xref: /freebsd/sbin/growfs/growfs.c (revision 4c8945a06b01a5c8122cdeb402af36bb46a06acc)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51 
52 /* ********************************************************** INCLUDES ***** */
53 #include <sys/param.h>
54 #include <sys/disklabel.h>
55 #include <sys/ioctl.h>
56 #include <sys/stat.h>
57 #include <sys/disk.h>
58 
59 #include <stdio.h>
60 #include <paths.h>
61 #include <ctype.h>
62 #include <err.h>
63 #include <fcntl.h>
64 #include <limits.h>
65 #include <stdlib.h>
66 #include <stdint.h>
67 #include <string.h>
68 #include <time.h>
69 #include <unistd.h>
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ffs/fs.h>
72 
73 #include "debug.h"
74 
75 /* *************************************************** GLOBALS & TYPES ***** */
76 #ifdef FS_DEBUG
77 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
78 #endif /* FS_DEBUG */
79 
80 static union {
81 	struct fs	fs;
82 	char	pad[SBLOCKSIZE];
83 } fsun1, fsun2;
84 #define	sblock	fsun1.fs	/* the new superblock */
85 #define	osblock	fsun2.fs	/* the old superblock */
86 
87 /*
88  * Possible superblock locations ordered from most to least likely.
89  */
90 static int sblock_try[] = SBLOCKSEARCH;
91 static ufs2_daddr_t sblockloc;
92 
93 static union {
94 	struct cg	cg;
95 	char	pad[MAXBSIZE];
96 } cgun1, cgun2;
97 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
98 #define	aocg	cgun2.cg	/* an old cylinder group */
99 
100 static char	ablk[MAXBSIZE];	/* a block */
101 
102 static struct csum	*fscs;	/* cylinder summary */
103 
104 union dinode {
105 	struct ufs1_dinode dp1;
106 	struct ufs2_dinode dp2;
107 };
108 #define	DIP(dp, field) \
109 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
110 	(uint32_t)(dp)->dp1.field : (dp)->dp2.field)
111 #define	DIP_SET(dp, field, val) do { \
112 	if (sblock.fs_magic == FS_UFS1_MAGIC) \
113 		(dp)->dp1.field = (val); \
114 	else \
115 		(dp)->dp2.field = (val); \
116 	} while (0)
117 static ufs2_daddr_t 	inoblk;			/* inode block address */
118 static char		inobuf[MAXBSIZE];	/* inode block */
119 ino_t			maxino;			/* last valid inode */
120 static int		unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
121 
122 /*
123  * An array of elements of type struct gfs_bpp describes all blocks to
124  * be relocated in order to free the space needed for the cylinder group
125  * summary for all cylinder groups located in the first cylinder group.
126  */
127 struct gfs_bpp {
128 	ufs2_daddr_t	old;		/* old block number */
129 	ufs2_daddr_t	new;		/* new block number */
130 #define GFS_FL_FIRST	1
131 #define GFS_FL_LAST	2
132 	unsigned int	flags;	/* special handling required */
133 	int	found;		/* how many references were updated */
134 };
135 
136 /* ******************************************************** PROTOTYPES ***** */
137 static void	growfs(int, int, unsigned int);
138 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
139 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
140 static ufs2_daddr_t alloc(void);
141 static int	charsperline(void);
142 static void	usage(void);
143 static int	isblock(struct fs *, unsigned char *, int);
144 static void	clrblock(struct fs *, unsigned char *, int);
145 static void	setblock(struct fs *, unsigned char *, int);
146 static void	initcg(int, time_t, int, unsigned int);
147 static void	updjcg(int, time_t, int, int, unsigned int);
148 static void	updcsloc(time_t, int, int, unsigned int);
149 static struct disklabel	*get_disklabel(int);
150 static void	return_disklabel(int, struct disklabel *, unsigned int);
151 static union dinode *ginode(ino_t, int, int);
152 static void	frag_adjust(ufs2_daddr_t, int);
153 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
154 		    unsigned int);
155 static void	updclst(int);
156 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
157 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
158 		    struct gfs_bpp *, int, int, unsigned int);
159 static void	get_dev_size(int, int *);
160 
161 /* ************************************************************ growfs ***** */
162 /*
163  * Here we actually start growing the file system. We basically read the
164  * cylinder summary from the first cylinder group as we want to update
165  * this on the fly during our various operations. First we handle the
166  * changes in the former last cylinder group. Afterwards we create all new
167  * cylinder groups.  Now we handle the cylinder group containing the
168  * cylinder summary which might result in a relocation of the whole
169  * structure.  In the end we write back the updated cylinder summary, the
170  * new superblock, and slightly patched versions of the super block
171  * copies.
172  */
173 static void
174 growfs(int fsi, int fso, unsigned int Nflag)
175 {
176 	DBG_FUNC("growfs")
177 	time_t	utime;
178 	uint	cylno;
179 	int	i, j, width;
180 	char	tmpbuf[100];
181 #ifdef FSIRAND
182 	static int	randinit=0;
183 
184 	DBG_ENTER;
185 
186 	if (!randinit) {
187 		randinit = 1;
188 		srandomdev();
189 	}
190 #else /* not FSIRAND */
191 
192 	DBG_ENTER;
193 
194 #endif /* FSIRAND */
195 	time(&utime);
196 
197 	/*
198 	 * Get the cylinder summary into the memory.
199 	 */
200 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
201 	if(fscs == NULL) {
202 		errx(1, "calloc failed");
203 	}
204 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
205 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
206 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
207 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
208 	}
209 
210 #ifdef FS_DEBUG
211 {
212 	struct csum	*dbg_csp;
213 	int	dbg_csc;
214 	char	dbg_line[80];
215 
216 	dbg_csp=fscs;
217 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
218 		snprintf(dbg_line, sizeof(dbg_line),
219 		    "%d. old csum in old location", dbg_csc);
220 		DBG_DUMP_CSUM(&osblock,
221 		    dbg_line,
222 		    dbg_csp++);
223 	}
224 }
225 #endif /* FS_DEBUG */
226 	DBG_PRINT0("fscs read\n");
227 
228 	/*
229 	 * Do all needed changes in the former last cylinder group.
230 	 */
231 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
232 
233 	/*
234 	 * Dump out summary information about file system.
235 	 */
236 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
237 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
238 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
239 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
240 	    sblock.fs_fsize);
241 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
242 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
243 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
244 	if (sblock.fs_flags & FS_DOSOFTDEP)
245 		printf("\twith soft updates\n");
246 #	undef B2MBFACTOR
247 
248 	/*
249 	 * Now build the cylinders group blocks and
250 	 * then print out indices of cylinder groups.
251 	 */
252 	printf("super-block backups (for fsck -b #) at:\n");
253 	i = 0;
254 	width = charsperline();
255 
256 	/*
257 	 * Iterate for only the new cylinder groups.
258 	 */
259 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
260 		initcg(cylno, utime, fso, Nflag);
261 		j = sprintf(tmpbuf, " %jd%s",
262 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
263 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
264 		if (i + j >= width) {
265 			printf("\n");
266 			i = 0;
267 		}
268 		i += j;
269 		printf("%s", tmpbuf);
270 		fflush(stdout);
271 	}
272 	printf("\n");
273 
274 	/*
275 	 * Do all needed changes in the first cylinder group.
276 	 * allocate blocks in new location
277 	 */
278 	updcsloc(utime, fsi, fso, Nflag);
279 
280 	/*
281 	 * Now write the cylinder summary back to disk.
282 	 */
283 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
284 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
285 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
286 		    (void *)(((char *)fscs) + i), fso, Nflag);
287 	}
288 	DBG_PRINT0("fscs written\n");
289 
290 #ifdef FS_DEBUG
291 {
292 	struct csum	*dbg_csp;
293 	int	dbg_csc;
294 	char	dbg_line[80];
295 
296 	dbg_csp=fscs;
297 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
298 		snprintf(dbg_line, sizeof(dbg_line),
299 		    "%d. new csum in new location", dbg_csc);
300 		DBG_DUMP_CSUM(&sblock,
301 		    dbg_line,
302 		    dbg_csp++);
303 	}
304 }
305 #endif /* FS_DEBUG */
306 
307 	/*
308 	 * Now write the new superblock back to disk.
309 	 */
310 	sblock.fs_time = utime;
311 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
312 	DBG_PRINT0("sblock written\n");
313 	DBG_DUMP_FS(&sblock,
314 	    "new initial sblock");
315 
316 	/*
317 	 * Clean up the dynamic fields in our superblock copies.
318 	 */
319 	sblock.fs_fmod = 0;
320 	sblock.fs_clean = 1;
321 	sblock.fs_ronly = 0;
322 	sblock.fs_cgrotor = 0;
323 	sblock.fs_state = 0;
324 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
325 	sblock.fs_flags &= FS_DOSOFTDEP;
326 
327 	/*
328 	 * XXX
329 	 * The following fields are currently distributed from the superblock
330 	 * to the copies:
331 	 *     fs_minfree
332 	 *     fs_rotdelay
333 	 *     fs_maxcontig
334 	 *     fs_maxbpg
335 	 *     fs_minfree,
336 	 *     fs_optim
337 	 *     fs_flags regarding SOFTPDATES
338 	 *
339 	 * We probably should rather change the summary for the cylinder group
340 	 * statistics here to the value of what would be in there, if the file
341 	 * system were created initially with the new size. Therefor we still
342 	 * need to find an easy way of calculating that.
343 	 * Possibly we can try to read the first superblock copy and apply the
344 	 * "diffed" stats between the old and new superblock by still copying
345 	 * certain parameters onto that.
346 	 */
347 
348 	/*
349 	 * Write out the duplicate super blocks.
