xref: /freebsd/sbin/growfs/growfs.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
5  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
6  * Copyright (c) 2012 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
11  *
12  * Portions of this software were developed by Edward Tomasz Napierala
13  * under sponsorship from the FreeBSD Foundation.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgment:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors, as well as Christoph
27  *      Herrmann and Thomas-Henning von Kamptz.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
45  *
46  */
47 
48 #ifndef lint
49 static const char copyright[] =
50 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
51 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
52 All rights reserved.\n";
53 #endif /* not lint */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include <sys/param.h>
59 #include <sys/ioctl.h>
60 #include <sys/stat.h>
61 #include <sys/disk.h>
62 #include <sys/ucred.h>
63 #include <sys/mount.h>
64 
65 #include <stdio.h>
66 #include <paths.h>
67 #include <ctype.h>
68 #include <err.h>
69 #include <errno.h>
70 #include <fcntl.h>
71 #include <fstab.h>
72 #include <inttypes.h>
73 #include <limits.h>
74 #include <mntopts.h>
75 #include <paths.h>
76 #include <stdlib.h>
77 #include <stdint.h>
78 #include <string.h>
79 #include <time.h>
80 #include <unistd.h>
81 #include <ufs/ufs/dinode.h>
82 #include <ufs/ffs/fs.h>
83 #include <libutil.h>
84 #include <libufs.h>
85 
86 #include "debug.h"
87 
88 #ifdef FS_DEBUG
89 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
90 #endif /* FS_DEBUG */
91 
92 static union {
93 	struct fs	fs;
94 	char		pad[SBLOCKSIZE];
95 } fsun1, fsun2;
96 #define	sblock	fsun1.fs	/* the new superblock */
97 #define	osblock	fsun2.fs	/* the old superblock */
98 
99 static union {
100 	struct cg	cg;
101 	char		pad[MAXBSIZE];
102 } cgun1, cgun2;
103 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
104 #define	aocg	cgun2.cg	/* an old cylinder group */
105 
106 static struct csum	*fscs;	/* cylinder summary */
107 
108 static void	growfs(int, int, unsigned int);
109 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
110 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
111 static int	charsperline(void);
112 static void	usage(void);
113 static int	isblock(struct fs *, unsigned char *, int);
114 static void	clrblock(struct fs *, unsigned char *, int);
115 static void	setblock(struct fs *, unsigned char *, int);
116 static void	initcg(int, time_t, int, unsigned int);
117 static void	updjcg(int, time_t, int, int, unsigned int);
118 static void	updcsloc(time_t, int, int, unsigned int);
119 static void	frag_adjust(ufs2_daddr_t, int);
120 static void	updclst(int);
121 static void	mount_reload(const struct statfs *stfs);
122 static void	cgckhash(struct cg *);
123 
124 /*
125  * Here we actually start growing the file system. We basically read the
126  * cylinder summary from the first cylinder group as we want to update
127  * this on the fly during our various operations. First we handle the
128  * changes in the former last cylinder group. Afterwards we create all new
129  * cylinder groups.  Now we handle the cylinder group containing the
130  * cylinder summary which might result in a relocation of the whole
131  * structure.  In the end we write back the updated cylinder summary, the
132  * new superblock, and slightly patched versions of the super block
133  * copies.
134  */
135 static void
136 growfs(int fsi, int fso, unsigned int Nflag)
137 {
138 	DBG_FUNC("growfs")
139 	time_t modtime;
140 	uint cylno;
141 	int i, j, width;
142 	char tmpbuf[100];
143 
144 	DBG_ENTER;
145 
146 	time(&modtime);
147 
148 	/*
149 	 * Get the cylinder summary into the memory.
150 	 */
151 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
152 	if (fscs == NULL)
153 		errx(1, "calloc failed");
154 	memcpy(fscs, osblock.fs_csp, osblock.fs_cssize);
155 	free(osblock.fs_csp);
156 	osblock.fs_csp = NULL;
157 	sblock.fs_csp = fscs;
158 
159 #ifdef FS_DEBUG
160 	{
161 		struct csum *dbg_csp;
162 		u_int32_t dbg_csc;
163 		char dbg_line[80];
164 
165 		dbg_csp = fscs;
166 
167 		for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) {
168 			snprintf(dbg_line, sizeof(dbg_line),
169 			    "%d. old csum in old location", dbg_csc);
170 			DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++);
171 		}
172 	}
173 #endif /* FS_DEBUG */
174 	DBG_PRINT0("fscs read\n");
175 
176 	/*
177 	 * Do all needed changes in the former last cylinder group.
178 	 */
179 	updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag);
180 
181 	/*
182 	 * Dump out summary information about file system.
183 	 */
184 #ifdef FS_DEBUG
185 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
186 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
187 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
188 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
189 	    sblock.fs_fsize);
190 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
191 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
192 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
193 	if (sblock.fs_flags & FS_DOSOFTDEP)
194 		printf("\twith soft updates\n");
195 #undef B2MBFACTOR
196 #endif /* FS_DEBUG */
197 
198 	/*
199 	 * Now build the cylinders group blocks and
200 	 * then print out indices of cylinder groups.
201 	 */
202 	printf("super-block backups (for fsck_ffs -b #) at:\n");
203 	i = 0;
204 	width = charsperline();
205 
206 	/*
207 	 * Iterate for only the new cylinder groups.
208 	 */
209 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
210 		initcg(cylno, modtime, fso, Nflag);
211 		j = sprintf(tmpbuf, " %jd%s",
212 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
213 		    cylno < (sblock.fs_ncg - 1) ? "," : "" );
214 		if (i + j >= width) {
215 			printf("\n");
216 			i = 0;
217 		}
218 		i += j;
219 		printf("%s", tmpbuf);
220 		fflush(stdout);
221 	}
222 	printf("\n");
223 
224 	/*
225 	 * Do all needed changes in the first cylinder group.
226 	 * allocate blocks in new location
227 	 */
228 	updcsloc(modtime, fsi, fso, Nflag);
229 
230 	/*
231 	 * Clean up the dynamic fields in our superblock.
232 	 *
233 	 * XXX
234 	 * The following fields are currently distributed from the superblock
235 	 * to the copies:
236 	 *     fs_minfree
237 	 *     fs_rotdelay
238 	 *     fs_maxcontig
239 	 *     fs_maxbpg
240 	 *     fs_minfree,
241 	 *     fs_optim
242 	 *     fs_flags
243 	 *
244 	 * We probably should rather change the summary for the cylinder group
245 	 * statistics here to the value of what would be in there, if the file
246 	 * system were created initially with the new size. Therefor we still
247 	 * need to find an easy way of calculating that.
248 	 * Possibly we can try to read the first superblock copy and apply the
249 	 * "diffed" stats between the old and new superblock by still copying
250 	 * certain parameters onto that.
251 	 */
252 	sblock.fs_time = modtime;
253 	sblock.fs_fmod = 0;
254 	sblock.fs_clean = 1;
255 	sblock.fs_ronly = 0;
256 	sblock.fs_cgrotor = 0;
257 	sblock.fs_state = 0;
258 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
259 
260 	/*
261 	 * Now write the new superblock, its summary information,
262 	 * and all the alternates back to disk.
