xref: /freebsd/sbin/growfs/growfs.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  * $FreeBSD$
40  *
41  */
42 
43 #ifndef lint
44 static const char copyright[] =
45 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
46 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
47 All rights reserved.\n";
48 #endif /* not lint */
49 
50 #ifndef lint
51 static const char rcsid[] =
52   "$FreeBSD$";
53 #endif /* not lint */
54 
55 /* ********************************************************** INCLUDES ***** */
56 #include <sys/param.h>
57 #include <sys/disklabel.h>
58 #include <sys/ioctl.h>
59 #include <sys/stat.h>
60 
61 #include <stdio.h>
62 #include <paths.h>
63 #include <ctype.h>
64 #include <err.h>
65 #include <fcntl.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #include <ufs/ufs/dinode.h>
70 #include <ufs/ffs/fs.h>
71 
72 #include "debug.h"
73 
74 /* *************************************************** GLOBALS & TYPES ***** */
75 #ifdef FS_DEBUG
76 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
77 #endif /* FS_DEBUG */
78 
79 static union {
80 	struct fs	fs;
81 	char	pad[SBSIZE];
82 } fsun1, fsun2;
83 #define	sblock	fsun1.fs	/* the new superblock */
84 #define	osblock	fsun2.fs	/* the old superblock */
85 
86 static union {
87 	struct cg	cg;
88 	char	pad[MAXBSIZE];
89 } cgun1, cgun2;
90 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
91 #define	aocg	cgun2.cg	/* an old cylinder group */
92 
93 static char	ablk[MAXBSIZE];		/* a block */
94 static char	i1blk[MAXBSIZE];	/* some indirect blocks */
95 static char	i2blk[MAXBSIZE];
96 static char	i3blk[MAXBSIZE];
97 
98 	/* where to write back updated blocks */
99 static daddr_t	in_src, i1_src, i2_src, i3_src;
100 
101 	/* what object contains the reference */
102 enum pointer_source {
103 	GFS_PS_INODE,
104 	GFS_PS_IND_BLK_LVL1,
105 	GFS_PS_IND_BLK_LVL2,
106 	GFS_PS_IND_BLK_LVL3
107 };
108 
109 static struct csum	*fscs;		/* cylinder summary */
110 
111 static struct dinode	zino[MAXBSIZE/sizeof(struct dinode)]; /* some inodes */
112 
113 /*
114  * An  array of elements of type struct gfs_bpp describes all blocks  to
115  * be relocated in order to free the space needed for the cylinder group
116  * summary for all cylinder groups located in the first cylinder group.
117  */
118 struct gfs_bpp {
119 	daddr_t	old;		/* old block number */
120 	daddr_t	new;		/* new block number */
121 #define GFS_FL_FIRST	1
122 #define GFS_FL_LAST	2
123 	unsigned int	flags;	/* special handling required */
124 	int	found;		/* how many references were updated */
125 };
126 
127 /* ******************************************************** PROTOTYPES ***** */
128 static void	growfs(int, int, unsigned int);
129 static void	rdfs(daddr_t, size_t, void *, int);
130 static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
131 static daddr_t	alloc(void);
132 static int	charsperline(void);
133 static void	usage(void);
134 static int	isblock(struct fs *, unsigned char *, int);
135 static void	clrblock(struct fs *, unsigned char *, int);
136 static void	setblock(struct fs *, unsigned char *, int);
137 static void	initcg(int, time_t, int, unsigned int);
138 static void	updjcg(int, time_t, int, int, unsigned int);
139 static void	updcsloc(time_t, int, int, unsigned int);
140 static struct disklabel	*get_disklabel(int);
141 static void	return_disklabel(int, struct disklabel *, unsigned int);
142 static struct dinode	*ginode(ino_t, int, int);
143 static void	frag_adjust(daddr_t, int);
144 static void	cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
145     enum pointer_source, int, unsigned int);
146 static void	updclst(int);
147 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
148 
149 /* ************************************************************ growfs ***** */
150 /*
151  * Here  we actually start growing the filesystem. We basically  read  the
152  * cylinder  summary  from the first cylinder group as we want  to  update
153  * this  on  the fly during our various operations. First  we  handle  the
154  * changes in the former last cylinder group. Afterwards we create all new
155  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
156  * cylinder  summary  which  might result in a  relocation  of  the  whole
157  * structure.  In the end we write back the updated cylinder summary,  the
158  * new superblock, and slightly patched versions of the super block
159  * copies.
160  */
161 static void
162 growfs(int fsi, int fso, unsigned int Nflag)
163 {
164 	DBG_FUNC("growfs")
165 	int	i;
166 	int	cylno, j;
167 	time_t	utime;
168 	int	width;
169 	char	tmpbuf[100];
170 #ifdef FSIRAND
171 	static int	randinit=0;
172 
173 	DBG_ENTER;
174 
175 	if (!randinit) {
176 		randinit = 1;
177 		srandomdev();
178 	}
179 #else /* not FSIRAND */
180 
181 	DBG_ENTER;
182 
183 #endif /* FSIRAND */
184 	time(&utime);
185 
186 	/*
187 	 * Get the cylinder summary into the memory.
188 	 */
189 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
190 	if(fscs == NULL) {
191 		errx(1, "calloc failed");
192 	}
193 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
194 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
195 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
196 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
197 	}
198 
199 #ifdef FS_DEBUG
200 {
201 	struct csum	*dbg_csp;
202 	int	dbg_csc;
203 	char	dbg_line[80];
204 
205 	dbg_csp=fscs;
206 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
207 		snprintf(dbg_line, sizeof(dbg_line),
208 		    "%d. old csum in old location", dbg_csc);
209 		DBG_DUMP_CSUM(&osblock,
210 		    dbg_line,
211 		    dbg_csp++);
212 	}
213 }
214 #endif /* FS_DEBUG */
215 	DBG_PRINT0("fscs read\n");
216 
217 	/*
218 	 * Do all needed changes in the former last cylinder group.
219 	 */
220 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
221 
222 	/*
223 	 * Dump out summary information about file system.
224 	 */
225 	printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
226 	    sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
227 	    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
228 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
229 	printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
230 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
231 	    sblock.fs_ncg, sblock.fs_cpg,
232 	    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
233 	    sblock.fs_ipg);
234 #undef B2MBFACTOR
235 
236 	/*
237 	 * Now build the cylinders group blocks and
238 	 * then print out indices of cylinder groups.
239 	 */
240 	printf("super-block backups (for fsck -b #) at:\n");
241 	i = 0;
242 	width = charsperline();
243 
244 	/*
245 	 * Iterate for only the new cylinder groups.
246 	 */
247 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
248 		initcg(cylno, utime, fso, Nflag);
249 		j = sprintf(tmpbuf, " %d%s",
250 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
251 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
252 		if (i + j >= width) {
253 			printf("\n");
254 			i = 0;
255 		}
256 		i += j;
257 		printf("%s", tmpbuf);
258 		fflush(stdout);
259 	}
260 	printf("\n");
261 
262 	/*
263 	 * Do all needed changes in the first cylinder group.
264 	 * allocate blocks in new location
265 	 */
266 	updcsloc(utime, fsi, fso, Nflag);
267 
268 	/*
269 	 * Now write the cylinder summary back to disk.
270 	 */
271 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
272 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
273 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
274 		    (void *)(((char *)fscs) + i), fso, Nflag);
275 	}
276 	DBG_PRINT0("fscs written\n");
277 
278 #ifdef FS_DEBUG
279 {
280 	struct csum	*dbg_csp;
281 	int	dbg_csc;
282 	char	dbg_line[80];
283 
284 	dbg_csp=fscs;
285 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
286 		snprintf(dbg_line, sizeof(dbg_line),
287 		    "%d. new csum in new location", dbg_csc);
288 		DBG_DUMP_CSUM(&sblock,
289 		    dbg_line,
290 		    dbg_csp++);
291 	}
292 }
293 #endif /* FS_DEBUG */
294 
295 	/*
296 	 * Now write the new superblock back to disk.
297 	 */
298 	sblock.fs_time = utime;
299 	wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
300 	    fso, Nflag);
301 	DBG_PRINT0("sblock written\n");
302 	DBG_DUMP_FS(&sblock,
303 	    "new initial sblock");
304 
305 	/*
306 	 * Clean up the dynamic fields in our superblock copies.
307 	 */
308 	sblock.fs_fmod = 0;
309 	sblock.fs_clean = 1;
310 	sblock.fs_ronly = 0;
311 	sblock.fs_cgrotor = 0;
312 	sblock.fs_state = 0;
313 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
314 	sblock.fs_flags &= FS_DOSOFTDEP;
315 
316 	/*
317 	 * XXX
318 	 * The following fields are currently distributed from the  superblock
319 	 * to the copies:
320 	 *     fs_minfree
321 	 *     fs_rotdelay
322 	 *     fs_maxcontig
323 	 *     fs_maxbpg
324 	 *     fs_minfree,
325 	 *     fs_optim
326 	 *     fs_flags regarding SOFTPDATES
327 	 *
328 	 * We probably should rather change the summary for the cylinder group
329 	 * statistics here to the value of what would be in there, if the file
330 	 * system were created initially with the new size. Therefor we  still
331 	 * need to find an easy way of calculating that.
332 	 * Possibly we can try to read the first superblock copy and apply the
333 	 * "diffed" stats between the old and new superblock by still  copying
334 	 * certain parameters onto that.
335 	 */
336 
337 	/*
338 	 * Write out the duplicate super blocks.
339 	 */
340 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
341 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
342 		    (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
343 	}
344 	DBG_PRINT0("sblock copies written\n");
345 	DBG_DUMP_FS(&sblock,
346 	    "new other sblocks");
347 
348 	DBG_LEAVE;
349 	return;
350 }
351 
352 /* ************************************************************ initcg ***** */
353 /*
354  * This creates a new cylinder group structure, for more details please  see
355  * the  source of newfs(8), as this function is taken over almost unchanged.
