" to the last fragment of the last
1048 			 * (incomplete) block of the cylinder summary.
1049 			 */
1050 			d++;
1051 			frag_adjust(d%sblock.fs_fpg, 1);
1052 
1053 			if(isblock(&sblock, cg_blksfree(&acg),
1054 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1055 				DBG_PRINT1("d=%d\n", d);
1056 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1057 				acg.cg_cs.cs_nbfree++;
1058 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1059 				sblock.fs_cstotal.cs_nbfree++;
1060 				if(sblock.fs_contigsumsize > 0) {
1061 					setbit(cg_clustersfree(&acg),
1062 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1063 					if(lcs < sblock.fs_contigsumsize) {
1064 						if(lcs) {
1065 							cg_clustersum(&acg)
1066 							    [lcs]--;
1067 						}
1068 						lcs++;
1069 						cg_clustersum(&acg)[lcs]++;
1070 					}
1071 				}
1072 			}
1073 			/*
1074 			 * Point "d" to the first fragment of the block before
1075 			 * the last incomplete block.
1076 			 */
1077 			d--;
1078 		}
1079 
1080 		DBG_PRINT1("d=%d\n", d);
1081 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1082 		    d-=sblock.fs_frag) {
1083 			DBG_TRC;
1084 			DBG_PRINT1("d=%d\n", d);
1085 			setblock(&sblock, cg_blksfree(&acg),
1086 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1087 			acg.cg_cs.cs_nbfree++;
1088 			sblock.fs_cstotal.cs_nbfree++;
1089 			if(sblock.fs_contigsumsize > 0) {
1090 				setbit(cg_clustersfree(&acg),
1091 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1092 				/*
1093 				 * The last cluster size is already set up.
1094 				 */
1095 				if(lcs < sblock.fs_contigsumsize) {
1096 					if(lcs) {
1097 						cg_clustersum(&acg)[lcs]--;
1098 					}
1099 					lcs++;
1100 					cg_clustersum(&acg)[lcs]++;
1101 				}
1102 			}
1103 		}
1104 		*cs = acg.cg_cs;
1105 
1106 		/*
1107 		 * Now write the former cylinder group containing the cylinder
1108 		 * summary back to disk.
1109 		 */
1110 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1111 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1112 		DBG_PRINT0("oscg written\n");
1113 		DBG_DUMP_CG(&sblock,
1114 		    "old summary cg",
1115 		    &acg);
1116 
1117 		/*
1118 		 * Find the beginning of the new cylinder group containing the
1119 		 * cylinder summary.
1120 		 */
1121 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1122 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1123 		cs=fscs+ncscg;
1124 
1125 
1126 		/*
1127 		 * If Nflag is specified, we would now read random data instead
1128 		 * of an empty cg structure from disk. So we can't simulate that
1129 		 * part for now.
1130 		 */
1131 		if(Nflag) {
1132 			DBG_PRINT0("nscg update skipped\n");
1133 			DBG_LEAVE;
1134 			return;
1135 		}
1136 
1137 		/*
1138 		 * Read the future cylinder group containing the cylinder
1139 		 * summary from disk, and make a copy.
1140 		 */
1141 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1142 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1143 		DBG_PRINT0("nscg read\n");
1144 		DBG_DUMP_CG(&sblock,
1145 		    "new summary cg",
1146 		    &aocg);
1147 
1148 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1149 
1150 		/*
1151 		 * Allocate all complete blocks used by the new cylinder
1152 		 * summary.
1153 		 */
1154 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1155 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1156 		    d+=sblock.fs_frag) {
1157 			clrblock(&sblock, cg_blksfree(&acg),
1158 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1159 			acg.cg_cs.cs_nbfree--;
1160 			sblock.fs_cstotal.cs_nbfree--;
1161 			if(sblock.fs_contigsumsize > 0) {
1162 				clrbit(cg_clustersfree(&acg),
1163 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1164 			}
1165 		}
1166 
1167 		/*
1168 		 * Allocate all fragments used by the cylinder summary in the
1169 		 * last block.
1170 		 */
1171 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1172 			for(; d-sblock.fs_csaddr<
1173 			    sblock.fs_cssize/sblock.fs_fsize;
1174 			    d++) {
1175 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1176 				acg.cg_cs.cs_nffree--;
1177 				sblock.fs_cstotal.cs_nffree--;
1178 			}
1179 			acg.cg_cs.cs_nbfree--;
1180 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1181 			sblock.fs_cstotal.cs_nbfree--;
1182 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1183 			if(sblock.fs_contigsumsize > 0) {
1184 				clrbit(cg_clustersfree(&acg),
1185 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1186 			}
1187 
1188 			frag_adjust(d%sblock.fs_fpg, +1);
1189 		}
1190 		/*
1191 		 * XXX	Handle the cluster statistics here in the case this
1192 		 *	cylinder group is now almost full, and the remaining
1193 		 *	space is less then the maximum cluster size. This is
1194 		 *	probably not needed, as you would hardly find a file
1195 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1196 		 *	space right behind the cylinder group information in
1197 		 *	any new cylinder group.
1198 		 */
1199 
1200 		/*
1201 		 * Update our statistics in the cylinder summary.
1202 		 */
1203 		*cs = acg.cg_cs;
1204 
1205 		/*
1206 		 * Write the new cylinder group containing the cylinder summary
1207 		 * back to disk.
