xref: /freebsd/sbin/growfs/growfs.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD$";
52 #endif /* not lint */
53 
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 #include <sys/disk.h>
60 
61 #include <stdio.h>
62 #include <paths.h>
63 #include <ctype.h>
64 #include <err.h>
65 #include <fcntl.h>
66 #include <limits.h>
67 #include <stdlib.h>
68 #include <stdint.h>
69 #include <string.h>
70 #include <time.h>
71 #include <unistd.h>
72 #include <ufs/ufs/dinode.h>
73 #include <ufs/ffs/fs.h>
74 
75 #include "debug.h"
76 
77 /* *************************************************** GLOBALS & TYPES ***** */
78 #ifdef FS_DEBUG
79 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
80 #endif /* FS_DEBUG */
81 
82 static union {
83 	struct fs	fs;
84 	char	pad[SBLOCKSIZE];
85 } fsun1, fsun2;
86 #define	sblock	fsun1.fs	/* the new superblock */
87 #define	osblock	fsun2.fs	/* the old superblock */
88 
89 /*
90  * Possible superblock locations ordered from most to least likely.
91  */
92 static int sblock_try[] = SBLOCKSEARCH;
93 static ufs2_daddr_t sblockloc;
94 
95 static union {
96 	struct cg	cg;
97 	char	pad[MAXBSIZE];
98 } cgun1, cgun2;
99 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
100 #define	aocg	cgun2.cg	/* an old cylinder group */
101 
102 static char	ablk[MAXBSIZE];	/* a block */
103 
104 static struct csum	*fscs;	/* cylinder summary */
105 
106 union dinode {
107 	struct ufs1_dinode dp1;
108 	struct ufs2_dinode dp2;
109 };
110 #define	DIP(dp, field) \
111 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
112 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
113 #define	DIP_SET(dp, field, val) do { \
114 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
115 		(dp)->dp1.field = (val); \
116 	else \
117 		(dp)->dp2.field = (val); \
118 	} while (0)
119 static ufs2_daddr_t 	inoblk;			/* inode block address */
120 static char		inobuf[MAXBSIZE];	/* inode block */
121 ino_t			maxino;			/* last valid inode */
122 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
123 
124 /*
125  * An array of elements of type struct gfs_bpp describes all blocks to
126  * be relocated in order to free the space needed for the cylinder group
127  * summary for all cylinder groups located in the first cylinder group.
128  */
129 struct gfs_bpp {
130 	ufs2_daddr_t	old;		/* old block number */
131 	ufs2_daddr_t	new;		/* new block number */
132 #define GFS_FL_FIRST	1
133 #define GFS_FL_LAST	2
134 	unsigned int	flags;	/* special handling required */
135 	int	found;		/* how many references were updated */
136 };
137 
138 /* ******************************************************** PROTOTYPES ***** */
139 static void	growfs(int, int, unsigned int);
140 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
141 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
142 static ufs2_daddr_t alloc(void);
143 static int	charsperline(void);
144 static void	usage(void);
145 static int	isblock(struct fs *, unsigned char *, int);
146 static void	clrblock(struct fs *, unsigned char *, int);
147 static void	setblock(struct fs *, unsigned char *, int);
148 static void	initcg(int, time_t, int, unsigned int);
149 static void	updjcg(int, time_t, int, int, unsigned int);
150 static void	updcsloc(time_t, int, int, unsigned int);
151 static struct disklabel	*get_disklabel(int);
152 static void	return_disklabel(int, struct disklabel *, unsigned int);
153 static union dinode *ginode(ino_t, int, int);
154 static void	frag_adjust(ufs2_daddr_t, int);
155 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
156 		    unsigned int);
157 static void	updclst(int);
158 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
159 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
160 		    struct gfs_bpp *, int, int, unsigned int);
161 static void	get_dev_size(int, int *);
162 
163 /* ************************************************************ growfs ***** */
164 /*
165  * Here we actually start growing the file system. We basically read the
166  * cylinder summary from the first cylinder group as we want to update
167  * this on the fly during our various operations. First we handle the
168  * changes in the former last cylinder group. Afterwards we create all new
169  * cylinder groups.  Now we handle the cylinder group containing the
170  * cylinder summary which might result in a relocation of the whole
171  * structure.  In the end we write back the updated cylinder summary, the
172  * new superblock, and slightly patched versions of the super block
173  * copies.
174  */
175 static void
176 growfs(int fsi, int fso, unsigned int Nflag)
177 {
178 	DBG_FUNC("growfs")
179 	int	i;
180 	int	cylno, j;
181 	time_t	utime;
182 	int	width;
183 	char	tmpbuf[100];
184 #ifdef FSIRAND
185 	static int	randinit=0;
186 
187 	DBG_ENTER;
188 
189 	if (!randinit) {
190 		randinit = 1;
191 		srandomdev();
192 	}
193 #else /* not FSIRAND */
194 
195 	DBG_ENTER;
196 
197 #endif /* FSIRAND */
198 	time(&utime);
199 
200 	/*
201 	 * Get the cylinder summary into the memory.
202 	 */
203 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
204 	if(fscs == NULL) {
205 		errx(1, "calloc failed");
206 	}
207 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
208 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
209 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
210 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
211 	}
212 
213 #ifdef FS_DEBUG
214 {
215 	struct csum	*dbg_csp;
216 	int	dbg_csc;
217 	char	dbg_line[80];
218 
219 	dbg_csp=fscs;
220 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
221 		snprintf(dbg_line, sizeof(dbg_line),
222 		    "%d. old csum in old location", dbg_csc);
223 		DBG_DUMP_CSUM(&osblock,
224 		    dbg_line,
225 		    dbg_csp++);
226 	}
227 }
228 #endif /* FS_DEBUG */
229 	DBG_PRINT0("fscs read\n");
230 
231 	/*
232 	 * Do all needed changes in the former last cylinder group.
233 	 */
234 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
235 
236 	/*
237 	 * Dump out summary information about file system.
238 	 */
239 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
240 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
241 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
242 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
243 	    sblock.fs_fsize);
244 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
245 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
246 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
247 	if (sblock.fs_flags & FS_DOSOFTDEP)
248 		printf("\twith soft updates\n");
249 #	undef B2MBFACTOR
250 
251 	/*
252 	 * Now build the cylinders group blocks and
253 	 * then print out indices of cylinder groups.
254 	 */
255 	printf("super-block backups (for fsck -b #) at:\n");
256 	i = 0;
257 	width = charsperline();
258 
259 	/*
260 	 * Iterate for only the new cylinder groups.
261 	 */
262 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
263 		initcg(cylno, utime, fso, Nflag);
264 		j = sprintf(tmpbuf, " %d%s",
265 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
266 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
267 		if (i + j >= width) {
268 			printf("\n");
269 			i = 0;
270 		}
271 		i += j;
272 		printf("%s", tmpbuf);
273 		fflush(stdout);
274 	}
275 	printf("\n");
276 
277 	/*
278 	 * Do all needed changes in the first cylinder group.
279 	 * allocate blocks in new location
280 	 */
281 	updcsloc(utime, fsi, fso, Nflag);
282 
283 	/*
284 	 * Now write the cylinder summary back to disk.
285 	 */
286 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
287 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
288 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
289 		    (void *)(((char *)fscs) + i), fso, Nflag);
290 	}
291 	DBG_PRINT0("fscs written\n");
292 
293 #ifdef FS_DEBUG
294 {
295 	struct csum	*dbg_csp;
296 	int	dbg_csc;
297 	char	dbg_line[80];
298 
299 	dbg_csp=fscs;
300 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
301 		snprintf(dbg_line, sizeof(dbg_line),
302 		    "%d. new csum in new location", dbg_csc);
303 		DBG_DUMP_CSUM(&sblock,
304 		    dbg_line,
305 		    dbg_csp++);
306 	}
307 }
308 #endif /* FS_DEBUG */
309 
310 	/*
311 	 * Now write the new superblock back to disk.
312 	 */
313 	sblock.fs_time = utime;
314 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
315 	DBG_PRINT0("sblock written\n");
316 	DBG_DUMP_FS(&sblock,
317 	    "new initial sblock");
318 
319 	/*
320 	 * Clean up the dynamic fields in our superblock copies.
321 	 */
322 	sblock.fs_fmod = 0;
323 	sblock.fs_clean = 1;
324 	sblock.fs_ronly = 0;
325 	sblock.fs_cgrotor = 0;
326 	sblock.fs_state = 0;
327 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
328 	sblock.fs_flags &= FS_DOSOFTDEP;
329 
330 	/*
331 	 * XXX
332 	 * The following fields are currently distributed from the superblock
333 	 * to the copies:
334 	 *     fs_minfree
335 	 *     fs_rotdelay
336 	 *     fs_maxcontig
337 	 *     fs_maxbpg
338 	 *     fs_minfree,
339 	 *     fs_optim
340 	 *     fs_flags regarding SOFTPDATES
341 	 *
342 	 * We probably should rather change the summary for the cylinder group
343 	 * statistics here to the value of what would be in there, if the file
344 	 * system were created initially with the new size. Therefor we still
345 	 * need to find an easy way of calculating that.
346 	 * Possibly we can try to read the first superblock copy and apply the
347 	 * "diffed" stats between the old and new superblock by still copying
348 	 * certain parameters onto that.
349 	 */
350 
351 	/*
352 	 * Write out the duplicate super blocks.
353 	 */
354 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
355 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
356 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
357 	}
358 	DBG_PRINT0("sblock copies written\n");
359 	DBG_DUMP_FS(&sblock,
360 	    "new other sblocks");
361 
362 	DBG_LEAVE;
363 	return;
364 }
365 
366 /* ************************************************************ initcg ***** */
367 /*
368  * This creates a new cylinder group structure, for more details please see
369  * the source of newfs(8), as this function is taken over almost unchanged.