356  * As  this  is  never called for the  first  cylinder  group,  the  special
357  * provisions for that case are removed here.
358  */
359 static void
360 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
361 {
362 	DBG_FUNC("initcg")
363 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
364 	int i;
365 	register struct csum *cs;
366 #ifdef FSIRAND
367 	int j;
368 #endif
369 
370 	DBG_ENTER;
371 
372 	/*
373 	 * Determine block bounds for cylinder group.
374 	 */
375 	cbase = cgbase(&sblock, cylno);
376 	dmax = cbase + sblock.fs_fpg;
377 	if (dmax > sblock.fs_size) {
378 		dmax = sblock.fs_size;
379 	}
380 	dlower = cgsblock(&sblock, cylno) - cbase;
381 	dupper = cgdmin(&sblock, cylno) - cbase;
382 	if (cylno == 0) { /* XXX fscs may be relocated */
383 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
384 	}
385 	cs = fscs + cylno;
386 	memset(&acg, 0, (size_t)sblock.fs_cgsize);
387 	acg.cg_time = utime;
388 	acg.cg_magic = CG_MAGIC;
389 	acg.cg_cgx = cylno;
390 	if (cylno == sblock.fs_ncg - 1) {
391 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
392 	} else {
393 		acg.cg_ncyl = sblock.fs_cpg;
394 	}
395 	acg.cg_niblk = sblock.fs_ipg;
396 	acg.cg_ndblk = dmax - cbase;
397 	if (sblock.fs_contigsumsize > 0) {
398 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
399 	}
400 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
401 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
402 	acg.cg_iusedoff = acg.cg_boff +
403 	    sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
404 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
405 	if (sblock.fs_contigsumsize <= 0) {
406 		acg.cg_nextfreeoff = acg.cg_freeoff +
407 		    howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
408 	} else {
409 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
410 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
411 		    sizeof(u_int32_t);
412 		acg.cg_clustersumoff =
413 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
414 		acg.cg_clusteroff = acg.cg_clustersumoff +
415 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
416 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
417 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
418 	}
419 	if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) {
420 		/*
421 		 * XXX This should never happen as we would have had that panic
422 		 *     already on filesystem creation
423 		 */
424 		errx(37, "panic: cylinder group too big");
425 	}
426 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
427 	if (cylno == 0)
428 		for (i = 0; (size_t)i < ROOTINO; i++) {
429 			setbit(cg_inosused(&acg), i);
430 			acg.cg_cs.cs_nifree--;
431 		}
432 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
433 #ifdef FSIRAND
434 		for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++) {
435 			zino[j].di_gen = random();
436 		}
437 #endif
438 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
439 		    (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
440 	}
441 	for (d = 0; d < dlower; d += sblock.fs_frag) {
442 		blkno = d / sblock.fs_frag;
443 		setblock(&sblock, cg_blksfree(&acg), blkno);
444 		if (sblock.fs_contigsumsize > 0) {
445 			setbit(cg_clustersfree(&acg), blkno);
446 		}
447 		acg.cg_cs.cs_nbfree++;
448 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
449 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
450 		    [cbtorpos(&sblock, d)]++;
451 	}
452 	sblock.fs_dsize += dlower;
453 	sblock.fs_dsize += acg.cg_ndblk - dupper;
454 	if ((i = dupper % sblock.fs_frag)) {
455 		acg.cg_frsum[sblock.fs_frag - i]++;
456 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
457 			setbit(cg_blksfree(&acg), dupper);
458 			acg.cg_cs.cs_nffree++;
459 		}
460 	}
461 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
462 		blkno = d / sblock.fs_frag;
463 		setblock(&sblock, cg_blksfree(&acg), blkno);
464 		if (sblock.fs_contigsumsize > 0) {
465 			setbit(cg_clustersfree(&acg), blkno);
466 		}
467 		acg.cg_cs.cs_nbfree++;
468 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
469 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
470 		    [cbtorpos(&sblock, d)]++;
471 		d += sblock.fs_frag;
472 	}
473 	if (d < dmax - cbase) {
474 		acg.cg_frsum[dmax - cbase - d]++;
475 		for (; d < dmax - cbase; d++) {
476 			setbit(cg_blksfree(&acg), d);
477 			acg.cg_cs.cs_nffree++;
478 		}
479 	}
480 	if (sblock.fs_contigsumsize > 0) {
481 		int32_t	*sump = cg_clustersum(&acg);
482 		u_char	*mapp = cg_clustersfree(&acg);
483 		int	map = *mapp++;
484 		int	bit = 1;
485 		int	run = 0;
486 
487 		for (i = 0; i < acg.cg_nclusterblks; i++) {
488 			if ((map & bit) != 0) {
489 				run++;
490 			} else if (run != 0) {
491 				if (run > sblock.fs_contigsumsize) {
492 					run = sblock.fs_contigsumsize;
493 				}
494 				sump[run]++;
495 				run = 0;
496 			}
497 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
498 				bit <<= 1;
499 			} else {
500 				map = *mapp++;
501 				bit = 1;
502 			}
503 		}
504 		if (run != 0) {
505 			if (run > sblock.fs_contigsumsize) {
506 				run = sblock.fs_contigsumsize;
507 			}
508 			sump[run]++;
509 		}
510 	}
511 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
512 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
513 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
514 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
515 	*cs = acg.cg_cs;
516 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
517 	    (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
518 	DBG_DUMP_CG(&sblock,
519 	    "new cg",
520 	    &acg);
521 
522 	DBG_LEAVE;
523 	return;
524 }
525 
526 /* ******************************************************* frag_adjust ***** */
527 /*
528  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
529  * block to or from the fragment statistics. By subtracting before and adding
530  * after  an operation on the free frag map we can easy update  the  fragment
531  * statistic, which seems to be otherwise an rather complex operation.
532  */
533 static void
534 frag_adjust(daddr_t frag, int sign)
535 {
536 	DBG_FUNC("frag_adjust")
537 	int fragsize;
538 	int f;
539 
540 	DBG_ENTER;
541 
542 	fragsize=0;
543 	/*
544 	 * Here frag only needs to point to any fragment in the block we want
545 	 * to examine.
546 	 */
547 	for(f=rounddown(frag, sblock.fs_frag);
548 	    f<roundup(frag+1, sblock.fs_frag);
549 	    f++) {
550 		/*
551 		 * Count contiguos free fragments.
552 		 */
553 		if(isset(cg_blksfree(&acg), f)) {
554 			fragsize++;
555 		} else {
556 			if(fragsize && fragsize<sblock.fs_frag) {
557 				/*
558 				 * We found something in between.
559 				 */
560 				acg.cg_frsum[fragsize]+=sign;
561 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
562 				    fragsize,
563 				    sign);
564 			}
565 			fragsize=0;
566 		}
567 	}
568 	if(fragsize && fragsize<sblock.fs_frag) {
569 		/*
570 		 * We found something.
571 		 */
572 		acg.cg_frsum[fragsize]+=sign;
573 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
574 		    fragsize,
575 		    sign);
576 	}
577 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
578 	    fragsize,
579 	    sign);
580 
581 	DBG_LEAVE;
582 	return;
583 }
584 
585 /* ******************************************************* cond_bl_upd ***** */
586 /*
587  * Here we conditionally update a pointer to a fragment. We check for all
588  * relocated blocks if any of it's fragments is referenced by the current
589  * field,  and update the pointer to the respective fragment in  our  new
590  * block.  If  we find a reference we write back the  block  immediately,
591  * as there is no easy way for our general block reading engine to figure
592  * out if a write back operation is needed.
593  */
594 static void
595 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
596     enum pointer_source source, int fso, unsigned int Nflag)
597 {
598 	DBG_FUNC("cond_bl_upd")
599 	struct gfs_bpp	*f;
600 	char *src;
601 	daddr_t dst=0;
602 
603 	DBG_ENTER;
604 
605 	f=field;
606 	while(f->old) { /* for all old blocks */
607 		if(*block/sblock.fs_frag == f->old) {
608 			/*
609 			 * The fragment is part of the block, so update.
610 			 */
611 			*block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
612 			f->found++;
613 			DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
614 			    f->old,
615 			    f->new,
616 			    *block%sblock.fs_frag);
617 
618 			/* Write the block back to disk immediately */
619 			switch (source) {
620 			case GFS_PS_INODE:
621 				src=ablk;
622 				dst=in_src;
623 				break;
624 			case GFS_PS_IND_BLK_LVL1:
625 				src=i1blk;
626 				dst=i1_src;
627 				break;
628 			case GFS_PS_IND_BLK_LVL2:
629 				src=i2blk;
630 				dst=i2_src;
631 				break;
632 			case GFS_PS_IND_BLK_LVL3:
633 				src=i3blk;
634 				dst=i3_src;
635 				break;
636 			default:	/* error */
637 				src=NULL;
638 				break;
639 			}
640 			if(src) {
641 				/*
642 				 * XXX	If src is not of type inode we have to
643 				 *	implement  copy on write here in  case
644 				 *	of active snapshots.
645 				 */
646 				wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
647 				    fso, Nflag);
648 			}
649 
650 			/*
651 			 * The same block can't be found again in this loop.
652 			 */
653 			break;
654 		}
655 		f++;
656 	}
657 
658 	DBG_LEAVE;
659 	return;
660 }
661 
662 /* ************************************************************ updjcg ***** */
663 /*
664  * Here we do all needed work for the former last cylinder group. It has to be
665  * changed  in  any case, even if the filesystem ended exactly on the  end  of
666  * this  group, as there is some slightly inconsistent handling of the  number
667  * of cylinders in the cylinder group. We start again by reading the  cylinder
668  * group from disk. If the last block was not fully available, we first handle
669  * the  missing  fragments, then we handle all new full blocks  in  that  file
670  * system  and  finally we handle the new last fragmented block  in  the  file
671  * system.  We again have to handle the fragment statistics rotational  layout
672  * tables and cluster summary during all those operations.
