xref: /freebsd/sbin/growfs/growfs.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD$";
52 #endif /* not lint */
53 
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 
60 #include <stdio.h>
61 #include <paths.h>
62 #include <ctype.h>
63 #include <err.h>
64 #include <fcntl.h>
65 #include <limits.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #include <ufs/ufs/dinode.h>
70 #include <ufs/ffs/fs.h>
71 
72 #include "debug.h"
73 
74 /* *************************************************** GLOBALS & TYPES ***** */
75 #ifdef FS_DEBUG
76 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
77 #endif /* FS_DEBUG */
78 
79 static union {
80 	struct fs	fs;
81 	char	pad[SBLOCKSIZE];
82 } fsun1, fsun2;
83 #define	sblock	fsun1.fs	/* the new superblock */
84 #define	osblock	fsun2.fs	/* the old superblock */
85 
86 /*
87  * Possible superblock locations ordered from most to least likely.
88  */
89 static int sblock_try[] = SBLOCKSEARCH;
90 static ufs2_daddr_t sblockloc;
91 
92 static union {
93 	struct cg	cg;
94 	char	pad[MAXBSIZE];
95 } cgun1, cgun2;
96 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
97 #define	aocg	cgun2.cg	/* an old cylinder group */
98 
99 static char	ablk[MAXBSIZE];	/* a block */
100 
101 static struct csum	*fscs;	/* cylinder summary */
102 
103 union dinode {
104 	struct ufs1_dinode dp1;
105 	struct ufs2_dinode dp2;
106 };
107 #define	DIP(dp, field) \
108 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
109 	(dp)->dp1.field : (dp)->dp2.field)
110 static ufs2_daddr_t 	inoblk;			/* inode block address */
111 static char		inobuf[MAXBSIZE];	/* inode block */
112 static int		maxino;			/* last valid inode */
113 
114 /*
115  * An  array of elements of type struct gfs_bpp describes all blocks  to
116  * be relocated in order to free the space needed for the cylinder group
117  * summary for all cylinder groups located in the first cylinder group.
118  */
119 struct gfs_bpp {
120 	ufs2_daddr_t	old;		/* old block number */
121 	ufs2_daddr_t	new;		/* new block number */
122 #define GFS_FL_FIRST	1
123 #define GFS_FL_LAST	2
124 	unsigned int	flags;	/* special handling required */
125 	int	found;		/* how many references were updated */
126 };
127 
128 /* ******************************************************** PROTOTYPES ***** */
129 static void	growfs(int, int, unsigned int);
130 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
131 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
132 static ufs2_daddr_t alloc(void);
133 static int	charsperline(void);
134 static void	usage(void);
135 static int	isblock(struct fs *, unsigned char *, int);
136 static void	clrblock(struct fs *, unsigned char *, int);
137 static void	setblock(struct fs *, unsigned char *, int);
138 static void	initcg(int, time_t, int, unsigned int);
139 static void	updjcg(int, time_t, int, int, unsigned int);
140 static void	updcsloc(time_t, int, int, unsigned int);
141 static struct disklabel	*get_disklabel(int);
142 static void	return_disklabel(int, struct disklabel *, unsigned int);
143 static union dinode *ginode(ino_t, int, int);
144 static void	frag_adjust(ufs2_daddr_t, int);
145 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
146 		    unsigned int);
147 static void	updclst(int);
148 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
149 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
150 		    struct gfs_bpp *, int, int, unsigned int);
151 
152 /* ************************************************************ growfs ***** */
153 /*
154  * Here  we actually start growing the file system. We basically  read  the
155  * cylinder  summary  from the first cylinder group as we want  to  update
156  * this  on  the fly during our various operations. First  we  handle  the
157  * changes in the former last cylinder group. Afterwards we create all new
158  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
159  * cylinder  summary  which  might result in a  relocation  of  the  whole
160  * structure.  In the end we write back the updated cylinder summary,  the
161  * new superblock, and slightly patched versions of the super block
162  * copies.
163  */
164 static void
165 growfs(int fsi, int fso, unsigned int Nflag)
166 {
167 	DBG_FUNC("growfs")
168 	int	i;
169 	int	cylno, j;
170 	time_t	utime;
171 	int	width;
172 	char	tmpbuf[100];
173 #ifdef FSIRAND
174 	static int	randinit=0;
175 
176 	DBG_ENTER;
177 
178 	if (!randinit) {
179 		randinit = 1;
180 		srandomdev();
181 	}
182 #else /* not FSIRAND */
183 
184 	DBG_ENTER;
185 
186 #endif /* FSIRAND */
187 	time(&utime);
188 
189 	/*
190 	 * Get the cylinder summary into the memory.
191 	 */
192 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
193 	if(fscs == NULL) {
194 		errx(1, "calloc failed");
195 	}
196 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
197 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
198 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
199 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
200 	}
201 
202 #ifdef FS_DEBUG
203 {
204 	struct csum	*dbg_csp;
205 	int	dbg_csc;
206 	char	dbg_line[80];
207 
208 	dbg_csp=fscs;
209 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
210 		snprintf(dbg_line, sizeof(dbg_line),
211 		    "%d. old csum in old location", dbg_csc);
212 		DBG_DUMP_CSUM(&osblock,
213 		    dbg_line,
214 		    dbg_csp++);
215 	}
216 }
217 #endif /* FS_DEBUG */
218 	DBG_PRINT0("fscs read\n");
219 
220 	/*
221 	 * Do all needed changes in the former last cylinder group.
222 	 */
223 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
224 
225 	/*
226 	 * Dump out summary information about file system.
227 	 */
228 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
229 	printf("growfs: %.1fMB (%qd sectors) block size %d, fragment size %d\n",
230 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
231 	    fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize);
232 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
233 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
234 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
235 	if (sblock.fs_flags & FS_DOSOFTDEP)
236 		printf("\twith soft updates\n");
237 #	undef B2MBFACTOR
238 
239 	/*
240 	 * Now build the cylinders group blocks and
241 	 * then print out indices of cylinder groups.
242 	 */
243 	printf("super-block backups (for fsck -b #) at:\n");
244 	i = 0;
245 	width = charsperline();
246 
247 	/*
248 	 * Iterate for only the new cylinder groups.
249 	 */
250 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
251 		initcg(cylno, utime, fso, Nflag);
252 		j = sprintf(tmpbuf, " %d%s",
253 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
254 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
255 		if (i + j >= width) {
256 			printf("\n");
257 			i = 0;
258 		}
259 		i += j;
260 		printf("%s", tmpbuf);
261 		fflush(stdout);
262 	}
263 	printf("\n");
264 
265 	/*
266 	 * Do all needed changes in the first cylinder group.
267 	 * allocate blocks in new location
268 	 */
269 	updcsloc(utime, fsi, fso, Nflag);
270 
271 	/*
272 	 * Now write the cylinder summary back to disk.
273 	 */
274 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
275 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
276 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
277 		    (void *)(((char *)fscs) + i), fso, Nflag);
278 	}
279 	DBG_PRINT0("fscs written\n");
280 
281 #ifdef FS_DEBUG
282 {
283 	struct csum	*dbg_csp;
284 	int	dbg_csc;
285 	char	dbg_line[80];
286 
287 	dbg_csp=fscs;
288 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
289 		snprintf(dbg_line, sizeof(dbg_line),
290 		    "%d. new csum in new location", dbg_csc);
291 		DBG_DUMP_CSUM(&sblock,
292 		    dbg_line,
293 		    dbg_csp++);
294 	}
295 }
296 #endif /* FS_DEBUG */
297 
298 	/*
299 	 * Now write the new superblock back to disk.
300 	 */
301 	sblock.fs_time = utime;
302 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
303 	DBG_PRINT0("sblock written\n");
304 	DBG_DUMP_FS(&sblock,
305 	    "new initial sblock");
306 
307 	/*
308 	 * Clean up the dynamic fields in our superblock copies.
309 	 */
310 	sblock.fs_fmod = 0;
311 	sblock.fs_clean = 1;
312 	sblock.fs_ronly = 0;
313 	sblock.fs_cgrotor = 0;
314 	sblock.fs_state = 0;
315 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
316 	sblock.fs_flags &= FS_DOSOFTDEP;
317 
318 	/*
319 	 * XXX
320 	 * The following fields are currently distributed from the  superblock
321 	 * to the copies:
322 	 *     fs_minfree
323 	 *     fs_rotdelay
324 	 *     fs_maxcontig
325 	 *     fs_maxbpg
326 	 *     fs_minfree,
327 	 *     fs_optim
328 	 *     fs_flags regarding SOFTPDATES
329 	 *
330 	 * We probably should rather change the summary for the cylinder group
331 	 * statistics here to the value of what would be in there, if the file
332 	 * system were created initially with the new size. Therefor we  still
333 	 * need to find an easy way of calculating that.
334 	 * Possibly we can try to read the first superblock copy and apply the
335 	 * "diffed" stats between the old and new superblock by still  copying
336 	 * certain parameters onto that.
337 	 */
338 
339 	/*
340 	 * Write out the duplicate super blocks.
341 	 */
342 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
343 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
344 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
345 	}
346 	DBG_PRINT0("sblock copies written\n");
347 	DBG_DUMP_FS(&sblock,
348 	    "new other sblocks");
349 
350 	DBG_LEAVE;
351 	return;
352 }
353 
354 /* ************************************************************ initcg ***** */
355 /*
356  * This creates a new cylinder group structure, for more details please  see
357  * the  source of newfs(8), as this function is taken over almost unchanged.
358  * As  this  is  never called for the  first  cylinder  group,  the  special
359  * provisions for that case are removed here.