370  * As this is never called for the first cylinder group, the special
371  * provisions for that case are removed here.
372  */
373 static void
374 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
375 {
376 	DBG_FUNC("initcg")
377 	static void *iobuf;
378 	long d, dlower, dupper, blkno, start;
379 	ufs2_daddr_t i, cbase, dmax;
380 	struct ufs1_dinode *dp1;
381 	struct ufs2_dinode *dp2;
382 	struct csum *cs;
383 
384 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
385 		errx(37, "panic: cannot allocate I/O buffer");
386 	}
387 	/*
388 	 * Determine block bounds for cylinder group.
389 	 * Allow space for super block summary information in first
390 	 * cylinder group.
391 	 */
392 	cbase = cgbase(&sblock, cylno);
393 	dmax = cbase + sblock.fs_fpg;
394 	if (dmax > sblock.fs_size)
395 		dmax = sblock.fs_size;
396 	dlower = cgsblock(&sblock, cylno) - cbase;
397 	dupper = cgdmin(&sblock, cylno) - cbase;
398 	if (cylno == 0)	/* XXX fscs may be relocated */
399 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
400 	cs = &fscs[cylno];
401 	memset(&acg, 0, sblock.fs_cgsize);
402 	acg.cg_time = utime;
403 	acg.cg_magic = CG_MAGIC;
404 	acg.cg_cgx = cylno;
405 	acg.cg_niblk = sblock.fs_ipg;
406 	acg.cg_initediblk = sblock.fs_ipg;
407 	acg.cg_ndblk = dmax - cbase;
408 	if (sblock.fs_contigsumsize > 0)
409 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
410 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
411 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
412 		acg.cg_iusedoff = start;
413 	} else {
414 		acg.cg_old_ncyl = sblock.fs_old_cpg;
415 		acg.cg_old_time = acg.cg_time;
416 		acg.cg_time = 0;
417 		acg.cg_old_niblk = acg.cg_niblk;
418 		acg.cg_niblk = 0;
419 		acg.cg_initediblk = 0;
420 		acg.cg_old_btotoff = start;
421 		acg.cg_old_boff = acg.cg_old_btotoff +
422 		    sblock.fs_old_cpg * sizeof(int32_t);
423 		acg.cg_iusedoff = acg.cg_old_boff +
424 		    sblock.fs_old_cpg * sizeof(u_int16_t);
425 	}
426 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
427 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
428 	if (sblock.fs_contigsumsize > 0) {
429 		acg.cg_clustersumoff =
430 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
431 		acg.cg_clustersumoff -= sizeof(u_int32_t);
432 		acg.cg_clusteroff = acg.cg_clustersumoff +
433 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
434 		acg.cg_nextfreeoff = acg.cg_clusteroff +
435 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
436 	}
437 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
438 		/*
439 		 * This should never happen as we would have had that panic
440 		 * already on file system creation
441 		 */
442 		errx(37, "panic: cylinder group too big");
443 	}
444 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
445 	if (cylno == 0)
446 		for (i = 0; i < ROOTINO; i++) {
447 			setbit(cg_inosused(&acg), i);
448 			acg.cg_cs.cs_nifree--;
449 		}
450 	/*
451 	 * XXX Newfs writes out two blocks of initialized inodes
452 	 *     unconditionally.  Should we check here to make sure that they
453 	 *     were actually written?
454 	 */
455 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
456 		bzero(iobuf, sblock.fs_bsize);
457 		for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock);
458 		     i += sblock.fs_frag) {
459 			dp1 = (struct ufs1_dinode *)iobuf;
460 			dp2 = (struct ufs2_dinode *)iobuf;
461 #ifdef FSIRAND
462 			for (j = 0; j < INOPB(&sblock); j++)
463 				if (sblock.fs_magic == FS_UFS1_MAGIC) {
464 					dp1->di_gen = random();
465 					dp1++;
466 				} else {
467 					dp2->di_gen = random();
468 					dp2++;
469 				}
470 #endif
471 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
472 			    sblock.fs_bsize, iobuf, fso, Nflag);
473 		}
474 	}
475 	if (cylno > 0) {
476 		/*
477 		 * In cylno 0, beginning space is reserved
478 		 * for boot and super blocks.
479 		 */
480 		for (d = 0; d < dlower; d += sblock.fs_frag) {
481 			blkno = d / sblock.fs_frag;
482 			setblock(&sblock, cg_blksfree(&acg), blkno);
483 			if (sblock.fs_contigsumsize > 0)
484 				setbit(cg_clustersfree(&acg), blkno);
485 			acg.cg_cs.cs_nbfree++;
486 		}
487 		sblock.fs_dsize += dlower;
488 	}
489 	sblock.fs_dsize += acg.cg_ndblk - dupper;
490 	if ((i = dupper % sblock.fs_frag)) {
491 		acg.cg_frsum[sblock.fs_frag - i]++;
492 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
493 			setbit(cg_blksfree(&acg), dupper);
494 			acg.cg_cs.cs_nffree++;
495 		}
496 	}
497 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
498 	     d += sblock.fs_frag) {
499 		blkno = d / sblock.fs_frag;
500 		setblock(&sblock, cg_blksfree(&acg), blkno);
501 		if (sblock.fs_contigsumsize > 0)
502 			setbit(cg_clustersfree(&acg), blkno);
503 		acg.cg_cs.cs_nbfree++;
504 	}
505 	if (d < acg.cg_ndblk) {
506 		acg.cg_frsum[acg.cg_ndblk - d]++;
507 		for (; d < acg.cg_ndblk; d++) {
508 			setbit(cg_blksfree(&acg), d);
509 			acg.cg_cs.cs_nffree++;
510 		}
511 	}
512 	if (sblock.fs_contigsumsize > 0) {
513 		int32_t *sump = cg_clustersum(&acg);
514 		u_char *mapp = cg_clustersfree(&acg);
515 		int map = *mapp++;
516 		int bit = 1;
517 		int run = 0;
518 
519 		for (i = 0; i < acg.cg_nclusterblks; i++) {
520 			if ((map & bit) != 0)
521 				run++;
522 			else if (run != 0) {
523 				if (run > sblock.fs_contigsumsize)
524 					run = sblock.fs_contigsumsize;
525 				sump[run]++;
526 				run = 0;
527 			}
528 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
529 				bit <<= 1;
530 			else {
531 				map = *mapp++;
532 				bit = 1;
533 			}
534 		}
535 		if (run != 0) {
536 			if (run > sblock.fs_contigsumsize)
537 				run = sblock.fs_contigsumsize;
538 			sump[run]++;
539 		}
540 	}
541 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
542 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
543 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
544 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
545 	*cs = acg.cg_cs;
546 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
547 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
548 	DBG_DUMP_CG(&sblock,
549 	    "new cg",
550 	    &acg);
551 
552 	DBG_LEAVE;
553 	return;
554 }
555 
556 /* ******************************************************* frag_adjust ***** */
557 /*
558  * Here we add or subtract (sign +1/-1) the available fragments in a given
559  * block to or from the fragment statistics. By subtracting before and adding
560  * after an operation on the free frag map we can easy update the fragment
561  * statistic, which seems to be otherwise a rather complex operation.
562  */
563 static void
564 frag_adjust(ufs2_daddr_t frag, int sign)
565 {
566 	DBG_FUNC("frag_adjust")
567 	int fragsize;
568 	int f;
569 
570 	DBG_ENTER;
571 
572 	fragsize=0;
573 	/*
574 	 * Here frag only needs to point to any fragment in the block we want
575 	 * to examine.
576 	 */
577 	for(f=rounddown(frag, sblock.fs_frag);
578 	    f<roundup(frag+1, sblock.fs_frag);
579 	    f++) {
580 		/*
581 		 * Count contiguous free fragments.
582 		 */
583 		if(isset(cg_blksfree(&acg), f)) {
584 			fragsize++;
585 		} else {
586 			if(fragsize && fragsize<sblock.fs_frag) {
587 				/*
588 				 * We found something in between.
589 				 */
590 				acg.cg_frsum[fragsize]+=sign;
591 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
592 				    fragsize,
593 				    sign);
594 			}
595 			fragsize=0;
596 		}
597 	}
598 	if(fragsize && fragsize<sblock.fs_frag) {
599 		/*
600 		 * We found something.
601 		 */
602 		acg.cg_frsum[fragsize]+=sign;
603 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
604 		    fragsize,
605 		    sign);
606 	}
607 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
608 	    fragsize,
609 	    sign);
610 
611 	DBG_LEAVE;
612 	return;
613 }
614 
615 /* ******************************************************* cond_bl_upd ***** */
616 /*
617  * Here we conditionally update a pointer to a fragment. We check for all
618  * relocated blocks if any of its fragments is referenced by the current
619  * field, and update the pointer to the respective fragment in our new
620  * block.  If we find a reference we write back the block immediately,
621  * as there is no easy way for our general block reading engine to figure
622  * out if a write back operation is needed.
623  */
624 static int
625 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
626     unsigned int Nflag)
627 {
628 	DBG_FUNC("cond_bl_upd")
629 	struct gfs_bpp *f;
630 	ufs2_daddr_t src, dst;
631 	int fragnum;
632 	void *ibuf;
633 
634 	DBG_ENTER;
635 
636 	f = field;
637 	for (f = field; f->old != 0; f++) {
638 		src = *block;
639 		if (fragstoblks(&sblock, src) != f->old)
640 			continue;
641 		/*
642 		 * The fragment is part of the block, so update.