263 	 */
264 	if (!Nflag && sbput(fso, &sblock, sblock.fs_ncg) != 0)
265 		errc(2, EIO, "could not write updated superblock");
266 	DBG_PRINT0("fscs written\n");
267 
268 #ifdef FS_DEBUG
269 	{
270 		struct csum	*dbg_csp;
271 		u_int32_t	dbg_csc;
272 		char	dbg_line[80];
273 
274 		dbg_csp = fscs;
275 		for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) {
276 			snprintf(dbg_line, sizeof(dbg_line),
277 			    "%d. new csum in new location", dbg_csc);
278 			DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++);
279 		}
280 	}
281 #endif /* FS_DEBUG */
282 
283 	DBG_PRINT0("sblock written\n");
284 	DBG_DUMP_FS(&sblock, "new initial sblock");
285 
286 	DBG_PRINT0("sblock copies written\n");
287 	DBG_DUMP_FS(&sblock, "new other sblocks");
288 
289 	DBG_LEAVE;
290 	return;
291 }
292 
293 /*
294  * This creates a new cylinder group structure, for more details please see
295  * the source of newfs(8), as this function is taken over almost unchanged.
296  * As this is never called for the first cylinder group, the special
297  * provisions for that case are removed here.
298  */
299 static void
300 initcg(int cylno, time_t modtime, int fso, unsigned int Nflag)
301 {
302 	DBG_FUNC("initcg")
303 	static caddr_t iobuf;
304 	long blkno, start;
305 	ino_t ino;
306 	ufs2_daddr_t i, cbase, dmax;
307 	struct ufs1_dinode *dp1;
308 	struct csum *cs;
309 	uint j, d, dupper, dlower;
310 
311 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize * 3)) == NULL)
312 		errx(37, "panic: cannot allocate I/O buffer");
313 
314 	/*
315 	 * Determine block bounds for cylinder group.
316 	 * Allow space for super block summary information in first
317 	 * cylinder group.
318 	 */
319 	cbase = cgbase(&sblock, cylno);
320 	dmax = cbase + sblock.fs_fpg;
321 	if (dmax > sblock.fs_size)
322 		dmax = sblock.fs_size;
323 	dlower = cgsblock(&sblock, cylno) - cbase;
324 	dupper = cgdmin(&sblock, cylno) - cbase;
325 	if (cylno == 0)	/* XXX fscs may be relocated */
326 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
327 	cs = &fscs[cylno];
328 	memset(&acg, 0, sblock.fs_cgsize);
329 	acg.cg_time = modtime;
330 	acg.cg_magic = CG_MAGIC;
331 	acg.cg_cgx = cylno;
332 	acg.cg_niblk = sblock.fs_ipg;
333 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
334 	acg.cg_ndblk = dmax - cbase;
335 	if (sblock.fs_contigsumsize > 0)
336 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
337 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
338 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
339 		acg.cg_iusedoff = start;
340 	} else {
341 		acg.cg_old_ncyl = sblock.fs_old_cpg;
342 		acg.cg_old_time = acg.cg_time;
343 		acg.cg_time = 0;
344 		acg.cg_old_niblk = acg.cg_niblk;
345 		acg.cg_niblk = 0;
346 		acg.cg_initediblk = 0;
347 		acg.cg_old_btotoff = start;
348 		acg.cg_old_boff = acg.cg_old_btotoff +
349 		    sblock.fs_old_cpg * sizeof(int32_t);
350 		acg.cg_iusedoff = acg.cg_old_boff +
351 		    sblock.fs_old_cpg * sizeof(u_int16_t);
352 	}
353 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
354 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
355 	if (sblock.fs_contigsumsize > 0) {
356 		acg.cg_clustersumoff =
357 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
358 		acg.cg_clustersumoff -= sizeof(u_int32_t);
359 		acg.cg_clusteroff = acg.cg_clustersumoff +
360 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
361 		acg.cg_nextfreeoff = acg.cg_clusteroff +
362 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
363 	}
364 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
365 		/*
366 		 * This should never happen as we would have had that panic
367 		 * already on file system creation
368 		 */
369 		errx(37, "panic: cylinder group too big");
370 	}
371 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
372 	if (cylno == 0)
373 		for (ino = 0; ino < UFS_ROOTINO; ino++) {
374 			setbit(cg_inosused(&acg), ino);
375 			acg.cg_cs.cs_nifree--;
376 		}
377 	/*
378 	 * For the old file system, we have to initialize all the inodes.
379 	 */
380 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
381 		bzero(iobuf, sblock.fs_bsize);
382 		for (i = 0; i < sblock.fs_ipg / INOPF(&sblock);
383 		    i += sblock.fs_frag) {
384 			dp1 = (struct ufs1_dinode *)(void *)iobuf;
385 			for (j = 0; j < INOPB(&sblock); j++) {
386 				dp1->di_gen = arc4random();
387 				dp1++;
388 			}
389 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
390 			    sblock.fs_bsize, iobuf, fso, Nflag);
391 		}
392 	}
393 	if (cylno > 0) {
394 		/*
395 		 * In cylno 0, beginning space is reserved
396 		 * for boot and super blocks.
397 		 */
398 		for (d = 0; d < dlower; d += sblock.fs_frag) {
399 			blkno = d / sblock.fs_frag;
400 			setblock(&sblock, cg_blksfree(&acg), blkno);
401 			if (sblock.fs_contigsumsize > 0)
402 				setbit(cg_clustersfree(&acg), blkno);
403 			acg.cg_cs.cs_nbfree++;
404 		}
405 		sblock.fs_dsize += dlower;
406 	}
407 	sblock.fs_dsize += acg.cg_ndblk - dupper;
408 	if ((i = dupper % sblock.fs_frag)) {
409 		acg.cg_frsum[sblock.fs_frag - i]++;
410 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
411 			setbit(cg_blksfree(&acg), dupper);
412 			acg.cg_cs.cs_nffree++;
413 		}
414 	}
415 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
416 	    d += sblock.fs_frag) {
417 		blkno = d / sblock.fs_frag;
418 		setblock(&sblock, cg_blksfree(&acg), blkno);
419 		if (sblock.fs_contigsumsize > 0)
420 			setbit(cg_clustersfree(&acg), blkno);
421 		acg.cg_cs.cs_nbfree++;
422 	}
423 	if (d < acg.cg_ndblk) {
424 		acg.cg_frsum[acg.cg_ndblk - d]++;
425 		for (; d < acg.cg_ndblk; d++) {
426 			setbit(cg_blksfree(&acg), d);
427 			acg.cg_cs.cs_nffree++;
428 		}
429 	}
430 	if (sblock.fs_contigsumsize > 0) {
431 		int32_t *sump = cg_clustersum(&acg);
432 		u_char *mapp = cg_clustersfree(&acg);
433 		int map = *mapp++;
434 		int bit = 1;
435 		int run = 0;
436 
437 		for (i = 0; i < acg.cg_nclusterblks; i++) {
438 			if ((map & bit) != 0)
439 				run++;
440 			else if (run != 0) {
441 				if (run > sblock.fs_contigsumsize)
442 					run = sblock.fs_contigsumsize;
443 				sump[run]++;
444 				run = 0;
445 			}
446 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
447 				bit <<= 1;
448 			else {
449 				map = *mapp++;
450 				bit = 1;
451 			}
452 		}
453 		if (run != 0) {
454 			if (run > sblock.fs_contigsumsize)
455 				run = sblock.fs_contigsumsize;
456 			sump[run]++;
457 		}
458 	}
459 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
460 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
461 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
462 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
463 	*cs = acg.cg_cs;
464 
465 	cgckhash(&acg);
466 	memcpy(iobuf, &acg, sblock.fs_cgsize);
467 	memset(iobuf + sblock.fs_cgsize, '\0',
468 	    sblock.fs_bsize * 3 - sblock.fs_cgsize);
469 
470 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
471 	    sblock.fs_bsize * 3, iobuf, fso, Nflag);
472 	DBG_DUMP_CG(&sblock, "new cg", &acg);
473 
474 	DBG_LEAVE;
475 	return;
476 }
477 
478 /*
479  * Here we add or subtract (sign +1/-1) the available fragments in a given
480  * block to or from the fragment statistics. By subtracting before and adding
481  * after an operation on the free frag map we can easy update the fragment
482  * statistic, which seems to be otherwise a rather complex operation.