673  */
674 static void
675 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
676 {
677 	DBG_FUNC("updjcg")
678 	daddr_t	cbase, dmax, dupper;
679 	struct csum	*cs;
680 	int	i,k;
681 	int	j=0;
682 
683 	DBG_ENTER;
684 
685 	/*
686 	 * Read the former last (joining) cylinder group from disk, and make
687 	 * a copy.
688 	 */
689 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
690 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
691 	DBG_PRINT0("jcg read\n");
692 	DBG_DUMP_CG(&sblock,
693 	    "old joining cg",
694 	    &aocg);
695 
696 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
697 
698 	/*
699 	 * If  the  cylinder  group had already it's  new  final  size  almost
700 	 * nothing is to be done ... except:
701 	 * For some reason the value of cg_ncyl in the last cylinder group has
702 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
703 	 * cylinder group we have to change that value now to fs_cpg.
704 	 */
705 
706 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
707 		acg.cg_ncyl=sblock.fs_cpg;
708 
709 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
710 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
711 		DBG_PRINT0("jcg written\n");
712 		DBG_DUMP_CG(&sblock,
713 		    "new joining cg",
714 		    &acg);
715 
716 		DBG_LEAVE;
717 		return;
718 	}
719 
720 	/*
721 	 * Set up some variables needed later.
722 	 */
723 	cbase = cgbase(&sblock, cylno);
724 	dmax = cbase + sblock.fs_fpg;
725 	if (dmax > sblock.fs_size)
726 		dmax = sblock.fs_size;
727 	dupper = cgdmin(&sblock, cylno) - cbase;
728 	if (cylno == 0) { /* XXX fscs may be relocated */
729 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
730 	}
731 
732 	/*
733 	 * Set pointer to the cylinder summary for our cylinder group.
734 	 */
735 	cs = fscs + cylno;
736 
737 	/*
738 	 * Touch the cylinder group, update all fields in the cylinder group as
739 	 * needed, update the free space in the superblock.
740 	 */
741 	acg.cg_time = utime;
742 	if (cylno == sblock.fs_ncg - 1) {
743 		/*
744 		 * This is still the last cylinder group.
745 		 */
746 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
747 	} else {
748 		acg.cg_ncyl = sblock.fs_cpg;
749 	}
750 	DBG_PRINT4("jcg dbg: %d %u %d %u\n",
751 	    cylno,
752 	    sblock.fs_ncg,
753 	    acg.cg_ncyl,
754 	    sblock.fs_cpg);
755 	acg.cg_ndblk = dmax - cbase;
756 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
757 	if (sblock.fs_contigsumsize > 0) {
758 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
759 	}
760 
761 	/*
762 	 * Now  we have to update the free fragment bitmap for our new  free
763 	 * space.  There again we have to handle the fragmentation and  also
764 	 * the  rotational  layout tables and the cluster summary.  This  is
765 	 * also  done per fragment for the first new block if the  old  file
766 	 * system end was not on a block boundary, per fragment for the  new
767 	 * last block if the new file system end is not on a block boundary,
768 	 * and per block for all space in between.
769 	 *
770 	 * Handle the first new block here if it was partially available
771 	 * before.
772 	 */
773 	if(osblock.fs_size % sblock.fs_frag) {
774 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
775 			/*
776 			 * The new space is enough to fill at least this
777 			 * block
778 			 */
779 			j=0;
780 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
781 			    i>=osblock.fs_size-cbase;
782 			    i--) {
783 				setbit(cg_blksfree(&acg), i);
784 				acg.cg_cs.cs_nffree++;
785 				j++;
786 			}
787 
788 			/*
789 			 * Check  if the fragment just created could join  an
790 			 * already existing fragment at the former end of the
791 			 * file system.
792 			 */
793 			if(isblock(&sblock, cg_blksfree(&acg),
794 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
795 			    sblock.fs_frag))) {
796 				/*
797 				 * The block is now completely available
798 				 */
799 				DBG_PRINT0("block was\n");
800 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
801 				acg.cg_cs.cs_nbfree++;
802 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
803 				k=rounddown(osblock.fs_size-cbase,
804 				    sblock.fs_frag);
805 				cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
806 				cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
807 		   		    [cbtorpos(&sblock, k)]++;
808 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
809 			} else {
810 				/*
811 				 * Lets rejoin a possible partially growed
812 				 * fragment.
813 				 */
814 				k=0;
815 				while(isset(cg_blksfree(&acg), i) &&
816 				    (i>=rounddown(osblock.fs_size-cbase,
817 				    sblock.fs_frag))) {
818 					i--;
819 					k++;
820 				}
821 				if(k) {
822 					acg.cg_frsum[k]--;
823 				}
824 				acg.cg_frsum[k+j]++;
825 			}
826 		} else {
827 			/*
828 			 * We only grow by some fragments within this last
829 			 * block.
830 			 */
831 			for(i=sblock.fs_size-cbase-1;
832 				i>=osblock.fs_size-cbase;
833 				i--) {
834 				setbit(cg_blksfree(&acg), i);
835 				acg.cg_cs.cs_nffree++;
836 				j++;
837 			}
838 			/*
839 			 * Lets rejoin a possible partially growed fragment.
840 			 */
841 			k=0;
842 			while(isset(cg_blksfree(&acg), i) &&
843 			    (i>=rounddown(osblock.fs_size-cbase,
844 			    sblock.fs_frag))) {
845 				i--;
846 				k++;
847 			}
848 			if(k) {
849 				acg.cg_frsum[k]--;
850 			}
851 			acg.cg_frsum[k+j]++;
852 		}
853 	}
854 
855 	/*
856 	 * Handle all new complete blocks here.
857 	 */
858 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
859 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
860 	    i+=sblock.fs_frag) {
861 		j = i / sblock.fs_frag;
862 		setblock(&sblock, cg_blksfree(&acg), j);
863 		updclst(j);
864 		acg.cg_cs.cs_nbfree++;
865 		cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
866 		cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
867 		    [cbtorpos(&sblock, i)]++;
868 	}
869 
870 	/*
871 	 * Handle the last new block if there are stll some new fragments left.
872 	 * Here  we don't have to bother about the cluster summary or the  even
873 	 * the rotational layout table.
874 	 */
875 	if (i < (dmax - cbase)) {
876 		acg.cg_frsum[dmax - cbase - i]++;
877 		for (; i < dmax - cbase; i++) {
878 			setbit(cg_blksfree(&acg), i);
879 			acg.cg_cs.cs_nffree++;
880 		}
881 	}
882 
883 	sblock.fs_cstotal.cs_nffree +=
884 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
885 	sblock.fs_cstotal.cs_nbfree +=
886 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
887 	/*
888 	 * The following statistics are not changed here:
889 	 *     sblock.fs_cstotal.cs_ndir
890 	 *     sblock.fs_cstotal.cs_nifree
891 	 * As the statistics for this cylinder group are ready, copy it to
892 	 * the summary information array.
893 	 */
894 	*cs = acg.cg_cs;
895 
896 	/*
897 	 * Write the updated "joining" cylinder group back to disk.
898 	 */
899 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
900 	    (void *)&acg, fso, Nflag);
901 	DBG_PRINT0("jcg written\n");
902 	DBG_DUMP_CG(&sblock,
903 	    "new joining cg",
904 	    &acg);
905 
906 	DBG_LEAVE;
907 	return;
908 }
909 
910 /* ********************************************************** updcsloc ***** */
911 /*
912  * Here  we update the location of the cylinder summary. We have  two  possible
913  * ways of growing the cylinder summary.
914  * (1)	We can try to grow the summary in the current location, and  relocate
915  *	possibly used blocks within the current cylinder group.
916  * (2)	Alternatively we can relocate the whole cylinder summary to the first
917  *	new completely empty cylinder group. Once the cylinder summary is  no
918  *	longer in the beginning of the first cylinder group you should  never
919  *	use  a version of fsck which is not aware of the possibility to  have
920  *	this structure in a non standard place.
921  * Option (1) is considered to be less intrusive to the structure of the  file-
922  * system. So we try to stick to that whenever possible. If there is not enough
923  * space  in the cylinder group containing the cylinder summary we have to  use
924  * method  (2). In case of active snapshots in the filesystem we  probably  can
925  * completely avoid implementing copy on write if we stick to method (2) only.
926  */
927 static void
928 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
929 {
930 	DBG_FUNC("updcsloc")
931 	struct csum	*cs;
932 	int	ocscg, ncscg;
933 	int	blocks;
934 	daddr_t	cbase, dupper, odupper, d, f, g;
935 	int	ind;
936 	int	cylno, inc;
937 	struct gfs_bpp	*bp;
938 	int	i, l;
939 	int	lcs=0;
940 	int	block;
941 
942 	DBG_ENTER;
943 
944 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
945 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
946 		/*
947 		 * No new fragment needed.
948 		 */
949 		DBG_LEAVE;
950 		return;
951 	}
952 	ocscg=dtog(&osblock, osblock.fs_csaddr);
953 	cs=fscs+ocscg;
954 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
955 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
956 
957 	/*
958 	 * Read original cylinder group from disk, and make a copy.
959 	 */
960 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
961 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
962 	DBG_PRINT0("oscg read\n");
963 	DBG_DUMP_CG(&sblock,
964 	    "old summary cg",
965 	    &aocg);
966 
967 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
968 
969 	/*
970 	 * Touch the cylinder group, set up local variables needed later
971 	 * and update the superblock.