350 	 */
351 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
352 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
353 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
354 	}
355 	DBG_PRINT0("sblock copies written\n");
356 	DBG_DUMP_FS(&sblock,
357 	    "new other sblocks");
358 
359 	DBG_LEAVE;
360 	return;
361 }
362 
363 /* ************************************************************ initcg ***** */
364 /*
365  * This creates a new cylinder group structure, for more details please see
366  * the source of newfs(8), as this function is taken over almost unchanged.
367  * As this is never called for the first cylinder group, the special
368  * provisions for that case are removed here.
369  */
370 static void
371 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
372 {
373 	DBG_FUNC("initcg")
374 	static caddr_t iobuf;
375 	long blkno, start;
376 	ufs2_daddr_t i, cbase, dmax;
377 	struct ufs1_dinode *dp1;
378 	struct csum *cs;
379 	uint d, dupper, dlower;
380 
381 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize * 3)) == NULL)
382 		errx(37, "panic: cannot allocate I/O buffer");
383 
384 	/*
385 	 * Determine block bounds for cylinder group.
386 	 * Allow space for super block summary information in first
387 	 * cylinder group.
388 	 */
389 	cbase = cgbase(&sblock, cylno);
390 	dmax = cbase + sblock.fs_fpg;
391 	if (dmax > sblock.fs_size)
392 		dmax = sblock.fs_size;
393 	dlower = cgsblock(&sblock, cylno) - cbase;
394 	dupper = cgdmin(&sblock, cylno) - cbase;
395 	if (cylno == 0)	/* XXX fscs may be relocated */
396 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
397 	cs = &fscs[cylno];
398 	memset(&acg, 0, sblock.fs_cgsize);
399 	acg.cg_time = utime;
400 	acg.cg_magic = CG_MAGIC;
401 	acg.cg_cgx = cylno;
402 	acg.cg_niblk = sblock.fs_ipg;
403 	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
404 	    sblock.fs_ipg : 2 * INOPB(&sblock);
405 	acg.cg_ndblk = dmax - cbase;
406 	if (sblock.fs_contigsumsize > 0)
407 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
408 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
409 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
410 		acg.cg_iusedoff = start;
411 	} else {
412 		acg.cg_old_ncyl = sblock.fs_old_cpg;
413 		acg.cg_old_time = acg.cg_time;
414 		acg.cg_time = 0;
415 		acg.cg_old_niblk = acg.cg_niblk;
416 		acg.cg_niblk = 0;
417 		acg.cg_initediblk = 0;
418 		acg.cg_old_btotoff = start;
419 		acg.cg_old_boff = acg.cg_old_btotoff +
420 		    sblock.fs_old_cpg * sizeof(int32_t);
421 		acg.cg_iusedoff = acg.cg_old_boff +
422 		    sblock.fs_old_cpg * sizeof(u_int16_t);
423 	}
424 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
425 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
426 	if (sblock.fs_contigsumsize > 0) {
427 		acg.cg_clustersumoff =
428 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
429 		acg.cg_clustersumoff -= sizeof(u_int32_t);
430 		acg.cg_clusteroff = acg.cg_clustersumoff +
431 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
432 		acg.cg_nextfreeoff = acg.cg_clusteroff +
433 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
434 	}
435 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
436 		/*
437 		 * This should never happen as we would have had that panic
438 		 * already on file system creation
439 		 */
440 		errx(37, "panic: cylinder group too big");
441 	}
442 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
443 	if (cylno == 0)
444 		for (i = 0; i < ROOTINO; i++) {
445 			setbit(cg_inosused(&acg), i);
446 			acg.cg_cs.cs_nifree--;
447 		}
448 	/*
449 	 * For the old file system, we have to initialize all the inodes.
450 	 */
451 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
452 		bzero(iobuf, sblock.fs_bsize);
453 		for (i = 0; i < sblock.fs_ipg / INOPF(&sblock);
454 		     i += sblock.fs_frag) {
455 			dp1 = (struct ufs1_dinode *)(void *)iobuf;
456 #ifdef FSIRAND
457 			for (j = 0; j < INOPB(&sblock); j++) {
458 				dp1->di_gen = random();
459 				dp1++;
460 			}
461 #endif
462 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
463 			    sblock.fs_bsize, iobuf, fso, Nflag);
464 		}
465 	}
466 	if (cylno > 0) {
467 		/*
468 		 * In cylno 0, beginning space is reserved
469 		 * for boot and super blocks.
470 		 */
471 		for (d = 0; d < dlower; d += sblock.fs_frag) {
472 			blkno = d / sblock.fs_frag;
473 			setblock(&sblock, cg_blksfree(&acg), blkno);
474 			if (sblock.fs_contigsumsize > 0)
475 				setbit(cg_clustersfree(&acg), blkno);
476 			acg.cg_cs.cs_nbfree++;
477 		}
478 		sblock.fs_dsize += dlower;
479 	}
480 	sblock.fs_dsize += acg.cg_ndblk - dupper;
481 	if ((i = dupper % sblock.fs_frag)) {
482 		acg.cg_frsum[sblock.fs_frag - i]++;
483 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
484 			setbit(cg_blksfree(&acg), dupper);
485 			acg.cg_cs.cs_nffree++;
486 		}
487 	}
488 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
489 	     d += sblock.fs_frag) {
490 		blkno = d / sblock.fs_frag;
491 		setblock(&sblock, cg_blksfree(&acg), blkno);
492 		if (sblock.fs_contigsumsize > 0)
493 			setbit(cg_clustersfree(&acg), blkno);
494 		acg.cg_cs.cs_nbfree++;
495 	}
496 	if (d < acg.cg_ndblk) {
497 		acg.cg_frsum[acg.cg_ndblk - d]++;
498 		for (; d < acg.cg_ndblk; d++) {
499 			setbit(cg_blksfree(&acg), d);
500 			acg.cg_cs.cs_nffree++;
501 		}
502 	}
503 	if (sblock.fs_contigsumsize > 0) {
504 		int32_t *sump = cg_clustersum(&acg);
505 		u_char *mapp = cg_clustersfree(&acg);
506 		int map = *mapp++;
507 		int bit = 1;
508 		int run = 0;
509 
510 		for (i = 0; i < acg.cg_nclusterblks; i++) {
511 			if ((map & bit) != 0)
512 				run++;
513 			else if (run != 0) {
514 				if (run > sblock.fs_contigsumsize)
515 					run = sblock.fs_contigsumsize;
516 				sump[run]++;
517 				run = 0;
518 			}
519 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
520 				bit <<= 1;
521 			else {
522 				map = *mapp++;
523 				bit = 1;
524 			}
525 		}
526 		if (run != 0) {
527 			if (run > sblock.fs_contigsumsize)
528 				run = sblock.fs_contigsumsize;
529 			sump[run]++;
530 		}
531 	}
532 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
533 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
534 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
535 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
536 	*cs = acg.cg_cs;
537 
538 	memcpy(iobuf, &acg, sblock.fs_cgsize);
539 	memset(iobuf + sblock.fs_cgsize, '\0',
540 	    sblock.fs_bsize * 3 - sblock.fs_cgsize);
541 
542 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
543 	    sblock.fs_bsize * 3, iobuf, fso, Nflag);
544 	DBG_DUMP_CG(&sblock, "new cg", &acg);
545 
546 	DBG_LEAVE;
547 	return;
548 }
549 
550 /* ******************************************************* frag_adjust ***** */
551 /*
552  * Here we add or subtract (sign +1/-1) the available fragments in a given
553  * block to or from the fragment statistics. By subtracting before and adding
554  * after an operation on the free frag map we can easy update the fragment
555  * statistic, which seems to be otherwise a rather complex operation.
556  */
557 static void
558 frag_adjust(ufs2_daddr_t frag, int sign)
559 {
560 	DBG_FUNC("frag_adjust")
561 	int fragsize;
562 	int f;
563 
564 	DBG_ENTER;
565 
566 	fragsize=0;
567 	/*
568 	 * Here frag only needs to point to any fragment in the block we want
569 	 * to examine.
570 	 */
571 	for(f=rounddown(frag, sblock.fs_frag);
572 	    f<roundup(frag+1, sblock.fs_frag);
573 	    f++) {
574 		/*
575 		 * Count contiguous free fragments.
576 		 */
577 		if(isset(cg_blksfree(&acg), f)) {
578 			fragsize++;
579 		} else {
580 			if(fragsize && fragsize<sblock.fs_frag) {
581 				/*
582 				 * We found something in between.
583 				 */
584 				acg.cg_frsum[fragsize]+=sign;
585 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
586 				    fragsize,
587 				    sign);
588 			}
589 			fragsize=0;
590 		}
591 	}
592 	if(fragsize && fragsize<sblock.fs_frag) {
593 		/*
594 		 * We found something.
595 		 */
596 		acg.cg_frsum[fragsize]+=sign;
597 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
598 		    fragsize,
599 		    sign);
600 	}
601 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
602 	    fragsize,
603 	    sign);
604 
605 	DBG_LEAVE;
606 	return;
607 }
608 
609 /* ******************************************************* cond_bl_upd ***** */
610 /*
611  * Here we conditionally update a pointer to a fragment. We check for all
612  * relocated blocks if any of its fragments is referenced by the current
613  * field, and update the pointer to the respective fragment in our new
614  * block.  If we find a reference we write back the block immediately,
615  * as there is no easy way for our general block reading engine to figure
616  * out if a write back operation is needed.
617  */
618 static int
619 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
620     unsigned int Nflag)
621 {
622 	DBG_FUNC("cond_bl_upd")
623 	struct gfs_bpp *f;
624 	ufs2_daddr_t src, dst;
625 	int fragnum;
626 	void *ibuf;
627 
628 	DBG_ENTER;
629 
630 	for (f = field; f->old != 0; f++) {
631 		src = *block;
632 		if (fragstoblks(&sblock, src) != f->old)
633 			continue;
634 		/*
635 		 * The fragment is part of the block, so update.