360  */
361 static void
362 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
363 {
364 	DBG_FUNC("initcg")
365 	static caddr_t iobuf;
366 	long i, j, d, dlower, dupper, blkno, start;
367 	ufs2_daddr_t cbase, dmax;
368 	struct ufs1_dinode *dp1;
369 	struct ufs2_dinode *dp2;
370 	struct csum *cs;
371 
372 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
373 		errx(37, "panic: cannot allocate I/O buffer");
374 	}
375 	/*
376 	 * Determine block bounds for cylinder group.
377 	 * Allow space for super block summary information in first
378 	 * cylinder group.
379 	 */
380 	cbase = cgbase(&sblock, cylno);
381 	dmax = cbase + sblock.fs_fpg;
382 	if (dmax > sblock.fs_size)
383 		dmax = sblock.fs_size;
384 	dlower = cgsblock(&sblock, cylno) - cbase;
385 	dupper = cgdmin(&sblock, cylno) - cbase;
386 	if (cylno == 0)	/* XXX fscs may be relocated */
387 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
388 	cs = &fscs[cylno];
389 	memset(&acg, 0, sblock.fs_cgsize);
390 	acg.cg_time = utime;
391 	acg.cg_magic = CG_MAGIC;
392 	acg.cg_cgx = cylno;
393 	acg.cg_niblk = sblock.fs_ipg;
394 	acg.cg_initediblk = sblock.fs_ipg;
395 	acg.cg_ndblk = dmax - cbase;
396 	if (sblock.fs_contigsumsize > 0)
397 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
398 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
399 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
400 		acg.cg_iusedoff = start;
401 	} else {
402 		acg.cg_old_ncyl = sblock.fs_old_cpg;
403 		acg.cg_old_time = acg.cg_time;
404 		acg.cg_time = 0;
405 		acg.cg_old_niblk = acg.cg_niblk;
406 		acg.cg_niblk = 0;
407 		acg.cg_initediblk = 0;
408 		acg.cg_old_btotoff = start;
409 		acg.cg_old_boff = acg.cg_old_btotoff +
410 		    sblock.fs_old_cpg * sizeof(int32_t);
411 		acg.cg_iusedoff = acg.cg_old_boff +
412 		    sblock.fs_old_cpg * sizeof(u_int16_t);
413 	}
414 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
415 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
416 	if (sblock.fs_contigsumsize > 0) {
417 		acg.cg_clustersumoff =
418 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
419 		acg.cg_clustersumoff -= sizeof(u_int32_t);
420 		acg.cg_clusteroff = acg.cg_clustersumoff +
421 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
422 		acg.cg_nextfreeoff = acg.cg_clusteroff +
423 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
424 	}
425 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
426 		/*
427 		 * This should never happen as we would have had that panic
428 		 * already on file system creation
429 		 */
430 		errx(37, "panic: cylinder group too big");
431 	}
432 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
433 	if (cylno == 0)
434 		for (i = 0; i < ROOTINO; i++) {
435 			setbit(cg_inosused(&acg), i);
436 			acg.cg_cs.cs_nifree--;
437 		}
438 	bzero(iobuf, sblock.fs_bsize);
439 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
440 		dp1 = (struct ufs1_dinode *)iobuf;
441 		dp2 = (struct ufs2_dinode *)iobuf;
442 #ifdef FSIRAND
443 		for (j = 0; j < INOPB(&sblock); j++)
444 			if (sblock.fs_magic == FS_UFS1_MAGIC) {
445 				dp1->di_gen = random();
446 				dp1++;
447 			} else {
448 				dp2->di_gen = random();
449 				dp2++;
450 			}
451 #endif
452 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
453 		    sblock.fs_bsize, iobuf, fso, Nflag);
454 	}
455 	if (cylno > 0) {
456 		/*
457 		 * In cylno 0, beginning space is reserved
458 		 * for boot and super blocks.
459 		 */
460 		for (d = 0; d < dlower; d += sblock.fs_frag) {
461 			blkno = d / sblock.fs_frag;
462 			setblock(&sblock, cg_blksfree(&acg), blkno);
463 			if (sblock.fs_contigsumsize > 0)
464 				setbit(cg_clustersfree(&acg), blkno);
465 			acg.cg_cs.cs_nbfree++;
466 		}
467 		sblock.fs_dsize += dlower;
468 	}
469 	sblock.fs_dsize += acg.cg_ndblk - dupper;
470 	if ((i = dupper % sblock.fs_frag)) {
471 		acg.cg_frsum[sblock.fs_frag - i]++;
472 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
473 			setbit(cg_blksfree(&acg), dupper);
474 			acg.cg_cs.cs_nffree++;
475 		}
476 	}
477 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
478 	     d += sblock.fs_frag) {
479 		blkno = d / sblock.fs_frag;
480 		setblock(&sblock, cg_blksfree(&acg), blkno);
481 		if (sblock.fs_contigsumsize > 0)
482 			setbit(cg_clustersfree(&acg), blkno);
483 		acg.cg_cs.cs_nbfree++;
484 	}
485 	if (d < acg.cg_ndblk) {
486 		acg.cg_frsum[acg.cg_ndblk - d]++;
487 		for (; d < acg.cg_ndblk; d++) {
488 			setbit(cg_blksfree(&acg), d);
489 			acg.cg_cs.cs_nffree++;
490 		}
491 	}
492 	if (sblock.fs_contigsumsize > 0) {
493 		int32_t *sump = cg_clustersum(&acg);
494 		u_char *mapp = cg_clustersfree(&acg);
495 		int map = *mapp++;
496 		int bit = 1;
497 		int run = 0;
498 
499 		for (i = 0; i < acg.cg_nclusterblks; i++) {
500 			if ((map & bit) != 0)
501 				run++;
502 			else if (run != 0) {
503 				if (run > sblock.fs_contigsumsize)
504 					run = sblock.fs_contigsumsize;
505 				sump[run]++;
506 				run = 0;
507 			}
508 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
509 				bit <<= 1;
510 			else {
511 				map = *mapp++;
512 				bit = 1;
513 			}
514 		}
515 		if (run != 0) {
516 			if (run > sblock.fs_contigsumsize)
517 				run = sblock.fs_contigsumsize;
518 			sump[run]++;
519 		}
520 	}
521 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
522 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
523 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
524 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
525 	*cs = acg.cg_cs;
526 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
527 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
528 	DBG_DUMP_CG(&sblock,
529 	    "new cg",
530 	    &acg);
531 
532 	DBG_LEAVE;
533 	return;
534 }
535 
536 /* ******************************************************* frag_adjust ***** */
537 /*
538  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
539  * block to or from the fragment statistics. By subtracting before and adding
540  * after  an operation on the free frag map we can easy update  the  fragment
541  * statistic, which seems to be otherwise a rather complex operation.
542  */
543 static void
544 frag_adjust(ufs2_daddr_t frag, int sign)
545 {
546 	DBG_FUNC("frag_adjust")
547 	int fragsize;
548 	int f;
549 
550 	DBG_ENTER;
551 
552 	fragsize=0;
553 	/*
554 	 * Here frag only needs to point to any fragment in the block we want
555 	 * to examine.
556 	 */
557 	for(f=rounddown(frag, sblock.fs_frag);
558 	    f<roundup(frag+1, sblock.fs_frag);
559 	    f++) {
560 		/*
561 		 * Count contiguos free fragments.
562 		 */
563 		if(isset(cg_blksfree(&acg), f)) {
564 			fragsize++;
565 		} else {
566 			if(fragsize && fragsize<sblock.fs_frag) {
567 				/*
568 				 * We found something in between.
569 				 */
570 				acg.cg_frsum[fragsize]+=sign;
571 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
572 				    fragsize,
573 				    sign);
574 			}
575 			fragsize=0;
576 		}
577 	}
578 	if(fragsize && fragsize<sblock.fs_frag) {
579 		/*
580 		 * We found something.
581 		 */
582 		acg.cg_frsum[fragsize]+=sign;
583 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
584 		    fragsize,
585 		    sign);
586 	}
587 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
588 	    fragsize,
589 	    sign);
590 
591 	DBG_LEAVE;
592 	return;
593 }
594 
595 /* ******************************************************* cond_bl_upd ***** */
596 /*
597  * Here we conditionally update a pointer to a fragment. We check for all
598  * relocated blocks if any of it's fragments is referenced by the current
599  * field,  and update the pointer to the respective fragment in  our  new
600  * block.  If  we find a reference we write back the  block  immediately,
601  * as there is no easy way for our general block reading engine to figure
602  * out if a write back operation is needed.
603  */
604 static int
605 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
606     unsigned int Nflag)
607 {
608 	DBG_FUNC("cond_bl_upd")
609 	struct gfs_bpp *f;
610 	ufs2_daddr_t src, dst;
611 	int fragnum;
612 	void *ibuf;
613 
614 	DBG_ENTER;
615 
616 	f = field;
617 	for (f = field; f->old != 0; f++) {
618 		src = *block;
619 		if (fragstoblks(&sblock, src) != f->old)
620 			continue;
621 		/*
622 		 * The fragment is part of the block, so update.
623 		 */
624 		dst = blkstofrags(&sblock, f->new);
625 		fragnum = fragnum(&sblock, src);
626 		*block = dst + fragnum;
627 		f->found++;
628 		DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
629 		    f->old,
630 		    f->new,
631 		    fragnum);
632 
633 		/*
634 		 * Copy the block back immediately.
635 		 *
636 		 * XXX	If src is is from an indirect block we have
637 		 *	to implement copy on write here in case of
638 		 *	active snapshots.