643 		 */
644 		dst = blkstofrags(&sblock, f->new);
645 		fragnum = fragnum(&sblock, src);
646 		*block = dst + fragnum;
647 		f->found++;
648 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
649 		    (intmax_t)f->old,
650 		    (intmax_t)f->new,
651 		    fragnum);
652 
653 		/*
654 		 * Copy the block back immediately.
655 		 *
656 		 * XXX	If src is is from an indirect block we have
657 		 *	to implement copy on write here in case of
658 		 *	active snapshots.
659 		 */
660 		ibuf = malloc(sblock.fs_bsize);
661 		if (!ibuf)
662 			errx(1, "malloc failed");
663 		src -= fragnum;
664 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
665 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
666 		free(ibuf);
667 		/*
668 		 * The same block can't be found again in this loop.
669 		 */
670 		return (1);
671 	}
672 
673 	DBG_LEAVE;
674 	return (0);
675 }
676 
677 /* ************************************************************ updjcg ***** */
678 /*
679  * Here we do all needed work for the former last cylinder group. It has to be
680  * changed in any case, even if the file system ended exactly on the end of
681  * this group, as there is some slightly inconsistent handling of the number
682  * of cylinders in the cylinder group. We start again by reading the cylinder
683  * group from disk. If the last block was not fully available, we first handle
684  * the missing fragments, then we handle all new full blocks in that file
685  * system and finally we handle the new last fragmented block in the file
686  * system.  We again have to handle the fragment statistics rotational layout
687  * tables and cluster summary during all those operations.
688  */
689 static void
690 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
691 {
692 	DBG_FUNC("updjcg")
693 	ufs2_daddr_t	cbase, dmax, dupper;
694 	struct csum	*cs;
695 	int	i,k;
696 	int	j=0;
697 
698 	DBG_ENTER;
699 
700 	/*
701 	 * Read the former last (joining) cylinder group from disk, and make
702 	 * a copy.
703 	 */
704 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
705 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
706 	DBG_PRINT0("jcg read\n");
707 	DBG_DUMP_CG(&sblock,
708 	    "old joining cg",
709 	    &aocg);
710 
711 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
712 
713 	/*
714 	 * If the cylinder group had already its new final size almost
715 	 * nothing is to be done ... except:
716 	 * For some reason the value of cg_ncyl in the last cylinder group has
717 	 * to be zero instead of fs_cpg. As this is now no longer the last
718 	 * cylinder group we have to change that value now to fs_cpg.
719 	 */
720 
721 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
722 		if (sblock.fs_magic == FS_UFS1_MAGIC)
723 			acg.cg_old_ncyl=sblock.fs_old_cpg;
724 
725 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
726 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
727 		DBG_PRINT0("jcg written\n");
728 		DBG_DUMP_CG(&sblock,
729 		    "new joining cg",
730 		    &acg);
731 
732 		DBG_LEAVE;
733 		return;
734 	}
735 
736 	/*
737 	 * Set up some variables needed later.
738 	 */
739 	cbase = cgbase(&sblock, cylno);
740 	dmax = cbase + sblock.fs_fpg;
741 	if (dmax > sblock.fs_size)
742 		dmax = sblock.fs_size;
743 	dupper = cgdmin(&sblock, cylno) - cbase;
744 	if (cylno == 0) { /* XXX fscs may be relocated */
745 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
746 	}
747 
748 	/*
749 	 * Set pointer to the cylinder summary for our cylinder group.
750 	 */
751 	cs = fscs + cylno;
752 
753 	/*
754 	 * Touch the cylinder group, update all fields in the cylinder group as
755 	 * needed, update the free space in the superblock.
756 	 */
757 	acg.cg_time = utime;
758 	if (cylno == sblock.fs_ncg - 1) {
759 		/*
760 		 * This is still the last cylinder group.
761 		 */
762 		if (sblock.fs_magic == FS_UFS1_MAGIC)
763 			acg.cg_old_ncyl =
764 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
765 	} else {
766 		acg.cg_old_ncyl = sblock.fs_old_cpg;
767 	}
768 	DBG_PRINT2("jcg dbg: %d %u",
769 	    cylno,
770 	    sblock.fs_ncg);
771 #ifdef FS_DEBUG
772 	if (sblock.fs_magic == FS_UFS1_MAGIC)
773 		DBG_PRINT2("%d %u",
774 		    acg.cg_old_ncyl,
775 		    sblock.fs_old_cpg);
776 #endif
777 	DBG_PRINT0("\n");
778 	acg.cg_ndblk = dmax - cbase;
779 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
780 	if (sblock.fs_contigsumsize > 0) {
781 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
782 	}
783 
784 	/*
785 	 * Now we have to update the free fragment bitmap for our new free
786 	 * space.  There again we have to handle the fragmentation and also
787 	 * the rotational layout tables and the cluster summary.  This is
788 	 * also done per fragment for the first new block if the old file
789 	 * system end was not on a block boundary, per fragment for the new
790 	 * last block if the new file system end is not on a block boundary,
791 	 * and per block for all space in between.
792 	 *
793 	 * Handle the first new block here if it was partially available
794 	 * before.
795 	 */
796 	if(osblock.fs_size % sblock.fs_frag) {
797 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
798 			/*
799 			 * The new space is enough to fill at least this
800 			 * block
801 			 */
802 			j=0;
803 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
804 			    i>=osblock.fs_size-cbase;
805 			    i--) {
806 				setbit(cg_blksfree(&acg), i);
807 				acg.cg_cs.cs_nffree++;
808 				j++;
809 			}
810 
811 			/*
812 			 * Check if the fragment just created could join an
813 			 * already existing fragment at the former end of the
814 			 * file system.
815 			 */
816 			if(isblock(&sblock, cg_blksfree(&acg),
817 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
818 			    sblock.fs_frag))) {
819 				/*
820 				 * The block is now completely available.
821 				 */
822 				DBG_PRINT0("block was\n");
823 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
824 				acg.cg_cs.cs_nbfree++;
825 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
826 				k=rounddown(osblock.fs_size-cbase,
827 				    sblock.fs_frag);
828 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
829 			} else {
830 				/*
831 				 * Lets rejoin a possible partially growed
832 				 * fragment.
833 				 */
834 				k=0;
835 				while(isset(cg_blksfree(&acg), i) &&
836 				    (i>=rounddown(osblock.fs_size-cbase,
837 				    sblock.fs_frag))) {
838 					i--;
839 					k++;
840 				}
841 				if(k) {
842 					acg.cg_frsum[k]--;
843 				}
844 				acg.cg_frsum[k+j]++;
845 			}
846 		} else {
847 			/*
848 			 * We only grow by some fragments within this last
849 			 * block.
850 			 */
851 			for(i=sblock.fs_size-cbase-1;
852 				i>=osblock.fs_size-cbase;
853 				i--) {
854 				setbit(cg_blksfree(&acg), i);
855 				acg.cg_cs.cs_nffree++;
856 				j++;
857 			}
858 			/*
859 			 * Lets rejoin a possible partially growed fragment.
860 			 */
861 			k=0;
862 			while(isset(cg_blksfree(&acg), i) &&
863 			    (i>=rounddown(osblock.fs_size-cbase,
864 			    sblock.fs_frag))) {
865 				i--;
866 				k++;
867 			}
868 			if(k) {
869 				acg.cg_frsum[k]--;
870 			}
871 			acg.cg_frsum[k+j]++;
872 		}
873 	}
874 
875 	/*
876 	 * Handle all new complete blocks here.
877 	 */
878 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
879 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
880 	    i+=sblock.fs_frag) {
881 		j = i / sblock.fs_frag;
882 		setblock(&sblock, cg_blksfree(&acg), j);
883 		updclst(j);
884 		acg.cg_cs.cs_nbfree++;
885 	}
886 
887 	/*
888 	 * Handle the last new block if there are stll some new fragments left.
889 	 * Here we don't have to bother about the cluster summary or the even
890 	 * the rotational layout table.
891 	 */
892 	if (i < (dmax - cbase)) {
893 		acg.cg_frsum[dmax - cbase - i]++;
894 		for (; i < dmax - cbase; i++) {
895 			setbit(cg_blksfree(&acg), i);
896 			acg.cg_cs.cs_nffree++;
897 		}
898 	}
899 
900 	sblock.fs_cstotal.cs_nffree +=
901 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
902 	sblock.fs_cstotal.cs_nbfree +=
903 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
904 	/*
905 	 * The following statistics are not changed here:
906 	 *     sblock.fs_cstotal.cs_ndir
907 	 *     sblock.fs_cstotal.cs_nifree
908 	 * As the statistics for this cylinder group are ready, copy it to
909 	 * the summary information array.
910 	 */
911 	*cs = acg.cg_cs;
912 
913 	/*
914 	 * Write the updated "joining" cylinder group back to disk.
915 	 */
916 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
917 	    (void *)&acg, fso, Nflag);
918 	DBG_PRINT0("jcg written\n");
919 	DBG_DUMP_CG(&sblock,
920 	    "new joining cg",
921 	    &acg);
922 
923 	DBG_LEAVE;
924 	return;
925 }
926 
927 /* ********************************************************** updcsloc ***** */
928 /*
929  * Here we update the location of the cylinder summary. We have two possible
930  * ways of growing the cylinder summary.
931  * (1)	We can try to grow the summary in the current location, and relocate
932  *	possibly used blocks within the current cylinder group.
933  * (2)	Alternatively we can relocate the whole cylinder summary to the first
934  *	new completely empty cylinder group. Once the cylinder summary is no
935  *	longer in the beginning of the first cylinder group you should never
936  *	use a version of fsck which is not aware of the possibility to have
937  *	this structure in a non standard place.
938  * Option (1) is considered to be less intrusive to the structure of the file-
939  * system. So we try to stick to that whenever possible. If there is not enough
940  * space in the cylinder group containing the cylinder summary we have to use
941  * method (2). In case of active snapshots in the file system we probably can
942  * completely avoid implementing copy on write if we stick to method (2) only.