483  */
484 static void
485 frag_adjust(ufs2_daddr_t frag, int sign)
486 {
487 	DBG_FUNC("frag_adjust")
488 	int fragsize;
489 	int f;
490 
491 	DBG_ENTER;
492 
493 	fragsize = 0;
494 	/*
495 	 * Here frag only needs to point to any fragment in the block we want
496 	 * to examine.
497 	 */
498 	for (f = rounddown(frag, sblock.fs_frag);
499 	    f < roundup(frag + 1, sblock.fs_frag); f++) {
500 		/*
501 		 * Count contiguous free fragments.
502 		 */
503 		if (isset(cg_blksfree(&acg), f)) {
504 			fragsize++;
505 		} else {
506 			if (fragsize && fragsize < sblock.fs_frag) {
507 				/*
508 				 * We found something in between.
509 				 */
510 				acg.cg_frsum[fragsize] += sign;
511 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
512 				    fragsize, sign);
513 			}
514 			fragsize = 0;
515 		}
516 	}
517 	if (fragsize && fragsize < sblock.fs_frag) {
518 		/*
519 		 * We found something.
520 		 */
521 		acg.cg_frsum[fragsize] += sign;
522 		DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign);
523 	}
524 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign);
525 
526 	DBG_LEAVE;
527 	return;
528 }
529 
530 /*
531  * Here we do all needed work for the former last cylinder group. It has to be
532  * changed in any case, even if the file system ended exactly on the end of
533  * this group, as there is some slightly inconsistent handling of the number
534  * of cylinders in the cylinder group. We start again by reading the cylinder
535  * group from disk. If the last block was not fully available, we first handle
536  * the missing fragments, then we handle all new full blocks in that file
537  * system and finally we handle the new last fragmented block in the file
538  * system.  We again have to handle the fragment statistics rotational layout
539  * tables and cluster summary during all those operations.
540  */
541 static void
542 updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag)
543 {
544 	DBG_FUNC("updjcg")
545 	ufs2_daddr_t cbase, dmax, dupper;
546 	struct csum *cs;
547 	int i, k;
548 	int j = 0;
549 
550 	DBG_ENTER;
551 
552 	/*
553 	 * Read the former last (joining) cylinder group from disk, and make
554 	 * a copy.
555 	 */
556 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
557 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
558 	DBG_PRINT0("jcg read\n");
559 	DBG_DUMP_CG(&sblock, "old joining cg", &aocg);
560 
561 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
562 
563 	/*
564 	 * If the cylinder group had already its new final size almost
565 	 * nothing is to be done ... except:
566 	 * For some reason the value of cg_ncyl in the last cylinder group has
567 	 * to be zero instead of fs_cpg. As this is now no longer the last
568 	 * cylinder group we have to change that value now to fs_cpg.
569 	 */
570 
571 	if (cgbase(&osblock, cylno + 1) == osblock.fs_size) {
572 		if (sblock.fs_magic == FS_UFS1_MAGIC)
573 			acg.cg_old_ncyl = sblock.fs_old_cpg;
574 
575 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
576 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
577 		DBG_PRINT0("jcg written\n");
578 		DBG_DUMP_CG(&sblock, "new joining cg", &acg);
579 
580 		DBG_LEAVE;
581 		return;
582 	}
583 
584 	/*
585 	 * Set up some variables needed later.
586 	 */
587 	cbase = cgbase(&sblock, cylno);
588 	dmax = cbase + sblock.fs_fpg;
589 	if (dmax > sblock.fs_size)
590 		dmax = sblock.fs_size;
591 	dupper = cgdmin(&sblock, cylno) - cbase;
592 	if (cylno == 0) /* XXX fscs may be relocated */
593 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
594 
595 	/*
596 	 * Set pointer to the cylinder summary for our cylinder group.
597 	 */
598 	cs = fscs + cylno;
599 
600 	/*
601 	 * Touch the cylinder group, update all fields in the cylinder group as
602 	 * needed, update the free space in the superblock.
603 	 */
604 	acg.cg_time = modtime;
605 	if ((unsigned)cylno == sblock.fs_ncg - 1) {
606 		/*
607 		 * This is still the last cylinder group.
608 		 */
609 		if (sblock.fs_magic == FS_UFS1_MAGIC)
610 			acg.cg_old_ncyl =
611 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
612 	} else {
613 		acg.cg_old_ncyl = sblock.fs_old_cpg;
614 	}
615 	DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg);
616 #ifdef FS_DEBUG
617 	if (sblock.fs_magic == FS_UFS1_MAGIC)
618 		DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg);
619 #endif
620 	DBG_PRINT0("\n");
621 	acg.cg_ndblk = dmax - cbase;
622 	sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk;
623 	if (sblock.fs_contigsumsize > 0)
624 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
625 
626 	/*
627 	 * Now we have to update the free fragment bitmap for our new free
628 	 * space.  There again we have to handle the fragmentation and also
629 	 * the rotational layout tables and the cluster summary.  This is
630 	 * also done per fragment for the first new block if the old file
631 	 * system end was not on a block boundary, per fragment for the new
632 	 * last block if the new file system end is not on a block boundary,
633 	 * and per block for all space in between.
634 	 *
635 	 * Handle the first new block here if it was partially available
636 	 * before.
637 	 */
638 	if (osblock.fs_size % sblock.fs_frag) {
639 		if (roundup(osblock.fs_size, sblock.fs_frag) <=
640 		    sblock.fs_size) {
641 			/*
642 			 * The new space is enough to fill at least this
643 			 * block
644 			 */
645 			j = 0;
646 			for (i = roundup(osblock.fs_size - cbase,
647 			    sblock.fs_frag) - 1; i >= osblock.fs_size - cbase;
648 			    i--) {
649 				setbit(cg_blksfree(&acg), i);
650 				acg.cg_cs.cs_nffree++;
651 				j++;
652 			}
653 
654 			/*
655 			 * Check if the fragment just created could join an
656 			 * already existing fragment at the former end of the
657 			 * file system.