1208 		 */
1209 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1210 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1211 		DBG_PRINT0("nscg written\n");
1212 		DBG_DUMP_CG(&sblock,
1213 		    "new summary cg",
1214 		    &acg);
1215 
1216 		DBG_LEAVE;
1217 		return;
1218 	}
1219 	/*
1220 	 * We have got enough of space in the current cylinder group, so we
1221 	 * can relocate just a few blocks, and let the summary information
1222 	 * grow in place where it is right now.
1223 	 */
1224 	DBG_TRC;
1225 
1226 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1227 	dupper = sblock.fs_csaddr - cbase +
1228 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1229 	odupper = osblock.fs_csaddr - cbase +
1230 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1231 
1232 	sblock.fs_dsize -= dupper-odupper;
1233 
1234 	/*
1235 	 * Allocate the space for the array of blocks to be relocated.
1236 	 */
1237  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1238 	    sizeof(struct gfs_bpp));
1239 	if(bp == NULL) {
1240 		errx(1, "malloc failed");
1241 	}
1242 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1243 	    sizeof(struct gfs_bpp));
1244 
1245 	/*
1246 	 * Lock all new frags needed for the cylinder group summary. This is
1247 	 * done per fragment in the first and last block of the new required
1248 	 * area, and per block for all other blocks.
1249 	 *
1250 	 * Handle the first new block here (but only if some fragments where
1251 	 * already used for the cylinder summary).
1252 	 */
1253 	ind=0;
1254 	frag_adjust(odupper, -1);
1255 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1256 		DBG_PRINT1("scg first frag check loop d=%d\n",
1257 		    d);
1258 		if(isclr(cg_blksfree(&acg), d)) {
1259 			if (!ind) {
1260 				bp[ind].old=d/sblock.fs_frag;
1261 				bp[ind].flags|=GFS_FL_FIRST;
1262 				if(roundup(d, sblock.fs_frag) >= dupper) {
1263 					bp[ind].flags|=GFS_FL_LAST;
1264 				}
1265 				ind++;
1266 			}
1267 		} else {
1268 			clrbit(cg_blksfree(&acg), d);
1269 			acg.cg_cs.cs_nffree--;
1270 			sblock.fs_cstotal.cs_nffree--;
1271 		}
1272 		/*
1273 		 * No cluster handling is needed here, as there was at least
1274 		 * one fragment in use by the cylinder summary in the old
1275 		 * file system.
1276 		 * No block-free counter handling here as this block was not
1277 		 * a free block.
1278 		 */
1279 	}
1280 	frag_adjust(odupper, 1);
1281 
1282 	/*
1283 	 * Handle all needed complete blocks here.
1284 	 */
1285 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1286 		DBG_PRINT1("scg block check loop d=%d\n",
1287 		    d);
1288 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1289 			for(f=d; f<d+sblock.fs_frag; f++) {
1290 				if(isset(cg_blksfree(&aocg), f)) {
1291 					acg.cg_cs.cs_nffree--;
1292 					sblock.fs_cstotal.cs_nffree--;
1293 				}
1294 			}
1295 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1296 			bp[ind].old=d/sblock.fs_frag;
1297 			ind++;
1298 		} else {
1299 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1300 			acg.cg_cs.cs_nbfree--;
1301 			sblock.fs_cstotal.cs_nbfree--;
1302 			if(sblock.fs_contigsumsize > 0) {
1303 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1304 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1305 				    lcs<sblock.fs_contigsumsize;
1306 				    l++, lcs++ ) {
1307 					if(isclr(cg_clustersfree(&acg),l)){
1308 						break;
1309 					}
1310 				}
1311 				if(lcs < sblock.fs_contigsumsize) {
1312 					cg_clustersum(&acg)[lcs+1]--;
1313 					if(lcs) {
1314 						cg_clustersum(&acg)[lcs]++;
1315 					}
1316 				}
1317 			}
1318 		}
1319 		/*
1320 		 * No fragment counter handling is needed here, as this finally
1321 		 * doesn't change after the relocation.
1322 		 */
1323 	}
1324 
1325 	/*
1326 	 * Handle all fragments needed in the last new affected block.
1327 	 */
1328 	if(d<dupper) {
1329 		frag_adjust(dupper-1, -1);
1330 
1331 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1332 			acg.cg_cs.cs_nbfree--;
1333 			sblock.fs_cstotal.cs_nbfree--;
1334 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1335 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1336 			if(sblock.fs_contigsumsize > 0) {
1337 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1338 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1339 				    lcs<sblock.fs_contigsumsize;
1340 				    l++, lcs++ ) {
1341 					if(isclr(cg_clustersfree(&acg),l)){
1342 						break;
1343 					}
1344 				}
1345 				if(lcs < sblock.fs_contigsumsize) {
1346 					cg_clustersum(&acg)[lcs+1]--;
1347 					if(lcs) {
1348 						cg_clustersum(&acg)[lcs]++;
1349 					}
1350 				}
1351 			}
1352 		}
1353 
1354 		for(; d<dupper; d++) {
1355 			DBG_PRINT1("scg second frag check loop d=%d\n",
1356 			    d);
1357 			if(isclr(cg_blksfree(&acg), d)) {
1358 				bp[ind].old=d/sblock.fs_frag;
1359 				bp[ind].flags|=GFS_FL_LAST;
1360 			} else {
1361 				clrbit(cg_blksfree(&acg), d);
1362 				acg.cg_cs.cs_nffree--;
1363 				sblock.fs_cstotal.cs_nffree--;
1364 			}
1365 		}
1366 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1367 			ind++;
1368 		}
1369 		frag_adjust(dupper-1, 1);
1370 	}
1371 
1372 	/*
1373 	 * If we found a block to relocate just do so.
