xref: /freebsd/sbin/growfs/growfs.c (revision 29fc4075e69fd27de0cded313ac6000165d99f8b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
5  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
6  * Copyright (c) 2012 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
11  *
12  * Portions of this software were developed by Edward Tomasz Napierala
13  * under sponsorship from the FreeBSD Foundation.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgment:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors, as well as Christoph
27  *      Herrmann and Thomas-Henning von Kamptz.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
45  *
46  */
47 
48 #ifndef lint
49 static const char copyright[] =
50 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
51 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
52 All rights reserved.\n";
53 #endif /* not lint */
54 
55 #include <sys/cdefs.h>
56 __FBSDID("$FreeBSD$");
57 
58 #include <sys/param.h>
59 #include <sys/ioctl.h>
60 #include <sys/stat.h>
61 #include <sys/disk.h>
62 #include <sys/ucred.h>
63 #include <sys/mount.h>
64 
65 #include <stdio.h>
66 #include <paths.h>
67 #include <ctype.h>
68 #include <err.h>
69 #include <errno.h>
70 #include <fcntl.h>
71 #include <fstab.h>
72 #include <inttypes.h>
73 #include <limits.h>
74 #include <mntopts.h>
75 #include <paths.h>
76 #include <stdlib.h>
77 #include <stdint.h>
78 #include <string.h>
79 #include <time.h>
80 #include <unistd.h>
81 #include <ufs/ufs/dinode.h>
82 #include <ufs/ffs/fs.h>
83 #include <libutil.h>
84 #include <libufs.h>
85 
86 #include "debug.h"
87 
88 #ifdef FS_DEBUG
89 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
90 #endif /* FS_DEBUG */
91 
92 static union {
93 	struct fs	fs;
94 	char		pad[SBLOCKSIZE];
95 } fsun1, fsun2;
96 #define	sblock	fsun1.fs	/* the new superblock */
97 #define	osblock	fsun2.fs	/* the old superblock */
98 
99 static union {
100 	struct cg	cg;
101 	char		pad[MAXBSIZE];
102 } cgun1, cgun2;
103 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
104 #define	aocg	cgun2.cg	/* an old cylinder group */
105 
106 static struct csum	*fscs;	/* cylinder summary */
107 
108 static void	growfs(int, int, unsigned int);
109 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
110 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
111 static int	charsperline(void);
112 static void	usage(void);
113 static int	isblock(struct fs *, unsigned char *, int);
114 static void	clrblock(struct fs *, unsigned char *, int);
115 static void	setblock(struct fs *, unsigned char *, int);
116 static void	initcg(int, time_t, int, unsigned int);
117 static void	updjcg(int, time_t, int, int, unsigned int);
118 static void	updcsloc(time_t, int, int, unsigned int);
119 static void	frag_adjust(ufs2_daddr_t, int);
120 static void	updclst(int);
121 static void	mount_reload(const struct statfs *stfs);
122 static void	cgckhash(struct cg *);
123 
124 /*
125  * Here we actually start growing the file system. We basically read the
126  * cylinder summary from the first cylinder group as we want to update
127  * this on the fly during our various operations. First we handle the
128  * changes in the former last cylinder group. Afterwards we create all new
129  * cylinder groups.  Now we handle the cylinder group containing the
130  * cylinder summary which might result in a relocation of the whole
131  * structure.  In the end we write back the updated cylinder summary, the
132  * new superblock, and slightly patched versions of the super block
133  * copies.
134  */
135 static void
136 growfs(int fsi, int fso, unsigned int Nflag)
137 {
138 	DBG_FUNC("growfs")
139 	time_t modtime;
140 	uint cylno;
141 	int i, j, width;
142 	char tmpbuf[100];
143 
144 	DBG_ENTER;
145 
146 	time(&modtime);
147 
148 	/*
149 	 * Get the cylinder summary into the memory.