636 		 */
637 		dst = blkstofrags(&sblock, f->new);
638 		fragnum = fragnum(&sblock, src);
639 		*block = dst + fragnum;
640 		f->found++;
641 		DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
642 		    (intmax_t)f->old,
643 		    (intmax_t)f->new,
644 		    fragnum);
645 
646 		/*
647 		 * Copy the block back immediately.
648 		 *
649 		 * XXX	If src is is from an indirect block we have
650 		 *	to implement copy on write here in case of
651 		 *	active snapshots.
652 		 */
653 		ibuf = malloc(sblock.fs_bsize);
654 		if (!ibuf)
655 			errx(1, "malloc failed");
656 		src -= fragnum;
657 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
658 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
659 		free(ibuf);
660 		/*
661 		 * The same block can't be found again in this loop.
662 		 */
663 		return (1);
664 	}
665 
666 	DBG_LEAVE;
667 	return (0);
668 }
669 
670 /* ************************************************************ updjcg ***** */
671 /*
672  * Here we do all needed work for the former last cylinder group. It has to be
673  * changed in any case, even if the file system ended exactly on the end of
674  * this group, as there is some slightly inconsistent handling of the number
675  * of cylinders in the cylinder group. We start again by reading the cylinder
676  * group from disk. If the last block was not fully available, we first handle
677  * the missing fragments, then we handle all new full blocks in that file
678  * system and finally we handle the new last fragmented block in the file
679  * system.  We again have to handle the fragment statistics rotational layout
680  * tables and cluster summary during all those operations.
681  */
682 static void
683 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
684 {
685 	DBG_FUNC("updjcg")
686 	ufs2_daddr_t	cbase, dmax, dupper;
687 	struct csum	*cs;
688 	int	i,k;
689 	int	j=0;
690 
691 	DBG_ENTER;
692 
693 	/*
694 	 * Read the former last (joining) cylinder group from disk, and make
695 	 * a copy.
696 	 */
697 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
698 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
699 	DBG_PRINT0("jcg read\n");
700 	DBG_DUMP_CG(&sblock,
701 	    "old joining cg",
702 	    &aocg);
703 
704 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
705 
706 	/*
707 	 * If the cylinder group had already its new final size almost
708 	 * nothing is to be done ... except:
709 	 * For some reason the value of cg_ncyl in the last cylinder group has
710 	 * to be zero instead of fs_cpg. As this is now no longer the last
711 	 * cylinder group we have to change that value now to fs_cpg.
712 	 */
713 
714 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
715 		if (sblock.fs_magic == FS_UFS1_MAGIC)
716 			acg.cg_old_ncyl=sblock.fs_old_cpg;
717 
718 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
719 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
720 		DBG_PRINT0("jcg written\n");
721 		DBG_DUMP_CG(&sblock,
722 		    "new joining cg",
723 		    &acg);
724 
725 		DBG_LEAVE;
726 		return;
727 	}
728 
729 	/*
730 	 * Set up some variables needed later.
731 	 */
732 	cbase = cgbase(&sblock, cylno);
733 	dmax = cbase + sblock.fs_fpg;
734 	if (dmax > sblock.fs_size)
735 		dmax = sblock.fs_size;
736 	dupper = cgdmin(&sblock, cylno) - cbase;
737 	if (cylno == 0) { /* XXX fscs may be relocated */
738 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
739 	}
740 
741 	/*
742 	 * Set pointer to the cylinder summary for our cylinder group.
743 	 */
744 	cs = fscs + cylno;
745 
746 	/*
747 	 * Touch the cylinder group, update all fields in the cylinder group as
748 	 * needed, update the free space in the superblock.
749 	 */
750 	acg.cg_time = utime;
751 	if ((unsigned)cylno == sblock.fs_ncg - 1) {
752 		/*
753 		 * This is still the last cylinder group.
754 		 */
755 		if (sblock.fs_magic == FS_UFS1_MAGIC)
756 			acg.cg_old_ncyl =
757 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
758 	} else {
759 		acg.cg_old_ncyl = sblock.fs_old_cpg;
760 	}
761 	DBG_PRINT2("jcg dbg: %d %u",
762 	    cylno,
763 	    sblock.fs_ncg);
764 #ifdef FS_DEBUG
765 	if (sblock.fs_magic == FS_UFS1_MAGIC)
766 		DBG_PRINT2("%d %u",
767 		    acg.cg_old_ncyl,
768 		    sblock.fs_old_cpg);
769 #endif
770 	DBG_PRINT0("\n");
771 	acg.cg_ndblk = dmax - cbase;
772 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
773 	if (sblock.fs_contigsumsize > 0) {
774 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
775 	}
776 
777 	/*
778 	 * Now we have to update the free fragment bitmap for our new free
779 	 * space.  There again we have to handle the fragmentation and also
780 	 * the rotational layout tables and the cluster summary.  This is
781 	 * also done per fragment for the first new block if the old file
782 	 * system end was not on a block boundary, per fragment for the new
783 	 * last block if the new file system end is not on a block boundary,
784 	 * and per block for all space in between.
785 	 *
786 	 * Handle the first new block here if it was partially available
787 	 * before.
788 	 */
789 	if(osblock.fs_size % sblock.fs_frag) {
790 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
791 			/*
792 			 * The new space is enough to fill at least this
793 			 * block
794 			 */
795 			j=0;
796 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
797 			    i>=osblock.fs_size-cbase;
798 			    i--) {
799 				setbit(cg_blksfree(&acg), i);
800 				acg.cg_cs.cs_nffree++;
801 				j++;
802 			}
803 
804 			/*
805 			 * Check if the fragment just created could join an
806 			 * already existing fragment at the former end of the
807 			 * file system.
808 			 */
809 			if(isblock(&sblock, cg_blksfree(&acg),
810 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
811 			    sblock.fs_frag))) {
812 				/*
813 				 * The block is now completely available.
814 				 */
815 				DBG_PRINT0("block was\n");
816 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
817 				acg.cg_cs.cs_nbfree++;
818 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
819 				k=rounddown(osblock.fs_size-cbase,
820 				    sblock.fs_frag);
821 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
822 			} else {
823 				/*
824 				 * Lets rejoin a possible partially growed
825 				 * fragment.
826 				 */
827 				k=0;
828 				while(isset(cg_blksfree(&acg), i) &&
829 				    (i>=rounddown(osblock.fs_size-cbase,
830 				    sblock.fs_frag))) {
831 					i--;
832 					k++;
833 				}
834 				if(k) {
835 					acg.cg_frsum[k]--;
836 				}
837 				acg.cg_frsum[k+j]++;
838 			}
839 		} else {
840 			/*
841 			 * We only grow by some fragments within this last
842 			 * block.
843 			 */
844 			for(i=sblock.fs_size-cbase-1;
845 				i>=osblock.fs_size-cbase;
846 				i--) {
847 				setbit(cg_blksfree(&acg), i);
848 				acg.cg_cs.cs_nffree++;
849 				j++;
850 			}
851 			/*
852 			 * Lets rejoin a possible partially growed fragment.
853 			 */
854 			k=0;
855 			while(isset(cg_blksfree(&acg), i) &&
856 			    (i>=rounddown(osblock.fs_size-cbase,
857 			    sblock.fs_frag))) {
858 				i--;
859 				k++;
860 			}
861 			if(k) {
862 				acg.cg_frsum[k]--;
863 			}
864 			acg.cg_frsum[k+j]++;
865 		}
866 	}
867 
868 	/*
869 	 * Handle all new complete blocks here.
870 	 */
871 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
872 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
873 	    i+=sblock.fs_frag) {
874 		j = i / sblock.fs_frag;
875 		setblock(&sblock, cg_blksfree(&acg), j);
876 		updclst(j);
877 		acg.cg_cs.cs_nbfree++;
878 	}
879 
880 	/*
881 	 * Handle the last new block if there are stll some new fragments left.
882 	 * Here we don't have to bother about the cluster summary or the even
883 	 * the rotational layout table.
884 	 */
885 	if (i < (dmax - cbase)) {
886 		acg.cg_frsum[dmax - cbase - i]++;
887 		for (; i < dmax - cbase; i++) {
888 			setbit(cg_blksfree(&acg), i);
889 			acg.cg_cs.cs_nffree++;
890 		}
891 	}
892 
893 	sblock.fs_cstotal.cs_nffree +=
894 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
895 	sblock.fs_cstotal.cs_nbfree +=
896 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
897 	/*
898 	 * The following statistics are not changed here:
899 	 *     sblock.fs_cstotal.cs_ndir
900 	 *     sblock.fs_cstotal.cs_nifree
901 	 * As the statistics for this cylinder group are ready, copy it to
902 	 * the summary information array.
903 	 */
904 	*cs = acg.cg_cs;
905 
906 	/*
907 	 * Write the updated "joining" cylinder group back to disk.
908 	 */
909 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
910 	    (void *)&acg, fso, Nflag);
911 	DBG_PRINT0("jcg written\n");
912 	DBG_DUMP_CG(&sblock,
913 	    "new joining cg",
914 	    &acg);
915 
916 	DBG_LEAVE;
917 	return;
918 }
919 
920 /* ********************************************************** updcsloc ***** */
921 /*
922  * Here we update the location of the cylinder summary. We have two possible
923  * ways of growing the cylinder summary.
924  * (1)	We can try to grow the summary in the current location, and relocate
925  *	possibly used blocks within the current cylinder group.
926  * (2)	Alternatively we can relocate the whole cylinder summary to the first
927  *	new completely empty cylinder group. Once the cylinder summary is no
928  *	longer in the beginning of the first cylinder group you should never
929  *	use a version of fsck which is not aware of the possibility to have
930  *	this structure in a non standard place.