1374 	 */
1375 	if(ind) {
1376 		for(i=0; i<ind; i++) {
1377 			if(!bp[i].old) { /* no more blocks listed */
1378 				/*
1379 				 * XXX	A relative blocknumber should not be
1380 				 *	zero, which is not explicitly
1381 				 *	guaranteed by our code.
1382 				 */
1383 				break;
1384 			}
1385 			/*
1386 			 * Allocate a complete block in the same (current)
1387 			 * cylinder group.
1388 			 */
1389 			bp[i].new=alloc()/sblock.fs_frag;
1390 
1391 			/*
1392 			 * There is no frag_adjust() needed for the new block
1393 			 * as it will have no fragments yet :-).
1394 			 */
1395 			for(f=bp[i].old*sblock.fs_frag,
1396 			    g=bp[i].new*sblock.fs_frag;
1397 			    f<(bp[i].old+1)*sblock.fs_frag;
1398 			    f++, g++) {
1399 				if(isset(cg_blksfree(&aocg), f)) {
1400 					setbit(cg_blksfree(&acg), g);
1401 					acg.cg_cs.cs_nffree++;
1402 					sblock.fs_cstotal.cs_nffree++;
1403 				}
1404 			}
1405 
1406 			/*
1407 			 * Special handling is required if this was the first
1408 			 * block. We have to consider the fragments which were
1409 			 * used by the cylinder summary in the original block
1410 			 * which re to be free in the copy of our block.  We
1411 			 * have to be careful if this first block happens to
1412 			 * be also the last block to be relocated.
1413 			 */
1414 			if(bp[i].flags & GFS_FL_FIRST) {
1415 				for(f=bp[i].old*sblock.fs_frag,
1416 				    g=bp[i].new*sblock.fs_frag;
1417 				    f<odupper;
1418 				    f++, g++) {
1419 					setbit(cg_blksfree(&acg), g);
1420 					acg.cg_cs.cs_nffree++;
1421 					sblock.fs_cstotal.cs_nffree++;
1422 				}
1423 				if(!(bp[i].flags & GFS_FL_LAST)) {
1424 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1425 				}
1426 			}
1427 
1428 			/*
1429 			 * Special handling is required if this is the last
1430 			 * block to be relocated.
1431 			 */
1432 			if(bp[i].flags & GFS_FL_LAST) {
1433 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1434 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1435 				for(f=dupper;
1436 				    f<roundup(dupper, sblock.fs_frag);
1437 				    f++) {
1438 					if(isclr(cg_blksfree(&acg), f)) {
1439 						setbit(cg_blksfree(&acg), f);
1440 						acg.cg_cs.cs_nffree++;
1441 						sblock.fs_cstotal.cs_nffree++;
1442 					}
1443 				}
1444 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1445 			}
1446 
1447 			/*
1448 			 * !!! Attach the cylindergroup offset here.
1449 			 */
1450 			bp[i].old+=cbase/sblock.fs_frag;
1451 			bp[i].new+=cbase/sblock.fs_frag;
1452 
1453 			/*
1454 			 * Copy the content of the block.
1455 			 */
1456 			/*
1457 			 * XXX	Here we will have to implement a copy on write
1458 			 *	in the case we have any active snapshots.
1459 			 */
1460 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1461 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1462 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1463 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1464 			DBG_DUMP_HEX(&sblock,
1465 			    "copied full block",
1466 			    (unsigned char *)&ablk);
1467 
1468 			DBG_PRINT2("scg (%d->%d) block relocated\n",
1469 			    bp[i].old,
1470 			    bp[i].new);
1471 		}
1472 
1473 		/*
1474 		 * Now we have to update all references to any fragment which
1475 		 * belongs to any block relocated. We iterate now over all
1476 		 * cylinder groups, within those over all non zero length
1477 		 * inodes.
1478 		 */
1479 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1480 			DBG_PRINT1("scg doing cg (%d)\n",
1481 			    cylno);
1482 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1483 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1484 			}
1485 		}
1486 
1487 		/*
1488 		 * All inodes are checked, now make sure the number of
1489 		 * references found make sense.
1490 		 */
1491 		for(i=0; i<ind; i++) {
1492 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1493 				warnx("error: %d refs found for block %d.",
1494 				    bp[i].found, bp[i].old);
1495 			}
1496 
1497 		}
1498 	}
1499 	/*
1500 	 * The following statistics are not changed here:
1501 	 *     sblock.fs_cstotal.cs_ndir
1502 	 *     sblock.fs_cstotal.cs_nifree
1503 	 * The following statistics were already updated on the fly:
1504 	 *     sblock.fs_cstotal.cs_nffree
1505 	 *     sblock.fs_cstotal.cs_nbfree
1506 	 * As the statistics for this cylinder group are ready, copy it to
1507 	 * the summary information array.
1508 	 */
1509 
1510 	*cs = acg.cg_cs;
1511 
1512 	/*
1513 	 * Write summary cylinder group back to disk.
1514 	 */
1515 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1516 	    (void *)&acg, fso, Nflag);
1517 	DBG_PRINT0("scg written\n");
1518 	DBG_DUMP_CG(&sblock,
1519 	    "new summary cg",
1520 	    &acg);
1521 
1522 	DBG_LEAVE;
1523 	return;
1524 }
1525 
1526 /* ************************************************************** rdfs ***** */
1527 /*
1528  * Here we read some block(s) from disk.