150 	 */
151 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
152 	if (fscs == NULL)
153 		errx(1, "calloc failed");
154 	memcpy(fscs, osblock.fs_csp, osblock.fs_cssize);
155 	free(osblock.fs_csp);
156 	osblock.fs_csp = NULL;
157 	sblock.fs_csp = fscs;
158 
159 #ifdef FS_DEBUG
160 	{
161 		struct csum *dbg_csp;
162 		u_int32_t dbg_csc;
163 		char dbg_line[80];
164 
165 		dbg_csp = fscs;
166 
167 		for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) {
168 			snprintf(dbg_line, sizeof(dbg_line),
169 			    "%d. old csum in old location", dbg_csc);
170 			DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++);
171 		}
172 	}
173 #endif /* FS_DEBUG */
174 	DBG_PRINT0("fscs read\n");
175 
176 	/*
177 	 * Do all needed changes in the former last cylinder group.
178 	 */
179 	updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag);
180 
181 	/*
182 	 * Dump out summary information about file system.
183 	 */
184 #ifdef FS_DEBUG
185 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
186 	printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
187 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
188 	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
189 	    sblock.fs_fsize);
190 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
191 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
192 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
193 	if (sblock.fs_flags & FS_DOSOFTDEP)
194 		printf("\twith soft updates\n");
195 #undef B2MBFACTOR
196 #endif /* FS_DEBUG */
197 
198 	/*
199 	 * Now build the cylinders group blocks and
200 	 * then print out indices of cylinder groups.
201 	 */
202 	printf("super-block backups (for fsck_ffs -b #) at:\n");
203 	i = 0;
204 	width = charsperline();
205 
206 	/*
207 	 * Iterate for only the new cylinder groups.
208 	 */
209 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
210 		initcg(cylno, modtime, fso, Nflag);
211 		j = sprintf(tmpbuf, " %jd%s",
212 		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
213 		    cylno < (sblock.fs_ncg - 1) ? "," : "" );
214 		if (i + j >= width) {
215 			printf("\n");
216 			i = 0;
217 		}
218 		i += j;
219 		printf("%s", tmpbuf);
220 		fflush(stdout);
221 	}
222 	printf("\n");
223 
224 	/*
225 	 * Do all needed changes in the first cylinder group.
226 	 * allocate blocks in new location
227 	 */
228 	updcsloc(modtime, fsi, fso, Nflag);
229 
230 	/*
231 	 * Clean up the dynamic fields in our superblock.
232 	 *
233 	 * XXX
234 	 * The following fields are currently distributed from the superblock
235 	 * to the copies:
236 	 *     fs_minfree
237 	 *     fs_rotdelay
238 	 *     fs_maxcontig
239 	 *     fs_maxbpg
240 	 *     fs_minfree,
241 	 *     fs_optim
242 	 *     fs_flags
243 	 *
244 	 * We probably should rather change the summary for the cylinder group
245 	 * statistics here to the value of what would be in there, if the file
246 	 * system were created initially with the new size. Therefor we still
247 	 * need to find an easy way of calculating that.
248 	 * Possibly we can try to read the first superblock copy and apply the
249 	 * "diffed" stats between the old and new superblock by still copying
250 	 * certain parameters onto that.
251 	 */
252 	sblock.fs_time = modtime;
253 	sblock.fs_fmod = 0;
254 	sblock.fs_clean = 1;
255 	sblock.fs_ronly = 0;
256 	sblock.fs_cgrotor = 0;
257 	sblock.fs_state = 0;
258 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
259 
260 	/*
261 	 * Now write the new superblock, its summary information,
262 	 * and all the alternates back to disk.
263 	 */
264 	if (!Nflag && sbput(fso, &sblock, sblock.fs_ncg) != 0)
265 		errc(2, EIO, "could not write updated superblock");
266 	DBG_PRINT0("fscs written\n");
267 
268 #ifdef FS_DEBUG
269 	{
270 		struct csum	*dbg_csp;
271 		u_int32_t	dbg_csc;
272 		char	dbg_line[80];
273 
274 		dbg_csp = fscs;
275 		for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) {
276 			snprintf(dbg_line, sizeof(dbg_line),
277 			    "%d. new csum in new location", dbg_csc);
278 			DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++);
279 		}
280 	}
281 #endif /* FS_DEBUG */
282 
283 	DBG_PRINT0("sblock written\n");
284 	DBG_DUMP_FS(&sblock, "new initial sblock");
285 
286 	DBG_PRINT0("sblock copies written\n");
287 	DBG_DUMP_FS(&sblock, "new other sblocks");
288 
289 	DBG_LEAVE;
290 	return;
291 }
292 
293 /*
294  * This creates a new cylinder group structure, for more details please see
295  * the source of newfs(8), as this function is taken over almost unchanged.