943  */
944 static void
945 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
946 {
947 	DBG_FUNC("updcsloc")
948 	struct csum	*cs;
949 	int	ocscg, ncscg;
950 	int	blocks;
951 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
952 	int	ind;
953 	int	cylno, inc;
954 	struct gfs_bpp	*bp;
955 	int	i, l;
956 	int	lcs=0;
957 	int	block;
958 
959 	DBG_ENTER;
960 
961 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
962 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
963 		/*
964 		 * No new fragment needed.
965 		 */
966 		DBG_LEAVE;
967 		return;
968 	}
969 	ocscg=dtog(&osblock, osblock.fs_csaddr);
970 	cs=fscs+ocscg;
971 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
972 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
973 
974 	/*
975 	 * Read original cylinder group from disk, and make a copy.
976 	 * XXX	If Nflag is set in some very rare cases we now miss
977 	 *	some changes done in updjcg by reading the unmodified
978 	 *	block from disk.
979 	 */
980 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
981 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
982 	DBG_PRINT0("oscg read\n");
983 	DBG_DUMP_CG(&sblock,
984 	    "old summary cg",
985 	    &aocg);
986 
987 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
988 
989 	/*
990 	 * Touch the cylinder group, set up local variables needed later
991 	 * and update the superblock.
992 	 */
993 	acg.cg_time = utime;
994 
995 	/*
996 	 * XXX	In the case of having active snapshots we may need much more
997 	 *	blocks for the copy on write. We need each block twice, and
998 	 *	also up to 8*3 blocks for indirect blocks for all possible
999 	 *	references.
1000 	 */
1001 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
1002 		/*
1003 		 * There is not enough space in the old cylinder group to
1004 		 * relocate all blocks as needed, so we relocate the whole
1005 		 * cylinder group summary to a new group. We try to use the
1006 		 * first complete new cylinder group just created. Within the
1007 		 * cylinder group we align the area immediately after the
1008 		 * cylinder group information location in order to be as
1009 		 * close as possible to the original implementation of ffs.
1010 		 *
1011 		 * First we have to make sure we'll find enough space in the
1012 		 * new cylinder group. If not, then we currently give up.
1013 		 * We start with freeing everything which was used by the
1014 		 * fragments of the old cylinder summary in the current group.
1015 		 * Now we write back the group meta data, read in the needed
1016 		 * meta data from the new cylinder group, and start allocating
1017 		 * within that group. Here we can assume, the group to be
1018 		 * completely empty. Which makes the handling of fragments and
1019 		 * clusters a lot easier.
1020 		 */
1021 		DBG_TRC;
1022 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1023 			errx(2, "panic: not enough space");
1024 		}
1025 
1026 		/*
1027 		 * Point "d" to the first fragment not used by the cylinder
1028 		 * summary.
1029 		 */
1030 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1031 
1032 		/*
1033 		 * Set up last cluster size ("lcs") already here. Calculate
1034 		 * the size for the trailing cluster just behind where "d"
1035 		 * points to.
1036 		 */
1037 		if(sblock.fs_contigsumsize > 0) {
1038 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1039 			    lcs=0; lcs<sblock.fs_contigsumsize;
1040 			    block++, lcs++) {
1041 				if(isclr(cg_clustersfree(&acg), block)){
1042 					break;
1043 				}
1044 			}
1045 		}
1046 
1047 		/*
1048 		 * Point "d" to the last frag used by the cylinder summary.
1049 		 */
1050 		d--;
1051 
1052 		DBG_PRINT1("d=%jd\n",
1053 		    (intmax_t)d);
1054 		if((d+1)%sblock.fs_frag) {
1055 			/*
1056 			 * The end of the cylinder summary is not a complete
1057 			 * block.
1058 			 */
1059 			DBG_TRC;
1060 			frag_adjust(d%sblock.fs_fpg, -1);
1061 			for(; (d+1)%sblock.fs_frag; d--) {
1062 				DBG_PRINT1("d=%jd\n",
1063 				    (intmax_t)d);
1064 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1065 				acg.cg_cs.cs_nffree++;
1066 				sblock.fs_cstotal.cs_nffree++;
1067 			}
1068 			/*
1069 			 * Point "d" to the last fragment of the last
1070 			 * (incomplete) block of the cylinder summary.
1071 			 */
1072 			d++;
1073 			frag_adjust(d%sblock.fs_fpg, 1);
1074 
1075 			if(isblock(&sblock, cg_blksfree(&acg),
1076 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1077 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1078 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1079 				acg.cg_cs.cs_nbfree++;
1080 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1081 				sblock.fs_cstotal.cs_nbfree++;
1082 				if(sblock.fs_contigsumsize > 0) {
1083 					setbit(cg_clustersfree(&acg),
1084 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1085 					if(lcs < sblock.fs_contigsumsize) {
1086 						if(lcs) {
1087 							cg_clustersum(&acg)
1088 							    [lcs]--;
1089 						}
1090 						lcs++;
1091 						cg_clustersum(&acg)[lcs]++;
1092 					}
1093 				}
1094 			}
1095 			/*
1096 			 * Point "d" to the first fragment of the block before
1097 			 * the last incomplete block.
1098 			 */
1099 			d--;
1100 		}
1101 
1102 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1103 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1104 		    d-=sblock.fs_frag) {
1105 			DBG_TRC;
1106 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1107 			setblock(&sblock, cg_blksfree(&acg),
1108 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1109 			acg.cg_cs.cs_nbfree++;
1110 			sblock.fs_cstotal.cs_nbfree++;
1111 			if(sblock.fs_contigsumsize > 0) {
1112 				setbit(cg_clustersfree(&acg),
1113 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1114 				/*
1115 				 * The last cluster size is already set up.
1116 				 */
1117 				if(lcs < sblock.fs_contigsumsize) {
1118 					if(lcs) {
1119 						cg_clustersum(&acg)[lcs]--;
1120 					}
1121 					lcs++;
1122 					cg_clustersum(&acg)[lcs]++;
1123 				}
1124 			}
1125 		}
1126 		*cs = acg.cg_cs;
1127 
1128 		/*
1129 		 * Now write the former cylinder group containing the cylinder
1130 		 * summary back to disk.
1131 		 */
1132 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1133 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1134 		DBG_PRINT0("oscg written\n");
1135 		DBG_DUMP_CG(&sblock,
1136 		    "old summary cg",
1137 		    &acg);
1138 
1139 		/*
1140 		 * Find the beginning of the new cylinder group containing the
1141 		 * cylinder summary.
1142 		 */
1143 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1144 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1145 		cs=fscs+ncscg;
1146 
1147 
1148 		/*
1149 		 * If Nflag is specified, we would now read random data instead
1150 		 * of an empty cg structure from disk. So we can't simulate that
1151 		 * part for now.
1152 		 */
1153 		if(Nflag) {
1154 			DBG_PRINT0("nscg update skipped\n");
1155 			DBG_LEAVE;
1156 			return;
1157 		}
1158 
1159 		/*
1160 		 * Read the future cylinder group containing the cylinder
1161 		 * summary from disk, and make a copy.
1162 		 */
1163 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1164 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1165 		DBG_PRINT0("nscg read\n");
1166 		DBG_DUMP_CG(&sblock,
1167 		    "new summary cg",
1168 		    &aocg);
1169 
1170 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1171 
1172 		/*
1173 		 * Allocate all complete blocks used by the new cylinder
1174 		 * summary.
1175 		 */
1176 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1177 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1178 		    d+=sblock.fs_frag) {
1179 			clrblock(&sblock, cg_blksfree(&acg),
1180 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1181 			acg.cg_cs.cs_nbfree--;
1182 			sblock.fs_cstotal.cs_nbfree--;
1183 			if(sblock.fs_contigsumsize > 0) {
1184 				clrbit(cg_clustersfree(&acg),
1185 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1186 			}
1187 		}
1188 
1189 		/*
1190 		 * Allocate all fragments used by the cylinder summary in the
1191 		 * last block.
1192 		 */
1193 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1194 			for(; d-sblock.fs_csaddr<
1195 			    sblock.fs_cssize/sblock.fs_fsize;
1196 			    d++) {
1197 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1198 				acg.cg_cs.cs_nffree--;
1199 				sblock.fs_cstotal.cs_nffree--;
1200 			}
1201 			acg.cg_cs.cs_nbfree--;
1202 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1203 			sblock.fs_cstotal.cs_nbfree--;
1204 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1205 			if(sblock.fs_contigsumsize > 0) {
1206 				clrbit(cg_clustersfree(&acg),
1207 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1208 			}
1209 
1210 			frag_adjust(d%sblock.fs_fpg, +1);
1211 		}
1212 		/*
1213 		 * XXX	Handle the cluster statistics here in the case this
1214 		 *	cylinder group is now almost full, and the remaining
1215 		 *	space is less then the maximum cluster size. This is
1216 		 *	probably not needed, as you would hardly find a file
1217 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1218 		 *	space right behind the cylinder group information in
1219 		 *	any new cylinder group.
1220 		 */
1221 
1222 		/*
1223 		 * Update our statistics in the cylinder summary.
1224 		 */
1225 		*cs = acg.cg_cs;
1226 
1227 		/*
1228 		 * Write the new cylinder group containing the cylinder summary
1229 		 * back to disk.
1230 		 */
1231 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1232 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1233 		DBG_PRINT0("nscg written\n");
1234 		DBG_DUMP_CG(&sblock,
1235 		    "new summary cg",
1236 		    &acg);
1237 
1238 		DBG_LEAVE;
1239 		return;
1240 	}
1241 	/*
1242 	 * We have got enough of space in the current cylinder group, so we
1243 	 * can relocate just a few blocks, and let the summary information
1244 	 * grow in place where it is right now.