639 		 */
640 		ibuf = malloc(sblock.fs_bsize);
641 		if (!ibuf)
642 			errx(1, "malloc failed");
643 		src -= fragnum;
644 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
645 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
646 		free(ibuf);
647 		/*
648 		 * The same block can't be found again in this loop.
649 		 */
650 		return (1);
651 	}
652 
653 	DBG_LEAVE;
654 	return (0);
655 }
656 
657 /* ************************************************************ updjcg ***** */
658 /*
659  * Here we do all needed work for the former last cylinder group. It has to be
660  * changed  in  any case, even if the file system ended exactly on the  end  of
661  * this  group, as there is some slightly inconsistent handling of the  number
662  * of cylinders in the cylinder group. We start again by reading the  cylinder
663  * group from disk. If the last block was not fully available, we first handle
664  * the  missing  fragments, then we handle all new full blocks  in  that  file
665  * system  and  finally we handle the new last fragmented block  in  the  file
666  * system.  We again have to handle the fragment statistics rotational  layout
667  * tables and cluster summary during all those operations.
668  */
669 static void
670 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
671 {
672 	DBG_FUNC("updjcg")
673 	ufs2_daddr_t	cbase, dmax, dupper;
674 	struct csum	*cs;
675 	int	i,k;
676 	int	j=0;
677 
678 	DBG_ENTER;
679 
680 	/*
681 	 * Read the former last (joining) cylinder group from disk, and make
682 	 * a copy.
683 	 */
684 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
685 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
686 	DBG_PRINT0("jcg read\n");
687 	DBG_DUMP_CG(&sblock,
688 	    "old joining cg",
689 	    &aocg);
690 
691 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
692 
693 	/*
694 	 * If  the  cylinder  group had already it's  new  final  size  almost
695 	 * nothing is to be done ... except:
696 	 * For some reason the value of cg_ncyl in the last cylinder group has
697 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
698 	 * cylinder group we have to change that value now to fs_cpg.
699 	 */
700 
701 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
702 		if (sblock.fs_magic == FS_UFS1_MAGIC)
703 			acg.cg_old_ncyl=sblock.fs_old_cpg;
704 
705 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
706 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
707 		DBG_PRINT0("jcg written\n");
708 		DBG_DUMP_CG(&sblock,
709 		    "new joining cg",
710 		    &acg);
711 
712 		DBG_LEAVE;
713 		return;
714 	}
715 
716 	/*
717 	 * Set up some variables needed later.
718 	 */
719 	cbase = cgbase(&sblock, cylno);
720 	dmax = cbase + sblock.fs_fpg;
721 	if (dmax > sblock.fs_size)
722 		dmax = sblock.fs_size;
723 	dupper = cgdmin(&sblock, cylno) - cbase;
724 	if (cylno == 0) { /* XXX fscs may be relocated */
725 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
726 	}
727 
728 	/*
729 	 * Set pointer to the cylinder summary for our cylinder group.
730 	 */
731 	cs = fscs + cylno;
732 
733 	/*
734 	 * Touch the cylinder group, update all fields in the cylinder group as
735 	 * needed, update the free space in the superblock.
736 	 */
737 	acg.cg_time = utime;
738 	if (cylno == sblock.fs_ncg - 1) {
739 		/*
740 		 * This is still the last cylinder group.
741 		 */
742 		if (sblock.fs_magic == FS_UFS1_MAGIC)
743 			acg.cg_old_ncyl =
744 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
745 	} else {
746 		acg.cg_old_ncyl = sblock.fs_old_cpg;
747 	}
748 	DBG_PRINT2("jcg dbg: %d %u",
749 	    cylno,
750 	    sblock.fs_ncg);
751 	if (sblock.fs_magic == FS_UFS1_MAGIC)
752 		DBG_PRINT2("%d %u",
753 		    acg.cg_old_ncyl,
754 		    sblock.fs_old_cpg);
755 	DBG_PRINT0("\n");
756 	acg.cg_ndblk = dmax - cbase;
757 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
758 	if (sblock.fs_contigsumsize > 0) {
759 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
760 	}
761 
762 	/*
763 	 * Now  we have to update the free fragment bitmap for our new  free
764 	 * space.  There again we have to handle the fragmentation and  also
765 	 * the  rotational  layout tables and the cluster summary.  This  is
766 	 * also  done per fragment for the first new block if the  old  file
767 	 * system end was not on a block boundary, per fragment for the  new
768 	 * last block if the new file system end is not on a block boundary,
769 	 * and per block for all space in between.
770 	 *
771 	 * Handle the first new block here if it was partially available
772 	 * before.
773 	 */
774 	if(osblock.fs_size % sblock.fs_frag) {
775 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
776 			/*
777 			 * The new space is enough to fill at least this
778 			 * block
779 			 */
780 			j=0;
781 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
782 			    i>=osblock.fs_size-cbase;
783 			    i--) {
784 				setbit(cg_blksfree(&acg), i);
785 				acg.cg_cs.cs_nffree++;
786 				j++;
787 			}
788 
789 			/*
790 			 * Check  if the fragment just created could join  an
791 			 * already existing fragment at the former end of the
792 			 * file system.
793 			 */
794 			if(isblock(&sblock, cg_blksfree(&acg),
795 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
796 			    sblock.fs_frag))) {
797 				/*
798 				 * The block is now completely available
799 				 */
800 				DBG_PRINT0("block was\n");
801 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
802 				acg.cg_cs.cs_nbfree++;
803 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
804 				k=rounddown(osblock.fs_size-cbase,
805 				    sblock.fs_frag);
806 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
807 			} else {
808 				/*
809 				 * Lets rejoin a possible partially growed
810 				 * fragment.
811 				 */
812 				k=0;
813 				while(isset(cg_blksfree(&acg), i) &&
814 				    (i>=rounddown(osblock.fs_size-cbase,
815 				    sblock.fs_frag))) {
816 					i--;
817 					k++;
818 				}
819 				if(k) {
820 					acg.cg_frsum[k]--;
821 				}
822 				acg.cg_frsum[k+j]++;
823 			}
824 		} else {
825 			/*
826 			 * We only grow by some fragments within this last
827 			 * block.
828 			 */
829 			for(i=sblock.fs_size-cbase-1;
830 				i>=osblock.fs_size-cbase;
831 				i--) {
832 				setbit(cg_blksfree(&acg), i);
833 				acg.cg_cs.cs_nffree++;
834 				j++;
835 			}
836 			/*
837 			 * Lets rejoin a possible partially growed fragment.
838 			 */
839 			k=0;
840 			while(isset(cg_blksfree(&acg), i) &&
841 			    (i>=rounddown(osblock.fs_size-cbase,
842 			    sblock.fs_frag))) {
843 				i--;
844 				k++;
845 			}
846 			if(k) {
847 				acg.cg_frsum[k]--;
848 			}
849 			acg.cg_frsum[k+j]++;
850 		}
851 	}
852 
853 	/*
854 	 * Handle all new complete blocks here.
855 	 */
856 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
857 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
858 	    i+=sblock.fs_frag) {
859 		j = i / sblock.fs_frag;
860 		setblock(&sblock, cg_blksfree(&acg), j);
861 		updclst(j);
862 		acg.cg_cs.cs_nbfree++;
863 	}
864 
865 	/*
866 	 * Handle the last new block if there are stll some new fragments left.
867 	 * Here  we don't have to bother about the cluster summary or the  even
868 	 * the rotational layout table.
869 	 */
870 	if (i < (dmax - cbase)) {
871 		acg.cg_frsum[dmax - cbase - i]++;
872 		for (; i < dmax - cbase; i++) {
873 			setbit(cg_blksfree(&acg), i);
874 			acg.cg_cs.cs_nffree++;
875 		}
876 	}
877 
878 	sblock.fs_cstotal.cs_nffree +=
879 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
880 	sblock.fs_cstotal.cs_nbfree +=
881 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
882 	/*
883 	 * The following statistics are not changed here:
884 	 *     sblock.fs_cstotal.cs_ndir
885 	 *     sblock.fs_cstotal.cs_nifree
886 	 * As the statistics for this cylinder group are ready, copy it to
887 	 * the summary information array.
888 	 */
889 	*cs = acg.cg_cs;
890 
891 	/*
892 	 * Write the updated "joining" cylinder group back to disk.
893 	 */
894 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
895 	    (void *)&acg, fso, Nflag);
896 	DBG_PRINT0("jcg written\n");
897 	DBG_DUMP_CG(&sblock,
898 	    "new joining cg",
899 	    &acg);
900 
901 	DBG_LEAVE;
902 	return;
903 }
904 
905 /* ********************************************************** updcsloc ***** */
906 /*
907  * Here  we update the location of the cylinder summary. We have  two  possible
908  * ways of growing the cylinder summary.
909  * (1)	We can try to grow the summary in the current location, and  relocate
910  *	possibly used blocks within the current cylinder group.
911  * (2)	Alternatively we can relocate the whole cylinder summary to the first
912  *	new completely empty cylinder group. Once the cylinder summary is  no
913  *	longer in the beginning of the first cylinder group you should  never
914  *	use  a version of fsck which is not aware of the possibility to  have
915  *	this structure in a non standard place.
916  * Option (1) is considered to be less intrusive to the structure of the  file-
917  * system. So we try to stick to that whenever possible. If there is not enough
918  * space  in the cylinder group containing the cylinder summary we have to  use
919  * method  (2). In case of active snapshots in the file system we  probably  can
920  * completely avoid implementing copy on write if we stick to method (2) only.