1529  */
1530 static void
1531 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1532 {
1533 	DBG_FUNC("rdfs")
1534 	ssize_t	n;
1535 
1536 	DBG_ENTER;
1537 
1538 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1539 		err(33, "rdfs: seek error: %ld", (long)bno);
1540 	}
1541 	n = read(fsi, bf, size);
1542 	if (n != (ssize_t)size) {
1543 		err(34, "rdfs: read error: %ld", (long)bno);
1544 	}
1545 
1546 	DBG_LEAVE;
1547 	return;
1548 }
1549 
1550 /* ************************************************************** wtfs ***** */
1551 /*
1552  * Here we write some block(s) to disk.
1553  */
1554 static void
1555 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1556 {
1557 	DBG_FUNC("wtfs")
1558 	ssize_t	n;
1559 
1560 	DBG_ENTER;
1561 
1562 	if (Nflag) {
1563 		DBG_LEAVE;
1564 		return;
1565 	}
1566 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1567 		err(35, "wtfs: seek error: %ld", (long)bno);
1568 	}
1569 	n = write(fso, bf, size);
1570 	if (n != (ssize_t)size) {
1571 		err(36, "wtfs: write error: %ld", (long)bno);
1572 	}
1573 
1574 	DBG_LEAVE;
1575 	return;
1576 }
1577 
1578 /* ************************************************************* alloc ***** */
1579 /*
1580  * Here we allocate a free block in the current cylinder group. It is assumed,
1581  * that acg contains the current cylinder group. As we may take a block from
1582  * somewhere in the file system we have to handle cluster summary here.
1583  */
1584 static ufs2_daddr_t
1585 alloc(void)
1586 {
1587 	DBG_FUNC("alloc")
1588 	ufs2_daddr_t	d, blkno;
1589 	int	lcs1, lcs2;
1590 	int	l;
1591 	int	csmin, csmax;
1592 	int	dlower, dupper, dmax;
1593 
1594 	DBG_ENTER;
1595 
1596 	if (acg.cg_magic != CG_MAGIC) {
1597 		warnx("acg: bad magic number");
1598 		DBG_LEAVE;
1599 		return (0);
1600 	}
1601 	if (acg.cg_cs.cs_nbfree == 0) {
1602 		warnx("error: cylinder group ran out of space");
1603 		DBG_LEAVE;
1604 		return (0);
1605 	}
1606 	/*
1607 	 * We start seeking for free blocks only from the space available after
1608 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1609 	 * block here which we have to relocate a couple of seconds later again
1610 	 * again, and we are not prepared to to this anyway.
1611 	 */
1612 	blkno=-1;
1613 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1614 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1615 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1616 	if (dmax > sblock.fs_size) {
1617 		dmax = sblock.fs_size;
1618 	}
1619 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1620 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1621 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1622 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1623 	    dlower,
1624 	    dupper,
1625 	    dmax);
1626 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1627 	    csmin,
1628 	    csmax);
1629 
1630 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1631 		if(d>=csmin && d<=csmax) {
1632 			continue;
1633 		}
1634 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1635 		    d))) {
1636 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1637 			break;
1638 		}
1639 	}
1640 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1641 		if(d>=csmin && d<=csmax) {
1642 			continue;
1643 		}
1644 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1645 		    d))) {
1646 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1647 			break;
1648 		}
1649 	}
1650 	if(blkno==-1) {
1651 		warnx("internal error: couldn't find promised block in cg");
1652 		DBG_LEAVE;
1653 		return (0);
1654 	}
1655 
1656 	/*
1657 	 * This is needed if the block was found already in the first loop.
1658 	 */
1659 	d=blkstofrags(&sblock, blkno);
1660 
1661 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1662 	if (sblock.fs_contigsumsize > 0) {
1663 		/*
1664 		 * Handle the cluster allocation bitmap.
1665 		 */
1666 		clrbit(cg_clustersfree(&acg), blkno);
1667 		/*
1668 		 * We possibly have split a cluster here, so we have to do
1669 		 * recalculate the sizes of the remaining cluster halves now,
1670 		 * and use them for updating the cluster summary information.
1671 		 *
1672 		 * Lets start with the blocks before our allocated block ...
1673 		 */
1674 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1675 		    l--, lcs1++ ) {
1676 			if(isclr(cg_clustersfree(&acg),l)){
1677 				break;
1678 			}
1679 		}
1680 		/*
1681 		 * ... and continue with the blocks right after our allocated
1682 		 * block.
1683 		 */
1684 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1685 		    l++, lcs2++ ) {
1686 			if(isclr(cg_clustersfree(&acg),l)){
1687 				break;
1688 			}
1689 		}
1690 
1691 		/*
1692 		 * Now update all counters.
1693 		 */
1694 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1695 		if(lcs1) {
1696 			cg_clustersum(&acg)[lcs1]++;
1697 		}
1698 		if(lcs2) {
1699 			cg_clustersum(&acg)[lcs2]++;
1700 		}
1701 	}
1702 	/*
1703 	 * Update all statistics based on blocks.
1704 	 */
1705 	acg.cg_cs.cs_nbfree--;
1706 	sblock.fs_cstotal.cs_nbfree--;
1707 
1708 	DBG_LEAVE;
1709 	return (d);
1710 }
1711 
1712 /* *********************************************************** isblock ***** */
1713 /*
1714  * Here we check if all frags of a block are free. For more details again
1715  * please see the source of newfs(8), as this function is taken over almost
1716  * unchanged.