972 	 */
973 	acg.cg_time = utime;
974 
975 	/*
976 	 * XXX	In the case of having active snapshots we may need much more
977 	 *	blocks for the copy on write. We need each block twice,  and
978 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
979 	 *	references.
980 	 */
981 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
982 		/*
983 		 * There  is  not enough space in the old cylinder  group  to
984 		 * relocate  all blocks as needed, so we relocate  the  whole
985 		 * cylinder  group summary to a new group. We try to use  the
986 		 * first complete new cylinder group just created. Within the
987 		 * cylinder  group we allign the area immediately  after  the
988 		 * cylinder  group  information location in order  to  be  as
989 		 * close as possible to the original implementation of ffs.
990 		 *
991 		 * First  we have to make sure we'll find enough space in  the
992 		 * new  cylinder  group. If not, then we  currently  give  up.
993 		 * We  start  with freeing everything which was  used  by  the
994 		 * fragments of the old cylinder summary in the current group.
995 		 * Now  we write back the group meta data, read in the  needed
996 		 * meta data from the new cylinder group, and start allocating
997 		 * within  that  group. Here we can assume, the  group  to  be
998 		 * completely empty. Which makes the handling of fragments and
999 		 * clusters a lot easier.
1000 		 */
1001 		DBG_TRC;
1002 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1003 			errx(2, "panic: not enough space");
1004 		}
1005 
1006 		/*
1007 		 * Point "d" to the first fragment not used by the cylinder
1008 		 * summary.
1009 		 */
1010 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1011 
1012 		/*
1013 		 * Set up last cluster size ("lcs") already here. Calculate
1014 		 * the size for the trailing cluster just behind where  "d"
1015 		 * points to.
1016 		 */
1017 		if(sblock.fs_contigsumsize > 0) {
1018 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1019 			    lcs=0; lcs<sblock.fs_contigsumsize;
1020 			    block++, lcs++) {
1021 				if(isclr(cg_clustersfree(&acg), block)){
1022 					break;
1023 				}
1024 			}
1025 		}
1026 
1027 		/*
1028 		 * Point "d" to the last frag used by the cylinder summary.
1029 		 */
1030 		d--;
1031 
1032 		DBG_PRINT1("d=%d\n",
1033 		    d);
1034 		if((d+1)%sblock.fs_frag) {
1035 			/*
1036 			 * The end of the cylinder summary is not a complete
1037 			 * block.
1038 			 */
1039 			DBG_TRC;
1040 			frag_adjust(d%sblock.fs_fpg, -1);
1041 			for(; (d+1)%sblock.fs_frag; d--) {
1042 				DBG_PRINT1("d=%d\n",
1043 				    d);
1044 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1045 				acg.cg_cs.cs_nffree++;
1046 				sblock.fs_cstotal.cs_nffree++;
1047 			}
1048 			/*
1049 			 * Point  "d" to the last fragment of the  last
1050 			 * (incomplete) block of the clinder summary.
1051 			 */
1052 			d++;
1053 			frag_adjust(d%sblock.fs_fpg, 1);
1054 
1055 			if(isblock(&sblock, cg_blksfree(&acg),
1056 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1057 				DBG_PRINT1("d=%d\n",
1058 				    d);
1059 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1060 				acg.cg_cs.cs_nbfree++;
1061 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1062 				sblock.fs_cstotal.cs_nbfree++;
1063 				cg_blktot(&acg)[cbtocylno(&sblock,
1064 				    d%sblock.fs_fpg)]++;
1065 				cg_blks(&sblock, &acg, cbtocylno(&sblock,
1066 				    d%sblock.fs_fpg))[cbtorpos(&sblock,
1067 				    d%sblock.fs_fpg)]++;
1068 				if(sblock.fs_contigsumsize > 0) {
1069 					setbit(cg_clustersfree(&acg),
1070 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1071 					if(lcs < sblock.fs_contigsumsize) {
1072 						if(lcs) {
1073 							cg_clustersum(&acg)
1074 							    [lcs]--;
1075 						}
1076 						lcs++;
1077 						cg_clustersum(&acg)[lcs]++;
1078 					}
1079 				}
1080 			}
1081 			/*
1082 			 * Point "d" to the first fragment of the block before
1083 			 * the last incomplete block.
1084 			 */
1085 			d--;
1086 		}
1087 
1088 		DBG_PRINT1("d=%d\n",
1089 		    d);
1090 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1091 		    d-=sblock.fs_frag) {
1092 			DBG_TRC;
1093 			DBG_PRINT1("d=%d\n",
1094 			    d);
1095 			setblock(&sblock, cg_blksfree(&acg),
1096 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1097 			acg.cg_cs.cs_nbfree++;
1098 			sblock.fs_cstotal.cs_nbfree++;
1099 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1100 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1101 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1102 			    d%sblock.fs_fpg)]++;
1103 			if(sblock.fs_contigsumsize > 0) {
1104 				setbit(cg_clustersfree(&acg),
1105 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1106 				/*
1107 				 * The last cluster size is already set up.
1108 				 */
1109 				if(lcs < sblock.fs_contigsumsize) {
1110 					if(lcs) {
1111 						cg_clustersum(&acg)[lcs]--;
1112 					}
1113 					lcs++;
1114 					cg_clustersum(&acg)[lcs]++;
1115 				}
1116 			}
1117 		}
1118 		*cs = acg.cg_cs;
1119 
1120 		/*
1121 		 * Now write the former cylinder group containing the cylinder
1122 		 * summary back to disk.
1123 		 */
1124 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1125 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1126 		DBG_PRINT0("oscg written\n");
1127 		DBG_DUMP_CG(&sblock,
1128 		    "old summary cg",
1129 		    &acg);
1130 
1131 		/*
1132 		 * Find the beginning of the new cylinder group containing the
1133 		 * cylinder summary.
1134 		 */
1135 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1136 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1137 		cs=fscs+ncscg;
1138 
1139 		/*
1140 		 * Read the future cylinder group containing the cylinder
1141 		 * summary from disk, and make a copy.
1142 		 */
1143 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1144 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1145 		DBG_PRINT0("nscg read\n");
1146 		DBG_DUMP_CG(&sblock,
1147 		    "new summary cg",
1148 		    &aocg);
1149 
1150 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1151 
1152 		/*
1153 		 * Allocate all complete blocks used by the new cylinder
1154 		 * summary.
1155 		 */
1156 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1157 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1158 		    d+=sblock.fs_frag) {
1159 			clrblock(&sblock, cg_blksfree(&acg),
1160 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1161 			acg.cg_cs.cs_nbfree--;
1162 			sblock.fs_cstotal.cs_nbfree--;
1163 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1164 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1165 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1166 			    d%sblock.fs_fpg)]--;
1167 			if(sblock.fs_contigsumsize > 0) {
1168 				clrbit(cg_clustersfree(&acg),
1169 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1170 			}
1171 		}
1172 
1173 		/*
1174 		 * Allocate all fragments used by the cylinder summary in the
1175 		 * last block.
1176 		 */
1177 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1178 			for(; d-sblock.fs_csaddr<
1179 			    sblock.fs_cssize/sblock.fs_fsize;
1180 			    d++) {
1181 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1182 				acg.cg_cs.cs_nffree--;
1183 				sblock.fs_cstotal.cs_nffree--;
1184 			}
1185 			acg.cg_cs.cs_nbfree--;
1186 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1187 			sblock.fs_cstotal.cs_nbfree--;
1188 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1189 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1190 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1191 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1192 			    d%sblock.fs_fpg)]--;
1193 			if(sblock.fs_contigsumsize > 0) {
1194 				clrbit(cg_clustersfree(&acg),
1195 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1196 			}
1197 
1198 			frag_adjust(d%sblock.fs_fpg, +1);
1199 		}
1200 		/*
1201 		 * XXX	Handle the cluster statistics here in the case  this
1202 		 *	cylinder group is now almost full, and the remaining
1203 		 *	space is less then the maximum cluster size. This is
1204 		 *	probably not needed, as you would hardly find a file
1205 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1206 		 *	space right behind the cylinder group information in
1207 		 *	any new cylinder group.
1208 		 */
1209 
1210 		/*
1211 		 * Update our statistics in the cylinder summary.
1212 		 */
1213 		*cs = acg.cg_cs;
1214 
1215 		/*
1216 		 * Write the new cylinder group containing the cylinder summary
1217 		 * back to disk.
1218 		 */
1219 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1220 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1221 		DBG_PRINT0("nscg written\n");
1222 		DBG_DUMP_CG(&sblock,
1223 		    "new summary cg",
1224 		    &acg);
1225 
1226 		DBG_LEAVE;
1227 		return;
1228 	}
1229 	/*
1230 	 * We have got enough of space in the current cylinder group, so we
1231 	 * can relocate just a few blocks, and let the summary  information
1232 	 * grow in place where it is right now.
1233 	 */
1234 	DBG_TRC;
1235 
1236 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1237 	dupper = sblock.fs_csaddr - cbase +
1238 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1239 	odupper = osblock.fs_csaddr - cbase +
1240 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1241 
1242 	sblock.fs_dsize -= dupper-odupper;
1243 
1244 	/*
1245 	 * Allocate the space for the array of blocks to be relocated.
1246 	 */
1247  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1248 	    sizeof(struct gfs_bpp));
1249 	if(bp == NULL) {
1250 		errx(1, "malloc failed");
1251 	}
1252 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1253 	    sizeof(struct gfs_bpp));
1254 
1255 	/*
1256 	 * Lock all new frags needed for the cylinder group summary. This  is
1257 	 * done per fragment in the first and last block of the new  required
1258 	 * area, and per block for all other blocks.
1259 	 *
1260 	 * Handle the first new  block here (but only if some fragments where
1261 	 * already used for the cylinder summary).