921  */
922 static void
923 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
924 {
925 	DBG_FUNC("updcsloc")
926 	struct csum	*cs;
927 	int	ocscg, ncscg;
928 	int	blocks;
929 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
930 	int	ind;
931 	int	cylno, inc;
932 	struct gfs_bpp	*bp;
933 	int	i, l;
934 	int	lcs=0;
935 	int	block;
936 
937 	DBG_ENTER;
938 
939 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
940 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
941 		/*
942 		 * No new fragment needed.
943 		 */
944 		DBG_LEAVE;
945 		return;
946 	}
947 	ocscg=dtog(&osblock, osblock.fs_csaddr);
948 	cs=fscs+ocscg;
949 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
950 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
951 
952 	/*
953 	 * Read original cylinder group from disk, and make a copy.
954 	 * XXX	If Nflag is set in some very rare cases we now miss
955 	 *	some changes done in updjcg by reading the unmodified
956 	 *	block from disk.
957 	 */
958 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
959 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
960 	DBG_PRINT0("oscg read\n");
961 	DBG_DUMP_CG(&sblock,
962 	    "old summary cg",
963 	    &aocg);
964 
965 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
966 
967 	/*
968 	 * Touch the cylinder group, set up local variables needed later
969 	 * and update the superblock.
970 	 */
971 	acg.cg_time = utime;
972 
973 	/*
974 	 * XXX	In the case of having active snapshots we may need much more
975 	 *	blocks for the copy on write. We need each block twice,  and
976 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
977 	 *	references.
978 	 */
979 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
980 		/*
981 		 * There  is  not enough space in the old cylinder  group  to
982 		 * relocate  all blocks as needed, so we relocate  the  whole
983 		 * cylinder  group summary to a new group. We try to use  the
984 		 * first complete new cylinder group just created. Within the
985 		 * cylinder  group we allign the area immediately  after  the
986 		 * cylinder  group  information location in order  to  be  as
987 		 * close as possible to the original implementation of ffs.
988 		 *
989 		 * First  we have to make sure we'll find enough space in  the
990 		 * new  cylinder  group. If not, then we  currently  give  up.
991 		 * We  start  with freeing everything which was  used  by  the
992 		 * fragments of the old cylinder summary in the current group.
993 		 * Now  we write back the group meta data, read in the  needed
994 		 * meta data from the new cylinder group, and start allocating
995 		 * within  that  group. Here we can assume, the  group  to  be
996 		 * completely empty. Which makes the handling of fragments and
997 		 * clusters a lot easier.
998 		 */
999 		DBG_TRC;
1000 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1001 			errx(2, "panic: not enough space");
1002 		}
1003 
1004 		/*
1005 		 * Point "d" to the first fragment not used by the cylinder
1006 		 * summary.
1007 		 */
1008 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1009 
1010 		/*
1011 		 * Set up last cluster size ("lcs") already here. Calculate
1012 		 * the size for the trailing cluster just behind where  "d"
1013 		 * points to.
1014 		 */
1015 		if(sblock.fs_contigsumsize > 0) {
1016 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1017 			    lcs=0; lcs<sblock.fs_contigsumsize;
1018 			    block++, lcs++) {
1019 				if(isclr(cg_clustersfree(&acg), block)){
1020 					break;
1021 				}
1022 			}
1023 		}
1024 
1025 		/*
1026 		 * Point "d" to the last frag used by the cylinder summary.
1027 		 */
1028 		d--;
1029 
1030 		DBG_PRINT1("d=%d\n",
1031 		    d);
1032 		if((d+1)%sblock.fs_frag) {
1033 			/*
1034 			 * The end of the cylinder summary is not a complete
1035 			 * block.
1036 			 */
1037 			DBG_TRC;
1038 			frag_adjust(d%sblock.fs_fpg, -1);
1039 			for(; (d+1)%sblock.fs_frag; d--) {
1040 				DBG_PRINT1("d=%d\n",
1041 				    d);
1042 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1043 				acg.cg_cs.cs_nffree++;
1044 				sblock.fs_cstotal.cs_nffree++;
1045 			}
1046 			/*
1047 			 * Point  "d" to the last fragment of the  last
1048 			 * (incomplete) block of the clinder summary.
1049 			 */
1050 			d++;
1051 			frag_adjust(d%sblock.fs_fpg, 1);
1052 
1053 			if(isblock(&sblock, cg_blksfree(&acg),
1054 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1055 				DBG_PRINT1("d=%d\n",
1056 				    d);
1057 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1058 				acg.cg_cs.cs_nbfree++;
1059 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1060 				sblock.fs_cstotal.cs_nbfree++;
1061 				if(sblock.fs_contigsumsize > 0) {
1062 					setbit(cg_clustersfree(&acg),
1063 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1064 					if(lcs < sblock.fs_contigsumsize) {
1065 						if(lcs) {
1066 							cg_clustersum(&acg)
1067 							    [lcs]--;
1068 						}
1069 						lcs++;
1070 						cg_clustersum(&acg)[lcs]++;
1071 					}
1072 				}
1073 			}
1074 			/*
1075 			 * Point "d" to the first fragment of the block before
1076 			 * the last incomplete block.
1077 			 */
1078 			d--;
1079 		}
1080 
1081 		DBG_PRINT1("d=%d\n",
1082 		    d);
1083 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1084 		    d-=sblock.fs_frag) {
1085 			DBG_TRC;
1086 			DBG_PRINT1("d=%d\n",
1087 			    d);
1088 			setblock(&sblock, cg_blksfree(&acg),
1089 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1090 			acg.cg_cs.cs_nbfree++;
1091 			sblock.fs_cstotal.cs_nbfree++;
1092 			if(sblock.fs_contigsumsize > 0) {
1093 				setbit(cg_clustersfree(&acg),
1094 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1095 				/*
1096 				 * The last cluster size is already set up.
1097 				 */
1098 				if(lcs < sblock.fs_contigsumsize) {
1099 					if(lcs) {
1100 						cg_clustersum(&acg)[lcs]--;
1101 					}
1102 					lcs++;
1103 					cg_clustersum(&acg)[lcs]++;
1104 				}
1105 			}
1106 		}
1107 		*cs = acg.cg_cs;
1108 
1109 		/*
1110 		 * Now write the former cylinder group containing the cylinder
1111 		 * summary back to disk.
1112 		 */
1113 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1114 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1115 		DBG_PRINT0("oscg written\n");
1116 		DBG_DUMP_CG(&sblock,
1117 		    "old summary cg",
1118 		    &acg);
1119 
1120 		/*
1121 		 * Find the beginning of the new cylinder group containing the
1122 		 * cylinder summary.
1123 		 */
1124 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1125 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1126 		cs=fscs+ncscg;
1127 
1128 
1129 		/*
1130 		 * If Nflag is specified, we would now read random data instead
1131 		 * of an empty cg structure from disk. So we can't simulate that
1132 		 * part for now.
1133 		 */
1134 		if(Nflag) {
1135 			DBG_PRINT0("nscg update skipped\n");
1136 			DBG_LEAVE;
1137 			return;
1138 		}
1139 
1140 		/*
1141 		 * Read the future cylinder group containing the cylinder
1142 		 * summary from disk, and make a copy.
1143 		 */
1144 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1145 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1146 		DBG_PRINT0("nscg read\n");
1147 		DBG_DUMP_CG(&sblock,
1148 		    "new summary cg",
1149 		    &aocg);
1150 
1151 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1152 
1153 		/*
1154 		 * Allocate all complete blocks used by the new cylinder
1155 		 * summary.
1156 		 */
1157 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1158 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1159 		    d+=sblock.fs_frag) {
1160 			clrblock(&sblock, cg_blksfree(&acg),
1161 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1162 			acg.cg_cs.cs_nbfree--;
1163 			sblock.fs_cstotal.cs_nbfree--;
1164 			if(sblock.fs_contigsumsize > 0) {
1165 				clrbit(cg_clustersfree(&acg),
1166 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1167 			}
1168 		}
1169 
1170 		/*
1171 		 * Allocate all fragments used by the cylinder summary in the
1172 		 * last block.
1173 		 */
1174 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1175 			for(; d-sblock.fs_csaddr<
1176 			    sblock.fs_cssize/sblock.fs_fsize;
1177 			    d++) {
1178 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1179 				acg.cg_cs.cs_nffree--;
1180 				sblock.fs_cstotal.cs_nffree--;
1181 			}
1182 			acg.cg_cs.cs_nbfree--;
1183 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1184 			sblock.fs_cstotal.cs_nbfree--;
1185 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1186 			if(sblock.fs_contigsumsize > 0) {
1187 				clrbit(cg_clustersfree(&acg),
1188 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1189 			}
1190 
1191 			frag_adjust(d%sblock.fs_fpg, +1);
1192 		}
1193 		/*
1194 		 * XXX	Handle the cluster statistics here in the case  this
1195 		 *	cylinder group is now almost full, and the remaining
1196 		 *	space is less then the maximum cluster size. This is
1197 		 *	probably not needed, as you would hardly find a file
1198 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1199 		 *	space right behind the cylinder group information in
1200 		 *	any new cylinder group.
1201 		 */
1202 
1203 		/*
1204 		 * Update our statistics in the cylinder summary.
1205 		 */
1206 		*cs = acg.cg_cs;
1207 
1208 		/*
1209 		 * Write the new cylinder group containing the cylinder summary
1210 		 * back to disk.
1211 		 */
1212 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1213 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1214 		DBG_PRINT0("nscg written\n");
1215 		DBG_DUMP_CG(&sblock,
1216 		    "new summary cg",
1217 		    &acg);
1218 
1219 		DBG_LEAVE;
1220 		return;
1221 	}
1222 	/*
1223 	 * We have got enough of space in the current cylinder group, so we
1224 	 * can relocate just a few blocks, and let the summary  information
1225 	 * grow in place where it is right now.