658 			 */
659 			if (isblock(&sblock, cg_blksfree(&acg),
660 			    ((osblock.fs_size - cgbase(&sblock, cylno)) /
661 			     sblock.fs_frag))) {
662 				/*
663 				 * The block is now completely available.
664 				 */
665 				DBG_PRINT0("block was\n");
666 				acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--;
667 				acg.cg_cs.cs_nbfree++;
668 				acg.cg_cs.cs_nffree -= sblock.fs_frag;
669 				k = rounddown(osblock.fs_size - cbase,
670 				    sblock.fs_frag);
671 				updclst((osblock.fs_size - cbase) /
672 				    sblock.fs_frag);
673 			} else {
674 				/*
675 				 * Lets rejoin a possible partially growed
676 				 * fragment.
677 				 */
678 				k = 0;
679 				while (isset(cg_blksfree(&acg), i) &&
680 				    (i >= rounddown(osblock.fs_size - cbase,
681 				    sblock.fs_frag))) {
682 					i--;
683 					k++;
684 				}
685 				if (k)
686 					acg.cg_frsum[k]--;
687 				acg.cg_frsum[k + j]++;
688 			}
689 		} else {
690 			/*
691 			 * We only grow by some fragments within this last
692 			 * block.
693 			 */
694 			for (i = sblock.fs_size - cbase - 1;
695 			    i >= osblock.fs_size - cbase; i--) {
696 				setbit(cg_blksfree(&acg), i);
697 				acg.cg_cs.cs_nffree++;
698 				j++;
699 			}
700 			/*
701 			 * Lets rejoin a possible partially growed fragment.
702 			 */
703 			k = 0;
704 			while (isset(cg_blksfree(&acg), i) &&
705 			    (i >= rounddown(osblock.fs_size - cbase,
706 			    sblock.fs_frag))) {
707 				i--;
708 				k++;
709 			}
710 			if (k)
711 				acg.cg_frsum[k]--;
712 			acg.cg_frsum[k + j]++;
713 		}
714 	}
715 
716 	/*
717 	 * Handle all new complete blocks here.
718 	 */
719 	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
720 	    i + sblock.fs_frag <= dmax - cbase;	/* XXX <= or only < ? */
721 	    i += sblock.fs_frag) {
722 		j = i / sblock.fs_frag;
723 		setblock(&sblock, cg_blksfree(&acg), j);
724 		updclst(j);
725 		acg.cg_cs.cs_nbfree++;
726 	}
727 
728 	/*
729 	 * Handle the last new block if there are stll some new fragments left.
730 	 * Here we don't have to bother about the cluster summary or the even
731 	 * the rotational layout table.
732 	 */
733 	if (i < (dmax - cbase)) {
734 		acg.cg_frsum[dmax - cbase - i]++;
735 		for (; i < dmax - cbase; i++) {
736 			setbit(cg_blksfree(&acg), i);
737 			acg.cg_cs.cs_nffree++;
738 		}
739 	}
740 
741 	sblock.fs_cstotal.cs_nffree +=
742 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
743 	sblock.fs_cstotal.cs_nbfree +=
744 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
745 	/*
746 	 * The following statistics are not changed here:
747 	 *     sblock.fs_cstotal.cs_ndir
748 	 *     sblock.fs_cstotal.cs_nifree
749 	 * As the statistics for this cylinder group are ready, copy it to
750 	 * the summary information array.
751 	 */
752 	*cs = acg.cg_cs;
753 
754 	/*
755 	 * Write the updated "joining" cylinder group back to disk.
756 	 */
757 	cgckhash(&acg);
758 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
759 	    (void *)&acg, fso, Nflag);
760 	DBG_PRINT0("jcg written\n");
761 	DBG_DUMP_CG(&sblock, "new joining cg", &acg);
762 
763 	DBG_LEAVE;
764 	return;
765 }
766 
767 /*
768  * Here we update the location of the cylinder summary. We have two possible
769  * ways of growing the cylinder summary:
770  * (1)	We can try to grow the summary in the current location, and relocate
771  *	possibly used blocks within the current cylinder group.
772  * (2)	Alternatively we can relocate the whole cylinder summary to the first
773  *	new completely empty cylinder group. Once the cylinder summary is no
774  *	longer in the beginning of the first cylinder group you should never
775  *	use a version of fsck which is not aware of the possibility to have
776  *	this structure in a non standard place.
777  * Option (2) is considered to be less intrusive to the structure of the file-
778  * system, so that's the one being used.
779  */
780 static void
781 updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag)
782 {
783 	DBG_FUNC("updcsloc")
784 	struct csum *cs;
785 	int ocscg, ncscg;
786 	ufs2_daddr_t d;
787 	int lcs = 0;
788 	int block;
789 
790 	DBG_ENTER;
791 
792 	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
793 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
794 		/*
795 		 * No new fragment needed.
796 		 */
797 		DBG_LEAVE;
798 		return;
799 	}
800 	ocscg = dtog(&osblock, osblock.fs_csaddr);
801 	cs = fscs + ocscg;
802 
803 	/*
804 	 * Read original cylinder group from disk, and make a copy.
805 	 * XXX	If Nflag is set in some very rare cases we now miss
806 	 *	some changes done in updjcg by reading the unmodified
807 	 *	block from disk.
808 	 */
809 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
810 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
811 	DBG_PRINT0("oscg read\n");
812 	DBG_DUMP_CG(&sblock, "old summary cg", &aocg);
813 
814 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
815 
816 	/*
817 	 * Touch the cylinder group, set up local variables needed later
818 	 * and update the superblock.
819 	 */
820 	acg.cg_time = modtime;
821 
822 	/*
823 	 * XXX	In the case of having active snapshots we may need much more
824 	 *	blocks for the copy on write. We need each block twice, and
825 	 *	also up to 8*3 blocks for indirect blocks for all possible
826 	 *	references.
827 	 */
828 	/*
829 	 * There is not enough space in the old cylinder group to
830 	 * relocate all blocks as needed, so we relocate the whole
831 	 * cylinder group summary to a new group. We try to use the
832 	 * first complete new cylinder group just created. Within the
833 	 * cylinder group we align the area immediately after the
834 	 * cylinder group information location in order to be as
835 	 * close as possible to the original implementation of ffs.
836 	 *
837 	 * First we have to make sure we'll find enough space in the
838 	 * new cylinder group. If not, then we currently give up.
839 	 * We start with freeing everything which was used by the
840 	 * fragments of the old cylinder summary in the current group.
841 	 * Now we write back the group meta data, read in the needed
842 	 * meta data from the new cylinder group, and start allocating
843 	 * within that group. Here we can assume, the group to be
844 	 * completely empty. Which makes the handling of fragments and
845 	 * clusters a lot easier.
846 	 */
847 	DBG_TRC;
848 	if (sblock.fs_ncg - osblock.fs_ncg < 2)
849 		errx(2, "panic: not enough space");
850 
851 	/*
852 	 * Point "d" to the first fragment not used by the cylinder
853 	 * summary.
854 	 */
855 	d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
856 
857 	/*
858 	 * Set up last cluster size ("lcs") already here. Calculate
859 	 * the size for the trailing cluster just behind where "d"
860 	 * points to.