931  * Option (1) is considered to be less intrusive to the structure of the file-
932  * system. So we try to stick to that whenever possible. If there is not enough
933  * space in the cylinder group containing the cylinder summary we have to use
934  * method (2). In case of active snapshots in the file system we probably can
935  * completely avoid implementing copy on write if we stick to method (2) only.
936  */
937 static void
938 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
939 {
940 	DBG_FUNC("updcsloc")
941 	struct csum	*cs;
942 	int	ocscg, ncscg;
943 	int	blocks;
944 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
945 	int	ind, inc;
946 	uint	cylno;
947 	struct gfs_bpp	*bp;
948 	int	i, l;
949 	int	lcs=0;
950 	int	block;
951 
952 	DBG_ENTER;
953 
954 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
955 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
956 		/*
957 		 * No new fragment needed.
958 		 */
959 		DBG_LEAVE;
960 		return;
961 	}
962 	ocscg=dtog(&osblock, osblock.fs_csaddr);
963 	cs=fscs+ocscg;
964 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
965 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
966 
967 	/*
968 	 * Read original cylinder group from disk, and make a copy.
969 	 * XXX	If Nflag is set in some very rare cases we now miss
970 	 *	some changes done in updjcg by reading the unmodified
971 	 *	block from disk.
972 	 */
973 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
974 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
975 	DBG_PRINT0("oscg read\n");
976 	DBG_DUMP_CG(&sblock,
977 	    "old summary cg",
978 	    &aocg);
979 
980 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
981 
982 	/*
983 	 * Touch the cylinder group, set up local variables needed later
984 	 * and update the superblock.
985 	 */
986 	acg.cg_time = utime;
987 
988 	/*
989 	 * XXX	In the case of having active snapshots we may need much more
990 	 *	blocks for the copy on write. We need each block twice, and
991 	 *	also up to 8*3 blocks for indirect blocks for all possible
992 	 *	references.
993 	 */
994 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
995 		/*
996 		 * There is not enough space in the old cylinder group to
997 		 * relocate all blocks as needed, so we relocate the whole
998 		 * cylinder group summary to a new group. We try to use the
999 		 * first complete new cylinder group just created. Within the
1000 		 * cylinder group we align the area immediately after the
1001 		 * cylinder group information location in order to be as
1002 		 * close as possible to the original implementation of ffs.
1003 		 *
1004 		 * First we have to make sure we'll find enough space in the
1005 		 * new cylinder group. If not, then we currently give up.
1006 		 * We start with freeing everything which was used by the
1007 		 * fragments of the old cylinder summary in the current group.
1008 		 * Now we write back the group meta data, read in the needed
1009 		 * meta data from the new cylinder group, and start allocating
1010 		 * within that group. Here we can assume, the group to be
1011 		 * completely empty. Which makes the handling of fragments and
1012 		 * clusters a lot easier.
1013 		 */
1014 		DBG_TRC;
1015 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1016 			errx(2, "panic: not enough space");
1017 		}
1018 
1019 		/*
1020 		 * Point "d" to the first fragment not used by the cylinder
1021 		 * summary.
1022 		 */
1023 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1024 
1025 		/*
1026 		 * Set up last cluster size ("lcs") already here. Calculate
1027 		 * the size for the trailing cluster just behind where "d"
1028 		 * points to.
1029 		 */
1030 		if(sblock.fs_contigsumsize > 0) {
1031 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1032 			    lcs=0; lcs<sblock.fs_contigsumsize;
1033 			    block++, lcs++) {
1034 				if(isclr(cg_clustersfree(&acg), block)){
1035 					break;
1036 				}
1037 			}
1038 		}
1039 
1040 		/*
1041 		 * Point "d" to the last frag used by the cylinder summary.
1042 		 */
1043 		d--;
1044 
1045 		DBG_PRINT1("d=%jd\n",
1046 		    (intmax_t)d);
1047 		if((d+1)%sblock.fs_frag) {
1048 			/*
1049 			 * The end of the cylinder summary is not a complete
1050 			 * block.
1051 			 */
1052 			DBG_TRC;
1053 			frag_adjust(d%sblock.fs_fpg, -1);
1054 			for(; (d+1)%sblock.fs_frag; d--) {
1055 				DBG_PRINT1("d=%jd\n",
1056 				    (intmax_t)d);
1057 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1058 				acg.cg_cs.cs_nffree++;
1059 				sblock.fs_cstotal.cs_nffree++;
1060 			}
1061 			/*
1062 			 * Point "d" to the last fragment of the last
1063 			 * (incomplete) block of the cylinder summary.
1064 			 */
1065 			d++;
1066 			frag_adjust(d%sblock.fs_fpg, 1);
1067 
1068 			if(isblock(&sblock, cg_blksfree(&acg),
1069 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1070 				DBG_PRINT1("d=%jd\n", (intmax_t)d);
1071 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1072 				acg.cg_cs.cs_nbfree++;
1073 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1074 				sblock.fs_cstotal.cs_nbfree++;
1075 				if(sblock.fs_contigsumsize > 0) {
1076 					setbit(cg_clustersfree(&acg),
1077 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1078 					if(lcs < sblock.fs_contigsumsize) {
1079 						if(lcs) {
1080 							cg_clustersum(&acg)
1081 							    [lcs]--;
1082 						}
1083 						lcs++;
1084 						cg_clustersum(&acg)[lcs]++;
1085 					}
1086 				}
1087 			}
1088 			/*
1089 			 * Point "d" to the first fragment of the block before
1090 			 * the last incomplete block.
1091 			 */
1092 			d--;
1093 		}
1094 
1095 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
1096 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1097 		    d-=sblock.fs_frag) {
1098 			DBG_TRC;
1099 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
1100 			setblock(&sblock, cg_blksfree(&acg),
1101 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1102 			acg.cg_cs.cs_nbfree++;
1103 			sblock.fs_cstotal.cs_nbfree++;
1104 			if(sblock.fs_contigsumsize > 0) {
1105 				setbit(cg_clustersfree(&acg),
1106 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1107 				/*
1108 				 * The last cluster size is already set up.
1109 				 */
1110 				if(lcs < sblock.fs_contigsumsize) {
1111 					if(lcs) {
1112 						cg_clustersum(&acg)[lcs]--;
1113 					}
1114 					lcs++;
1115 					cg_clustersum(&acg)[lcs]++;
1116 				}
1117 			}
1118 		}
1119 		*cs = acg.cg_cs;
1120 
1121 		/*
1122 		 * Now write the former cylinder group containing the cylinder
1123 		 * summary back to disk.
1124 		 */
1125 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1126 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1127 		DBG_PRINT0("oscg written\n");
1128 		DBG_DUMP_CG(&sblock,
1129 		    "old summary cg",
1130 		    &acg);
1131 
1132 		/*
1133 		 * Find the beginning of the new cylinder group containing the
1134 		 * cylinder summary.
1135 		 */
1136 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1137 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1138 		cs=fscs+ncscg;
1139 
1140 
1141 		/*
1142 		 * If Nflag is specified, we would now read random data instead
1143 		 * of an empty cg structure from disk. So we can't simulate that
1144 		 * part for now.
1145 		 */
1146 		if(Nflag) {
1147 			DBG_PRINT0("nscg update skipped\n");
1148 			DBG_LEAVE;
1149 			return;
1150 		}
1151 
1152 		/*
1153 		 * Read the future cylinder group containing the cylinder
1154 		 * summary from disk, and make a copy.
1155 		 */
1156 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1157 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1158 		DBG_PRINT0("nscg read\n");
1159 		DBG_DUMP_CG(&sblock,
1160 		    "new summary cg",
1161 		    &aocg);
1162 
1163 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1164 
1165 		/*
1166 		 * Allocate all complete blocks used by the new cylinder
1167 		 * summary.
1168 		 */
1169 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1170 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1171 		    d+=sblock.fs_frag) {
1172 			clrblock(&sblock, cg_blksfree(&acg),
1173 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1174 			acg.cg_cs.cs_nbfree--;
1175 			sblock.fs_cstotal.cs_nbfree--;
1176 			if(sblock.fs_contigsumsize > 0) {
1177 				clrbit(cg_clustersfree(&acg),
1178 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1179 			}
1180 		}
1181 
1182 		/*
1183 		 * Allocate all fragments used by the cylinder summary in the
1184 		 * last block.
1185 		 */
1186 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1187 			for(; d-sblock.fs_csaddr<
1188 			    sblock.fs_cssize/sblock.fs_fsize;
1189 			    d++) {
1190 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1191 				acg.cg_cs.cs_nffree--;
1192 				sblock.fs_cstotal.cs_nffree--;
1193 			}
1194 			acg.cg_cs.cs_nbfree--;
1195 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1196 			sblock.fs_cstotal.cs_nbfree--;
1197 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1198 			if(sblock.fs_contigsumsize > 0) {
1199 				clrbit(cg_clustersfree(&acg),
1200 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1201 			}
1202 
1203 			frag_adjust(d%sblock.fs_fpg, +1);
1204 		}
1205 		/*
1206 		 * XXX	Handle the cluster statistics here in the case this
1207 		 *	cylinder group is now almost full, and the remaining
1208 		 *	space is less then the maximum cluster size. This is
1209 		 *	probably not needed, as you would hardly find a file
1210 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1211 		 *	space right behind the cylinder group information in
1212 		 *	any new cylinder group.
1213 		 */
1214 
1215 		/*
1216 		 * Update our statistics in the cylinder summary.
1217 		 */
1218 		*cs = acg.cg_cs;
1219 
1220 		/*
1221 		 * Write the new cylinder group containing the cylinder summary
1222 		 * back to disk.
1223 		 */
1224 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1225 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1226 		DBG_PRINT0("nscg written\n");
1227 		DBG_DUMP_CG(&sblock,
1228 		    "new summary cg",
1229 		    &acg);
1230 
1231 		DBG_LEAVE;
1232 		return;
1233 	}
1234 	/*
1235 	 * We have got enough of space in the current cylinder group, so we
1236 	 * can relocate just a few blocks, and let the summary information
1237 	 * grow in place where it is right now.