1245 	 */
1246 	DBG_TRC;
1247 
1248 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1249 	dupper = sblock.fs_csaddr - cbase +
1250 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1251 	odupper = osblock.fs_csaddr - cbase +
1252 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1253 
1254 	sblock.fs_dsize -= dupper-odupper;
1255 
1256 	/*
1257 	 * Allocate the space for the array of blocks to be relocated.
1258 	 */
1259  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1260 	    sizeof(struct gfs_bpp));
1261 	if(bp == NULL) {
1262 		errx(1, "malloc failed");
1263 	}
1264 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1265 	    sizeof(struct gfs_bpp));
1266 
1267 	/*
1268 	 * Lock all new frags needed for the cylinder group summary. This is
1269 	 * done per fragment in the first and last block of the new required
1270 	 * area, and per block for all other blocks.
1271 	 *
1272 	 * Handle the first new block here (but only if some fragments where
1273 	 * already used for the cylinder summary).
1274 	 */
1275 	ind=0;
1276 	frag_adjust(odupper, -1);
1277 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1278 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1279 		    (intmax_t)d);
1280 		if(isclr(cg_blksfree(&acg), d)) {
1281 			if (!ind) {
1282 				bp[ind].old=d/sblock.fs_frag;
1283 				bp[ind].flags|=GFS_FL_FIRST;
1284 				if(roundup(d, sblock.fs_frag) >= dupper) {
1285 					bp[ind].flags|=GFS_FL_LAST;
1286 				}
1287 				ind++;
1288 			}
1289 		} else {
1290 			clrbit(cg_blksfree(&acg), d);
1291 			acg.cg_cs.cs_nffree--;
1292 			sblock.fs_cstotal.cs_nffree--;
1293 		}
1294 		/*
1295 		 * No cluster handling is needed here, as there was at least
1296 		 * one fragment in use by the cylinder summary in the old
1297 		 * file system.
1298 		 * No block-free counter handling here as this block was not
1299 		 * a free block.
1300 		 */
1301 	}
1302 	frag_adjust(odupper, 1);
1303 
1304 	/*
1305 	 * Handle all needed complete blocks here.
1306 	 */
1307 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1308 		DBG_PRINT1("scg block check loop d=%jd\n",
1309 		    (intmax_t)d);
1310 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1311 			for(f=d; f<d+sblock.fs_frag; f++) {
1312 				if(isset(cg_blksfree(&aocg), f)) {
1313 					acg.cg_cs.cs_nffree--;
1314 					sblock.fs_cstotal.cs_nffree--;
1315 				}
1316 			}
1317 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1318 			bp[ind].old=d/sblock.fs_frag;
1319 			ind++;
1320 		} else {
1321 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1322 			acg.cg_cs.cs_nbfree--;
1323 			sblock.fs_cstotal.cs_nbfree--;
1324 			if(sblock.fs_contigsumsize > 0) {
1325 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1326 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1327 				    lcs<sblock.fs_contigsumsize;
1328 				    l++, lcs++ ) {
1329 					if(isclr(cg_clustersfree(&acg),l)){
1330 						break;
1331 					}
1332 				}
1333 				if(lcs < sblock.fs_contigsumsize) {
1334 					cg_clustersum(&acg)[lcs+1]--;
1335 					if(lcs) {
1336 						cg_clustersum(&acg)[lcs]++;
1337 					}
1338 				}
1339 			}
1340 		}
1341 		/*
1342 		 * No fragment counter handling is needed here, as this finally
1343 		 * doesn't change after the relocation.
1344 		 */
1345 	}
1346 
1347 	/*
1348 	 * Handle all fragments needed in the last new affected block.
1349 	 */
1350 	if(d<dupper) {
1351 		frag_adjust(dupper-1, -1);
1352 
1353 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1354 			acg.cg_cs.cs_nbfree--;
1355 			sblock.fs_cstotal.cs_nbfree--;
1356 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1357 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1358 			if(sblock.fs_contigsumsize > 0) {
1359 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1360 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1361 				    lcs<sblock.fs_contigsumsize;
1362 				    l++, lcs++ ) {
1363 					if(isclr(cg_clustersfree(&acg),l)){
1364 						break;
1365 					}
1366 				}
1367 				if(lcs < sblock.fs_contigsumsize) {
1368 					cg_clustersum(&acg)[lcs+1]--;
1369 					if(lcs) {
1370 						cg_clustersum(&acg)[lcs]++;
1371 					}
1372 				}
1373 			}
1374 		}
1375 
1376 		for(; d<dupper; d++) {
1377 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1378 			    (intmax_t)d);
1379 			if(isclr(cg_blksfree(&acg), d)) {
1380 				bp[ind].old=d/sblock.fs_frag;
1381 				bp[ind].flags|=GFS_FL_LAST;
1382 			} else {
1383 				clrbit(cg_blksfree(&acg), d);
1384 				acg.cg_cs.cs_nffree--;
1385 				sblock.fs_cstotal.cs_nffree--;
1386 			}
1387 		}
1388 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1389 			ind++;
1390 		}
1391 		frag_adjust(dupper-1, 1);
1392 	}
1393 
1394 	/*
1395 	 * If we found a block to relocate just do so.
1396 	 */
1397 	if(ind) {
1398 		for(i=0; i<ind; i++) {
1399 			if(!bp[i].old) { /* no more blocks listed */
1400 				/*
1401 				 * XXX	A relative blocknumber should not be
1402 				 *	zero, which is not explicitly
1403 				 *	guaranteed by our code.
1404 				 */
1405 				break;
1406 			}
1407 			/*
1408 			 * Allocate a complete block in the same (current)
1409 			 * cylinder group.
1410 			 */
1411 			bp[i].new=alloc()/sblock.fs_frag;
1412 
1413 			/*
1414 			 * There is no frag_adjust() needed for the new block
1415 			 * as it will have no fragments yet :-).
1416 			 */
1417 			for(f=bp[i].old*sblock.fs_frag,
1418 			    g=bp[i].new*sblock.fs_frag;
1419 			    f<(bp[i].old+1)*sblock.fs_frag;
1420 			    f++, g++) {
1421 				if(isset(cg_blksfree(&aocg), f)) {
1422 					setbit(cg_blksfree(&acg), g);
1423 					acg.cg_cs.cs_nffree++;
1424 					sblock.fs_cstotal.cs_nffree++;
1425 				}
1426 			}
1427 
1428 			/*
1429 			 * Special handling is required if this was the first
1430 			 * block. We have to consider the fragments which were
1431 			 * used by the cylinder summary in the original block
1432 			 * which re to be free in the copy of our block.  We
1433 			 * have to be careful if this first block happens to
1434 			 * be also the last block to be relocated.
1435 			 */
1436 			if(bp[i].flags & GFS_FL_FIRST) {
1437 				for(f=bp[i].old*sblock.fs_frag,
1438 				    g=bp[i].new*sblock.fs_frag;
1439 				    f<odupper;
1440 				    f++, g++) {
1441 					setbit(cg_blksfree(&acg), g);
1442 					acg.cg_cs.cs_nffree++;
1443 					sblock.fs_cstotal.cs_nffree++;
1444 				}
1445 				if(!(bp[i].flags & GFS_FL_LAST)) {
1446 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1447 				}
1448 			}
1449 
1450 			/*
1451 			 * Special handling is required if this is the last
1452 			 * block to be relocated.
1453 			 */
1454 			if(bp[i].flags & GFS_FL_LAST) {
1455 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1456 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1457 				for(f=dupper;
1458 				    f<roundup(dupper, sblock.fs_frag);
1459 				    f++) {
1460 					if(isclr(cg_blksfree(&acg), f)) {
1461 						setbit(cg_blksfree(&acg), f);
1462 						acg.cg_cs.cs_nffree++;
1463 						sblock.fs_cstotal.cs_nffree++;
1464 					}
1465 				}
1466 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1467 			}
1468 
1469 			/*
1470 			 * !!! Attach the cylindergroup offset here.
1471 			 */
1472 			bp[i].old+=cbase/sblock.fs_frag;
1473 			bp[i].new+=cbase/sblock.fs_frag;
1474 
1475 			/*
1476 			 * Copy the content of the block.
1477 			 */
1478 			/*
1479 			 * XXX	Here we will have to implement a copy on write
1480 			 *	in the case we have any active snapshots.
1481 			 */
1482 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1483 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1484 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1485 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1486 			DBG_DUMP_HEX(&sblock,
1487 			    "copied full block",
1488 			    (unsigned char *)&ablk);
1489 
1490 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1491 			    (intmax_t)bp[i].old,
1492 			    (intmax_t)bp[i].new);
1493 		}
1494 
1495 		/*
1496 		 * Now we have to update all references to any fragment which
1497 		 * belongs to any block relocated. We iterate now over all
1498 		 * cylinder groups, within those over all non zero length
1499 		 * inodes.
1500 		 */
1501 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1502 			DBG_PRINT1("scg doing cg (%d)\n",
1503 			    cylno);
1504 			for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1505 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1506 			}
1507 		}
1508 
1509 		/*
1510 		 * All inodes are checked, now make sure the number of
1511 		 * references found make sense.
1512 		 */
1513 		for(i=0; i<ind; i++) {
1514 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1515 				warnx("error: %jd refs found for block %jd.",
1516 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1517 			}
1518 
1519 		}
1520 	}
1521 	/*
1522 	 * The following statistics are not changed here:
1523 	 *     sblock.fs_cstotal.cs_ndir
1524 	 *     sblock.fs_cstotal.cs_nifree
1525 	 * The following statistics were already updated on the fly:
1526 	 *     sblock.fs_cstotal.cs_nffree
1527 	 *     sblock.fs_cstotal.cs_nbfree
1528 	 * As the statistics for this cylinder group are ready, copy it to
1529 	 * the summary information array.