1226 	 */
1227 	DBG_TRC;
1228 
1229 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1230 	dupper = sblock.fs_csaddr - cbase +
1231 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1232 	odupper = osblock.fs_csaddr - cbase +
1233 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1234 
1235 	sblock.fs_dsize -= dupper-odupper;
1236 
1237 	/*
1238 	 * Allocate the space for the array of blocks to be relocated.
1239 	 */
1240  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1241 	    sizeof(struct gfs_bpp));
1242 	if(bp == NULL) {
1243 		errx(1, "malloc failed");
1244 	}
1245 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1246 	    sizeof(struct gfs_bpp));
1247 
1248 	/*
1249 	 * Lock all new frags needed for the cylinder group summary. This  is
1250 	 * done per fragment in the first and last block of the new  required
1251 	 * area, and per block for all other blocks.
1252 	 *
1253 	 * Handle the first new  block here (but only if some fragments where
1254 	 * already used for the cylinder summary).
1255 	 */
1256 	ind=0;
1257 	frag_adjust(odupper, -1);
1258 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1259 		DBG_PRINT1("scg first frag check loop d=%d\n",
1260 		    d);
1261 		if(isclr(cg_blksfree(&acg), d)) {
1262 			if (!ind) {
1263 				bp[ind].old=d/sblock.fs_frag;
1264 				bp[ind].flags|=GFS_FL_FIRST;
1265 				if(roundup(d, sblock.fs_frag) >= dupper) {
1266 					bp[ind].flags|=GFS_FL_LAST;
1267 				}
1268 				ind++;
1269 			}
1270 		} else {
1271 			clrbit(cg_blksfree(&acg), d);
1272 			acg.cg_cs.cs_nffree--;
1273 			sblock.fs_cstotal.cs_nffree--;
1274 		}
1275 		/*
1276 		 * No cluster handling is needed here, as there was at least
1277 		 * one  fragment in use by the cylinder summary in  the  old
1278 		 * file system.
1279 		 * No block-free counter handling here as this block was not
1280 		 * a free block.
1281 		 */
1282 	}
1283 	frag_adjust(odupper, 1);
1284 
1285 	/*
1286 	 * Handle all needed complete blocks here.
1287 	 */
1288 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1289 		DBG_PRINT1("scg block check loop d=%d\n",
1290 		    d);
1291 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1292 			for(f=d; f<d+sblock.fs_frag; f++) {
1293 				if(isset(cg_blksfree(&aocg), f)) {
1294 					acg.cg_cs.cs_nffree--;
1295 					sblock.fs_cstotal.cs_nffree--;
1296 				}
1297 			}
1298 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1299 			bp[ind].old=d/sblock.fs_frag;
1300 			ind++;
1301 		} else {
1302 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1303 			acg.cg_cs.cs_nbfree--;
1304 			sblock.fs_cstotal.cs_nbfree--;
1305 			if(sblock.fs_contigsumsize > 0) {
1306 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1307 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1308 				    lcs<sblock.fs_contigsumsize;
1309 				    l++, lcs++ ) {
1310 					if(isclr(cg_clustersfree(&acg),l)){
1311 						break;
1312 					}
1313 				}
1314 				if(lcs < sblock.fs_contigsumsize) {
1315 					cg_clustersum(&acg)[lcs+1]--;
1316 					if(lcs) {
1317 						cg_clustersum(&acg)[lcs]++;
1318 					}
1319 				}
1320 			}
1321 		}
1322 		/*
1323 		 * No fragment counter handling is needed here, as this finally
1324 		 * doesn't change after the relocation.
1325 		 */
1326 	}
1327 
1328 	/*
1329 	 * Handle all fragments needed in the last new affected block.
1330 	 */
1331 	if(d<dupper) {
1332 		frag_adjust(dupper-1, -1);
1333 
1334 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1335 			acg.cg_cs.cs_nbfree--;
1336 			sblock.fs_cstotal.cs_nbfree--;
1337 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1338 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1339 			if(sblock.fs_contigsumsize > 0) {
1340 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1341 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1342 				    lcs<sblock.fs_contigsumsize;
1343 				    l++, lcs++ ) {
1344 					if(isclr(cg_clustersfree(&acg),l)){
1345 						break;
1346 					}
1347 				}
1348 				if(lcs < sblock.fs_contigsumsize) {
1349 					cg_clustersum(&acg)[lcs+1]--;
1350 					if(lcs) {
1351 						cg_clustersum(&acg)[lcs]++;
1352 					}
1353 				}
1354 			}
1355 		}
1356 
1357 		for(; d<dupper; d++) {
1358 			DBG_PRINT1("scg second frag check loop d=%d\n",
1359 			    d);
1360 			if(isclr(cg_blksfree(&acg), d)) {
1361 				bp[ind].old=d/sblock.fs_frag;
1362 				bp[ind].flags|=GFS_FL_LAST;
1363 			} else {
1364 				clrbit(cg_blksfree(&acg), d);
1365 				acg.cg_cs.cs_nffree--;
1366 				sblock.fs_cstotal.cs_nffree--;
1367 			}
1368 		}
1369 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1370 			ind++;
1371 		}
1372 		frag_adjust(dupper-1, 1);
1373 	}
1374 
1375 	/*
1376 	 * If we found a block to relocate just do so.
1377 	 */
1378 	if(ind) {
1379 		for(i=0; i<ind; i++) {
1380 			if(!bp[i].old) { /* no more blocks listed */
1381 				/*
1382 				 * XXX	A relative blocknumber should not be
1383 				 *	zero,   which  is   not   explicitly
1384 				 *	guaranteed by our code.
1385 				 */
1386 				break;
1387 			}
1388 			/*
1389 			 * Allocate a complete block in the same (current)
1390 			 * cylinder group.
1391 			 */
1392 			bp[i].new=alloc()/sblock.fs_frag;
1393 
1394 			/*
1395 			 * There is no frag_adjust() needed for the new block
1396 			 * as it will have no fragments yet :-).
1397 			 */
1398 			for(f=bp[i].old*sblock.fs_frag,
1399 			    g=bp[i].new*sblock.fs_frag;
1400 			    f<(bp[i].old+1)*sblock.fs_frag;
1401 			    f++, g++) {
1402 				if(isset(cg_blksfree(&aocg), f)) {
1403 					setbit(cg_blksfree(&acg), g);
1404 					acg.cg_cs.cs_nffree++;
1405 					sblock.fs_cstotal.cs_nffree++;
1406 				}
1407 			}
1408 
1409 			/*
1410 			 * Special handling is required if this was the  first
1411 			 * block. We have to consider the fragments which were
1412 			 * used by the cylinder summary in the original  block
1413 			 * which  re to be free in the copy of our  block.  We
1414 			 * have  to be careful if this first block happens  to
1415 			 * be also the last block to be relocated.
1416 			 */
1417 			if(bp[i].flags & GFS_FL_FIRST) {
1418 				for(f=bp[i].old*sblock.fs_frag,
1419 				    g=bp[i].new*sblock.fs_frag;
1420 				    f<odupper;
1421 				    f++, g++) {
1422 					setbit(cg_blksfree(&acg), g);
1423 					acg.cg_cs.cs_nffree++;
1424 					sblock.fs_cstotal.cs_nffree++;
1425 				}
1426 				if(!(bp[i].flags & GFS_FL_LAST)) {
1427 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1428 				}
1429 
1430 			}
1431 
1432 			/*
1433 			 * Special handling is required if this is the last
1434 			 * block to be relocated.
1435 			 */
1436 			if(bp[i].flags & GFS_FL_LAST) {
1437 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1438 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1439 				for(f=dupper;
1440 				    f<roundup(dupper, sblock.fs_frag);
1441 				    f++) {
1442 					if(isclr(cg_blksfree(&acg), f)) {
1443 						setbit(cg_blksfree(&acg), f);
1444 						acg.cg_cs.cs_nffree++;
1445 						sblock.fs_cstotal.cs_nffree++;
1446 					}
1447 				}
1448 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1449 			}
1450 
1451 			/*
1452 			 * !!! Attach the cylindergroup offset here.
1453 			 */
1454 			bp[i].old+=cbase/sblock.fs_frag;
1455 			bp[i].new+=cbase/sblock.fs_frag;
1456 
1457 			/*
1458 			 * Copy the content of the block.
1459 			 */
1460 			/*
1461 			 * XXX	Here we will have to implement a copy on write
1462 			 *	in the case we have any active snapshots.
1463 			 */
1464 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1465 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1466 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1467 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1468 			DBG_DUMP_HEX(&sblock,
1469 			    "copied full block",
1470 			    (unsigned char *)&ablk);
1471 
1472 			DBG_PRINT2("scg (%d->%d) block relocated\n",
1473 			    bp[i].old,
1474 			    bp[i].new);
1475 		}
1476 
1477 		/*
1478 		 * Now we have to update all references to any fragment which
1479 		 * belongs  to any block relocated. We iterate now  over  all
1480 		 * cylinder  groups,  within those over all non  zero  length
1481 		 * inodes.
1482 		 */
1483 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1484 			DBG_PRINT1("scg doing cg (%d)\n",
1485 			    cylno);
1486 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1487 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1488 			}
1489 		}
1490 
1491 		/*
1492 		 * All inodes are checked, now make sure the number of
1493 		 * references found make sense.