1238 	 */
1239 	DBG_TRC;
1240 
1241 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1242 	dupper = sblock.fs_csaddr - cbase +
1243 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1244 	odupper = osblock.fs_csaddr - cbase +
1245 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1246 
1247 	sblock.fs_dsize -= dupper-odupper;
1248 
1249 	/*
1250 	 * Allocate the space for the array of blocks to be relocated.
1251 	 */
1252  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1253 	    sizeof(struct gfs_bpp));
1254 	if(bp == NULL) {
1255 		errx(1, "malloc failed");
1256 	}
1257 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1258 	    sizeof(struct gfs_bpp));
1259 
1260 	/*
1261 	 * Lock all new frags needed for the cylinder group summary. This is
1262 	 * done per fragment in the first and last block of the new required
1263 	 * area, and per block for all other blocks.
1264 	 *
1265 	 * Handle the first new block here (but only if some fragments where
1266 	 * already used for the cylinder summary).
1267 	 */
1268 	ind=0;
1269 	frag_adjust(odupper, -1);
1270 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1271 		DBG_PRINT1("scg first frag check loop d=%jd\n",
1272 		    (intmax_t)d);
1273 		if(isclr(cg_blksfree(&acg), d)) {
1274 			if (!ind) {
1275 				bp[ind].old=d/sblock.fs_frag;
1276 				bp[ind].flags|=GFS_FL_FIRST;
1277 				if(roundup(d, sblock.fs_frag) >= dupper) {
1278 					bp[ind].flags|=GFS_FL_LAST;
1279 				}
1280 				ind++;
1281 			}
1282 		} else {
1283 			clrbit(cg_blksfree(&acg), d);
1284 			acg.cg_cs.cs_nffree--;
1285 			sblock.fs_cstotal.cs_nffree--;
1286 		}
1287 		/*
1288 		 * No cluster handling is needed here, as there was at least
1289 		 * one fragment in use by the cylinder summary in the old
1290 		 * file system.
1291 		 * No block-free counter handling here as this block was not
1292 		 * a free block.
1293 		 */
1294 	}
1295 	frag_adjust(odupper, 1);
1296 
1297 	/*
1298 	 * Handle all needed complete blocks here.
1299 	 */
1300 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1301 		DBG_PRINT1("scg block check loop d=%jd\n",
1302 		    (intmax_t)d);
1303 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1304 			for(f=d; f<d+sblock.fs_frag; f++) {
1305 				if(isset(cg_blksfree(&aocg), f)) {
1306 					acg.cg_cs.cs_nffree--;
1307 					sblock.fs_cstotal.cs_nffree--;
1308 				}
1309 			}
1310 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1311 			bp[ind].old=d/sblock.fs_frag;
1312 			ind++;
1313 		} else {
1314 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1315 			acg.cg_cs.cs_nbfree--;
1316 			sblock.fs_cstotal.cs_nbfree--;
1317 			if(sblock.fs_contigsumsize > 0) {
1318 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1319 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1320 				    lcs<sblock.fs_contigsumsize;
1321 				    l++, lcs++ ) {
1322 					if(isclr(cg_clustersfree(&acg),l)){
1323 						break;
1324 					}
1325 				}
1326 				if(lcs < sblock.fs_contigsumsize) {
1327 					cg_clustersum(&acg)[lcs+1]--;
1328 					if(lcs) {
1329 						cg_clustersum(&acg)[lcs]++;
1330 					}
1331 				}
1332 			}
1333 		}
1334 		/*
1335 		 * No fragment counter handling is needed here, as this finally
1336 		 * doesn't change after the relocation.
1337 		 */
1338 	}
1339 
1340 	/*
1341 	 * Handle all fragments needed in the last new affected block.
1342 	 */
1343 	if(d<dupper) {
1344 		frag_adjust(dupper-1, -1);
1345 
1346 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1347 			acg.cg_cs.cs_nbfree--;
1348 			sblock.fs_cstotal.cs_nbfree--;
1349 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1350 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1351 			if(sblock.fs_contigsumsize > 0) {
1352 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1353 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1354 				    lcs<sblock.fs_contigsumsize;
1355 				    l++, lcs++ ) {
1356 					if(isclr(cg_clustersfree(&acg),l)){
1357 						break;
1358 					}
1359 				}
1360 				if(lcs < sblock.fs_contigsumsize) {
1361 					cg_clustersum(&acg)[lcs+1]--;
1362 					if(lcs) {
1363 						cg_clustersum(&acg)[lcs]++;
1364 					}
1365 				}
1366 			}
1367 		}
1368 
1369 		for(; d<dupper; d++) {
1370 			DBG_PRINT1("scg second frag check loop d=%jd\n",
1371 			    (intmax_t)d);
1372 			if(isclr(cg_blksfree(&acg), d)) {
1373 				bp[ind].old=d/sblock.fs_frag;
1374 				bp[ind].flags|=GFS_FL_LAST;
1375 			} else {
1376 				clrbit(cg_blksfree(&acg), d);
1377 				acg.cg_cs.cs_nffree--;
1378 				sblock.fs_cstotal.cs_nffree--;
1379 			}
1380 		}
1381 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1382 			ind++;
1383 		}
1384 		frag_adjust(dupper-1, 1);
1385 	}
1386 
1387 	/*
1388 	 * If we found a block to relocate just do so.
1389 	 */
1390 	if(ind) {
1391 		for(i=0; i<ind; i++) {
1392 			if(!bp[i].old) { /* no more blocks listed */
1393 				/*
1394 				 * XXX	A relative blocknumber should not be
1395 				 *	zero, which is not explicitly
1396 				 *	guaranteed by our code.
1397 				 */
1398 				break;
1399 			}
1400 			/*
1401 			 * Allocate a complete block in the same (current)
1402 			 * cylinder group.
1403 			 */
1404 			bp[i].new=alloc()/sblock.fs_frag;
1405 
1406 			/*
1407 			 * There is no frag_adjust() needed for the new block
1408 			 * as it will have no fragments yet :-).
1409 			 */
1410 			for(f=bp[i].old*sblock.fs_frag,
1411 			    g=bp[i].new*sblock.fs_frag;
1412 			    f<(bp[i].old+1)*sblock.fs_frag;
1413 			    f++, g++) {
1414 				if(isset(cg_blksfree(&aocg), f)) {
1415 					setbit(cg_blksfree(&acg), g);
1416 					acg.cg_cs.cs_nffree++;
1417 					sblock.fs_cstotal.cs_nffree++;
1418 				}
1419 			}
1420 
1421 			/*
1422 			 * Special handling is required if this was the first
1423 			 * block. We have to consider the fragments which were
1424 			 * used by the cylinder summary in the original block
1425 			 * which re to be free in the copy of our block.  We
1426 			 * have to be careful if this first block happens to
1427 			 * be also the last block to be relocated.
1428 			 */
1429 			if(bp[i].flags & GFS_FL_FIRST) {
1430 				for(f=bp[i].old*sblock.fs_frag,
1431 				    g=bp[i].new*sblock.fs_frag;
1432 				    f<odupper;
1433 				    f++, g++) {
1434 					setbit(cg_blksfree(&acg), g);
1435 					acg.cg_cs.cs_nffree++;
1436 					sblock.fs_cstotal.cs_nffree++;
1437 				}
1438 				if(!(bp[i].flags & GFS_FL_LAST)) {
1439 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1440 				}
1441 			}
1442 
1443 			/*
1444 			 * Special handling is required if this is the last
1445 			 * block to be relocated.
1446 			 */
1447 			if(bp[i].flags & GFS_FL_LAST) {
1448 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1449 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1450 				for(f=dupper;
1451 				    f<roundup(dupper, sblock.fs_frag);
1452 				    f++) {
1453 					if(isclr(cg_blksfree(&acg), f)) {
1454 						setbit(cg_blksfree(&acg), f);
1455 						acg.cg_cs.cs_nffree++;
1456 						sblock.fs_cstotal.cs_nffree++;
1457 					}
1458 				}
1459 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1460 			}
1461 
1462 			/*
1463 			 * !!! Attach the cylindergroup offset here.
1464 			 */
1465 			bp[i].old+=cbase/sblock.fs_frag;
1466 			bp[i].new+=cbase/sblock.fs_frag;
1467 
1468 			/*
1469 			 * Copy the content of the block.
1470 			 */
1471 			/*
1472 			 * XXX	Here we will have to implement a copy on write
1473 			 *	in the case we have any active snapshots.
1474 			 */
1475 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1476 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1477 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1478 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1479 			DBG_DUMP_HEX(&sblock,
1480 			    "copied full block",
1481 			    (unsigned char *)&ablk);
1482 
1483 			DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1484 			    (intmax_t)bp[i].old,
1485 			    (intmax_t)bp[i].new);
1486 		}
1487 
1488 		/*
1489 		 * Now we have to update all references to any fragment which
1490 		 * belongs to any block relocated. We iterate now over all
1491 		 * cylinder groups, within those over all non zero length
1492 		 * inodes.
1493 		 */
1494 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1495 			DBG_PRINT1("scg doing cg (%d)\n",
1496 			    cylno);
1497 			for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1498 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1499 			}
1500 		}
1501 
1502 		/*
1503 		 * All inodes are checked, now make sure the number of
1504 		 * references found make sense.
1505 		 */
1506 		for(i=0; i<ind; i++) {
1507 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1508 				warnx("error: %jd refs found for block %jd.",
1509 				    (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1510 			}
1511 
1512 		}
1513 	}
1514 	/*
1515 	 * The following statistics are not changed here:
1516 	 *     sblock.fs_cstotal.cs_ndir
1517 	 *     sblock.fs_cstotal.cs_nifree
1518 	 * The following statistics were already updated on the fly:
1519 	 *     sblock.fs_cstotal.cs_nffree
1520 	 *     sblock.fs_cstotal.cs_nbfree
1521 	 * As the statistics for this cylinder group are ready, copy it to
1522 	 * the summary information array.