1262 	 */
1263 	ind=0;
1264 	frag_adjust(odupper, -1);
1265 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1266 		DBG_PRINT1("scg first frag check loop d=%d\n",
1267 		    d);
1268 		if(isclr(cg_blksfree(&acg), d)) {
1269 			if (!ind) {
1270 				bp[ind].old=d/sblock.fs_frag;
1271 				bp[ind].flags|=GFS_FL_FIRST;
1272 				if(roundup(d, sblock.fs_frag) >= dupper) {
1273 					bp[ind].flags|=GFS_FL_LAST;
1274 				}
1275 				ind++;
1276 			}
1277 		} else {
1278 			clrbit(cg_blksfree(&acg), d);
1279 			acg.cg_cs.cs_nffree--;
1280 			sblock.fs_cstotal.cs_nffree--;
1281 		}
1282 		/*
1283 		 * No cluster handling is needed here, as there was at least
1284 		 * one  fragment in use by the cylinder summary in  the  old
1285 		 * file system.
1286 		 * No block-free counter handling here as this block was not
1287 		 * a free block.
1288 		 */
1289 	}
1290 	frag_adjust(odupper, 1);
1291 
1292 	/*
1293 	 * Handle all needed complete blocks here.
1294 	 */
1295 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1296 		DBG_PRINT1("scg block check loop d=%d\n",
1297 		    d);
1298 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1299 			for(f=d; f<d+sblock.fs_frag; f++) {
1300 				if(isset(cg_blksfree(&aocg), f)) {
1301 					acg.cg_cs.cs_nffree--;
1302 					sblock.fs_cstotal.cs_nffree--;
1303 				}
1304 			}
1305 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1306 			bp[ind].old=d/sblock.fs_frag;
1307 			ind++;
1308 		} else {
1309 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1310 			acg.cg_cs.cs_nbfree--;
1311 			sblock.fs_cstotal.cs_nbfree--;
1312 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1313 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1314 			    [cbtorpos(&sblock, d)]--;
1315 			if(sblock.fs_contigsumsize > 0) {
1316 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1317 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1318 				    lcs<sblock.fs_contigsumsize;
1319 				    l++, lcs++ ) {
1320 					if(isclr(cg_clustersfree(&acg),l)){
1321 						break;
1322 					}
1323 				}
1324 				if(lcs < sblock.fs_contigsumsize) {
1325 					cg_clustersum(&acg)[lcs+1]--;
1326 					if(lcs) {
1327 						cg_clustersum(&acg)[lcs]++;
1328 					}
1329 				}
1330 			}
1331 		}
1332 		/*
1333 		 * No fragment counter handling is needed here, as this finally
1334 		 * doesn't change after the relocation.
1335 		 */
1336 	}
1337 
1338 	/*
1339 	 * Handle all fragments needed in the last new affected block.
1340 	 */
1341 	if(d<dupper) {
1342 		frag_adjust(dupper-1, -1);
1343 
1344 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1345 			acg.cg_cs.cs_nbfree--;
1346 			sblock.fs_cstotal.cs_nbfree--;
1347 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1348 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1349 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1350 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1351 			    [cbtorpos(&sblock, d)]--;
1352 			if(sblock.fs_contigsumsize > 0) {
1353 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1354 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1355 				    lcs<sblock.fs_contigsumsize;
1356 				    l++, lcs++ ) {
1357 					if(isclr(cg_clustersfree(&acg),l)){
1358 						break;
1359 					}
1360 				}
1361 				if(lcs < sblock.fs_contigsumsize) {
1362 					cg_clustersum(&acg)[lcs+1]--;
1363 					if(lcs) {
1364 						cg_clustersum(&acg)[lcs]++;
1365 					}
1366 				}
1367 			}
1368 		}
1369 
1370 		for(; d<dupper; d++) {
1371 			DBG_PRINT1("scg second frag check loop d=%d\n",
1372 			    d);
1373 			if(isclr(cg_blksfree(&acg), d)) {
1374 				bp[ind].old=d/sblock.fs_frag;
1375 				bp[ind].flags|=GFS_FL_LAST;
1376 			} else {
1377 				clrbit(cg_blksfree(&acg), d);
1378 				acg.cg_cs.cs_nffree--;
1379 				sblock.fs_cstotal.cs_nffree--;
1380 			}
1381 		}
1382 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1383 			ind++;
1384 		}
1385 		frag_adjust(dupper-1, 1);
1386 	}
1387 
1388 	/*
1389 	 * If we found a block to relocate just do so.
1390 	 */
1391 	if(ind) {
1392 		for(i=0; i<ind; i++) {
1393 			if(!bp[i].old) { /* no more blocks listed */
1394 				/*
1395 				 * XXX	A relative blocknumber should not be
1396 				 *	zero,   which  is   not   explicitly
1397 				 *	guaranteed by our code.
1398 				 */
1399 				break;
1400 			}
1401 			/*
1402 			 * Allocate a complete block in the same (current)
1403 			 * cylinder group.
1404 			 */
1405 			bp[i].new=alloc()/sblock.fs_frag;
1406 
1407 			/*
1408 			 * There is no frag_adjust() needed for the new block
1409 			 * as it will have no fragments yet :-).
1410 			 */
1411 			for(f=bp[i].old*sblock.fs_frag,
1412 			    g=bp[i].new*sblock.fs_frag;
1413 			    f<(bp[i].old+1)*sblock.fs_frag;
1414 			    f++, g++) {
1415 				if(isset(cg_blksfree(&aocg), f)) {
1416 					setbit(cg_blksfree(&acg), g);
1417 					acg.cg_cs.cs_nffree++;
1418 					sblock.fs_cstotal.cs_nffree++;
1419 				}
1420 			}
1421 
1422 			/*
1423 			 * Special handling is required if this was the  first
1424 			 * block. We have to consider the fragments which were
1425 			 * used by the cylinder summary in the original  block
1426 			 * which  re to be free in the copy of our  block.  We
1427 			 * have  to be careful if this first block happens  to
1428 			 * be also the last block to be relocated.
1429 			 */
1430 			if(bp[i].flags & GFS_FL_FIRST) {
1431 				for(f=bp[i].old*sblock.fs_frag,
1432 				    g=bp[i].new*sblock.fs_frag;
1433 				    f<odupper;
1434 				    f++, g++) {
1435 					setbit(cg_blksfree(&acg), g);
1436 					acg.cg_cs.cs_nffree++;
1437 					sblock.fs_cstotal.cs_nffree++;
1438 				}
1439 				if(!(bp[i].flags & GFS_FL_LAST)) {
1440 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1441 				}
1442 
1443 			}
1444 
1445 			/*
1446 			 * Special handling is required if this is the last
1447 			 * block to be relocated.
1448 			 */
1449 			if(bp[i].flags & GFS_FL_LAST) {
1450 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1451 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1452 				for(f=dupper;
1453 				    f<roundup(dupper, sblock.fs_frag);
1454 				    f++) {
1455 					if(isclr(cg_blksfree(&acg), f)) {
1456 						setbit(cg_blksfree(&acg), f);
1457 						acg.cg_cs.cs_nffree++;
1458 						sblock.fs_cstotal.cs_nffree++;
1459 					}
1460 				}
1461 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1462 			}
1463 
1464 			/*
1465 			 * !!! Attach the cylindergroup offset here.
1466 			 */
1467 			bp[i].old+=cbase/sblock.fs_frag;
1468 			bp[i].new+=cbase/sblock.fs_frag;
1469 
1470 			/*
1471 			 * Copy the content of the block.
1472 			 */
1473 			/*
1474 			 * XXX	Here we will have to implement a copy on write
1475 			 *	in the case we have any active snapshots.
1476 			 */
1477 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1478 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1479 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1480 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1481 			DBG_DUMP_HEX(&sblock,
1482 			    "copied full block",
1483 			    (unsigned char *)&ablk);
1484 
1485 			DBG_PRINT2("scg (%d->%d) block relocated\n",
1486 			    bp[i].old,
1487 			    bp[i].new);
1488 		}
1489 
1490 		/*
1491 		 * Now we have to update all references to any fragment which
1492 		 * belongs  to any block relocated. We iterate now  over  all
1493 		 * cylinder  groups,  within those over all non  zero  length
1494 		 * inodes.
1495 		 */
1496 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1497 			DBG_PRINT1("scg doing cg (%d)\n",
1498 			    cylno);
1499 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1500 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1501 			}
1502 		}
1503 
1504 		/*
1505 		 * All inodes are checked, now make sure the number of
1506 		 * references found make sense.
1507 		 */
1508 		for(i=0; i<ind; i++) {
1509 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1510 				warnx("error: %d refs found for block %d.",
1511 				    bp[i].found, bp[i].old);
1512 			}
1513 
1514 		}
1515 	}
1516 	/*
1517 	 * The following statistics are not changed here:
1518 	 *     sblock.fs_cstotal.cs_ndir
1519 	 *     sblock.fs_cstotal.cs_nifree
1520 	 * The following statistics were already updated on the fly:
1521 	 *     sblock.fs_cstotal.cs_nffree
1522 	 *     sblock.fs_cstotal.cs_nbfree
1523 	 * As the statistics for this cylinder group are ready, copy it to
1524 	 * the summary information array.
1525 	 */
1526 
1527 	*cs = acg.cg_cs;
1528 
1529 	/*
1530 	 * Write summary cylinder group back to disk.
1531 	 */
1532 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1533 	    (void *)&acg, fso, Nflag);
1534 	DBG_PRINT0("scg written\n");
1535 	DBG_DUMP_CG(&sblock,
1536 	    "new summary cg",
1537 	    &acg);
1538 
1539 	DBG_LEAVE;
1540 	return;
1541 }
1542 
1543 /* ************************************************************** rdfs ***** */
1544 /*
1545  * Here we read some block(s) from disk.