1530 	 */
1531 
1532 	*cs = acg.cg_cs;
1533 
1534 	/*
1535 	 * Write summary cylinder group back to disk.
1536 	 */
1537 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1538 	    (void *)&acg, fso, Nflag);
1539 	DBG_PRINT0("scg written\n");
1540 	DBG_DUMP_CG(&sblock,
1541 	    "new summary cg",
1542 	    &acg);
1543 
1544 	DBG_LEAVE;
1545 	return;
1546 }
1547 
1548 /* ************************************************************** rdfs ***** */
1549 /*
1550  * Here we read some block(s) from disk.
1551  */
1552 static void
1553 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1554 {
1555 	DBG_FUNC("rdfs")
1556 	ssize_t	n;
1557 
1558 	DBG_ENTER;
1559 
1560 	if (bno < 0) {
1561 		err(32, "rdfs: attempting to read negative block number\n");
1562 	}
1563 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1564 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1565 	}
1566 	n = read(fsi, bf, size);
1567 	if (n != (ssize_t)size) {
1568 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1569 	}
1570 
1571 	DBG_LEAVE;
1572 	return;
1573 }
1574 
1575 /* ************************************************************** wtfs ***** */
1576 /*
1577  * Here we write some block(s) to disk.
1578  */
1579 static void
1580 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1581 {
1582 	DBG_FUNC("wtfs")
1583 	ssize_t	n;
1584 
1585 	DBG_ENTER;
1586 
1587 	if (Nflag) {
1588 		DBG_LEAVE;
1589 		return;
1590 	}
1591 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1592 		err(35, "wtfs: seek error: %ld", (long)bno);
1593 	}
1594 	n = write(fso, bf, size);
1595 	if (n != (ssize_t)size) {
1596 		err(36, "wtfs: write error: %ld", (long)bno);
1597 	}
1598 
1599 	DBG_LEAVE;
1600 	return;
1601 }
1602 
1603 /* ************************************************************* alloc ***** */
1604 /*
1605  * Here we allocate a free block in the current cylinder group. It is assumed,
1606  * that acg contains the current cylinder group. As we may take a block from
1607  * somewhere in the file system we have to handle cluster summary here.
1608  */
1609 static ufs2_daddr_t
1610 alloc(void)
1611 {
1612 	DBG_FUNC("alloc")
1613 	ufs2_daddr_t	d, blkno;
1614 	int	lcs1, lcs2;
1615 	int	l;
1616 	int	csmin, csmax;
1617 	int	dlower, dupper, dmax;
1618 
1619 	DBG_ENTER;
1620 
1621 	if (acg.cg_magic != CG_MAGIC) {
1622 		warnx("acg: bad magic number");
1623 		DBG_LEAVE;
1624 		return (0);
1625 	}
1626 	if (acg.cg_cs.cs_nbfree == 0) {
1627 		warnx("error: cylinder group ran out of space");
1628 		DBG_LEAVE;
1629 		return (0);
1630 	}
1631 	/*
1632 	 * We start seeking for free blocks only from the space available after
1633 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1634 	 * block here which we have to relocate a couple of seconds later again
1635 	 * again, and we are not prepared to to this anyway.
1636 	 */
1637 	blkno=-1;
1638 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1639 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1640 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1641 	if (dmax > sblock.fs_size) {
1642 		dmax = sblock.fs_size;
1643 	}
1644 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1645 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1646 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1647 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1648 	    dlower,
1649 	    dupper,
1650 	    dmax);
1651 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1652 	    csmin,
1653 	    csmax);
1654 
1655 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1656 		if(d>=csmin && d<=csmax) {
1657 			continue;
1658 		}
1659 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1660 		    d))) {
1661 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1662 			break;
1663 		}
1664 	}
1665 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1666 		if(d>=csmin && d<=csmax) {
1667 			continue;
1668 		}
1669 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1670 		    d))) {
1671 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1672 			break;
1673 		}
1674 	}
1675 	if(blkno==-1) {
1676 		warnx("internal error: couldn't find promised block in cg");
1677 		DBG_LEAVE;
1678 		return (0);
1679 	}
1680 
1681 	/*
1682 	 * This is needed if the block was found already in the first loop.
1683 	 */
1684 	d=blkstofrags(&sblock, blkno);
1685 
1686 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1687 	if (sblock.fs_contigsumsize > 0) {
1688 		/*
1689 		 * Handle the cluster allocation bitmap.
1690 		 */
1691 		clrbit(cg_clustersfree(&acg), blkno);
1692 		/*
1693 		 * We possibly have split a cluster here, so we have to do
1694 		 * recalculate the sizes of the remaining cluster halves now,
1695 		 * and use them for updating the cluster summary information.
1696 		 *
1697 		 * Lets start with the blocks before our allocated block ...
1698 		 */
1699 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1700 		    l--, lcs1++ ) {
1701 			if(isclr(cg_clustersfree(&acg),l)){
1702 				break;
1703 			}
1704 		}
1705 		/*
1706 		 * ... and continue with the blocks right after our allocated
1707 		 * block.
1708 		 */
1709 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1710 		    l++, lcs2++ ) {
1711 			if(isclr(cg_clustersfree(&acg),l)){
1712 				break;
1713 			}
1714 		}
1715 
1716 		/*
1717 		 * Now update all counters.
1718 		 */
1719 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1720 		if(lcs1) {
1721 			cg_clustersum(&acg)[lcs1]++;
1722 		}
1723 		if(lcs2) {
1724 			cg_clustersum(&acg)[lcs2]++;
1725 		}
1726 	}
1727 	/*
1728 	 * Update all statistics based on blocks.
1729 	 */
1730 	acg.cg_cs.cs_nbfree--;
1731 	sblock.fs_cstotal.cs_nbfree--;
1732 
1733 	DBG_LEAVE;
1734 	return (d);
1735 }
1736 
1737 /* *********************************************************** isblock ***** */
1738 /*
1739  * Here we check if all frags of a block are free. For more details again
1740  * please see the source of newfs(8), as this function is taken over almost
1741  * unchanged.
1742  */
1743 static int
1744 isblock(struct fs *fs, unsigned char *cp, int h)
1745 {
1746 	DBG_FUNC("isblock")
1747 	unsigned char	mask;
1748 
1749 	DBG_ENTER;
1750 
1751 	switch (fs->fs_frag) {
1752 	case 8:
1753 		DBG_LEAVE;
1754 		return (cp[h] == 0xff);
1755 	case 4:
1756 		mask = 0x0f << ((h & 0x1) << 2);
1757 		DBG_LEAVE;
1758 		return ((cp[h >> 1] & mask) == mask);
1759 	case 2:
1760 		mask = 0x03 << ((h & 0x3) << 1);
1761 		DBG_LEAVE;
1762 		return ((cp[h >> 2] & mask) == mask);
1763 	case 1:
1764 		mask = 0x01 << (h & 0x7);
1765 		DBG_LEAVE;
1766 		return ((cp[h >> 3] & mask) == mask);
1767 	default:
1768 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1769 		DBG_LEAVE;
1770 		return (0);
1771 	}
1772 }
1773 
1774 /* ********************************************************** clrblock ***** */
1775 /*
1776  * Here we allocate a complete block in the block map. For more details again
1777  * please see the source of newfs(8), as this function is taken over almost
1778  * unchanged.
1779  */
1780 static void
1781 clrblock(struct fs *fs, unsigned char *cp, int h)
1782 {
1783 	DBG_FUNC("clrblock")
1784 
1785 	DBG_ENTER;
1786 
1787 	switch ((fs)->fs_frag) {
1788 	case 8:
1789 		cp[h] = 0;
1790 		break;
1791 	case 4:
1792 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1793 		break;
1794 	case 2:
1795 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1796 		break;
1797 	case 1:
1798 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1799 		break;
1800 	default:
1801 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1802 		break;
1803 	}
1804 
1805 	DBG_LEAVE;
1806 	return;
1807 }
1808 
1809 /* ********************************************************** setblock ***** */
1810 /*
1811  * Here we free a complete block in the free block map. For more details again
1812  * please see the source of newfs(8), as this function is taken over almost
1813  * unchanged.
1814  */
1815 static void
1816 setblock(struct fs *fs, unsigned char *cp, int h)
1817 {
1818 	DBG_FUNC("setblock")
1819 
1820 	DBG_ENTER;
1821 
1822 	switch (fs->fs_frag) {
1823 	case 8:
1824 		cp[h] = 0xff;
1825 		break;
1826 	case 4:
1827 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1828 		break;
1829 	case 2:
1830 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1831 		break;
1832 	case 1:
1833 		cp[h >> 3] |= (0x01 << (h & 0x7));
1834 		break;
1835 	default:
1836 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1837 		break;
1838 	}
1839 
1840 	DBG_LEAVE;
1841 	return;
1842 }
1843 
1844 /* ************************************************************ ginode ***** */
1845 /*
1846  * This function provides access to an individual inode. We find out in which
1847  * block the requested inode is located, read it from disk if needed, and
1848  * return the pointer into that block. We maintain a cache of one block to
1849  * not read the same block again and again if we iterate linearly over all
1850  * inodes.
1851  */
1852 static union dinode *
1853 ginode(ino_t inumber, int fsi, int cg)
1854 {
1855 	DBG_FUNC("ginode")
1856 	static ino_t	startinum = 0;	/* first inode in cached block */
1857 
1858 	DBG_ENTER;
1859 
1860 	/*
1861 	 * The inumber passed in is relative to the cg, so use it here to see
1862 	 * if the inode has been allocated yet.