1717  */
1718 static int
1719 isblock(struct fs *fs, unsigned char *cp, int h)
1720 {
1721 	DBG_FUNC("isblock")
1722 	unsigned char	mask;
1723 
1724 	DBG_ENTER;
1725 
1726 	switch (fs->fs_frag) {
1727 	case 8:
1728 		DBG_LEAVE;
1729 		return (cp[h] == 0xff);
1730 	case 4:
1731 		mask = 0x0f << ((h & 0x1) << 2);
1732 		DBG_LEAVE;
1733 		return ((cp[h >> 1] & mask) == mask);
1734 	case 2:
1735 		mask = 0x03 << ((h & 0x3) << 1);
1736 		DBG_LEAVE;
1737 		return ((cp[h >> 2] & mask) == mask);
1738 	case 1:
1739 		mask = 0x01 << (h & 0x7);
1740 		DBG_LEAVE;
1741 		return ((cp[h >> 3] & mask) == mask);
1742 	default:
1743 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1744 		DBG_LEAVE;
1745 		return (0);
1746 	}
1747 }
1748 
1749 /* ********************************************************** clrblock ***** */
1750 /*
1751  * Here we allocate a complete block in the block map. For more details again
1752  * please see the source of newfs(8), as this function is taken over almost
1753  * unchanged.
1754  */
1755 static void
1756 clrblock(struct fs *fs, unsigned char *cp, int h)
1757 {
1758 	DBG_FUNC("clrblock")
1759 
1760 	DBG_ENTER;
1761 
1762 	switch ((fs)->fs_frag) {
1763 	case 8:
1764 		cp[h] = 0;
1765 		break;
1766 	case 4:
1767 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1768 		break;
1769 	case 2:
1770 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1771 		break;
1772 	case 1:
1773 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1774 		break;
1775 	default:
1776 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1777 		break;
1778 	}
1779 
1780 	DBG_LEAVE;
1781 	return;
1782 }
1783 
1784 /* ********************************************************** setblock ***** */
1785 /*
1786  * Here we free a complete block in the free block map. For more details again
1787  * please see the source of newfs(8), as this function is taken over almost
1788  * unchanged.
1789  */
1790 static void
1791 setblock(struct fs *fs, unsigned char *cp, int h)
1792 {
1793 	DBG_FUNC("setblock")
1794 
1795 	DBG_ENTER;
1796 
1797 	switch (fs->fs_frag) {
1798 	case 8:
1799 		cp[h] = 0xff;
1800 		break;
1801 	case 4:
1802 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1803 		break;
1804 	case 2:
1805 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1806 		break;
1807 	case 1:
1808 		cp[h >> 3] |= (0x01 << (h & 0x7));
1809 		break;
1810 	default:
1811 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1812 		break;
1813 	}
1814 
1815 	DBG_LEAVE;
1816 	return;
1817 }
1818 
1819 /* ************************************************************ ginode ***** */
1820 /*
1821  * This function provides access to an individual inode. We find out in which
1822  * block the requested inode is located, read it from disk if needed, and
1823  * return the pointer into that block. We maintain a cache of one block to
1824  * not read the same block again and again if we iterate linearly over all
1825  * inodes.
1826  */
1827 static union dinode *
1828 ginode(ino_t inumber, int fsi, int cg)
1829 {
1830 	DBG_FUNC("ginode")
1831 	static ino_t	startinum = 0;	/* first inode in cached block */
1832 
1833 	DBG_ENTER;
1834 
1835 	inumber += (cg * sblock.fs_ipg);
1836 	if (inumber < ROOTINO || inumber > maxino)
1837 		errx(8, "bad inode number %d to ginode", inumber);
1838 	if (startinum == 0 ||
1839 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1840 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1841 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1842 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1843 	}
1844 	DBG_LEAVE;
1845 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1846 		return ((union dinode *)
1847 		    &((struct ufs1_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1848 	return ((union dinode *)
1849 	    &((struct ufs2_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1850 }
1851 
1852 /* ****************************************************** charsperline ***** */
1853 /*
1854  * Figure out how many lines our current terminal has. For more details again
1855  * please see the source of newfs(8), as this function is taken over almost
1856  * unchanged.
1857  */
1858 static int
1859 charsperline(void)
1860 {
1861 	DBG_FUNC("charsperline")
1862 	int	columns;
1863 	char	*cp;
1864 	struct winsize	ws;
1865 
1866 	DBG_ENTER;
1867 
1868 	columns = 0;
1869 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1870 		columns = ws.ws_col;
1871 	}
1872 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1873 		columns = atoi(cp);
1874 	}
1875 	if (columns == 0) {
1876 		columns = 80;	/* last resort */
1877 	}
1878 
1879 	DBG_LEAVE;
1880 	return columns;
1881 }
1882 
1883 /* ************************************************************** main ***** */
1884 /*
1885  * growfs(8)  is a utility which allows to increase the size of an existing
1886  * ufs file system. Currently this can only be done on unmounted file system.
1887  * It recognizes some command line options to specify the new desired size,
1888  * and it does some basic checkings. The old file system size is determined
1889  * and after some more checks like we can really access the new last block
1890  * on the disk etc. we calculate the new parameters for the superblock. After
1891  * having done this we just call growfs() which will do the work.  Before
1892  * we finish the only thing left is to update the disklabel.
1893  * We still have to provide support for snapshots. Therefore we first have to
1894  * understand what data structures are always replicated in the snapshot on
1895  * creation, for all other blocks we touch during our procedure, we have to
1896  * keep the old blocks unchanged somewhere available for the snapshots. If we
1897  * are lucky, then we only have to handle our blocks to be relocated in that
1898  * way.
1899  * Also we have to consider in what order we actually update the critical
1900  * data structures of the file system to make sure, that in case of a disaster
1901  * fsck(8) is still able to restore any lost data.