1523 	 */
1524 
1525 	*cs = acg.cg_cs;
1526 
1527 	/*
1528 	 * Write summary cylinder group back to disk.
1529 	 */
1530 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1531 	    (void *)&acg, fso, Nflag);
1532 	DBG_PRINT0("scg written\n");
1533 	DBG_DUMP_CG(&sblock,
1534 	    "new summary cg",
1535 	    &acg);
1536 
1537 	DBG_LEAVE;
1538 	return;
1539 }
1540 
1541 /* ************************************************************** rdfs ***** */
1542 /*
1543  * Here we read some block(s) from disk.
1544  */
1545 static void
1546 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1547 {
1548 	DBG_FUNC("rdfs")
1549 	ssize_t	n;
1550 
1551 	DBG_ENTER;
1552 
1553 	if (bno < 0) {
1554 		err(32, "rdfs: attempting to read negative block number");
1555 	}
1556 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1557 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1558 	}
1559 	n = read(fsi, bf, size);
1560 	if (n != (ssize_t)size) {
1561 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1562 	}
1563 
1564 	DBG_LEAVE;
1565 	return;
1566 }
1567 
1568 /* ************************************************************** wtfs ***** */
1569 /*
1570  * Here we write some block(s) to disk.
1571  */
1572 static void
1573 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1574 {
1575 	DBG_FUNC("wtfs")
1576 	ssize_t	n;
1577 
1578 	DBG_ENTER;
1579 
1580 	if (Nflag) {
1581 		DBG_LEAVE;
1582 		return;
1583 	}
1584 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1585 		err(35, "wtfs: seek error: %ld", (long)bno);
1586 	}
1587 	n = write(fso, bf, size);
1588 	if (n != (ssize_t)size) {
1589 		err(36, "wtfs: write error: %ld", (long)bno);
1590 	}
1591 
1592 	DBG_LEAVE;
1593 	return;
1594 }
1595 
1596 /* ************************************************************* alloc ***** */
1597 /*
1598  * Here we allocate a free block in the current cylinder group. It is assumed,
1599  * that acg contains the current cylinder group. As we may take a block from
1600  * somewhere in the file system we have to handle cluster summary here.
1601  */
1602 static ufs2_daddr_t
1603 alloc(void)
1604 {
1605 	DBG_FUNC("alloc")
1606 	ufs2_daddr_t	d, blkno;
1607 	int	lcs1, lcs2;
1608 	int	l;
1609 	int	csmin, csmax;
1610 	int	dlower, dupper, dmax;
1611 
1612 	DBG_ENTER;
1613 
1614 	if (acg.cg_magic != CG_MAGIC) {
1615 		warnx("acg: bad magic number");
1616 		DBG_LEAVE;
1617 		return (0);
1618 	}
1619 	if (acg.cg_cs.cs_nbfree == 0) {
1620 		warnx("error: cylinder group ran out of space");
1621 		DBG_LEAVE;
1622 		return (0);
1623 	}
1624 	/*
1625 	 * We start seeking for free blocks only from the space available after
1626 	 * the end of the new grown cylinder summary. Otherwise we allocate a
1627 	 * block here which we have to relocate a couple of seconds later again
1628 	 * again, and we are not prepared to to this anyway.
1629 	 */
1630 	blkno=-1;
1631 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1632 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1633 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1634 	if (dmax > sblock.fs_size) {
1635 		dmax = sblock.fs_size;
1636 	}
1637 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1638 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1639 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1640 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1641 	    dlower,
1642 	    dupper,
1643 	    dmax);
1644 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1645 	    csmin,
1646 	    csmax);
1647 
1648 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1649 		if(d>=csmin && d<=csmax) {
1650 			continue;
1651 		}
1652 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1653 		    d))) {
1654 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1655 			break;
1656 		}
1657 	}
1658 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1659 		if(d>=csmin && d<=csmax) {
1660 			continue;
1661 		}
1662 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1663 		    d))) {
1664 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1665 			break;
1666 		}
1667 	}
1668 	if(blkno==-1) {
1669 		warnx("internal error: couldn't find promised block in cg");
1670 		DBG_LEAVE;
1671 		return (0);
1672 	}
1673 
1674 	/*
1675 	 * This is needed if the block was found already in the first loop.
1676 	 */
1677 	d=blkstofrags(&sblock, blkno);
1678 
1679 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1680 	if (sblock.fs_contigsumsize > 0) {
1681 		/*
1682 		 * Handle the cluster allocation bitmap.
1683 		 */
1684 		clrbit(cg_clustersfree(&acg), blkno);
1685 		/*
1686 		 * We possibly have split a cluster here, so we have to do
1687 		 * recalculate the sizes of the remaining cluster halves now,
1688 		 * and use them for updating the cluster summary information.
1689 		 *
1690 		 * Lets start with the blocks before our allocated block ...
1691 		 */
1692 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1693 		    l--, lcs1++ ) {
1694 			if(isclr(cg_clustersfree(&acg),l)){
1695 				break;
1696 			}
1697 		}
1698 		/*
1699 		 * ... and continue with the blocks right after our allocated
1700 		 * block.
1701 		 */
1702 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1703 		    l++, lcs2++ ) {
1704 			if(isclr(cg_clustersfree(&acg),l)){
1705 				break;
1706 			}
1707 		}
1708 
1709 		/*
1710 		 * Now update all counters.
1711 		 */
1712 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1713 		if(lcs1) {
1714 			cg_clustersum(&acg)[lcs1]++;
1715 		}
1716 		if(lcs2) {
1717 			cg_clustersum(&acg)[lcs2]++;
1718 		}
1719 	}
1720 	/*
1721 	 * Update all statistics based on blocks.
1722 	 */
1723 	acg.cg_cs.cs_nbfree--;
1724 	sblock.fs_cstotal.cs_nbfree--;
1725 
1726 	DBG_LEAVE;
1727 	return (d);
1728 }
1729 
1730 /* *********************************************************** isblock ***** */
1731 /*
1732  * Here we check if all frags of a block are free. For more details again
1733  * please see the source of newfs(8), as this function is taken over almost
1734  * unchanged.
1735  */
1736 static int
1737 isblock(struct fs *fs, unsigned char *cp, int h)
1738 {
1739 	DBG_FUNC("isblock")
1740 	unsigned char	mask;
1741 
1742 	DBG_ENTER;
1743 
1744 	switch (fs->fs_frag) {
1745 	case 8:
1746 		DBG_LEAVE;
1747 		return (cp[h] == 0xff);
1748 	case 4:
1749 		mask = 0x0f << ((h & 0x1) << 2);
1750 		DBG_LEAVE;
1751 		return ((cp[h >> 1] & mask) == mask);
1752 	case 2:
1753 		mask = 0x03 << ((h & 0x3) << 1);
1754 		DBG_LEAVE;
1755 		return ((cp[h >> 2] & mask) == mask);
1756 	case 1:
1757 		mask = 0x01 << (h & 0x7);
1758 		DBG_LEAVE;
1759 		return ((cp[h >> 3] & mask) == mask);
1760 	default:
1761 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1762 		DBG_LEAVE;
1763 		return (0);
1764 	}
1765 }
1766 
1767 /* ********************************************************** clrblock ***** */
1768 /*
1769  * Here we allocate a complete block in the block map. For more details again
1770  * please see the source of newfs(8), as this function is taken over almost
1771  * unchanged.
1772  */
1773 static void
1774 clrblock(struct fs *fs, unsigned char *cp, int h)
1775 {
1776 	DBG_FUNC("clrblock")
1777 
1778 	DBG_ENTER;
1779 
1780 	switch ((fs)->fs_frag) {
1781 	case 8:
1782 		cp[h] = 0;
1783 		break;
1784 	case 4:
1785 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1786 		break;
1787 	case 2:
1788 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1789 		break;
1790 	case 1:
1791 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1792 		break;
1793 	default:
1794 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1795 		break;
1796 	}
1797 
1798 	DBG_LEAVE;
1799 	return;
1800 }
1801 
1802 /* ********************************************************** setblock ***** */
1803 /*
1804  * Here we free a complete block in the free block map. For more details again
1805  * please see the source of newfs(8), as this function is taken over almost
1806  * unchanged.
1807  */
1808 static void
1809 setblock(struct fs *fs, unsigned char *cp, int h)
1810 {
1811 	DBG_FUNC("setblock")
1812 
1813 	DBG_ENTER;
1814 
1815 	switch (fs->fs_frag) {
1816 	case 8:
1817 		cp[h] = 0xff;
1818 		break;
1819 	case 4:
1820 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1821 		break;
1822 	case 2:
1823 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1824 		break;
1825 	case 1:
1826 		cp[h >> 3] |= (0x01 << (h & 0x7));
1827 		break;
1828 	default:
1829 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1830 		break;
1831 	}
1832 
1833 	DBG_LEAVE;
1834 	return;
1835 }
1836 
1837 /* ************************************************************ ginode ***** */
1838 /*
1839  * This function provides access to an individual inode. We find out in which
1840  * block the requested inode is located, read it from disk if needed, and
1841  * return the pointer into that block. We maintain a cache of one block to
1842  * not read the same block again and again if we iterate linearly over all
1843  * inodes.
1844  */
1845 static union dinode *
1846 ginode(ino_t inumber, int fsi, int cg)
1847 {
1848 	DBG_FUNC("ginode")
1849 	static ino_t	startinum = 0;	/* first inode in cached block */
1850 
1851 	DBG_ENTER;
1852 
1853 	/*
1854 	 * The inumber passed in is relative to the cg, so use it here to see
1855 	 * if the inode has been allocated yet.