1546  */
1547 static void
1548 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1549 {
1550 	DBG_FUNC("rdfs")
1551 	ssize_t	n;
1552 
1553 	DBG_ENTER;
1554 
1555 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1556 		err(33, "rdfs: seek error: %ld", (long)bno);
1557 	}
1558 	n = read(fsi, bf, size);
1559 	if (n != (ssize_t)size) {
1560 		err(34, "rdfs: read error: %ld", (long)bno);
1561 	}
1562 
1563 	DBG_LEAVE;
1564 	return;
1565 }
1566 
1567 /* ************************************************************** wtfs ***** */
1568 /*
1569  * Here we write some block(s) to disk.
1570  */
1571 static void
1572 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1573 {
1574 	DBG_FUNC("wtfs")
1575 	ssize_t	n;
1576 
1577 	DBG_ENTER;
1578 
1579 	if (Nflag) {
1580 		DBG_LEAVE;
1581 		return;
1582 	}
1583 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1584 		err(35, "wtfs: seek error: %ld", (long)bno);
1585 	}
1586 	n = write(fso, bf, size);
1587 	if (n != (ssize_t)size) {
1588 		err(36, "wtfs: write error: %ld", (long)bno);
1589 	}
1590 
1591 	DBG_LEAVE;
1592 	return;
1593 }
1594 
1595 /* ************************************************************* alloc ***** */
1596 /*
1597  * Here we allocate a free block in the current cylinder group. It is assumed,
1598  * that  acg contains the current cylinder group. As we may take a block  from
1599  * somewhere in the filesystem we have to handle cluster summary here.
1600  */
1601 static daddr_t
1602 alloc(void)
1603 {
1604 	DBG_FUNC("alloc")
1605 	daddr_t	d, blkno;
1606 	int	lcs1, lcs2;
1607 	int	l;
1608 	int	csmin, csmax;
1609 	int	dlower, dupper, dmax;
1610 
1611 	DBG_ENTER;
1612 
1613 	if (acg.cg_magic != CG_MAGIC) {
1614 		warnx("acg: bad magic number");
1615 		DBG_LEAVE;
1616 		return (0);
1617 	}
1618 	if (acg.cg_cs.cs_nbfree == 0) {
1619 		warnx("error: cylinder group ran out of space");
1620 		DBG_LEAVE;
1621 		return (0);
1622 	}
1623 	/*
1624 	 * We start seeking for free blocks only from the space available after
1625 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1626 	 * block here which we have to relocate a couple of seconds later again
1627 	 * again, and we are not prepared to to this anyway.
1628 	 */
1629 	blkno=-1;
1630 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1631 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1632 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1633 	if (dmax > sblock.fs_size) {
1634 		dmax = sblock.fs_size;
1635 	}
1636 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1637 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1638 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1639 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1640 	    dlower,
1641 	    dupper,
1642 	    dmax);
1643 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1644 	    csmin,
1645 	    csmax);
1646 
1647 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1648 		if(d>=csmin && d<=csmax) {
1649 			continue;
1650 		}
1651 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1652 		    d))) {
1653 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1654 			break;
1655 		}
1656 	}
1657 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1658 		if(d>=csmin && d<=csmax) {
1659 			continue;
1660 		}
1661 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1662 		    d))) {
1663 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1664 			break;
1665 		}
1666 	}
1667 	if(blkno==-1) {
1668 		warnx("internal error: couldn't find promised block in cg");
1669 		DBG_LEAVE;
1670 		return (0);
1671 	}
1672 
1673 	/*
1674 	 * This is needed if the block was found already in the first loop.
1675 	 */
1676 	d=blkstofrags(&sblock, blkno);
1677 
1678 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1679 	if (sblock.fs_contigsumsize > 0) {
1680 		/*
1681 		 * Handle the cluster allocation bitmap.
1682 		 */
1683 		clrbit(cg_clustersfree(&acg), blkno);
1684 		/*
1685 		 * We  possibly have split a cluster here, so we have  to  do
1686 		 * recalculate the sizes of the remaining cluster halves now,
1687 		 * and use them for updating the cluster summary information.
1688 		 *
1689 		 * Lets start with the blocks before our allocated block ...
1690 		 */
1691 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1692 		    l--, lcs1++ ) {
1693 			if(isclr(cg_clustersfree(&acg),l)){
1694 				break;
1695 			}
1696 		}
1697 		/*
1698 		 * ... and continue with the blocks right after our allocated
1699 		 * block.
1700 		 */
1701 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1702 		    l++, lcs2++ ) {
1703 			if(isclr(cg_clustersfree(&acg),l)){
1704 				break;
1705 			}
1706 		}
1707 
1708 		/*
1709 		 * Now update all counters.
1710 		 */
1711 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1712 		if(lcs1) {
1713 			cg_clustersum(&acg)[lcs1]++;
1714 		}
1715 		if(lcs2) {
1716 			cg_clustersum(&acg)[lcs2]++;
1717 		}
1718 	}
1719 	/*
1720 	 * Update all statistics based on blocks.
1721 	 */
1722 	acg.cg_cs.cs_nbfree--;
1723 	sblock.fs_cstotal.cs_nbfree--;
1724 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1725 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1726 
1727 	DBG_LEAVE;
1728 	return (d);
1729 }
1730 
1731 /* *********************************************************** isblock ***** */
1732 /*
1733  * Here  we check if all frags of a block are free. For more details  again
1734  * please see the source of newfs(8), as this function is taken over almost
1735  * unchanged.
1736  */
1737 static int
1738 isblock(struct fs *fs, unsigned char *cp, int h)
1739 {
1740 	DBG_FUNC("isblock")
1741 	unsigned char	mask;
1742 
1743 	DBG_ENTER;
1744 
1745 	switch (fs->fs_frag) {
1746 	case 8:
1747 		DBG_LEAVE;
1748 		return (cp[h] == 0xff);
1749 	case 4:
1750 		mask = 0x0f << ((h & 0x1) << 2);
1751 		DBG_LEAVE;
1752 		return ((cp[h >> 1] & mask) == mask);
1753 	case 2:
1754 		mask = 0x03 << ((h & 0x3) << 1);
1755 		DBG_LEAVE;
1756 		return ((cp[h >> 2] & mask) == mask);
1757 	case 1:
1758 		mask = 0x01 << (h & 0x7);
1759 		DBG_LEAVE;
1760 		return ((cp[h >> 3] & mask) == mask);
1761 	default:
1762 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1763 		DBG_LEAVE;
1764 		return (0);
1765 	}
1766 }
1767 
1768 /* ********************************************************** clrblock ***** */
1769 /*
1770  * Here we allocate a complete block in the block map. For more details again
1771  * please  see the source of newfs(8), as this function is taken over  almost
1772  * unchanged.
1773  */
1774 static void
1775 clrblock(struct fs *fs, unsigned char *cp, int h)
1776 {
1777 	DBG_FUNC("clrblock")
1778 
1779 	DBG_ENTER;
1780 
1781 	switch ((fs)->fs_frag) {
1782 	case 8:
1783 		cp[h] = 0;
1784 		break;
1785 	case 4:
1786 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1787 		break;
1788 	case 2:
1789 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1790 		break;
1791 	case 1:
1792 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1793 		break;
1794 	default:
1795 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1796 		break;
1797 	}
1798 
1799 	DBG_LEAVE;
1800 	return;
1801 }
1802 
1803 /* ********************************************************** setblock ***** */
1804 /*
1805  * Here we free a complete block in the free block map. For more details again
1806  * please  see the source of newfs(8), as this function is taken  over  almost
1807  * unchanged.
1808  */
1809 static void
1810 setblock(struct fs *fs, unsigned char *cp, int h)
1811 {
1812 	DBG_FUNC("setblock")
1813 
1814 	DBG_ENTER;
1815 
1816 	switch (fs->fs_frag) {
1817 	case 8:
1818 		cp[h] = 0xff;
1819 		break;
1820 	case 4:
1821 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1822 		break;
1823 	case 2:
1824 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1825 		break;
1826 	case 1:
1827 		cp[h >> 3] |= (0x01 << (h & 0x7));
1828 		break;
1829 	default:
1830 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1831 		break;
1832 	}
1833 
1834 	DBG_LEAVE;
1835 	return;
1836 }
1837 
1838 /* ************************************************************ ginode ***** */
1839 /*
1840  * This function provides access to an individual inode. We find out in which
1841  * block  the  requested inode is located, read it from disk if  needed,  and
1842  * return  the pointer into that block. We maintain a cache of one  block  to
1843  * not  read the same block again and again if we iterate linearly  over  all
1844  * inodes.
1845  */
1846 static struct dinode *
1847 ginode(ino_t inumber, int fsi, int cg)
1848 {
1849 	DBG_FUNC("ginode")
1850 	ufs_daddr_t	iblk;
1851 	static ino_t	startinum=0;	/* first inode in cached block */
1852 	struct dinode	*pi;
1853 
1854 	DBG_ENTER;
1855 
1856 	pi=(struct dinode *)(void *)ablk;
1857 	inumber+=(cg * sblock.fs_ipg);
1858 	if (startinum == 0 || inumber < startinum ||
1859 	    inumber >= startinum + INOPB(&sblock)) {
1860 		/*
1861 		 * The block needed is not cached, so we have to read it from
1862 		 * disk now.
1863 		 */
1864 		iblk = ino_to_fsba(&sblock, inumber);
1865 		in_src=fsbtodb(&sblock, iblk);
1866 		rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1867 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1868 	}
1869 
1870 	DBG_LEAVE;
1871 	return (&(pi[inumber % INOPB(&sblock)]));
1872 }
1873 
1874 /* ****************************************************** charsperline ***** */
1875 /*
1876  * Figure out how many lines our current terminal has. For more details again
1877  * please  see the source of newfs(8), as this function is taken over  almost
1878  * unchanged.