1902  * The foreseen last step then will be to provide for growing even mounted
1903  * file systems. There we have to extend the mount() system call to provide
1904  * userland access to the file system locking facility.
1905  */
1906 int
1907 main(int argc, char **argv)
1908 {
1909 	DBG_FUNC("main")
1910 	char	*device, *special, *cp;
1911 	char	ch;
1912 	unsigned int	size=0;
1913 	size_t	len;
1914 	unsigned int	Nflag=0;
1915 	int	ExpertFlag=0;
1916 	struct stat	st;
1917 	struct disklabel	*lp;
1918 	struct partition	*pp;
1919 	int	i,fsi,fso;
1920 	char	reply[5];
1921 #ifdef FSMAXSNAP
1922 	int	j;
1923 #endif /* FSMAXSNAP */
1924 
1925 	DBG_ENTER;
1926 
1927 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1928 		switch(ch) {
1929 		case 'N':
1930 			Nflag=1;
1931 			break;
1932 		case 's':
1933 			size=(size_t)atol(optarg);
1934 			if(size<1) {
1935 				usage();
1936 			}
1937 			break;
1938 		case 'v': /* for compatibility to newfs */
1939 			break;
1940 		case 'y':
1941 			ExpertFlag=1;
1942 			break;
1943 		case '?':
1944 			/* FALLTHROUGH */
1945 		default:
1946 			usage();
1947 		}
1948 	}
1949 	argc -= optind;
1950 	argv += optind;
1951 
1952 	if(argc != 1) {
1953 		usage();
1954 	}
1955 	device=*argv;
1956 
1957 	/*
1958 	 * Now try to guess the (raw)device name.
1959 	 */
1960 	if (0 == strrchr(device, '/')) {
1961 		/*
1962 		 * No path prefix was given, so try in that order:
1963 		 *     /dev/r%s
1964 		 *     /dev/%s
1965 		 *     /dev/vinum/r%s
1966 		 *     /dev/vinum/%s.
1967 		 *
1968 		 * FreeBSD now doesn't distinguish between raw and block
1969 		 * devices any longer, but it should still work this way.
1970 		 */
1971 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1972 		special=(char *)malloc(len);
1973 		if(special == NULL) {
1974 			errx(1, "malloc failed");
1975 		}
1976 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
1977 		if (stat(special, &st) == -1) {
1978 			snprintf(special, len, "%s%s", _PATH_DEV, device);
1979 			if (stat(special, &st) == -1) {
1980 				snprintf(special, len, "%svinum/r%s",
1981 				    _PATH_DEV, device);
1982 				if (stat(special, &st) == -1) {
1983 					/* For now this is the 'last resort' */
1984 					snprintf(special, len, "%svinum/%s",
1985 					    _PATH_DEV, device);
1986 				}
1987 			}
1988 		}
1989 		device = special;
1990 	}
1991 
1992 	/*
1993 	 * Try to access our devices for writing ...
1994 	 */
1995 	if (Nflag) {
1996 		fso = -1;
1997 	} else {
1998 		fso = open(device, O_WRONLY);
1999 		if (fso < 0) {
2000 			err(1, "%s", device);
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * ... and reading.
2006 	 */
2007 	fsi = open(device, O_RDONLY);
2008 	if (fsi < 0) {
2009 		err(1, "%s", device);
2010 	}
2011 
2012 	/*
2013 	 * Try to read a label and guess the slice if not specified. This
2014 	 * code should guess the right thing and avoid to bother the user
2015 	 * with the task of specifying the option -v on vinum volumes.
2016 	 */
2017 	cp=device+strlen(device)-1;
2018 	lp = get_disklabel(fsi);
2019 	if(lp->d_type == DTYPE_VINUM) {
2020 		pp = &lp->d_partitions[0];
2021 	} else if (isdigit(*cp)) {
2022 		pp = &lp->d_partitions[2];
2023 	} else if (*cp>='a' && *cp<='h') {
2024 		pp = &lp->d_partitions[*cp - 'a'];
2025 	} else {
2026 		errx(1, "unknown device");
2027 	}
2028 
2029 	/*
2030 	 * Check if that partition is suitable for growing a file system.
2031 	 */
2032 	if (pp->p_size < 1) {
2033 		errx(1, "partition is unavailable");
2034 	}
2035 	if (pp->p_fstype != FS_BSDFFS) {
2036 		errx(1, "partition not 4.2BSD");
2037 	}
2038 
2039 	/*
2040 	 * Read the current superblock, and take a backup.
2041 	 */
2042 	for (i = 0; sblock_try[i] != -1; i++) {
2043 		sblockloc = sblock_try[i] / DEV_BSIZE;
2044 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2045 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2046 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2047 		      osblock.fs_sblockloc == sblock_try[i])) &&
2048 		    osblock.fs_bsize <= MAXBSIZE &&
2049 		    osblock.fs_bsize >= sizeof(struct fs))
2050 			break;
2051 	}
2052 	if (sblock_try[i] == -1) {
2053 		errx(1, "superblock not recognized");
2054 	}
2055 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2056 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2057 
2058 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2059 	DBG_DUMP_FS(&sblock,
2060 	    "old sblock");
2061 
2062 	/*
2063 	 * Determine size to grow to. Default to the full size specified in
2064 	 * the disk label.
2065 	 */
2066 	sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2067 	if (size != 0) {
2068 		if (size > pp->p_size){
2069 			errx(1, "There is not enough space (%d < %d)",
2070 			    pp->p_size, size);
2071 		}
2072 		sblock.fs_size = dbtofsb(&osblock, size);
2073 	}
2074 
2075 	/*
2076 	 * Are we really growing ?