861 	 */
862 	if (sblock.fs_contigsumsize > 0) {
863 		for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
864 		    lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) {
865 			if (isclr(cg_clustersfree(&acg), block))
866 				break;
867 		}
868 	}
869 
870 	/*
871 	 * Point "d" to the last frag used by the cylinder summary.
872 	 */
873 	d--;
874 
875 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
876 	if ((d + 1) % sblock.fs_frag) {
877 		/*
878 		 * The end of the cylinder summary is not a complete
879 		 * block.
880 		 */
881 		DBG_TRC;
882 		frag_adjust(d % sblock.fs_fpg, -1);
883 		for (; (d + 1) % sblock.fs_frag; d--) {
884 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
885 			setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
886 			acg.cg_cs.cs_nffree++;
887 			sblock.fs_cstotal.cs_nffree++;
888 		}
889 		/*
890 		 * Point "d" to the last fragment of the last
891 		 * (incomplete) block of the cylinder summary.
892 		 */
893 		d++;
894 		frag_adjust(d % sblock.fs_fpg, 1);
895 
896 		if (isblock(&sblock, cg_blksfree(&acg),
897 		    (d % sblock.fs_fpg) / sblock.fs_frag)) {
898 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
899 			acg.cg_cs.cs_nffree -= sblock.fs_frag;
900 			acg.cg_cs.cs_nbfree++;
901 			sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
902 			sblock.fs_cstotal.cs_nbfree++;
903 			if (sblock.fs_contigsumsize > 0) {
904 				setbit(cg_clustersfree(&acg),
905 				    (d % sblock.fs_fpg) / sblock.fs_frag);
906 				if (lcs < sblock.fs_contigsumsize) {
907 					if (lcs)
908 						cg_clustersum(&acg)[lcs]--;
909 					lcs++;
910 					cg_clustersum(&acg)[lcs]++;
911 				}
912 			}
913 		}
914 		/*
915 		 * Point "d" to the first fragment of the block before
916 		 * the last incomplete block.
917 		 */
918 		d--;
919 	}
920 
921 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
922 	for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
923 	    d -= sblock.fs_frag) {
924 		DBG_TRC;
925 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
926 		setblock(&sblock, cg_blksfree(&acg),
927 		    (d % sblock.fs_fpg) / sblock.fs_frag);
928 		acg.cg_cs.cs_nbfree++;
929 		sblock.fs_cstotal.cs_nbfree++;
930 		if (sblock.fs_contigsumsize > 0) {
931 			setbit(cg_clustersfree(&acg),
932 			    (d % sblock.fs_fpg) / sblock.fs_frag);
933 			/*
934 			 * The last cluster size is already set up.
935 			 */
936 			if (lcs < sblock.fs_contigsumsize) {
937 				if (lcs)
938 					cg_clustersum(&acg)[lcs]--;
939 				lcs++;
940 				cg_clustersum(&acg)[lcs]++;
941 			}
942 		}
943 	}
944 	*cs = acg.cg_cs;
945 
946 	/*
947 	 * Now write the former cylinder group containing the cylinder
948 	 * summary back to disk.
949 	 */
950 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
951 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
952 	DBG_PRINT0("oscg written\n");
953 	DBG_DUMP_CG(&sblock, "old summary cg", &acg);
954 
955 	/*
956 	 * Find the beginning of the new cylinder group containing the
957 	 * cylinder summary.
958 	 */
959 	sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
960 	ncscg = dtog(&sblock, sblock.fs_csaddr);
961 	cs = fscs + ncscg;
962 
963 	/*
964 	 * If Nflag is specified, we would now read random data instead
965 	 * of an empty cg structure from disk. So we can't simulate that
966 	 * part for now.
967 	 */
968 	if (Nflag) {
969 		DBG_PRINT0("nscg update skipped\n");
970 		DBG_LEAVE;
971 		return;
972 	}
973 
974 	/*
975 	 * Read the future cylinder group containing the cylinder
976 	 * summary from disk, and make a copy.
977 	 */
978 	rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
979 	    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
980 	DBG_PRINT0("nscg read\n");
981 	DBG_DUMP_CG(&sblock, "new summary cg", &aocg);
982 
983 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
984 
985 	/*
986 	 * Allocate all complete blocks used by the new cylinder
987 	 * summary.
988 	 */
989 	for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
990 	    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
991 	    d += sblock.fs_frag) {
992 		clrblock(&sblock, cg_blksfree(&acg),
993 		    (d % sblock.fs_fpg) / sblock.fs_frag);
994 		acg.cg_cs.cs_nbfree--;
995 		sblock.fs_cstotal.cs_nbfree--;
996 		if (sblock.fs_contigsumsize > 0) {
997 			clrbit(cg_clustersfree(&acg),
998 			    (d % sblock.fs_fpg) / sblock.fs_frag);
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Allocate all fragments used by the cylinder summary in the
1004 	 * last block.
1005 	 */
1006 	if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1007 		for (; d - sblock.fs_csaddr <
1008 		    sblock.fs_cssize/sblock.fs_fsize; d++) {
1009 			clrbit(cg_blksfree(&acg), d % sblock.fs_fpg);
1010 			acg.cg_cs.cs_nffree--;
1011 			sblock.fs_cstotal.cs_nffree--;
1012 		}
1013 		acg.cg_cs.cs_nbfree--;
1014 		acg.cg_cs.cs_nffree += sblock.fs_frag;
1015 		sblock.fs_cstotal.cs_nbfree--;
1016 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1017 		if (sblock.fs_contigsumsize > 0)
1018 			clrbit(cg_clustersfree(&acg),
1019 			    (d % sblock.fs_fpg) / sblock.fs_frag);
1020 
1021 		frag_adjust(d % sblock.fs_fpg, 1);
1022 	}
1023 	/*
1024 	 * XXX	Handle the cluster statistics here in the case this
1025 	 *	cylinder group is now almost full, and the remaining
1026 	 *	space is less then the maximum cluster size. This is
1027 	 *	probably not needed, as you would hardly find a file
1028 	 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1029 	 *	space right behind the cylinder group information in
1030 	 *	any new cylinder group.
1031 	 */
1032 
1033 	/*
1034 	 * Update our statistics in the cylinder summary.
1035 	 */
1036 	*cs = acg.cg_cs;
1037 
1038 	/*
1039 	 * Write the new cylinder group containing the cylinder summary
1040 	 * back to disk.
1041 	 */
1042 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1043 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1044 	DBG_PRINT0("nscg written\n");
1045 	DBG_DUMP_CG(&sblock, "new summary cg", &acg);
1046 
1047 	DBG_LEAVE;
1048 	return;
1049 }
1050 
1051 /*
1052  * Here we read some block(s) from disk.
1053  */
1054 static void
1055 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1056 {
1057 	DBG_FUNC("rdfs")
1058 	ssize_t	n;
1059 
1060 	DBG_ENTER;
1061 
1062 	if (bno < 0)
1063 		err(32, "rdfs: attempting to read negative block number");
1064 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0)
1065 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1066 	n = read(fsi, bf, size);
1067 	if (n != (ssize_t)size)
1068 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1069 
1070 	DBG_LEAVE;
1071 	return;
1072 }
1073 
1074 /*
1075  * Here we write some block(s) to disk.