1879  */
1880 static int
1881 charsperline(void)
1882 {
1883 	DBG_FUNC("charsperline")
1884 	int	columns;
1885 	char	*cp;
1886 	struct winsize	ws;
1887 
1888 	DBG_ENTER;
1889 
1890 	columns = 0;
1891 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1892 		columns = ws.ws_col;
1893 	}
1894 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1895 		columns = atoi(cp);
1896 	}
1897 	if (columns == 0) {
1898 		columns = 80;	/* last resort */
1899 	}
1900 
1901 	DBG_LEAVE;
1902 	return columns;
1903 }
1904 
1905 /* ************************************************************** main ***** */
1906 /*
1907  * growfs(8)  is a utility which allows to increase the size of  an  existing
1908  * ufs filesystem. Currently this can only be done on unmounted file  system.
1909  * It  recognizes some command line options to specify the new desired  size,
1910  * and  it does some basic checkings. The old file system size is  determined
1911  * and  after some more checks like we can really access the new  last  block
1912  * on the disk etc. we calculate the new parameters for the superblock. After
1913  * having  done  this we just call growfs() which will do  the  work.  Before
1914  * we finish the only thing left is to update the disklabel.
1915  * We still have to provide support for snapshots. Therefore we first have to
1916  * understand  what data structures are always replicated in the snapshot  on
1917  * creation,  for all other blocks we touch during our procedure, we have  to
1918  * keep the old blocks unchanged somewhere available for the snapshots. If we
1919  * are lucky, then we only have to handle our blocks to be relocated in  that
1920  * way.
1921  * Also  we  have to consider in what order we actually update  the  critical
1922  * data structures of the filesystem to make sure, that in case of a disaster
1923  * fsck(8) is still able to restore any lost data.
1924  * The  foreseen last step then will be to provide for growing  even  mounted
1925  * file  systems. There we have to extend the mount() system call to  provide
1926  * userland access to the file system locking facility.
1927  */
1928 int
1929 main(int argc, char **argv)
1930 {
1931 	DBG_FUNC("main")
1932 	char	*device, *special, *cp;
1933 	char	ch;
1934 	unsigned int	size=0;
1935 	size_t	len;
1936 	unsigned int	Nflag=0;
1937 	int	ExpertFlag=0;
1938 	struct stat	st;
1939 	struct disklabel	*lp;
1940 	struct partition	*pp;
1941 	int	fsi,fso;
1942 	char	reply[5];
1943 #ifdef FSMAXSNAP
1944 	int	j;
1945 #endif /* FSMAXSNAP */
1946 
1947 	DBG_ENTER;
1948 
1949 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1950 		switch(ch) {
1951 		case 'N':
1952 			Nflag=1;
1953 			break;
1954 		case 's':
1955 			size=(size_t)atol(optarg);
1956 			if(size<1) {
1957 				usage();
1958 			}
1959 			break;
1960 		case 'v': /* for compatibility to newfs */
1961 			break;
1962 		case 'y':
1963 			ExpertFlag=1;
1964 			break;
1965 		case '?':
1966 			/* FALLTHROUGH */
1967 		default:
1968 			usage();
1969 		}
1970 	}
1971 	argc -= optind;
1972 	argv += optind;
1973 
1974 	if(argc != 1) {
1975 		usage();
1976 	}
1977 	device=*argv;
1978 
1979 	/*
1980 	 * Now try to guess the (raw)device name.
1981 	 */
1982 	if (0 == strrchr(device, '/')) {
1983 		/*
1984 		 * No path prefix was given, so try in that order:
1985 		 *     /dev/r%s
1986 		 *     /dev/%s
1987 		 *     /dev/vinum/r%s
1988 		 *     /dev/vinum/%s.
1989 		 *
1990 		 * FreeBSD now doesn't distinguish between raw and  block
1991 		 * devices any longer, but it should still work this way.
1992 		 */
1993 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1994 		special=(char *)malloc(len);
1995 		if(special == NULL) {
1996 			errx(1, "malloc failed");
1997 		}
1998 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
1999 		if (stat(special, &st) == -1) {
2000 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2001 			if (stat(special, &st) == -1) {
2002 				snprintf(special, len, "%svinum/r%s",
2003 				    _PATH_DEV, device);
2004 				if (stat(special, &st) == -1) {
2005 					/* For now this is the 'last resort' */
2006 					snprintf(special, len, "%svinum/%s",
2007 					    _PATH_DEV, device);
2008 				}
2009 			}
2010 		}
2011 		device = special;
2012 	}
2013 
2014 	/*
2015 	 * Try to access our devices for writing ...
2016 	 */
2017 	if (Nflag) {
2018 		fso = -1;
2019 	} else {
2020 		fso = open(device, O_WRONLY);
2021 		if (fso < 0) {
2022 			err(1, "%s", device);
2023 		}
2024 	}
2025 
2026 	/*
2027 	 * ... and reading.
2028 	 */
2029 	fsi = open(device, O_RDONLY);
2030 	if (fsi < 0) {
2031 		err(1, "%s", device);
2032 	}
2033 
2034 	/*
2035 	 * Try  to read a label and gess the slice if not  specified.  This
2036 	 * code  should guess the right thing and avaid to bother the  user
2037 	 * user with the task of specifying the option -v on vinum volumes.
2038 	 */
2039 	cp=device+strlen(device)-1;
2040 	lp = get_disklabel(fsi);
2041 	if(lp->d_type == DTYPE_VINUM) {
2042 		pp = &lp->d_partitions[0];
2043 	} else if (isdigit(*cp)) {
2044 		pp = &lp->d_partitions[2];
2045 	} else if (*cp>='a' && *cp<='h') {
2046 		pp = &lp->d_partitions[*cp - 'a'];
2047 	} else {
2048 		errx(1, "unknown device");
2049 	}
2050 
2051 	/*
2052 	 * Check if that partition looks suited for growing a file system.
2053 	 */
2054 	if (pp->p_size < 1) {
2055 		errx(1, "partition is unavailable");
2056 	}
2057 	if (pp->p_fstype != FS_BSDFFS) {
2058 		errx(1, "partition not 4.2BSD");
2059 	}
2060 
2061 	/*
2062 	 * Read the current superblock, and take a backup.
2063 	 */
2064 	rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2065 	    fsi);
2066 	if (osblock.fs_magic != FS_MAGIC) {
2067 		errx(1, "superblock not recognized");
2068 	}
2069 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2070 
2071 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2072 	DBG_DUMP_FS(&sblock,
2073 	    "old sblock");
2074 
2075 	/*
2076 	 * Determine size to grow to. Default to the full size specified in
2077 	 * the disk label.
2078 	 */
2079 	sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2080 	if (size != 0) {
2081 		if (size > pp->p_size){
2082 			errx(1, "There is not enough space (%d < %d)",
2083 			    pp->p_size, size);
2084 		}
2085 		sblock.fs_size = dbtofsb(&osblock, size);
2086 	}
2087 
2088 	/*
2089 	 * Are we really growing ?
2090 	 */
2091 	if(osblock.fs_size >= sblock.fs_size) {
2092 		errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2093 		    sblock.fs_size);
2094 	}
2095 
2096 
2097 #ifdef FSMAXSNAP
2098 	/*
2099 	 * Check if we find an active snapshot.
2100 	 */
2101 	if(ExpertFlag == 0) {
2102 		for(j=0; j<FSMAXSNAP; j++) {
2103 			if(sblock.fs_snapinum[j]) {
2104 				errx(1, "active snapshot found in filesystem\n"
2105 				    "	please remove all snapshots before "
2106 				    "using growfs\n");
2107 			}
2108 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2109 				break;
2110 			}
2111 		}
2112 	}
2113 #endif
2114 
2115 	if (ExpertFlag == 0 && Nflag == 0) {
2116 		printf("We strongly recommend you to make a backup "
2117 		    "before growing the Filesystem\n\n"
2118 		    " Did you backup your data (Yes/No) ? ");
2119 		fgets(reply, (int)sizeof(reply), stdin);
2120 		if (strcmp(reply, "Yes\n")){
2121 			printf("\n Nothing done \n");
2122 			exit (0);
2123 		}
2124 	}
2125 
2126 	printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2127 
2128 	/*
2129 	 * Try to access our new last block in the filesystem. Even if we
2130 	 * later on realize we have to abort our operation, on that block
2131 	 * there should be no data, so we can't destroy something yet.
2132 	 */
2133 	wtfs((daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2134 	    Nflag);
2135 
2136 	/*
2137 	 * Now calculate new superblock values and check for reasonable
2138 	 * bound for new file system size:
2139 	 *     fs_size:    is derived from label or user input
2140 	 *     fs_dsize:   should get updated in the routines creating or
2141 	 *                 updating the cylinder groups on the fly
2142 	 *     fs_cstotal: should get updated in the routines creating or
2143 	 *                 updating the cylinder groups
2144 	 */
2145 
2146 	/*
2147 	 * Update the number of cylinders in the filesystem.
2148 	 */
2149 	sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2150 	if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2151 		sblock.fs_ncyl++;
2152 	}
2153 
2154 	/*
2155 	 * Update the number of cylinder groups in the filesystem.
2156 	 */
2157 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2158 	if (sblock.fs_ncyl % sblock.fs_cpg) {
2159 		sblock.fs_ncg++;
2160 	}
2161 
2162 	if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2163 	    sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2164 	    cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2165 	    (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2166 		/*
2167 		 * The space in the new last cylinder group is too small,
2168 		 * so revert back.
2169 		 */
2170 		sblock.fs_ncg--;
2171 #if 1 /* this is a bit more safe */
2172 		sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2173 #else
2174 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2175 #endif
2176 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2177 		printf( "Warning: %d sector(s) cannot be allocated.\n",
2178 		    (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2179 		    NSPF(&sblock));
2180 		sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2181 	}
2182 
2183 	/*
2184 	 * Update the space for the cylinder group summary information in the
2185 	 * respective cylinder group data area.