2077 	 */
2078 	if(osblock.fs_size >= sblock.fs_size) {
2079 		errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2080 		    sblock.fs_size);
2081 	}
2082 
2083 
2084 #ifdef FSMAXSNAP
2085 	/*
2086 	 * Check if we find an active snapshot.
2087 	 */
2088 	if(ExpertFlag == 0) {
2089 		for(j=0; j<FSMAXSNAP; j++) {
2090 			if(sblock.fs_snapinum[j]) {
2091 				errx(1, "active snapshot found in file system\n"
2092 				    "	please remove all snapshots before "
2093 				    "using growfs\n");
2094 			}
2095 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2096 				break;
2097 			}
2098 		}
2099 	}
2100 #endif
2101 
2102 	if (ExpertFlag == 0 && Nflag == 0) {
2103 		printf("We strongly recommend you to make a backup "
2104 		    "before growing the Filesystem\n\n"
2105 		    " Did you backup your data (Yes/No) ? ");
2106 		fgets(reply, (int)sizeof(reply), stdin);
2107 		if (strcmp(reply, "Yes\n")){
2108 			printf("\n Nothing done \n");
2109 			exit (0);
2110 		}
2111 	}
2112 
2113 	printf("new file systemsize is: %d frags\n", sblock.fs_size);
2114 
2115 	/*
2116 	 * Try to access our new last block in the file system. Even if we
2117 	 * later on realize we have to abort our operation, on that block
2118 	 * there should be no data, so we can't destroy something yet.
2119 	 */
2120 	wtfs((ufs2_daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2121 	    fso, Nflag);
2122 
2123 	/*
2124 	 * Now calculate new superblock values and check for reasonable
2125 	 * bound for new file system size:
2126 	 *     fs_size:    is derived from label or user input
2127 	 *     fs_dsize:   should get updated in the routines creating or
2128 	 *                 updating the cylinder groups on the fly
2129 	 *     fs_cstotal: should get updated in the routines creating or
2130 	 *                 updating the cylinder groups
2131 	 */
2132 
2133 	/*
2134 	 * Update the number of cylinders and cylinder groups in the file system.
2135 	 */
2136 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2137 		sblock.fs_old_ncyl =
2138 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2139 		if (sblock.fs_size * sblock.fs_old_nspf >
2140 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2141 			sblock.fs_old_ncyl++;
2142 	}
2143 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2144 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2145 
2146 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2147 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2148 		/*
2149 		 * The space in the new last cylinder group is too small,
2150 		 * so revert back.
2151 		 */
2152 		sblock.fs_ncg--;
2153 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2154 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2155 		printf("Warning: %d sector(s) cannot be allocated.\n",
2156 		    fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2157 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2158 	}
2159 
2160 	/*
2161 	 * Update the space for the cylinder group summary information in the
2162 	 * respective cylinder group data area.
2163 	 */
2164 	sblock.fs_cssize =
2165 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2166 
2167 	if(osblock.fs_size >= sblock.fs_size) {
2168 		errx(1, "not enough new space");
2169 	}
2170 
2171 	DBG_PRINT0("sblock calculated\n");
2172 
2173 	/*
2174 	 * Ok, everything prepared, so now let's do the tricks.
2175 	 */
2176 	growfs(fsi, fso, Nflag);
2177 
2178 	/*
2179 	 * Update the disk label.
2180 	 */
2181 	pp->p_fsize = sblock.fs_fsize;
2182 	pp->p_frag = sblock.fs_frag;
2183 	pp->p_cpg = sblock.fs_fpg;
2184 
2185 	return_disklabel(fso, lp, Nflag);
2186 	DBG_PRINT0("label rewritten\n");
2187 
2188 	close(fsi);
2189 	if(fso>-1) close(fso);
2190 
2191 	DBG_CLOSE;
2192 
2193 	DBG_LEAVE;
2194 	return 0;
2195 }
2196 
2197 /* ************************************************** return_disklabel ***** */
2198 /*
2199  * Write the updated disklabel back to disk.
2200  */
2201 static void
2202 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2203 {
2204 	DBG_FUNC("return_disklabel")
2205 	u_short	sum;
2206 	u_short	*ptr;
2207 
2208 	DBG_ENTER;
2209 
2210 	if(!lp) {
2211 		DBG_LEAVE;
2212 		return;
2213 	}
2214 	if(!Nflag) {
2215 		lp->d_checksum=0;
2216 		sum = 0;
2217 		ptr=(u_short *)lp;
2218 
2219 		/*
2220 		 * recalculate checksum
2221 		 */
2222 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2223 			sum ^= *ptr++;
2224 		}
2225 		lp->d_checksum=sum;
2226 
2227 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2228 			errx(1, "DIOCWDINFO failed");
2229 		}
2230 	}
2231 	free(lp);
2232 
2233 	DBG_LEAVE;
2234 	return ;
2235 }
2236 
2237 /* ***************************************************** get_disklabel ***** */
2238 /*
2239  * Read the disklabel from disk.
2240  */
2241 static struct disklabel *
2242 get_disklabel(int fd)
2243 {
2244 	DBG_FUNC("get_disklabel")
2245 	static struct	disklabel *lab;
2246 
2247 	DBG_ENTER;
2248 
2249 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2250 	if (!lab) {
2251 		errx(1, "malloc failed");
2252 	}
2253 	if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2254 		errx(1, "DIOCGDINFO failed");
2255 	}
2256 
2257 	DBG_LEAVE;
2258 	return (lab);
2259 }
2260 
2261 
2262 /* ************************************************************* usage ***** */
2263 /*
2264  * Dump a line of usage.