1856 	 */
1857 	if (isclr(cg_inosused(&aocg), inumber)) {
1858 		DBG_LEAVE;
1859 		return NULL;
1860 	}
1861 	/*
1862 	 * Now make the inumber relative to the entire inode space so it can
1863 	 * be sanity checked.
1864 	 */
1865 	inumber += (cg * sblock.fs_ipg);
1866 	if (inumber < ROOTINO) {
1867 		DBG_LEAVE;
1868 		return NULL;
1869 	}
1870 	if (inumber > maxino)
1871 		errx(8, "bad inode number %d to ginode", inumber);
1872 	if (startinum == 0 ||
1873 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1874 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1875 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1876 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1877 	}
1878 	DBG_LEAVE;
1879 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1880 		return (union dinode *)((uintptr_t)inobuf +
1881 		    (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1882 	return (union dinode *)((uintptr_t)inobuf +
1883 	    (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1884 }
1885 
1886 /* ****************************************************** charsperline ***** */
1887 /*
1888  * Figure out how many lines our current terminal has. For more details again
1889  * please see the source of newfs(8), as this function is taken over almost
1890  * unchanged.
1891  */
1892 static int
1893 charsperline(void)
1894 {
1895 	DBG_FUNC("charsperline")
1896 	int	columns;
1897 	char	*cp;
1898 	struct winsize	ws;
1899 
1900 	DBG_ENTER;
1901 
1902 	columns = 0;
1903 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1904 		columns = ws.ws_col;
1905 	}
1906 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1907 		columns = atoi(cp);
1908 	}
1909 	if (columns == 0) {
1910 		columns = 80;	/* last resort */
1911 	}
1912 
1913 	DBG_LEAVE;
1914 	return columns;
1915 }
1916 
1917 /* ****************************************************** get_dev_size ***** */
1918 /*
1919  * Get the size of the partition if we can't figure it out from the disklabel,
1920  * e.g. from vinum volumes.
1921  */
1922 static void
1923 get_dev_size(int fd, int *size)
1924 {
1925    int sectorsize;
1926    off_t mediasize;
1927 
1928    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1929         err(1,"DIOCGSECTORSIZE");
1930    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1931         err(1,"DIOCGMEDIASIZE");
1932 
1933    if (sectorsize <= 0)
1934        errx(1, "bogus sectorsize: %d", sectorsize);
1935 
1936    *size = mediasize / sectorsize;
1937 }
1938 
1939 /* ************************************************************** main ***** */
1940 /*
1941  * growfs(8)  is a utility which allows to increase the size of an existing
1942  * ufs file system. Currently this can only be done on unmounted file system.
1943  * It recognizes some command line options to specify the new desired size,
1944  * and it does some basic checkings. The old file system size is determined
1945  * and after some more checks like we can really access the new last block
1946  * on the disk etc. we calculate the new parameters for the superblock. After
1947  * having done this we just call growfs() which will do the work.  Before
1948  * we finish the only thing left is to update the disklabel.
1949  * We still have to provide support for snapshots. Therefore we first have to
1950  * understand what data structures are always replicated in the snapshot on
1951  * creation, for all other blocks we touch during our procedure, we have to
1952  * keep the old blocks unchanged somewhere available for the snapshots. If we
1953  * are lucky, then we only have to handle our blocks to be relocated in that
1954  * way.
1955  * Also we have to consider in what order we actually update the critical
1956  * data structures of the file system to make sure, that in case of a disaster
1957  * fsck(8) is still able to restore any lost data.
1958  * The foreseen last step then will be to provide for growing even mounted
1959  * file systems. There we have to extend the mount() system call to provide
1960  * userland access to the file system locking facility.
1961  */
1962 int
1963 main(int argc, char **argv)
1964 {
1965 	DBG_FUNC("main")
1966 	char	*device, *special, *cp;
1967 	int	ch;
1968 	unsigned int	size=0;
1969 	size_t	len;
1970 	unsigned int	Nflag=0;
1971 	int	ExpertFlag=0;
1972 	struct stat	st;
1973 	struct disklabel	*lp;
1974 	struct partition	*pp;
1975 	int	i,fsi,fso;
1976     u_int32_t p_size;
1977 	char	reply[5];
1978 #ifdef FSMAXSNAP
1979 	int	j;
1980 #endif /* FSMAXSNAP */
1981 
1982 	DBG_ENTER;
1983 
1984 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1985 		switch(ch) {
1986 		case 'N':
1987 			Nflag=1;
1988 			break;
1989 		case 's':
1990 			size=(size_t)atol(optarg);
1991 			if(size<1) {
1992 				usage();
1993 			}
1994 			break;
1995 		case 'v': /* for compatibility to newfs */
1996 			break;
1997 		case 'y':
1998 			ExpertFlag=1;
1999 			break;
2000 		case '?':
2001 			/* FALLTHROUGH */
2002 		default:
2003 			usage();
2004 		}
2005 	}
2006 	argc -= optind;
2007 	argv += optind;
2008 
2009 	if(argc != 1) {
2010 		usage();
2011 	}
2012 	device=*argv;
2013 
2014 	/*
2015 	 * Now try to guess the (raw)device name.
2016 	 */
2017 	if (0 == strrchr(device, '/')) {
2018 		/*
2019 		 * No path prefix was given, so try in that order:
2020 		 *     /dev/r%s
2021 		 *     /dev/%s
2022 		 *     /dev/vinum/r%s
2023 		 *     /dev/vinum/%s.
2024 		 *
2025 		 * FreeBSD now doesn't distinguish between raw and block
2026 		 * devices any longer, but it should still work this way.
2027 		 */
2028 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2029 		special=(char *)malloc(len);
2030 		if(special == NULL) {
2031 			errx(1, "malloc failed");
2032 		}
2033 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2034 		if (stat(special, &st) == -1) {
2035 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2036 			if (stat(special, &st) == -1) {
2037 				snprintf(special, len, "%svinum/r%s",
2038 				    _PATH_DEV, device);
2039 				if (stat(special, &st) == -1) {
2040 					/* For now this is the 'last resort' */
2041 					snprintf(special, len, "%svinum/%s",
2042 					    _PATH_DEV, device);
2043 				}
2044 			}
2045 		}
2046 		device = special;
2047 	}
2048 
2049 	/*
2050 	 * Try to access our devices for writing ...
2051 	 */
2052 	if (Nflag) {
2053 		fso = -1;
2054 	} else {
2055 		fso = open(device, O_WRONLY);
2056 		if (fso < 0) {
2057 			err(1, "%s", device);
2058 		}
2059 	}
2060 
2061 	/*
2062 	 * ... and reading.
2063 	 */
2064 	fsi = open(device, O_RDONLY);
2065 	if (fsi < 0) {
2066 		err(1, "%s", device);
2067 	}
2068 
2069 	/*
2070 	 * Try to read a label and guess the slice if not specified. This
2071 	 * code should guess the right thing and avoid to bother the user
2072 	 * with the task of specifying the option -v on vinum volumes.
2073 	 */
2074 	cp=device+strlen(device)-1;
2075 	lp = get_disklabel(fsi);
2076 	pp = NULL;
2077     if (lp != NULL) {
2078         if (isdigit(*cp)) {
2079             pp = &lp->d_partitions[2];
2080         } else if (*cp>='a' && *cp<='h') {
2081             pp = &lp->d_partitions[*cp - 'a'];
2082         } else {
2083             errx(1, "unknown device");
2084         }
2085         p_size = pp->p_size;
2086     } else {
2087         get_dev_size(fsi, &p_size);
2088     }
2089 
2090 	/*
2091 	 * Check if that partition is suitable for growing a file system.
2092 	 */
2093 	if (p_size < 1) {
2094 		errx(1, "partition is unavailable");
2095 	}
2096 
2097 	/*
2098 	 * Read the current superblock, and take a backup.
2099 	 */
2100 	for (i = 0; sblock_try[i] != -1; i++) {
2101 		sblockloc = sblock_try[i] / DEV_BSIZE;
2102 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2103 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2104 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2105 		      osblock.fs_sblockloc == sblock_try[i])) &&
2106 		    osblock.fs_bsize <= MAXBSIZE &&
2107 		    osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2108 			break;
2109 	}
2110 	if (sblock_try[i] == -1) {
2111 		errx(1, "superblock not recognized");
2112 	}
2113 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2114 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2115 
2116 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2117 	DBG_DUMP_FS(&sblock,
2118 	    "old sblock");
2119 
2120 	/*
2121 	 * Determine size to grow to. Default to the full size specified in
2122 	 * the disk label.
2123 	 */
2124 	sblock.fs_size = dbtofsb(&osblock, p_size);
2125 	if (size != 0) {
2126 		if (size > p_size){
2127 			errx(1, "there is not enough space (%d < %d)",
2128 			    p_size, size);
2129 		}
2130 		sblock.fs_size = dbtofsb(&osblock, size);
2131 	}
2132 
2133 	/*
2134 	 * Are we really growing ?
2135 	 */
2136 	if(osblock.fs_size >= sblock.fs_size) {
2137 		errx(1, "we are not growing (%jd->%jd)",
2138 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2139 	}
2140 
2141 
2142 #ifdef FSMAXSNAP
2143 	/*
2144 	 * Check if we find an active snapshot.
2145 	 */
2146 	if(ExpertFlag == 0) {
2147 		for(j=0; j<FSMAXSNAP; j++) {
2148 			if(sblock.fs_snapinum[j]) {
2149 				errx(1, "active snapshot found in file system\n"
2150 				    "	please remove all snapshots before "
2151 				    "using growfs");
2152 			}
2153 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2154 				break;
2155 			}
2156 		}
2157 	}
2158 #endif
2159 
2160 	if (ExpertFlag == 0 && Nflag == 0) {
2161 		printf("We strongly recommend you to make a backup "
2162 		    "before growing the Filesystem\n\n"
2163 		    " Did you backup your data (Yes/No) ? ");
2164 		fgets(reply, (int)sizeof(reply), stdin);
2165 		if (strcmp(reply, "Yes\n")){
2166 			printf("\n Nothing done \n");
2167 			exit (0);
2168 		}
2169 	}
2170 
2171 	printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2172 
2173 	/*
2174 	 * Try to access our new last block in the file system. Even if we
2175 	 * later on realize we have to abort our operation, on that block
2176 	 * there should be no data, so we can't destroy something yet.