1076  */
1077 static void
1078 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1079 {
1080 	DBG_FUNC("wtfs")
1081 	ssize_t	n;
1082 
1083 	DBG_ENTER;
1084 
1085 	if (Nflag) {
1086 		DBG_LEAVE;
1087 		return;
1088 	}
1089 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0)
1090 		err(35, "wtfs: seek error: %ld", (long)bno);
1091 	n = write(fso, bf, size);
1092 	if (n != (ssize_t)size)
1093 		err(36, "wtfs: write error: %ld", (long)bno);
1094 
1095 	DBG_LEAVE;
1096 	return;
1097 }
1098 
1099 /*
1100  * Here we check if all frags of a block are free. For more details again
1101  * please see the source of newfs(8), as this function is taken over almost
1102  * unchanged.
1103  */
1104 static int
1105 isblock(struct fs *fs, unsigned char *cp, int h)
1106 {
1107 	DBG_FUNC("isblock")
1108 	unsigned char mask;
1109 
1110 	DBG_ENTER;
1111 
1112 	switch (fs->fs_frag) {
1113 	case 8:
1114 		DBG_LEAVE;
1115 		return (cp[h] == 0xff);
1116 	case 4:
1117 		mask = 0x0f << ((h & 0x1) << 2);
1118 		DBG_LEAVE;
1119 		return ((cp[h >> 1] & mask) == mask);
1120 	case 2:
1121 		mask = 0x03 << ((h & 0x3) << 1);
1122 		DBG_LEAVE;
1123 		return ((cp[h >> 2] & mask) == mask);
1124 	case 1:
1125 		mask = 0x01 << (h & 0x7);
1126 		DBG_LEAVE;
1127 		return ((cp[h >> 3] & mask) == mask);
1128 	default:
1129 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1130 		DBG_LEAVE;
1131 		return (0);
1132 	}
1133 }
1134 
1135 /*
1136  * Here we allocate a complete block in the block map. For more details again
1137  * please see the source of newfs(8), as this function is taken over almost
1138  * unchanged.
1139  */
1140 static void
1141 clrblock(struct fs *fs, unsigned char *cp, int h)
1142 {
1143 	DBG_FUNC("clrblock")
1144 
1145 	DBG_ENTER;
1146 
1147 	switch ((fs)->fs_frag) {
1148 	case 8:
1149 		cp[h] = 0;
1150 		break;
1151 	case 4:
1152 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1153 		break;
1154 	case 2:
1155 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1156 		break;
1157 	case 1:
1158 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1159 		break;
1160 	default:
1161 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1162 		break;
1163 	}
1164 
1165 	DBG_LEAVE;
1166 	return;
1167 }
1168 
1169 /*
1170  * Here we free a complete block in the free block map. For more details again
1171  * please see the source of newfs(8), as this function is taken over almost
1172  * unchanged.
1173  */
1174 static void
1175 setblock(struct fs *fs, unsigned char *cp, int h)
1176 {
1177 	DBG_FUNC("setblock")
1178 
1179 	DBG_ENTER;
1180 
1181 	switch (fs->fs_frag) {
1182 	case 8:
1183 		cp[h] = 0xff;
1184 		break;
1185 	case 4:
1186 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1187 		break;
1188 	case 2:
1189 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1190 		break;
1191 	case 1:
1192 		cp[h >> 3] |= (0x01 << (h & 0x7));
1193 		break;
1194 	default:
1195 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1196 		break;
1197 	}
1198 
1199 	DBG_LEAVE;
1200 	return;
1201 }
1202 
1203 /*
1204  * Figure out how many lines our current terminal has. For more details again
1205  * please see the source of newfs(8), as this function is taken over almost
1206  * unchanged.
1207  */
1208 static int
1209 charsperline(void)
1210 {
1211 	DBG_FUNC("charsperline")
1212 	int columns;
1213 	char *cp;
1214 	struct winsize ws;
1215 
1216 	DBG_ENTER;
1217 
1218 	columns = 0;
1219 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1220 		columns = ws.ws_col;
1221 	if (columns == 0 && (cp = getenv("COLUMNS")))
1222 		columns = atoi(cp);
1223 	if (columns == 0)
1224 		columns = 80;	/* last resort */
1225 
1226 	DBG_LEAVE;
1227 	return (columns);
1228 }
1229 
1230 static int
1231 is_dev(const char *name)
1232 {
1233 	struct stat devstat;
1234 
1235 	if (stat(name, &devstat) != 0)
1236 		return (0);
1237 	if (!S_ISCHR(devstat.st_mode))
1238 		return (0);
1239 	return (1);
1240 }
1241 
1242 /*
1243  * Return mountpoint on which the device is currently mounted.
1244  */
1245 static const struct statfs *
1246 dev_to_statfs(const char *dev)
1247 {
1248 	struct stat devstat, mntdevstat;
1249 	struct statfs *mntbuf, *statfsp;
1250 	char device[MAXPATHLEN];
1251 	char *mntdevname;
1252 	int i, mntsize;
1253 
1254 	/*
1255 	 * First check the mounted filesystems.
1256 	 */
1257 	if (stat(dev, &devstat) != 0)
1258 		return (NULL);
1259 	if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode))
1260 		return (NULL);
1261 
1262 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1263 	for (i = 0; i < mntsize; i++) {
1264 		statfsp = &mntbuf[i];
1265 		mntdevname = statfsp->f_mntfromname;
1266 		if (*mntdevname != '/') {
1267 			strcpy(device, _PATH_DEV);
1268 			strcat(device, mntdevname);
1269 			mntdevname = device;
1270 		}
1271 		if (stat(mntdevname, &mntdevstat) == 0 &&
1272 		    mntdevstat.st_rdev == devstat.st_rdev)
1273 			return (statfsp);
1274 	}
1275 
1276 	return (NULL);
1277 }
1278 
1279 static const char *
1280 mountpoint_to_dev(const char *mountpoint)
1281 {
1282 	struct statfs *mntbuf, *statfsp;
1283 	struct fstab *fs;
1284 	int i, mntsize;
1285 
1286 	/*
1287 	 * First check the mounted filesystems.
1288 	 */
1289 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1290 	for (i = 0; i < mntsize; i++) {
1291 		statfsp = &mntbuf[i];
1292 
1293 		if (strcmp(statfsp->f_mntonname, mountpoint) == 0)
1294 			return (statfsp->f_mntfromname);
1295 	}
1296 
1297 	/*
1298 	 * Check the fstab.
1299 	 */
1300 	fs = getfsfile(mountpoint);
1301 	if (fs != NULL)
1302 		return (fs->fs_spec);
1303 
1304 	return (NULL);
1305 }
1306 
1307 static const char *
1308 getdev(const char *name)
1309 {
1310 	static char device[MAXPATHLEN];
1311 	const char *cp, *dev;
1312 
1313 	if (is_dev(name))
1314 		return (name);
1315 
1316 	cp = strrchr(name, '/');
1317 	if (cp == NULL) {
1318 		snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name);
1319 		if (is_dev(device))
1320 			return (device);
1321 	}
1322 
1323 	dev = mountpoint_to_dev(name);
1324 	if (dev != NULL && is_dev(dev))
1325 		return (dev);
1326 
1327 	return (NULL);
1328 }
1329 
1330 /*
1331  * growfs(8) is a utility which allows to increase the size of an existing
1332  * ufs file system. Currently this can only be done on unmounted file system.