296  * As this is never called for the first cylinder group, the special
297  * provisions for that case are removed here.
298  */
299 static void
300 initcg(int cylno, time_t modtime, int fso, unsigned int Nflag)
301 {
302 	DBG_FUNC("initcg")
303 	static caddr_t iobuf;
304 	static long iobufsize;
305 	long blkno, start;
306 	ino_t ino;
307 	ufs2_daddr_t i, cbase, dmax;
308 	struct ufs1_dinode *dp1;
309 	struct ufs2_dinode *dp2;
310 	struct csum *cs;
311 	uint j, d, dupper, dlower;
312 
313 	if (iobuf == NULL) {
314 		iobufsize = 2 * sblock.fs_bsize;
315 		if ((iobuf = malloc(iobufsize)) == NULL)
316 			errx(37, "panic: cannot allocate I/O buffer");
317 		memset(iobuf, '\0', iobufsize);
318 	}
319 	/*
320 	 * Determine block bounds for cylinder group.
321 	 * Allow space for super block summary information in first
322 	 * cylinder group.
323 	 */
324 	cbase = cgbase(&sblock, cylno);
325 	dmax = cbase + sblock.fs_fpg;
326 	if (dmax > sblock.fs_size)
327 		dmax = sblock.fs_size;
328 	dlower = cgsblock(&sblock, cylno) - cbase;
329 	dupper = cgdmin(&sblock, cylno) - cbase;
330 	if (cylno == 0)	/* XXX fscs may be relocated */
331 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
332 	cs = &fscs[cylno];
333 	memset(&acg, 0, sblock.fs_cgsize);
334 	acg.cg_time = modtime;
335 	acg.cg_magic = CG_MAGIC;
336 	acg.cg_cgx = cylno;
337 	acg.cg_niblk = sblock.fs_ipg;
338 	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
339 	acg.cg_ndblk = dmax - cbase;
340 	if (sblock.fs_contigsumsize > 0)
341 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
342 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
343 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
344 		acg.cg_iusedoff = start;
345 	} else {
346 		acg.cg_old_ncyl = sblock.fs_old_cpg;
347 		acg.cg_old_time = acg.cg_time;
348 		acg.cg_time = 0;
349 		acg.cg_old_niblk = acg.cg_niblk;
350 		acg.cg_niblk = 0;
351 		acg.cg_initediblk = 0;
352 		acg.cg_old_btotoff = start;
353 		acg.cg_old_boff = acg.cg_old_btotoff +
354 		    sblock.fs_old_cpg * sizeof(int32_t);
355 		acg.cg_iusedoff = acg.cg_old_boff +
356 		    sblock.fs_old_cpg * sizeof(u_int16_t);
357 	}
358 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
359 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
360 	if (sblock.fs_contigsumsize > 0) {
361 		acg.cg_clustersumoff =
362 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
363 		acg.cg_clustersumoff -= sizeof(u_int32_t);
364 		acg.cg_clusteroff = acg.cg_clustersumoff +
365 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
366 		acg.cg_nextfreeoff = acg.cg_clusteroff +
367 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
368 	}
369 	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
370 		/*
371 		 * This should never happen as we would have had that panic
372 		 * already on file system creation
373 		 */
374 		errx(37, "panic: cylinder group too big");
375 	}
376 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
377 	if (cylno == 0)
378 		for (ino = 0; ino < UFS_ROOTINO; ino++) {
379 			setbit(cg_inosused(&acg), ino);
380 			acg.cg_cs.cs_nifree--;
381 		}
382 	/*
383 	 * Initialize the initial inode blocks.