1494 		 */
1495 		for(i=0; i<ind; i++) {
1496 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1497 				warnx("error: %d refs found for block %d.",
1498 				    bp[i].found, bp[i].old);
1499 			}
1500 
1501 		}
1502 	}
1503 	/*
1504 	 * The following statistics are not changed here:
1505 	 *     sblock.fs_cstotal.cs_ndir
1506 	 *     sblock.fs_cstotal.cs_nifree
1507 	 * The following statistics were already updated on the fly:
1508 	 *     sblock.fs_cstotal.cs_nffree
1509 	 *     sblock.fs_cstotal.cs_nbfree
1510 	 * As the statistics for this cylinder group are ready, copy it to
1511 	 * the summary information array.
1512 	 */
1513 
1514 	*cs = acg.cg_cs;
1515 
1516 	/*
1517 	 * Write summary cylinder group back to disk.
1518 	 */
1519 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1520 	    (void *)&acg, fso, Nflag);
1521 	DBG_PRINT0("scg written\n");
1522 	DBG_DUMP_CG(&sblock,
1523 	    "new summary cg",
1524 	    &acg);
1525 
1526 	DBG_LEAVE;
1527 	return;
1528 }
1529 
1530 /* ************************************************************** rdfs ***** */
1531 /*
1532  * Here we read some block(s) from disk.
1533  */
1534 static void
1535 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1536 {
1537 	DBG_FUNC("rdfs")
1538 	ssize_t	n;
1539 
1540 	DBG_ENTER;
1541 
1542 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1543 		err(33, "rdfs: seek error: %ld", (long)bno);
1544 	}
1545 	n = read(fsi, bf, size);
1546 	if (n != (ssize_t)size) {
1547 		err(34, "rdfs: read error: %ld", (long)bno);
1548 	}
1549 
1550 	DBG_LEAVE;
1551 	return;
1552 }
1553 
1554 /* ************************************************************** wtfs ***** */
1555 /*
1556  * Here we write some block(s) to disk.
1557  */
1558 static void
1559 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1560 {
1561 	DBG_FUNC("wtfs")
1562 	ssize_t	n;
1563 
1564 	DBG_ENTER;
1565 
1566 	if (Nflag) {
1567 		DBG_LEAVE;
1568 		return;
1569 	}
1570 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1571 		err(35, "wtfs: seek error: %ld", (long)bno);
1572 	}
1573 	n = write(fso, bf, size);
1574 	if (n != (ssize_t)size) {
1575 		err(36, "wtfs: write error: %ld", (long)bno);
1576 	}
1577 
1578 	DBG_LEAVE;
1579 	return;
1580 }
1581 
1582 /* ************************************************************* alloc ***** */
1583 /*
1584  * Here we allocate a free block in the current cylinder group. It is assumed,
1585  * that  acg contains the current cylinder group. As we may take a block  from
1586  * somewhere in the file system we have to handle cluster summary here.
1587  */
1588 static ufs2_daddr_t
1589 alloc(void)
1590 {
1591 	DBG_FUNC("alloc")
1592 	ufs2_daddr_t	d, blkno;
1593 	int	lcs1, lcs2;
1594 	int	l;
1595 	int	csmin, csmax;
1596 	int	dlower, dupper, dmax;
1597 
1598 	DBG_ENTER;
1599 
1600 	if (acg.cg_magic != CG_MAGIC) {
1601 		warnx("acg: bad magic number");
1602 		DBG_LEAVE;
1603 		return (0);
1604 	}
1605 	if (acg.cg_cs.cs_nbfree == 0) {
1606 		warnx("error: cylinder group ran out of space");
1607 		DBG_LEAVE;
1608 		return (0);
1609 	}
1610 	/*
1611 	 * We start seeking for free blocks only from the space available after
1612 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1613 	 * block here which we have to relocate a couple of seconds later again
1614 	 * again, and we are not prepared to to this anyway.
1615 	 */
1616 	blkno=-1;
1617 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1618 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1619 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1620 	if (dmax > sblock.fs_size) {
1621 		dmax = sblock.fs_size;
1622 	}
1623 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1624 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1625 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1626 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1627 	    dlower,
1628 	    dupper,
1629 	    dmax);
1630 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1631 	    csmin,
1632 	    csmax);
1633 
1634 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1635 		if(d>=csmin && d<=csmax) {
1636 			continue;
1637 		}
1638 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1639 		    d))) {
1640 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1641 			break;
1642 		}
1643 	}
1644 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1645 		if(d>=csmin && d<=csmax) {
1646 			continue;
1647 		}
1648 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1649 		    d))) {
1650 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1651 			break;
1652 		}
1653 	}
1654 	if(blkno==-1) {
1655 		warnx("internal error: couldn't find promised block in cg");
1656 		DBG_LEAVE;
1657 		return (0);
1658 	}
1659 
1660 	/*
1661 	 * This is needed if the block was found already in the first loop.
1662 	 */
1663 	d=blkstofrags(&sblock, blkno);
1664 
1665 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1666 	if (sblock.fs_contigsumsize > 0) {
1667 		/*
1668 		 * Handle the cluster allocation bitmap.
1669 		 */
1670 		clrbit(cg_clustersfree(&acg), blkno);
1671 		/*
1672 		 * We  possibly have split a cluster here, so we have  to  do
1673 		 * recalculate the sizes of the remaining cluster halves now,
1674 		 * and use them for updating the cluster summary information.
1675 		 *
1676 		 * Lets start with the blocks before our allocated block ...
1677 		 */
1678 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1679 		    l--, lcs1++ ) {
1680 			if(isclr(cg_clustersfree(&acg),l)){
1681 				break;
1682 			}
1683 		}
1684 		/*
1685 		 * ... and continue with the blocks right after our allocated
1686 		 * block.
1687 		 */
1688 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1689 		    l++, lcs2++ ) {
1690 			if(isclr(cg_clustersfree(&acg),l)){
1691 				break;
1692 			}
1693 		}
1694 
1695 		/*
1696 		 * Now update all counters.
1697 		 */
1698 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1699 		if(lcs1) {
1700 			cg_clustersum(&acg)[lcs1]++;
1701 		}
1702 		if(lcs2) {
1703 			cg_clustersum(&acg)[lcs2]++;
1704 		}
1705 	}
1706 	/*
1707 	 * Update all statistics based on blocks.
1708 	 */
1709 	acg.cg_cs.cs_nbfree--;
1710 	sblock.fs_cstotal.cs_nbfree--;
1711 
1712 	DBG_LEAVE;
1713 	return (d);
1714 }
1715 
1716 /* *********************************************************** isblock ***** */
1717 /*
1718  * Here  we check if all frags of a block are free. For more details  again
1719  * please see the source of newfs(8), as this function is taken over almost
1720  * unchanged.
1721  */
1722 static int
1723 isblock(struct fs *fs, unsigned char *cp, int h)
1724 {
1725 	DBG_FUNC("isblock")
1726 	unsigned char	mask;
1727 
1728 	DBG_ENTER;
1729 
1730 	switch (fs->fs_frag) {
1731 	case 8:
1732 		DBG_LEAVE;
1733 		return (cp[h] == 0xff);
1734 	case 4:
1735 		mask = 0x0f << ((h & 0x1) << 2);
1736 		DBG_LEAVE;
1737 		return ((cp[h >> 1] & mask) == mask);
1738 	case 2:
1739 		mask = 0x03 << ((h & 0x3) << 1);
1740 		DBG_LEAVE;
1741 		return ((cp[h >> 2] & mask) == mask);
1742 	case 1:
1743 		mask = 0x01 << (h & 0x7);
1744 		DBG_LEAVE;
1745 		return ((cp[h >> 3] & mask) == mask);
1746 	default:
1747 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1748 		DBG_LEAVE;
1749 		return (0);
1750 	}
1751 }
1752 
1753 /* ********************************************************** clrblock ***** */
1754 /*
1755  * Here we allocate a complete block in the block map. For more details again
1756  * please  see the source of newfs(8), as this function is taken over  almost
1757  * unchanged.
1758  */
1759 static void
1760 clrblock(struct fs *fs, unsigned char *cp, int h)
1761 {
1762 	DBG_FUNC("clrblock")
1763 
1764 	DBG_ENTER;
1765 
1766 	switch ((fs)->fs_frag) {
1767 	case 8:
1768 		cp[h] = 0;
1769 		break;
1770 	case 4:
1771 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1772 		break;
1773 	case 2:
1774 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1775 		break;
1776 	case 1:
1777 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1778 		break;
1779 	default:
1780 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1781 		break;
1782 	}
1783 
1784 	DBG_LEAVE;
1785 	return;
1786 }
1787 
1788 /* ********************************************************** setblock ***** */
1789 /*
1790  * Here we free a complete block in the free block map. For more details again
1791  * please  see the source of newfs(8), as this function is taken  over  almost
1792  * unchanged.
1793  */
1794 static void
1795 setblock(struct fs *fs, unsigned char *cp, int h)
1796 {
1797 	DBG_FUNC("setblock")
1798 
1799 	DBG_ENTER;
1800 
1801 	switch (fs->fs_frag) {
1802 	case 8:
1803 		cp[h] = 0xff;
1804 		break;
1805 	case 4:
1806 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1807 		break;
1808 	case 2:
1809 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1810 		break;
1811 	case 1:
1812 		cp[h >> 3] |= (0x01 << (h & 0x7));
1813 		break;
1814 	default:
1815 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1816 		break;
1817 	}
1818 
1819 	DBG_LEAVE;
1820 	return;
1821 }
1822 
1823 /* ************************************************************ ginode ***** */
1824 /*
1825  * This function provides access to an individual inode. We find out in which
1826  * block  the  requested inode is located, read it from disk if  needed,  and
1827  * return  the pointer into that block. We maintain a cache of one  block  to
1828  * not  read the same block again and again if we iterate linearly  over  all
1829  * inodes.