2186 	 */
2187 	sblock.fs_cssize =
2188 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2189 
2190 	if(osblock.fs_size >= sblock.fs_size) {
2191 		errx(1, "not enough new space");
2192 	}
2193 
2194 	DBG_PRINT0("sblock calculated\n");
2195 
2196 	/*
2197 	 * Ok, everything prepared, so now let's do the tricks.
2198 	 */
2199 	growfs(fsi, fso, Nflag);
2200 
2201 	/*
2202 	 * Update the disk label.
2203 	 */
2204 	pp->p_fsize = sblock.fs_fsize;
2205 	pp->p_frag = sblock.fs_frag;
2206 	pp->p_cpg = sblock.fs_cpg;
2207 
2208 	return_disklabel(fso, lp, Nflag);
2209 	DBG_PRINT0("label rewritten\n");
2210 
2211 	close(fsi);
2212 	if(fso>-1) close(fso);
2213 
2214 	DBG_CLOSE;
2215 
2216 	DBG_LEAVE;
2217 	return 0;
2218 }
2219 
2220 /* ************************************************** return_disklabel ***** */
2221 /*
2222  * Write the updated disklabel back to disk.
2223  */
2224 static void
2225 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2226 {
2227 	DBG_FUNC("return_disklabel")
2228 	u_short	sum;
2229 	u_short	*ptr;
2230 
2231 	DBG_ENTER;
2232 
2233 	if(!lp) {
2234 		DBG_LEAVE;
2235 		return;
2236 	}
2237 	if(!Nflag) {
2238 		lp->d_checksum=0;
2239 		sum = 0;
2240 		ptr=(u_short *)lp;
2241 
2242 		/*
2243 		 * recalculate checksum
2244 		 */
2245 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2246 			sum ^= *ptr++;
2247 		}
2248 		lp->d_checksum=sum;
2249 
2250 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2251 			errx(1, "DIOCWDINFO failed");
2252 		}
2253 	}
2254 	free(lp);
2255 
2256 	DBG_LEAVE;
2257 	return ;
2258 }
2259 
2260 /* ***************************************************** get_disklabel ***** */
2261 /*
2262  * Read the disklabel from disk.
2263  */
2264 static struct disklabel *
2265 get_disklabel(int fd)
2266 {
2267 	DBG_FUNC("get_disklabel")
2268 	static struct	disklabel *lab;
2269 
2270 	DBG_ENTER;
2271 
2272 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2273 	if (!lab) {
2274 		errx(1, "malloc failed");
2275 	}
2276 	if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2277 		errx(1, "DIOCGDINFO failed");
2278 	}
2279 
2280 	DBG_LEAVE;
2281 	return (lab);
2282 }
2283 
2284 
2285 /* ************************************************************* usage ***** */
2286 /*
2287  * Dump a line of usage.
2288  */
2289 static void
2290 usage(void)
2291 {
2292 	DBG_FUNC("usage")
2293 
2294 	DBG_ENTER;
2295 
2296 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2297 
2298 	DBG_LEAVE;
2299 	exit(1);
2300 }
2301 
2302 /* *********************************************************** updclst ***** */
2303 /*
2304  * This updates most paramters and the bitmap related to cluster. We have to
2305  * assume, that sblock, osblock, acg are set up.
2306  */
2307 static void
2308 updclst(int block)
2309 {
2310 	DBG_FUNC("updclst")
2311 	static int	lcs=0;
2312 
2313 	DBG_ENTER;
2314 
2315 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2316 		return;
2317 	}
2318 	/*
2319 	 * update cluster allocation map
2320 	 */
2321 	setbit(cg_clustersfree(&acg), block);
2322 
2323 	/*
2324 	 * update cluster summary table
2325 	 */
2326 	if(!lcs) {
2327 		/*
2328 		 * calculate size for the trailing cluster
2329 		 */
2330 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2331 			if(isclr(cg_clustersfree(&acg), block)){
2332 				break;
2333 			}
2334 		}
2335 	}
2336 	if(lcs < sblock.fs_contigsumsize) {
2337 		if(lcs) {
2338 			cg_clustersum(&acg)[lcs]--;
2339 		}
2340 		lcs++;
2341 		cg_clustersum(&acg)[lcs]++;
2342 	}
2343 
2344 	DBG_LEAVE;
2345 	return;
2346 }
2347 
2348 /* *********************************************************** updrefs ***** */
2349 /*
2350  * This updates all references to relocated blocks for the given inode.  The
2351  * inode is given as number within the cylinder group, and the number of the
2352  * cylinder group.
2353  */
2354 static void
2355 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2356     Nflag)
2357 {
2358 	DBG_FUNC("updrefs")
2359 	unsigned int	ictr, ind2ctr, ind3ctr;
2360 	ufs_daddr_t	*iptr, *ind2ptr, *ind3ptr;
2361 	struct dinode	*ino;
2362 	int	remaining_blocks;
2363 
2364 	DBG_ENTER;
2365 
2366 	/*
2367 	 * XXX We should skip unused inodes even from beeing read from disk
2368 	 *     here by using the bitmap.
2369 	 */
2370 	ino=ginode(in, fsi, cg);
2371 	if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2372 	    (ino->di_mode & IFMT)==IFLNK)) {
2373 		DBG_LEAVE;
2374 		return; /* only check DIR, FILE, LINK */
2375 	}
2376 	if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2377 		DBG_LEAVE;
2378 		return;	/* skip short symlinks */
2379 	}
2380 	if(!ino->di_size) {
2381 		DBG_LEAVE;
2382 		return;	/* skip empty file */
2383 	}
2384 	if(!ino->di_blocks) {
2385 		DBG_LEAVE;
2386 		return;	/* skip empty swiss cheesy file or old fastlink */
2387 	}
2388 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2389 	    in,
2390 	    cg);
2391 
2392 	/*
2393 	 * Start checking all direct blocks.
2394 	 */
2395 	remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2396 	for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2397 	    ictr++) {
2398 		iptr=&(ino->di_db[ictr]);
2399 		if(*iptr) {
2400 			cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2401 		}
2402 	}
2403 	DBG_PRINT0("~~scg direct blocks checked\n");
2404 
2405 	remaining_blocks-=NDADDR;
2406 	if(remaining_blocks<0) {
2407 		DBG_LEAVE;
2408 		return;
2409 	}
2410 	if(ino->di_ib[0]) {
2411 		/*
2412 		 * Start checking first indirect block
2413 		 */
2414 		cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2415 		i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2416 		rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2417 		for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2418 		    sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2419 		    ictr++) {
2420 			iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2421 			if(*iptr) {
2422 				cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2423 				    fso, Nflag);
2424 			}
2425 		}
2426 	}
2427 	DBG_PRINT0("scg indirect_1 blocks checked\n");
2428 
2429 	remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2430 	if(remaining_blocks<0) {
2431 		DBG_LEAVE;
2432 		return;
2433 	}
2434 	if(ino->di_ib[1]) {
2435 		/*
2436 		 * Start checking second indirect block
2437 		 */
2438 		cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2439 		i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2440 		rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2441 		for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2442 		    sizeof(ufs_daddr_t)); ind2ctr++) {
2443 			ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2444 			if(!*ind2ptr) {
2445 				continue;
2446 			}
2447 			cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2448 			    Nflag);
2449 			i1_src=fsbtodb(&sblock, *ind2ptr);
2450 			rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2451 			    fsi);
2452 			for(ictr=0; ictr<MIN(howmany((unsigned int)
2453 			    sblock.fs_bsize, sizeof(ufs_daddr_t)),
2454 			    (unsigned int)remaining_blocks); ictr++) {
2455 				iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2456 				if(*iptr) {
2457 					cond_bl_upd(iptr, bp,
2458 					    GFS_PS_IND_BLK_LVL1, fso, Nflag);
2459 				}
2460 			}
2461 		}
2462 	}
2463 	DBG_PRINT0("scg indirect_2 blocks checked\n");
2464 
2465 #define SQUARE(a) ((a)*(a))
2466 	remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2467 #undef SQUARE
2468 	if(remaining_blocks<0) {
2469 		DBG_LEAVE;
2470 		return;
2471 	}
2472 
2473 	if(ino->di_ib[2]) {
2474 		/*
2475 		 * Start checking third indirect block
2476 		 */
2477 		cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2478 		i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2479 		rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2480 		for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2481 		    sizeof(ufs_daddr_t)); ind3ctr ++) {
2482 			ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2483 			if(!*ind3ptr) {
2484 				continue;
2485 			}
2486 			cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2487 			    Nflag);
2488 			i2_src=fsbtodb(&sblock, *ind3ptr);
2489 			rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2490 			    fsi);
2491 			for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2492 			    sizeof(ufs_daddr_t)); ind2ctr ++) {
2493 				ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2494 				    [ind2ctr];
2495 				if(!*ind2ptr) {
2496 					continue;
2497 				}
2498 				cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2499 				    fso, Nflag);
2500 				i1_src=fsbtodb(&sblock, *ind2ptr);
2501 				rdfs(i1_src, (size_t)sblock.fs_bsize,
2502 				    (void *)&i1blk, fsi);
2503 				for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2504 				    sizeof(ufs_daddr_t)),
2505 				    (unsigned int)remaining_blocks); ictr++) {
2506 					iptr=&((ufs_daddr_t *)(void *)&i1blk)
2507 					    [ictr];
2508 					if(*iptr) {
2509 						cond_bl_upd(iptr, bp,
2510 						    GFS_PS_IND_BLK_LVL1, fso,
2511 						    Nflag);
2512 					}
2513 				}
2514 			}
2515 		}
2516 	}
2517 
2518 	DBG_PRINT0("scg indirect_3 blocks checked\n");
2519 
2520 	DBG_LEAVE;
2521 	return;
2522 }
2523 
2524