2265  */
2266 static void
2267 usage(void)
2268 {
2269 	DBG_FUNC("usage")
2270 
2271 	DBG_ENTER;
2272 
2273 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2274 
2275 	DBG_LEAVE;
2276 	exit(1);
2277 }
2278 
2279 /* *********************************************************** updclst ***** */
2280 /*
2281  * This updates most parameters and the bitmap related to cluster. We have to
2282  * assume that sblock, osblock, acg are set up.
2283  */
2284 static void
2285 updclst(int block)
2286 {
2287 	DBG_FUNC("updclst")
2288 	static int	lcs=0;
2289 
2290 	DBG_ENTER;
2291 
2292 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2293 		return;
2294 	}
2295 	/*
2296 	 * update cluster allocation map
2297 	 */
2298 	setbit(cg_clustersfree(&acg), block);
2299 
2300 	/*
2301 	 * update cluster summary table
2302 	 */
2303 	if(!lcs) {
2304 		/*
2305 		 * calculate size for the trailing cluster
2306 		 */
2307 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2308 			if(isclr(cg_clustersfree(&acg), block)){
2309 				break;
2310 			}
2311 		}
2312 	}
2313 	if(lcs < sblock.fs_contigsumsize) {
2314 		if(lcs) {
2315 			cg_clustersum(&acg)[lcs]--;
2316 		}
2317 		lcs++;
2318 		cg_clustersum(&acg)[lcs]++;
2319 	}
2320 
2321 	DBG_LEAVE;
2322 	return;
2323 }
2324 
2325 /* *********************************************************** updrefs ***** */
2326 /*
2327  * This updates all references to relocated blocks for the given inode.  The
2328  * inode is given as number within the cylinder group, and the number of the
2329  * cylinder group.
2330  */
2331 static void
2332 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2333     Nflag)
2334 {
2335 	DBG_FUNC("updrefs")
2336 	ufs_lbn_t	len, lbn, numblks;
2337 	ufs2_daddr_t	iptr, blksperindir;
2338 	union dinode	*ino;
2339 	int		i, mode, remaining_blocks, inodeupdated;
2340 
2341 	DBG_ENTER;
2342 
2343 	/*
2344 	 * XXX We should skip unused inodes even from being read from disk
2345 	 *     here by using the bitmap.
2346 	 */
2347 	ino = ginode(in, fsi, cg);
2348 	mode = DIP(ino, di_mode) & IFMT;
2349 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2350 		DBG_LEAVE;
2351 		return; /* only check DIR, FILE, LINK */
2352 	}
2353 	if (mode == IFLNK && DIP(ino, di_size) < sblock.fs_maxsymlinklen) {
2354 		DBG_LEAVE;
2355 		return;	/* skip short symlinks */
2356 	}
2357 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2358 	if (numblks == 0) {
2359 		DBG_LEAVE;
2360 		return;	/* skip empty file */
2361 	}
2362 	if (DIP(ino, di_blocks) == 0) {
2363 		DBG_LEAVE;
2364 		return;	/* skip empty swiss cheesy file or old fastlink */
2365 	}
2366 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2367 	    in,
2368 	    cg);
2369 
2370 	/*
2371 	 * Check all the blocks.
2372 	 */
2373 	inodeupdated = 0;
2374 	len = numblks < NDADDR ? numblks : NDADDR;
2375 	for (i = 0; i < len; i++) {
2376 		iptr = DIP(ino, di_db[i]);
2377 		if (iptr == 0)
2378 			continue;
2379 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2380 			DIP(ino, di_db[i]) = iptr;
2381 			inodeupdated++;
2382 		}
2383 	}
2384 	DBG_PRINT0("~~scg direct blocks checked\n");
2385 
2386 	blksperindir = 1;
2387 	len = numblks - NDADDR;
2388 	lbn = NDADDR;
2389 	for (i = 0; len > 0 && i < NIADDR; i++) {
2390 		iptr = DIP(ino, di_ib[i]);
2391 		if (iptr == 0)
2392 			continue;
2393 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2394 			DIP(ino, di_ib[i]) = iptr;
2395 			inodeupdated++;
2396 		}
2397 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2398 		blksperindir *= NINDIR(&sblock);
2399 		lbn += blksperindir;
2400 		len -= blksperindir;
2401 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2402 	}
2403 	if (inodeupdated)
2404 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2405 
2406 	DBG_LEAVE;
2407 	return;
2408 }
2409 
2410 /*
2411  * Recursively check all the indirect blocks.
2412  */
2413 static void
2414 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2415     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2416 {
2417 	DBG_FUNC("indirchk")
2418 	void *ibuf;
2419 	off_t offset;
2420 	int i, last;
2421 	ufs2_daddr_t iptr;
2422 
2423 	DBG_ENTER;
2424 
2425 	/* read in the indirect block. */
2426 	ibuf = malloc(sblock.fs_bsize);
2427 	if (!ibuf)
2428 		errx(1, "malloc failed");
2429 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2430 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2431 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2432 	for (i = 0; i < last; i++) {
2433 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2434 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2435 		else
2436 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2437 		if (iptr == 0)
2438 			continue;
2439 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2440 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2441 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2442 			else
2443 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2444 		}
2445 		if (blksperindir == 1)
2446 			continue;
2447 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2448 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2449 	}
2450 	free(ibuf);
2451 
2452 	DBG_LEAVE;
2453 	return;
2454 }
2455