1830  */
1831 static union dinode *
1832 ginode(ino_t inumber, int fsi, int cg)
1833 {
1834 	DBG_FUNC("ginode")
1835 	static ino_t	startinum = 0;	/* first inode in cached block */
1836 
1837 	DBG_ENTER;
1838 
1839 	inumber += (cg * sblock.fs_ipg);
1840 	if (inumber < ROOTINO || inumber > maxino)
1841 		errx(8, "bad inode number %d to ginode", inumber);
1842 	if (startinum == 0 ||
1843 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1844 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1845 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1846 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1847 	}
1848 	DBG_LEAVE;
1849 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1850 		return ((union dinode *)
1851 		    &((struct ufs1_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1852 	return ((union dinode *)
1853 	    &((struct ufs2_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1854 }
1855 
1856 /* ****************************************************** charsperline ***** */
1857 /*
1858  * Figure out how many lines our current terminal has. For more details again
1859  * please  see the source of newfs(8), as this function is taken over  almost
1860  * unchanged.
1861  */
1862 static int
1863 charsperline(void)
1864 {
1865 	DBG_FUNC("charsperline")
1866 	int	columns;
1867 	char	*cp;
1868 	struct winsize	ws;
1869 
1870 	DBG_ENTER;
1871 
1872 	columns = 0;
1873 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1874 		columns = ws.ws_col;
1875 	}
1876 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1877 		columns = atoi(cp);
1878 	}
1879 	if (columns == 0) {
1880 		columns = 80;	/* last resort */
1881 	}
1882 
1883 	DBG_LEAVE;
1884 	return columns;
1885 }
1886 
1887 /* ************************************************************** main ***** */
1888 /*
1889  * growfs(8)  is a utility which allows to increase the size of  an  existing
1890  * ufs file system. Currently this can only be done on unmounted file  system.
1891  * It  recognizes some command line options to specify the new desired  size,
1892  * and  it does some basic checkings. The old file system size is  determined
1893  * and  after some more checks like we can really access the new  last  block
1894  * on the disk etc. we calculate the new parameters for the superblock. After
1895  * having  done  this we just call growfs() which will do  the  work.  Before
1896  * we finish the only thing left is to update the disklabel.
1897  * We still have to provide support for snapshots. Therefore we first have to
1898  * understand  what data structures are always replicated in the snapshot  on
1899  * creation,  for all other blocks we touch during our procedure, we have  to
1900  * keep the old blocks unchanged somewhere available for the snapshots. If we
1901  * are lucky, then we only have to handle our blocks to be relocated in  that
1902  * way.
1903  * Also  we  have to consider in what order we actually update  the  critical
1904  * data structures of the file system to make sure, that in case of a disaster
1905  * fsck(8) is still able to restore any lost data.
1906  * The  foreseen last step then will be to provide for growing  even  mounted
1907  * file  systems. There we have to extend the mount() system call to  provide
1908  * userland access to the file system locking facility.
1909  */
1910 int
1911 main(int argc, char **argv)
1912 {
1913 	DBG_FUNC("main")
1914 	char	*device, *special, *cp;
1915 	char	ch;
1916 	unsigned int	size=0;
1917 	size_t	len;
1918 	unsigned int	Nflag=0;
1919 	int	ExpertFlag=0;
1920 	struct stat	st;
1921 	struct disklabel	*lp;
1922 	struct partition	*pp;
1923 	int	i,fsi,fso;
1924 	char	reply[5];
1925 #ifdef FSMAXSNAP
1926 	int	j;
1927 #endif /* FSMAXSNAP */
1928 
1929 	DBG_ENTER;
1930 
1931 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1932 		switch(ch) {
1933 		case 'N':
1934 			Nflag=1;
1935 			break;
1936 		case 's':
1937 			size=(size_t)atol(optarg);
1938 			if(size<1) {
1939 				usage();
1940 			}
1941 			break;
1942 		case 'v': /* for compatibility to newfs */
1943 			break;
1944 		case 'y':
1945 			ExpertFlag=1;
1946 			break;
1947 		case '?':
1948 			/* FALLTHROUGH */
1949 		default:
1950 			usage();
1951 		}
1952 	}
1953 	argc -= optind;
1954 	argv += optind;
1955 
1956 	if(argc != 1) {
1957 		usage();
1958 	}
1959 	device=*argv;
1960 
1961 	/*
1962 	 * Now try to guess the (raw)device name.
1963 	 */
1964 	if (0 == strrchr(device, '/')) {
1965 		/*
1966 		 * No path prefix was given, so try in that order:
1967 		 *     /dev/r%s
1968 		 *     /dev/%s
1969 		 *     /dev/vinum/r%s
1970 		 *     /dev/vinum/%s.
1971 		 *
1972 		 * FreeBSD now doesn't distinguish between raw and  block
1973 		 * devices any longer, but it should still work this way.
1974 		 */
1975 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1976 		special=(char *)malloc(len);
1977 		if(special == NULL) {
1978 			errx(1, "malloc failed");
1979 		}
1980 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
1981 		if (stat(special, &st) == -1) {
1982 			snprintf(special, len, "%s%s", _PATH_DEV, device);
1983 			if (stat(special, &st) == -1) {
1984 				snprintf(special, len, "%svinum/r%s",
1985 				    _PATH_DEV, device);
1986 				if (stat(special, &st) == -1) {
1987 					/* For now this is the 'last resort' */
1988 					snprintf(special, len, "%svinum/%s",
1989 					    _PATH_DEV, device);
1990 				}
1991 			}
1992 		}
1993 		device = special;
1994 	}
1995 
1996 	/*
1997 	 * Try to access our devices for writing ...
1998 	 */
1999 	if (Nflag) {
2000 		fso = -1;
2001 	} else {
2002 		fso = open(device, O_WRONLY);
2003 		if (fso < 0) {
2004 			err(1, "%s", device);
2005 		}
2006 	}
2007 
2008 	/*
2009 	 * ... and reading.
2010 	 */
2011 	fsi = open(device, O_RDONLY);
2012 	if (fsi < 0) {
2013 		err(1, "%s", device);
2014 	}
2015 
2016 	/*
2017 	 * Try  to read a label and gess the slice if not  specified.  This
2018 	 * code  should guess the right thing and avaid to bother the  user
2019 	 * user with the task of specifying the option -v on vinum volumes.
2020 	 */
2021 	cp=device+strlen(device)-1;
2022 	lp = get_disklabel(fsi);
2023 	if(lp->d_type == DTYPE_VINUM) {
2024 		pp = &lp->d_partitions[0];
2025 	} else if (isdigit(*cp)) {
2026 		pp = &lp->d_partitions[2];
2027 	} else if (*cp>='a' && *cp<='h') {
2028 		pp = &lp->d_partitions[*cp - 'a'];
2029 	} else {
2030 		errx(1, "unknown device");
2031 	}
2032 
2033 	/*
2034 	 * Check if that partition looks suited for growing a file system.
2035 	 */
2036 	if (pp->p_size < 1) {
2037 		errx(1, "partition is unavailable");
2038 	}
2039 	if (pp->p_fstype != FS_BSDFFS) {
2040 		errx(1, "partition not 4.2BSD");
2041 	}
2042 
2043 	/*
2044 	 * Read the current superblock, and take a backup.
2045 	 */
2046 	for (i = 0; sblock_try[i] != -1; i++) {
2047 		sblockloc = sblock_try[i] / DEV_BSIZE;
2048 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2049 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2050 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2051 		      osblock.fs_sblockloc == sblock_try[i])) &&
2052 		    osblock.fs_bsize <= MAXBSIZE &&
2053 		    osblock.fs_bsize >= sizeof(struct fs))
2054 			break;
2055 	}
2056 	if (sblock_try[i] == -1) {
2057 		errx(1, "superblock not recognized");
2058 	}
2059 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2060 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2061 
2062 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2063 	DBG_DUMP_FS(&sblock,
2064 	    "old sblock");
2065 
2066 	/*
2067 	 * Determine size to grow to. Default to the full size specified in
2068 	 * the disk label.
2069 	 */
2070 	sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2071 	if (size != 0) {
2072 		if (size > pp->p_size){
2073 			errx(1, "There is not enough space (%d < %d)",
2074 			    pp->p_size, size);
2075 		}
2076 		sblock.fs_size = dbtofsb(&osblock, size);
2077 	}
2078 
2079 	/*
2080 	 * Are we really growing ?
2081 	 */
2082 	if(osblock.fs_size >= sblock.fs_size) {
2083 		errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2084 		    sblock.fs_size);
2085 	}
2086 
2087 
2088 #ifdef FSMAXSNAP
2089 	/*
2090 	 * Check if we find an active snapshot.
2091 	 */
2092 	if(ExpertFlag == 0) {
2093 		for(j=0; j<FSMAXSNAP; j++) {
2094 			if(sblock.fs_snapinum[j]) {
2095 				errx(1, "active snapshot found in file system\n"
2096 				    "	please remove all snapshots before "
2097 				    "using growfs\n");
2098 			}
2099 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2100 				break;
2101 			}
2102 		}
2103 	}
2104 #endif
2105 
2106 	if (ExpertFlag == 0 && Nflag == 0) {
2107 		printf("We strongly recommend you to make a backup "
2108 		    "before growing the Filesystem\n\n"
2109 		    " Did you backup your data (Yes/No) ? ");
2110 		fgets(reply, (int)sizeof(reply), stdin);
2111 		if (strcmp(reply, "Yes\n")){
2112 			printf("\n Nothing done \n");
2113 			exit (0);
2114 		}
2115 	}
2116 
2117 	printf("new file systemsize is: %d frags\n", sblock.fs_size);
2118 
2119 	/*
2120 	 * Try to access our new last block in the file system. Even if we
2121 	 * later on realize we have to abort our operation, on that block
2122 	 * there should be no data, so we can't destroy something yet.