1333  * It recognizes some command line options to specify the new desired size,
1334  * and it does some basic checkings. The old file system size is determined
1335  * and after some more checks like we can really access the new last block
1336  * on the disk etc. we calculate the new parameters for the superblock. After
1337  * having done this we just call growfs() which will do the work.
1338  * We still have to provide support for snapshots. Therefore we first have to
1339  * understand what data structures are always replicated in the snapshot on
1340  * creation, for all other blocks we touch during our procedure, we have to
1341  * keep the old blocks unchanged somewhere available for the snapshots. If we
1342  * are lucky, then we only have to handle our blocks to be relocated in that
1343  * way.
1344  * Also we have to consider in what order we actually update the critical
1345  * data structures of the file system to make sure, that in case of a disaster
1346  * fsck(8) is still able to restore any lost data.
1347  * The foreseen last step then will be to provide for growing even mounted
1348  * file systems. There we have to extend the mount() system call to provide
1349  * userland access to the file system locking facility.
1350  */
1351 int
1352 main(int argc, char **argv)
1353 {
1354 	DBG_FUNC("main")
1355 	struct fs *fs;
1356 	const char *device;
1357 	const struct statfs *statfsp;
1358 	uint64_t size = 0;
1359 	off_t mediasize;
1360 	int error, j, fsi, fso, ch, ret, Nflag = 0, yflag = 0;
1361 	char *p, reply[5], oldsizebuf[6], newsizebuf[6];
1362 	void *testbuf;
1363 
1364 	DBG_ENTER;
1365 
1366 	while ((ch = getopt(argc, argv, "Ns:vy")) != -1) {
1367 		switch(ch) {
1368 		case 'N':
1369 			Nflag = 1;
1370 			break;
1371 		case 's':
1372 			size = (off_t)strtoumax(optarg, &p, 0);
1373 			if (p == NULL || *p == '\0')
1374 				size *= DEV_BSIZE;
1375 			else if (*p == 'b' || *p == 'B')
1376 				; /* do nothing */
1377 			else if (*p == 'k' || *p == 'K')
1378 				size <<= 10;
1379 			else if (*p == 'm' || *p == 'M')
1380 				size <<= 20;
1381 			else if (*p == 'g' || *p == 'G')
1382 				size <<= 30;
1383 			else if (*p == 't' || *p == 'T') {
1384 				size <<= 30;
1385 				size <<= 10;
1386 			} else
1387 				errx(1, "unknown suffix on -s argument");
1388 			break;
1389 		case 'v': /* for compatibility to newfs */
1390 			break;
1391 		case 'y':
1392 			yflag = 1;
1393 			break;
1394 		case '?':
1395 			/* FALLTHROUGH */
1396 		default:
1397 			usage();
1398 		}
1399 	}
1400 	argc -= optind;
1401 	argv += optind;
1402 
1403 	if (argc != 1)
1404 		usage();
1405 
1406 	/*
1407 	 * Now try to guess the device name.
1408 	 */
1409 	device = getdev(*argv);
1410 	if (device == NULL)
1411 		errx(1, "cannot find special device for %s", *argv);
1412 
1413 	statfsp = dev_to_statfs(device);
1414 
1415 	fsi = open(device, O_RDONLY);
1416 	if (fsi < 0)
1417 		err(1, "%s", device);
1418 
1419 	/*
1420 	 * Try to guess the slice size if not specified.
1421 	 */
1422 	if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1)
1423 		err(1,"DIOCGMEDIASIZE");
1424 
1425 	/*
1426 	 * Check if that partition is suitable for growing a file system.
1427 	 */
1428 	if (mediasize < 1)
1429 		errx(1, "partition is unavailable");
1430 
1431 	/*
1432 	 * Read the current superblock, and take a backup.
1433 	 */
1434 	if ((ret = sbget(fsi, &fs, -1)) != 0) {
1435 		switch (ret) {
1436 		case ENOENT:
1437 			errx(1, "superblock not recognized");
1438 		default:
1439 			errc(1, ret, "unable to read superblock");
1440 		}
1441 	}
1442 	memcpy(&osblock, fs, fs->fs_sbsize);
1443 	free(fs);
1444 	memcpy((void *)&fsun1, (void *)&fsun2, osblock.fs_sbsize);
1445 
1446 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
1447 	DBG_DUMP_FS(&sblock, "old sblock");
1448 
1449 	/*
1450 	 * Determine size to grow to. Default to the device size.
1451 	 */
1452 	if (size == 0)
1453 		size = mediasize;
1454 	else {
1455 		if (size > (uint64_t)mediasize) {
1456 			humanize_number(oldsizebuf, sizeof(oldsizebuf), size,
1457 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1458 			humanize_number(newsizebuf, sizeof(newsizebuf),
1459 			    mediasize,
1460 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1461 
1462 			errx(1, "requested size %s is larger "
1463 			    "than the available %s", oldsizebuf, newsizebuf);
1464 		}
1465 	}
1466 
1467 	/*
1468 	 * Make sure the new size is a multiple of fs_fsize; /dev/ufssuspend
1469 	 * only supports fragment-aligned IO requests.
1470 	 */
1471 	size -= size % osblock.fs_fsize;
1472 
1473 	if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) {
1474 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1475 		    osblock.fs_size * osblock.fs_fsize,
1476 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1477 		humanize_number(newsizebuf, sizeof(newsizebuf), size,
1478 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1479 
1480 		errx(1, "requested size %s is not larger than the current "
1481 		   "filesystem size %s", newsizebuf, oldsizebuf);
1482 	}
1483 
1484 	sblock.fs_size = dbtofsb(&osblock, size / DEV_BSIZE);
1485 	sblock.fs_providersize = dbtofsb(&osblock, mediasize / DEV_BSIZE);
1486 
1487 	/*
1488 	 * Are we really growing?
1489 	 */
1490 	if (osblock.fs_size >= sblock.fs_size) {
1491 		errx(1, "we are not growing (%jd->%jd)",
1492 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1493 	}
1494 
1495 	/*
1496 	 * Check if we find an active snapshot.