1863 	 */
1864 	if (isclr(cg_inosused(&aocg), inumber)) {
1865 		DBG_LEAVE;
1866 		return NULL;
1867 	}
1868 	/*
1869 	 * Now make the inumber relative to the entire inode space so it can
1870 	 * be sanity checked.
1871 	 */
1872 	inumber += (cg * sblock.fs_ipg);
1873 	if (inumber < ROOTINO) {
1874 		DBG_LEAVE;
1875 		return NULL;
1876 	}
1877 	if (inumber > maxino)
1878 		errx(8, "bad inode number %d to ginode", inumber);
1879 	if (startinum == 0 ||
1880 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1881 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1882 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1883 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1884 	}
1885 	DBG_LEAVE;
1886 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1887 		return (union dinode *)((uintptr_t)inobuf +
1888 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1889 	return (union dinode *)((uintptr_t)inobuf +
1890 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1891 }
1892 
1893 /* ****************************************************** charsperline ***** */
1894 /*
1895  * Figure out how many lines our current terminal has. For more details again
1896  * please see the source of newfs(8), as this function is taken over almost
1897  * unchanged.
1898  */
1899 static int
1900 charsperline(void)
1901 {
1902 	DBG_FUNC("charsperline")
1903 	int	columns;
1904 	char	*cp;
1905 	struct winsize	ws;
1906 
1907 	DBG_ENTER;
1908 
1909 	columns = 0;
1910 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1911 		columns = ws.ws_col;
1912 	}
1913 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1914 		columns = atoi(cp);
1915 	}
1916 	if (columns == 0) {
1917 		columns = 80;	/* last resort */
1918 	}
1919 
1920 	DBG_LEAVE;
1921 	return columns;
1922 }
1923 
1924 /* ****************************************************** get_dev_size ***** */
1925 /*
1926  * Get the size of the partition if we can't figure it out from the disklabel,
1927  * e.g. from vinum volumes.
1928  */
1929 static void
1930 get_dev_size(int fd, int *size)
1931 {
1932    int sectorsize;
1933    off_t mediasize;
1934 
1935    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1936         err(1,"DIOCGSECTORSIZE");
1937    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1938         err(1,"DIOCGMEDIASIZE");
1939 
1940    if (sectorsize <= 0)
1941        errx(1, "bogus sectorsize: %d", sectorsize);
1942 
1943    *size = mediasize / sectorsize;
1944 }
1945 
1946 /* ************************************************************** main ***** */
1947 /*
1948  * growfs(8)  is a utility which allows to increase the size of an existing
1949  * ufs file system. Currently this can only be done on unmounted file system.
1950  * It recognizes some command line options to specify the new desired size,
1951  * and it does some basic checkings. The old file system size is determined
1952  * and after some more checks like we can really access the new last block
1953  * on the disk etc. we calculate the new parameters for the superblock. After
1954  * having done this we just call growfs() which will do the work.  Before
1955  * we finish the only thing left is to update the disklabel.
1956  * We still have to provide support for snapshots. Therefore we first have to
1957  * understand what data structures are always replicated in the snapshot on
1958  * creation, for all other blocks we touch during our procedure, we have to
1959  * keep the old blocks unchanged somewhere available for the snapshots. If we
1960  * are lucky, then we only have to handle our blocks to be relocated in that
1961  * way.
1962  * Also we have to consider in what order we actually update the critical
1963  * data structures of the file system to make sure, that in case of a disaster
1964  * fsck(8) is still able to restore any lost data.
1965  * The foreseen last step then will be to provide for growing even mounted
1966  * file systems. There we have to extend the mount() system call to provide
1967  * userland access to the file system locking facility.
1968  */
1969 int
1970 main(int argc, char **argv)
1971 {
1972 	DBG_FUNC("main")
1973 	char	*device, *special, *cp;
1974 	int	ch;
1975 	unsigned int	size=0;
1976 	size_t	len;
1977 	unsigned int	Nflag=0;
1978 	int	ExpertFlag=0;
1979 	struct stat	st;
1980 	struct disklabel	*lp;
1981 	struct partition	*pp;
1982 	int	i,fsi,fso;
1983     u_int32_t p_size;
1984 	char	reply[5];
1985 #ifdef FSMAXSNAP
1986 	int	j;
1987 #endif /* FSMAXSNAP */
1988 
1989 	DBG_ENTER;
1990 
1991 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1992 		switch(ch) {
1993 		case 'N':
1994 			Nflag=1;
1995 			break;
1996 		case 's':
1997 			size=(size_t)atol(optarg);
1998 			if(size<1) {
1999 				usage();
2000 			}
2001 			break;
2002 		case 'v': /* for compatibility to newfs */
2003 			break;
2004 		case 'y':
2005 			ExpertFlag=1;
2006 			break;
2007 		case '?':
2008 			/* FALLTHROUGH */
2009 		default:
2010 			usage();
2011 		}
2012 	}
2013 	argc -= optind;
2014 	argv += optind;
2015 
2016 	if(argc != 1) {
2017 		usage();
2018 	}
2019 	device=*argv;
2020 
2021 	/*
2022 	 * Now try to guess the (raw)device name.
2023 	 */
2024 	if (0 == strrchr(device, '/')) {
2025 		/*
2026 		 * No path prefix was given, so try in that order:
2027 		 *     /dev/r%s
2028 		 *     /dev/%s
2029 		 *     /dev/vinum/r%s
2030 		 *     /dev/vinum/%s.
2031 		 *
2032 		 * FreeBSD now doesn't distinguish between raw and block
2033 		 * devices any longer, but it should still work this way.
2034 		 */
2035 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2036 		special=(char *)malloc(len);
2037 		if(special == NULL) {
2038 			errx(1, "malloc failed");
2039 		}
2040 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2041 		if (stat(special, &st) == -1) {
2042 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2043 			if (stat(special, &st) == -1) {
2044 				snprintf(special, len, "%svinum/r%s",
2045 				    _PATH_DEV, device);
2046 				if (stat(special, &st) == -1) {
2047 					/* For now this is the 'last resort' */
2048 					snprintf(special, len, "%svinum/%s",
2049 					    _PATH_DEV, device);
2050 				}
2051 			}
2052 		}
2053 		device = special;
2054 	}
2055 
2056 	/*
2057 	 * Try to access our devices for writing ...
2058 	 */
2059 	if (Nflag) {
2060 		fso = -1;
2061 	} else {
2062 		fso = open(device, O_WRONLY);
2063 		if (fso < 0) {
2064 			err(1, "%s", device);
2065 		}
2066 	}
2067 
2068 	/*
2069 	 * ... and reading.
2070 	 */
2071 	fsi = open(device, O_RDONLY);
2072 	if (fsi < 0) {
2073 		err(1, "%s", device);
2074 	}
2075 
2076 	/*
2077 	 * Try to read a label and guess the slice if not specified. This
2078 	 * code should guess the right thing and avoid to bother the user
2079 	 * with the task of specifying the option -v on vinum volumes.
2080 	 */
2081 	cp=device+strlen(device)-1;
2082 	lp = get_disklabel(fsi);
2083 	pp = NULL;
2084     if (lp != NULL) {
2085         if (isdigit(*cp)) {
2086             pp = &lp->d_partitions[2];
2087         } else if (*cp>='a' && *cp<='h') {
2088             pp = &lp->d_partitions[*cp - 'a'];
2089         } else {
2090             errx(1, "unknown device");
2091         }
2092         p_size = pp->p_size;
2093     } else {
2094         get_dev_size(fsi, &p_size);
2095     }
2096 
2097 	/*
2098 	 * Check if that partition is suitable for growing a file system.
2099 	 */
2100 	if (p_size < 1) {
2101 		errx(1, "partition is unavailable");
2102 	}
2103 
2104 	/*
2105 	 * Read the current superblock, and take a backup.
2106 	 */
2107 	for (i = 0; sblock_try[i] != -1; i++) {
2108 		sblockloc = sblock_try[i] / DEV_BSIZE;
2109 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2110 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2111 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2112 		      osblock.fs_sblockloc == sblock_try[i])) &&
2113 		    osblock.fs_bsize <= MAXBSIZE &&
2114 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2115 			break;
2116 	}
2117 	if (sblock_try[i] == -1) {
2118 		errx(1, "superblock not recognized");
2119 	}
2120 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2121 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2122 
2123 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2124 	DBG_DUMP_FS(&sblock,
2125 	    "old sblock");
2126 
2127 	/*
2128 	 * Determine size to grow to. Default to the full size specified in
2129 	 * the disk label.
2130 	 */
2131 	sblock.fs_size = dbtofsb(&osblock, p_size);
2132 	if (size != 0) {
2133 		if (size > p_size){
2134 			errx(1, "There is not enough space (%d < %d)",
2135 			    p_size, size);
2136 		}
2137 		sblock.fs_size = dbtofsb(&osblock, size);
2138 	}
2139 
2140 	/*
2141 	 * Are we really growing ?
2142 	 */
2143 	if(osblock.fs_size >= sblock.fs_size) {
2144 		errx(1, "we are not growing (%jd->%jd)",
2145 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2146 	}
2147 
2148 
2149 #ifdef FSMAXSNAP
2150 	/*
2151 	 * Check if we find an active snapshot.
2152 	 */
2153 	if(ExpertFlag == 0) {
2154 		for(j=0; j<FSMAXSNAP; j++) {
2155 			if(sblock.fs_snapinum[j]) {
2156 				errx(1, "active snapshot found in file system\n"
2157 				    "	please remove all snapshots before "
2158 				    "using growfs\n");
2159 			}
2160 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2161 				break;
2162 			}
2163 		}
2164 	}
2165 #endif
2166 
2167 	if (ExpertFlag == 0 && Nflag == 0) {
2168 		printf("We strongly recommend you to make a backup "
2169 		    "before growing the Filesystem\n\n"
2170 		    " Did you backup your data (Yes/No) ? ");
2171 		fgets(reply, (int)sizeof(reply), stdin);
2172 		if (strcmp(reply, "Yes\n")){
2173 			printf("\n Nothing done \n");
2174 			exit (0);
2175 		}
2176 	}
2177 
2178 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2179 
2180 	/*
2181 	 * Try to access our new last block in the file system. Even if we
2182 	 * later on realize we have to abort our operation, on that block
2183 	 * there should be no data, so we can't destroy something yet.