2123 	 */
2124 	wtfs((ufs2_daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2125 	    fso, Nflag);
2126 
2127 	/*
2128 	 * Now calculate new superblock values and check for reasonable
2129 	 * bound for new file system size:
2130 	 *     fs_size:    is derived from label or user input
2131 	 *     fs_dsize:   should get updated in the routines creating or
2132 	 *                 updating the cylinder groups on the fly
2133 	 *     fs_cstotal: should get updated in the routines creating or
2134 	 *                 updating the cylinder groups
2135 	 */
2136 
2137 	/*
2138 	 * Update the number of cylinders and cylinder groups in the file system.
2139 	 */
2140 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2141 		sblock.fs_old_ncyl =
2142 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2143 		if (sblock.fs_size * sblock.fs_old_nspf >
2144 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2145 			sblock.fs_old_ncyl++;
2146 	}
2147 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2148 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2149 
2150 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2151 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2152 		/*
2153 		 * The space in the new last cylinder group is too small,
2154 		 * so revert back.
2155 		 */
2156 		sblock.fs_ncg--;
2157 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2158 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2159 		printf("Warning: %d sector(s) cannot be allocated.\n",
2160 		    fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2161 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2162 	}
2163 
2164 	/*
2165 	 * Update the space for the cylinder group summary information in the
2166 	 * respective cylinder group data area.
2167 	 */
2168 	sblock.fs_cssize =
2169 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2170 
2171 	if(osblock.fs_size >= sblock.fs_size) {
2172 		errx(1, "not enough new space");
2173 	}
2174 
2175 	DBG_PRINT0("sblock calculated\n");
2176 
2177 	/*
2178 	 * Ok, everything prepared, so now let's do the tricks.
2179 	 */
2180 	growfs(fsi, fso, Nflag);
2181 
2182 	/*
2183 	 * Update the disk label.
2184 	 */
2185 	pp->p_fsize = sblock.fs_fsize;
2186 	pp->p_frag = sblock.fs_frag;
2187 	pp->p_cpg = sblock.fs_fpg;
2188 
2189 	return_disklabel(fso, lp, Nflag);
2190 	DBG_PRINT0("label rewritten\n");
2191 
2192 	close(fsi);
2193 	if(fso>-1) close(fso);
2194 
2195 	DBG_CLOSE;
2196 
2197 	DBG_LEAVE;
2198 	return 0;
2199 }
2200 
2201 /* ************************************************** return_disklabel ***** */
2202 /*
2203  * Write the updated disklabel back to disk.
2204  */
2205 static void
2206 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2207 {
2208 	DBG_FUNC("return_disklabel")
2209 	u_short	sum;
2210 	u_short	*ptr;
2211 
2212 	DBG_ENTER;
2213 
2214 	if(!lp) {
2215 		DBG_LEAVE;
2216 		return;
2217 	}
2218 	if(!Nflag) {
2219 		lp->d_checksum=0;
2220 		sum = 0;
2221 		ptr=(u_short *)lp;
2222 
2223 		/*
2224 		 * recalculate checksum
2225 		 */
2226 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2227 			sum ^= *ptr++;
2228 		}
2229 		lp->d_checksum=sum;
2230 
2231 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2232 			errx(1, "DIOCWDINFO failed");
2233 		}
2234 	}
2235 	free(lp);
2236 
2237 	DBG_LEAVE;
2238 	return ;
2239 }
2240 
2241 /* ***************************************************** get_disklabel ***** */
2242 /*
2243  * Read the disklabel from disk.
2244  */
2245 static struct disklabel *
2246 get_disklabel(int fd)
2247 {
2248 	DBG_FUNC("get_disklabel")
2249 	static struct	disklabel *lab;
2250 
2251 	DBG_ENTER;
2252 
2253 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2254 	if (!lab) {
2255 		errx(1, "malloc failed");
2256 	}
2257 	if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2258 		errx(1, "DIOCGDINFO failed");
2259 	}
2260 
2261 	DBG_LEAVE;
2262 	return (lab);
2263 }
2264 
2265 
2266 /* ************************************************************* usage ***** */
2267 /*
2268  * Dump a line of usage.
2269  */
2270 static void
2271 usage(void)
2272 {
2273 	DBG_FUNC("usage")
2274 
2275 	DBG_ENTER;
2276 
2277 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2278 
2279 	DBG_LEAVE;
2280 	exit(1);
2281 }
2282 
2283 /* *********************************************************** updclst ***** */
2284 /*
2285  * This updates most paramters and the bitmap related to cluster. We have to
2286  * assume, that sblock, osblock, acg are set up.
2287  */
2288 static void
2289 updclst(int block)
2290 {
2291 	DBG_FUNC("updclst")
2292 	static int	lcs=0;
2293 
2294 	DBG_ENTER;
2295 
2296 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2297 		return;
2298 	}
2299 	/*
2300 	 * update cluster allocation map
2301 	 */
2302 	setbit(cg_clustersfree(&acg), block);
2303 
2304 	/*
2305 	 * update cluster summary table
2306 	 */
2307 	if(!lcs) {
2308 		/*
2309 		 * calculate size for the trailing cluster
2310 		 */
2311 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2312 			if(isclr(cg_clustersfree(&acg), block)){
2313 				break;
2314 			}
2315 		}
2316 	}
2317 	if(lcs < sblock.fs_contigsumsize) {
2318 		if(lcs) {
2319 			cg_clustersum(&acg)[lcs]--;
2320 		}
2321 		lcs++;
2322 		cg_clustersum(&acg)[lcs]++;
2323 	}
2324 
2325 	DBG_LEAVE;
2326 	return;
2327 }
2328 
2329 /* *********************************************************** updrefs ***** */
2330 /*
2331  * This updates all references to relocated blocks for the given inode.  The
2332  * inode is given as number within the cylinder group, and the number of the
2333  * cylinder group.
2334  */
2335 static void
2336 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2337     Nflag)
2338 {
2339 	DBG_FUNC("updrefs")
2340 	ufs_lbn_t	len, lbn, numblks;
2341 	ufs2_daddr_t	iptr, blksperindir;
2342 	union dinode	*ino;
2343 	int		i, mode, remaining_blocks, inodeupdated;
2344 
2345 	DBG_ENTER;
2346 
2347 	/*
2348 	 * XXX We should skip unused inodes even from being read from disk
2349 	 *     here by using the bitmap.
2350 	 */
2351 	ino = ginode(in, fsi, cg);
2352 	mode = DIP(ino, di_mode) & IFMT;
2353 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2354 		DBG_LEAVE;
2355 		return; /* only check DIR, FILE, LINK */
2356 	}
2357 	if (mode == IFLNK && DIP(ino, di_size) < sblock.fs_maxsymlinklen) {
2358 		DBG_LEAVE;
2359 		return;	/* skip short symlinks */
2360 	}
2361 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2362 	if (numblks == 0) {
2363 		DBG_LEAVE;
2364 		return;	/* skip empty file */
2365 	}
2366 	if (DIP(ino, di_blocks) == 0) {
2367 		DBG_LEAVE;
2368 		return;	/* skip empty swiss cheesy file or old fastlink */
2369 	}
2370 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2371 	    in,
2372 	    cg);
2373 
2374 	/*
2375 	 * Check all the blocks.
2376 	 */
2377 	inodeupdated = 0;
2378 	len = numblks < NDADDR ? numblks : NDADDR;
2379 	for (i = 0; i < len; i++) {
2380 		iptr = DIP(ino, di_db[i]);
2381 		if (iptr == 0)
2382 			continue;
2383 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2384 			DIP(ino, di_db[i]) = iptr;
2385 			inodeupdated++;
2386 		}
2387 	}
2388 	DBG_PRINT0("~~scg direct blocks checked\n");
2389 
2390 	blksperindir = 1;
2391 	len = numblks - NDADDR;
2392 	lbn = NDADDR;
2393 	for (i = 0; len > 0 && i < NIADDR; i++) {
2394 		iptr = DIP(ino, di_ib[i]);
2395 		if (iptr == 0)
2396 			continue;
2397 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2398 			DIP(ino, di_ib[i]) = iptr;
2399 			inodeupdated++;
2400 		}
2401 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2402 		blksperindir *= NINDIR(&sblock);
2403 		lbn += blksperindir;
2404 		len -= blksperindir;
2405 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2406 	}
2407 	if (inodeupdated)
2408 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2409 
2410 	DBG_LEAVE;
2411 	return;
2412 }
2413 
2414 /*
2415  * Recursively check all the indirect blocks.
2416  */
2417 static void
2418 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2419     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2420 {
2421 	DBG_FUNC("indirchk")
2422 	void *ibuf;
2423 	off_t offset;
2424 	int i, last;
2425 	ufs2_daddr_t iptr;
2426 
2427 	DBG_ENTER;
2428 
2429 	/* read in the indirect block. */
2430 	ibuf = malloc(sblock.fs_bsize);
2431 	if (!ibuf)
2432 		errx(1, "malloc failed");
2433 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2434 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2435 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2436 	for (i = 0; i < last; i++) {
2437 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2438 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2439 		else
2440 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2441 		if (iptr == 0)
2442 			continue;
2443 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2444 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2445 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2446 			else
2447 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2448 		}
2449 		if (blksperindir == 1)
2450 			continue;
2451 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2452 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2453 	}
2454 	free(ibuf);
2455 
2456 	DBG_LEAVE;
2457 	return;
2458 }
2459