2177 	 */
2178 	wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2179 	    fso, Nflag);
2180 
2181 	/*
2182 	 * Now calculate new superblock values and check for reasonable
2183 	 * bound for new file system size:
2184 	 *     fs_size:    is derived from label or user input
2185 	 *     fs_dsize:   should get updated in the routines creating or
2186 	 *                 updating the cylinder groups on the fly
2187 	 *     fs_cstotal: should get updated in the routines creating or
2188 	 *                 updating the cylinder groups
2189 	 */
2190 
2191 	/*
2192 	 * Update the number of cylinders and cylinder groups in the file system.
2193 	 */
2194 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2195 		sblock.fs_old_ncyl =
2196 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2197 		if (sblock.fs_size * sblock.fs_old_nspf >
2198 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2199 			sblock.fs_old_ncyl++;
2200 	}
2201 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2202 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2203 
2204 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2205 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2206 		/*
2207 		 * The space in the new last cylinder group is too small,
2208 		 * so revert back.
2209 		 */
2210 		sblock.fs_ncg--;
2211 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2212 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2213 		printf("Warning: %jd sector(s) cannot be allocated.\n",
2214 		    (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2215 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2216 		maxino -= sblock.fs_ipg;
2217 	}
2218 
2219 	/*
2220 	 * Update the space for the cylinder group summary information in the
2221 	 * respective cylinder group data area.
2222 	 */
2223 	sblock.fs_cssize =
2224 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2225 
2226 	if(osblock.fs_size >= sblock.fs_size) {
2227 		errx(1, "not enough new space");
2228 	}
2229 
2230 	DBG_PRINT0("sblock calculated\n");
2231 
2232 	/*
2233 	 * Ok, everything prepared, so now let's do the tricks.
2234 	 */
2235 	growfs(fsi, fso, Nflag);
2236 
2237 	/*
2238 	 * Update the disk label.
2239 	 */
2240     if (!unlabeled) {
2241         pp->p_fsize = sblock.fs_fsize;
2242         pp->p_frag = sblock.fs_frag;
2243         pp->p_cpg = sblock.fs_fpg;
2244 
2245         return_disklabel(fso, lp, Nflag);
2246         DBG_PRINT0("label rewritten\n");
2247     }
2248 
2249 	close(fsi);
2250 	if(fso>-1) close(fso);
2251 
2252 	DBG_CLOSE;
2253 
2254 	DBG_LEAVE;
2255 	return 0;
2256 }
2257 
2258 /* ************************************************** return_disklabel ***** */
2259 /*
2260  * Write the updated disklabel back to disk.
2261  */
2262 static void
2263 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2264 {
2265 	DBG_FUNC("return_disklabel")
2266 	u_short	sum;
2267 	u_short	*ptr;
2268 
2269 	DBG_ENTER;
2270 
2271 	if(!lp) {
2272 		DBG_LEAVE;
2273 		return;
2274 	}
2275 	if(!Nflag) {
2276 		lp->d_checksum=0;
2277 		sum = 0;
2278 		ptr=(u_short *)lp;
2279 
2280 		/*
2281 		 * recalculate checksum
2282 		 */
2283 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2284 			sum ^= *ptr++;
2285 		}
2286 		lp->d_checksum=sum;
2287 
2288 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2289 			errx(1, "DIOCWDINFO failed");
2290 		}
2291 	}
2292 	free(lp);
2293 
2294 	DBG_LEAVE;
2295 	return ;
2296 }
2297 
2298 /* ***************************************************** get_disklabel ***** */
2299 /*
2300  * Read the disklabel from disk.
2301  */
2302 static struct disklabel *
2303 get_disklabel(int fd)
2304 {
2305 	DBG_FUNC("get_disklabel")
2306 	static struct	disklabel *lab;
2307 
2308 	DBG_ENTER;
2309 
2310 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2311 	if (!lab)
2312 		errx(1, "malloc failed");
2313 
2314     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2315         return (lab);
2316 
2317     unlabeled++;
2318 
2319 	DBG_LEAVE;
2320 	return (NULL);
2321 }
2322 
2323 
2324 /* ************************************************************* usage ***** */
2325 /*
2326  * Dump a line of usage.
2327  */
2328 static void
2329 usage(void)
2330 {
2331 	DBG_FUNC("usage")
2332 
2333 	DBG_ENTER;
2334 
2335 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2336 
2337 	DBG_LEAVE;
2338 	exit(1);
2339 }
2340 
2341 /* *********************************************************** updclst ***** */
2342 /*
2343  * This updates most parameters and the bitmap related to cluster. We have to
2344  * assume that sblock, osblock, acg are set up.
2345  */
2346 static void
2347 updclst(int block)
2348 {
2349 	DBG_FUNC("updclst")
2350 	static int	lcs=0;
2351 
2352 	DBG_ENTER;
2353 
2354 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2355 		return;
2356 	}
2357 	/*
2358 	 * update cluster allocation map
2359 	 */
2360 	setbit(cg_clustersfree(&acg), block);
2361 
2362 	/*
2363 	 * update cluster summary table
2364 	 */
2365 	if(!lcs) {
2366 		/*
2367 		 * calculate size for the trailing cluster
2368 		 */
2369 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2370 			if(isclr(cg_clustersfree(&acg), block)){
2371 				break;
2372 			}
2373 		}
2374 	}
2375 	if(lcs < sblock.fs_contigsumsize) {
2376 		if(lcs) {
2377 			cg_clustersum(&acg)[lcs]--;
2378 		}
2379 		lcs++;
2380 		cg_clustersum(&acg)[lcs]++;
2381 	}
2382 
2383 	DBG_LEAVE;
2384 	return;
2385 }
2386 
2387 /* *********************************************************** updrefs ***** */
2388 /*
2389  * This updates all references to relocated blocks for the given inode.  The
2390  * inode is given as number within the cylinder group, and the number of the
2391  * cylinder group.
2392  */
2393 static void
2394 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2395     Nflag)
2396 {
2397 	DBG_FUNC("updrefs")
2398 	ufs_lbn_t	len, lbn, numblks;
2399 	ufs2_daddr_t	iptr, blksperindir;
2400 	union dinode	*ino;
2401 	int		i, mode, inodeupdated;
2402 
2403 	DBG_ENTER;
2404 
2405 	ino = ginode(in, fsi, cg);
2406 	if (ino == NULL) {
2407 		DBG_LEAVE;
2408 		return;
2409 	}
2410 	mode = DIP(ino, di_mode) & IFMT;
2411 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2412 		DBG_LEAVE;
2413 		return; /* only check DIR, FILE, LINK */
2414 	}
2415 	if (mode == IFLNK &&
2416 	    DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2417 		DBG_LEAVE;
2418 		return;	/* skip short symlinks */
2419 	}
2420 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2421 	if (numblks == 0) {
2422 		DBG_LEAVE;
2423 		return;	/* skip empty file */
2424 	}
2425 	if (DIP(ino, di_blocks) == 0) {
2426 		DBG_LEAVE;
2427 		return;	/* skip empty swiss cheesy file or old fastlink */
2428 	}
2429 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2430 	    in,
2431 	    cg);
2432 
2433 	/*
2434 	 * Check all the blocks.
2435 	 */
2436 	inodeupdated = 0;
2437 	len = numblks < NDADDR ? numblks : NDADDR;
2438 	for (i = 0; i < len; i++) {
2439 		iptr = DIP(ino, di_db[i]);
2440 		if (iptr == 0)
2441 			continue;
2442 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2443 			DIP_SET(ino, di_db[i], iptr);
2444 			inodeupdated++;
2445 		}
2446 	}
2447 	DBG_PRINT0("~~scg direct blocks checked\n");
2448 
2449 	blksperindir = 1;
2450 	len = numblks - NDADDR;
2451 	lbn = NDADDR;
2452 	for (i = 0; len > 0 && i < NIADDR; i++) {
2453 		iptr = DIP(ino, di_ib[i]);
2454 		if (iptr == 0)
2455 			continue;
2456 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2457 			DIP_SET(ino, di_ib[i], iptr);
2458 			inodeupdated++;
2459 		}
2460 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2461 		blksperindir *= NINDIR(&sblock);
2462 		lbn += blksperindir;
2463 		len -= blksperindir;
2464 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2465 	}
2466 	if (inodeupdated)
2467 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2468 
2469 	DBG_LEAVE;
2470 	return;
2471 }
2472 
2473 /*
2474  * Recursively check all the indirect blocks.
2475  */
2476 static void
2477 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2478     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2479 {
2480 	DBG_FUNC("indirchk")
2481 	void *ibuf;
2482 	int i, last;
2483 	ufs2_daddr_t iptr;
2484 
2485 	DBG_ENTER;
2486 
2487 	/* read in the indirect block. */
2488 	ibuf = malloc(sblock.fs_bsize);
2489 	if (!ibuf)
2490 		errx(1, "malloc failed");
2491 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2492 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2493 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2494 	for (i = 0; i < last; i++) {
2495 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2496 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2497 		else
2498 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2499 		if (iptr == 0)
2500 			continue;
2501 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2502 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2503 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2504 			else
2505 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2506 		}
2507 		if (blksperindir == 1)
2508 			continue;
2509 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2510 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2511 	}
2512 	free(ibuf);
2513 
2514 	DBG_LEAVE;
2515 	return;
2516 }
2517