2184 	 */
2185 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2186 	    fso, Nflag);
2187 
2188 	/*
2189 	 * Now calculate new superblock values and check for reasonable
2190 	 * bound for new file system size:
2191 	 *     fs_size:    is derived from label or user input
2192 	 *     fs_dsize:   should get updated in the routines creating or
2193 	 *                 updating the cylinder groups on the fly
2194 	 *     fs_cstotal: should get updated in the routines creating or
2195 	 *                 updating the cylinder groups
2196 	 */
2197 
2198 	/*
2199 	 * Update the number of cylinders and cylinder groups in the file system.
2200 	 */
2201 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2202 		sblock.fs_old_ncyl =
2203 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2204 		if (sblock.fs_size * sblock.fs_old_nspf >
2205 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2206 			sblock.fs_old_ncyl++;
2207 	}
2208 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2209 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2210 
2211 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2212 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2213 		/*
2214 		 * The space in the new last cylinder group is too small,
2215 		 * so revert back.
2216 		 */
2217 		sblock.fs_ncg--;
2218 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2219 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2220 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2221 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2222 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2223 	}
2224 
2225 	/*
2226 	 * Update the space for the cylinder group summary information in the
2227 	 * respective cylinder group data area.
2228 	 */
2229 	sblock.fs_cssize =
2230 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2231 
2232 	if(osblock.fs_size >= sblock.fs_size) {
2233 		errx(1, "not enough new space");
2234 	}
2235 
2236 	DBG_PRINT0("sblock calculated\n");
2237 
2238 	/*
2239 	 * Ok, everything prepared, so now let's do the tricks.
2240 	 */
2241 	growfs(fsi, fso, Nflag);
2242 
2243 	/*
2244 	 * Update the disk label.
2245 	 */
2246     if (!unlabeled) {
2247         pp->p_fsize = sblock.fs_fsize;
2248         pp->p_frag = sblock.fs_frag;
2249         pp->p_cpg = sblock.fs_fpg;
2250 
2251         return_disklabel(fso, lp, Nflag);
2252         DBG_PRINT0("label rewritten\n");
2253     }
2254 
2255 	close(fsi);
2256 	if(fso>-1) close(fso);
2257 
2258 	DBG_CLOSE;
2259 
2260 	DBG_LEAVE;
2261 	return 0;
2262 }
2263 
2264 /* ************************************************** return_disklabel ***** */
2265 /*
2266  * Write the updated disklabel back to disk.
2267  */
2268 static void
2269 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2270 {
2271 	DBG_FUNC("return_disklabel")
2272 	u_short	sum;
2273 	u_short	*ptr;
2274 
2275 	DBG_ENTER;
2276 
2277 	if(!lp) {
2278 		DBG_LEAVE;
2279 		return;
2280 	}
2281 	if(!Nflag) {
2282 		lp->d_checksum=0;
2283 		sum = 0;
2284 		ptr=(u_short *)lp;
2285 
2286 		/*
2287 		 * recalculate checksum
2288 		 */
2289 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2290 			sum ^= *ptr++;
2291 		}
2292 		lp->d_checksum=sum;
2293 
2294 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2295 			errx(1, "DIOCWDINFO failed");
2296 		}
2297 	}
2298 	free(lp);
2299 
2300 	DBG_LEAVE;
2301 	return ;
2302 }
2303 
2304 /* ***************************************************** get_disklabel ***** */
2305 /*
2306  * Read the disklabel from disk.
2307  */
2308 static struct disklabel *
2309 get_disklabel(int fd)
2310 {
2311 	DBG_FUNC("get_disklabel")
2312 	static struct	disklabel *lab;
2313 
2314 	DBG_ENTER;
2315 
2316 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2317 	if (!lab)
2318 		errx(1, "malloc failed");
2319 
2320     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2321         return (lab);
2322 
2323     unlabeled++;
2324 
2325 	DBG_LEAVE;
2326 	return (NULL);
2327 }
2328 
2329 
2330 /* ************************************************************* usage ***** */
2331 /*
2332  * Dump a line of usage.
2333  */
2334 static void
2335 usage(void)
2336 {
2337 	DBG_FUNC("usage")
2338 
2339 	DBG_ENTER;
2340 
2341 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2342 
2343 	DBG_LEAVE;
2344 	exit(1);
2345 }
2346 
2347 /* *********************************************************** updclst ***** */
2348 /*
2349  * This updates most parameters and the bitmap related to cluster. We have to
2350  * assume that sblock, osblock, acg are set up.
2351  */
2352 static void
2353 updclst(int block)
2354 {
2355 	DBG_FUNC("updclst")
2356 	static int	lcs=0;
2357 
2358 	DBG_ENTER;
2359 
2360 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2361 		return;
2362 	}
2363 	/*
2364 	 * update cluster allocation map
2365 	 */
2366 	setbit(cg_clustersfree(&acg), block);
2367 
2368 	/*
2369 	 * update cluster summary table
2370 	 */
2371 	if(!lcs) {
2372 		/*
2373 		 * calculate size for the trailing cluster
2374 		 */
2375 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2376 			if(isclr(cg_clustersfree(&acg), block)){
2377 				break;
2378 			}
2379 		}
2380 	}
2381 	if(lcs < sblock.fs_contigsumsize) {
2382 		if(lcs) {
2383 			cg_clustersum(&acg)[lcs]--;
2384 		}
2385 		lcs++;
2386 		cg_clustersum(&acg)[lcs]++;
2387 	}
2388 
2389 	DBG_LEAVE;
2390 	return;
2391 }
2392 
2393 /* *********************************************************** updrefs ***** */
2394 /*
2395  * This updates all references to relocated blocks for the given inode.  The
2396  * inode is given as number within the cylinder group, and the number of the
2397  * cylinder group.
2398  */
2399 static void
2400 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2401     Nflag)
2402 {
2403 	DBG_FUNC("updrefs")
2404 	ufs_lbn_t	len, lbn, numblks;
2405 	ufs2_daddr_t	iptr, blksperindir;
2406 	union dinode	*ino;
2407 	int		i, mode, inodeupdated;
2408 
2409 	DBG_ENTER;
2410 
2411 	ino = ginode(in, fsi, cg);
2412 	if (ino == NULL) {
2413 		DBG_LEAVE;
2414 		return;
2415 	}
2416 	mode = DIP(ino, di_mode) & IFMT;
2417 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2418 		DBG_LEAVE;
2419 		return; /* only check DIR, FILE, LINK */
2420 	}
2421 	if (mode == IFLNK &&
2422 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2423 		DBG_LEAVE;
2424 		return;	/* skip short symlinks */
2425 	}
2426 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2427 	if (numblks == 0) {
2428 		DBG_LEAVE;
2429 		return;	/* skip empty file */
2430 	}
2431 	if (DIP(ino, di_blocks) == 0) {
2432 		DBG_LEAVE;
2433 		return;	/* skip empty swiss cheesy file or old fastlink */
2434 	}
2435 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2436 	    in,
2437 	    cg);
2438 
2439 	/*
2440 	 * Check all the blocks.
2441 	 */
2442 	inodeupdated = 0;
2443 	len = numblks < NDADDR ? numblks : NDADDR;
2444 	for (i = 0; i < len; i++) {
2445 		iptr = DIP(ino, di_db[i]);
2446 		if (iptr == 0)
2447 			continue;
2448 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2449 			DIP_SET(ino, di_db[i], iptr);
2450 			inodeupdated++;
2451 		}
2452 	}
2453 	DBG_PRINT0("~~scg direct blocks checked\n");
2454 
2455 	blksperindir = 1;
2456 	len = numblks - NDADDR;
2457 	lbn = NDADDR;
2458 	for (i = 0; len > 0 && i < NIADDR; i++) {
2459 		iptr = DIP(ino, di_ib[i]);
2460 		if (iptr == 0)
2461 			continue;
2462 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2463 			DIP_SET(ino, di_ib[i], iptr);
2464 			inodeupdated++;
2465 		}
2466 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2467 		blksperindir *= NINDIR(&sblock);
2468 		lbn += blksperindir;
2469 		len -= blksperindir;
2470 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2471 	}
2472 	if (inodeupdated)
2473 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2474 
2475 	DBG_LEAVE;
2476 	return;
2477 }
2478 
2479 /*
2480  * Recursively check all the indirect blocks.
2481  */
2482 static void
2483 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2484     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2485 {
2486 	DBG_FUNC("indirchk")
2487 	void *ibuf;
2488 	int i, last;
2489 	ufs2_daddr_t iptr;
2490 
2491 	DBG_ENTER;
2492 
2493 	/* read in the indirect block. */
2494 	ibuf = malloc(sblock.fs_bsize);
2495 	if (!ibuf)
2496 		errx(1, "malloc failed");
2497 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2498 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2499 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2500 	for (i = 0; i < last; i++) {
2501 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2502 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2503 		else
2504 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2505 		if (iptr == 0)
2506 			continue;
2507 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2508 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2509 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2510 			else
2511 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2512 		}
2513 		if (blksperindir == 1)
2514 			continue;
2515 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2516 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2517 	}
2518 	free(ibuf);
2519 
2520 	DBG_LEAVE;
2521 	return;
2522 }
2523