1497 	 */
1498 	if (yflag == 0) {
1499 		for (j = 0; j < FSMAXSNAP; j++) {
1500 			if (sblock.fs_snapinum[j]) {
1501 				errx(1, "active snapshot found in file system; "
1502 				    "please remove all snapshots before "
1503 				    "using growfs");
1504 			}
1505 			if (!sblock.fs_snapinum[j]) /* list is dense */
1506 				break;
1507 		}
1508 	}
1509 
1510 	if (yflag == 0 && Nflag == 0) {
1511 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0)
1512 			printf("Device is mounted read-write; resizing will "
1513 			    "result in temporary write suspension for %s.\n",
1514 			    statfsp->f_mntonname);
1515 		printf("It's strongly recommended to make a backup "
1516 		    "before growing the file system.\n"
1517 		    "OK to grow filesystem on %s", device);
1518 		if (statfsp != NULL)
1519 			printf(", mounted on %s,", statfsp->f_mntonname);
1520 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1521 		    osblock.fs_size * osblock.fs_fsize,
1522 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1523 		humanize_number(newsizebuf, sizeof(newsizebuf),
1524 		    sblock.fs_size * sblock.fs_fsize,
1525 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1526 		printf(" from %s to %s? [yes/no] ", oldsizebuf, newsizebuf);
1527 		fflush(stdout);
1528 		fgets(reply, (int)sizeof(reply), stdin);
1529 		if (strcasecmp(reply, "yes\n")){
1530 			printf("Response other than \"yes\"; aborting\n");
1531 			exit(0);
1532 		}
1533 	}
1534 
1535 	/*
1536 	 * Try to access our device for writing.  If it's not mounted,
1537 	 * or mounted read-only, simply open it; otherwise, use UFS
1538 	 * suspension mechanism.
1539 	 */
1540 	if (Nflag) {
1541 		fso = -1;
1542 	} else {
1543 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) {
1544 			fso = open(_PATH_UFSSUSPEND, O_RDWR);
1545 			if (fso == -1)
1546 				err(1, "unable to open %s", _PATH_UFSSUSPEND);
1547 			error = ioctl(fso, UFSSUSPEND, &statfsp->f_fsid);
1548 			if (error != 0)
1549 				err(1, "UFSSUSPEND");
1550 		} else {
1551 			fso = open(device, O_WRONLY);
1552 			if (fso < 0)
1553 				err(1, "%s", device);
1554 		}
1555 	}
1556 
1557 	/*
1558 	 * Try to access our new last block in the file system.
1559 	 */
1560 	testbuf = malloc(sblock.fs_fsize);
1561 	if (testbuf == NULL)
1562 		err(1, "malloc");
1563 	rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1564 	    sblock.fs_fsize, testbuf, fsi);
1565 	wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1566 	    sblock.fs_fsize, testbuf, fso, Nflag);
1567 	free(testbuf);
1568 
1569 	/*
1570 	 * Now calculate new superblock values and check for reasonable
1571 	 * bound for new file system size:
1572 	 *     fs_size:    is derived from user input
1573 	 *     fs_dsize:   should get updated in the routines creating or
1574 	 *                 updating the cylinder groups on the fly
1575 	 *     fs_cstotal: should get updated in the routines creating or
1576 	 *                 updating the cylinder groups
1577 	 */
1578 
1579 	/*
1580 	 * Update the number of cylinders and cylinder groups in the file system.
1581 	 */
1582 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1583 		sblock.fs_old_ncyl =
1584 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
1585 		if (sblock.fs_size * sblock.fs_old_nspf >
1586 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
1587 			sblock.fs_old_ncyl++;
1588 	}
1589 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1590 
1591 	/*
1592 	 * Allocate last cylinder group only if there is enough room
1593 	 * for at least one data block.
1594 	 */
1595 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1596 	    sblock.fs_size <= cgdmin(&sblock, sblock.fs_ncg - 1)) {
1597 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1598 		    (sblock.fs_size % sblock.fs_fpg) * sblock.fs_fsize,
1599 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1600 		warnx("no room to allocate last cylinder group; "
1601 		    "leaving %s unused", oldsizebuf);
1602 		sblock.fs_ncg--;
1603 		if (sblock.fs_magic == FS_UFS1_MAGIC)
1604 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
1605 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
1606 	}
1607 
1608 	/*
1609 	 * Update the space for the cylinder group summary information in the
1610 	 * respective cylinder group data area.
1611 	 */
1612 	sblock.fs_cssize =
1613 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1614 
1615 	if (osblock.fs_size >= sblock.fs_size)
1616 		errx(1, "not enough new space");
1617 
1618 	DBG_PRINT0("sblock calculated\n");
1619 
1620 	/*
1621 	 * Ok, everything prepared, so now let's do the tricks.
1622 	 */
1623 	growfs(fsi, fso, Nflag);
1624 
1625 	close(fsi);
1626 	if (fso > -1) {
1627 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) {
1628 			error = ioctl(fso, UFSRESUME);
1629 			if (error != 0)
1630 				err(1, "UFSRESUME");
1631 		}
1632 		error = close(fso);
1633 		if (error != 0)
1634 			err(1, "close");
1635 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) != 0)
1636 			mount_reload(statfsp);
1637 	}
1638 
1639 	DBG_CLOSE;
1640 
1641 	DBG_LEAVE;
1642 	return (0);
1643 }
1644 
1645 /*
1646  * Dump a line of usage.
1647  */
1648 static void
1649 usage(void)
1650 {
1651 	DBG_FUNC("usage")
1652 
1653 	DBG_ENTER;
1654 
1655 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n");
1656 
1657 	DBG_LEAVE;
1658 	exit(1);
1659 }
1660 
1661 /*
1662  * This updates most parameters and the bitmap related to cluster. We have to
1663  * assume that sblock, osblock, acg are set up.
1664  */
1665 static void
1666 updclst(int block)
1667 {
1668 	DBG_FUNC("updclst")
1669 	static int lcs = 0;
1670 
1671 	DBG_ENTER;
1672 
1673 	if (sblock.fs_contigsumsize < 1) /* no clustering */
1674 		return;
1675 	/*
1676 	 * update cluster allocation map
1677 	 */
1678 	setbit(cg_clustersfree(&acg), block);
1679 
1680 	/*
1681 	 * update cluster summary table
1682 	 */
1683 	if (!lcs) {
1684 		/*
1685 		 * calculate size for the trailing cluster
1686 		 */
1687 		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) {
1688 			if (isclr(cg_clustersfree(&acg), block))
1689 				break;
1690 		}
1691 	}
1692 	if (lcs < sblock.fs_contigsumsize) {
1693 		if (lcs)
1694 			cg_clustersum(&acg)[lcs]--;
1695 		lcs++;
1696 		cg_clustersum(&acg)[lcs]++;
1697 	}
1698 
1699 	DBG_LEAVE;
1700 	return;
1701 }
1702 
1703 static void
1704 mount_reload(const struct statfs *stfs)
1705 {
1706 	char errmsg[255];
1707 	struct iovec *iov;
1708 	int iovlen;
1709 
1710 	iov = NULL;
1711 	iovlen = 0;
1712 	*errmsg = '\0';
1713 	build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4);
1714 	build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1);
1715 	build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg));
1716 	build_iovec(&iov, &iovlen, "update", NULL, 0);
1717 	build_iovec(&iov, &iovlen, "reload", NULL, 0);
1718 
1719 	if (nmount(iov, iovlen, stfs->f_flags) < 0) {
1720 		errmsg[sizeof(errmsg) - 1] = '\0';
1721 		err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname,
1722 		    *errmsg != '\0' ? ": " : "", errmsg);
1723 	}
1724 }
1725 
1726 /*
1727  * Calculate the check-hash of the cylinder group.
1728  */
1729 static void
1730 cgckhash(struct cg *cgp)
1731 {
1732 
1733 	if ((sblock.fs_metackhash & CK_CYLGRP) == 0)
1734 		return;
1735 	cgp->cg_ckhash = 0;
1736 	cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize);
1737 }
1738