384 	 */
385 	dp1 = (struct ufs1_dinode *)(void *)iobuf;
386 	dp2 = (struct ufs2_dinode *)(void *)iobuf;
387 	for (i = 0; i < acg.cg_initediblk; i++) {
388 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
389 			dp1->di_gen = arc4random();
390 			dp1++;
391 		} else {
392 			dp2->di_gen = arc4random();
393 			dp2++;
394 		}
395 	}
396 	wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno)), iobufsize, iobuf,
397 	    fso, Nflag);
398 	/*
399 	 * For the old file system, we have to initialize all the inodes.
400 	 */
401 	if (sblock.fs_magic == FS_UFS1_MAGIC &&
402 	    sblock.fs_ipg > 2 * INOPB(&sblock)) {
403 		for (i = 2 * sblock.fs_frag;
404 		     i < sblock.fs_ipg / INOPF(&sblock);
405 		     i += sblock.fs_frag) {
406 			dp1 = (struct ufs1_dinode *)(void *)iobuf;
407 			for (j = 0; j < INOPB(&sblock); j++) {
408 				dp1->di_gen = arc4random();
409 				dp1++;
410 			}
411 			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
412 			    sblock.fs_bsize, iobuf, fso, Nflag);
413 		}
414 	}
415 	if (cylno > 0) {
416 		/*
417 		 * In cylno 0, beginning space is reserved
418 		 * for boot and super blocks.
419 		 */
420 		for (d = 0; d < dlower; d += sblock.fs_frag) {
421 			blkno = d / sblock.fs_frag;
422 			setblock(&sblock, cg_blksfree(&acg), blkno);
423 			if (sblock.fs_contigsumsize > 0)
424 				setbit(cg_clustersfree(&acg), blkno);
425 			acg.cg_cs.cs_nbfree++;
426 		}
427 		sblock.fs_dsize += dlower;
428 	}
429 	sblock.fs_dsize += acg.cg_ndblk - dupper;
430 	sblock.fs_old_dsize = sblock.fs_dsize;
431 	if ((i = dupper % sblock.fs_frag)) {
432 		acg.cg_frsum[sblock.fs_frag - i]++;
433 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
434 			setbit(cg_blksfree(&acg), dupper);
435 			acg.cg_cs.cs_nffree++;
436 		}
437 	}
438 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
439 	    d += sblock.fs_frag) {
440 		blkno = d / sblock.fs_frag;
441 		setblock(&sblock, cg_blksfree(&acg), blkno);
442 		if (sblock.fs_contigsumsize > 0)
443 			setbit(cg_clustersfree(&acg), blkno);
444 		acg.cg_cs.cs_nbfree++;
445 	}
446 	if (d < acg.cg_ndblk) {
447 		acg.cg_frsum[acg.cg_ndblk - d]++;
448 		for (; d < acg.cg_ndblk; d++) {
449 			setbit(cg_blksfree(&acg), d);
450 			acg.cg_cs.cs_nffree++;
451 		}
452 	}
453 	if (sblock.fs_contigsumsize > 0) {
454 		int32_t *sump = cg_clustersum(&acg);
455 		u_char *mapp = cg_clustersfree(&acg);
456 		int map = *mapp++;
457 		int bit = 1;
458 		int run = 0;
459 
460 		for (i = 0; i < acg.cg_nclusterblks; i++) {
461 			if ((map & bit) != 0)
462 				run++;
463 			else if (run != 0) {
464 				if (run > sblock.fs_contigsumsize)
465 					run = sblock.fs_contigsumsize;
466 				sump[run]++;
467 				run = 0;
468 			}
469 			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
470 				bit <<= 1;
471 			else {
472 				map = *mapp++;
473 				bit = 1;
474 			}
475 		}
476 		if (run != 0) {
477 			if (run > sblock.fs_contigsumsize)
478 				run = sblock.fs_contigsumsize;
479 			sump[run]++;
480 		}
481 	}
482 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
483 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
484 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
485 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
486 	*cs = acg.cg_cs;
487 
488 	cgckhash(&acg);
489 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), sblock.fs_cgsize, &acg,
490 	    fso, Nflag);
491 	DBG_DUMP_CG(&sblock, "new cg", &acg);
492 
493 	DBG_LEAVE;
494 	return;
495 }
496 
497 /*
498  * Here we add or subtract (sign +1/-1) the available fragments in a given
499  * block to or from the fragment statistics. By subtracting before and adding
500  * after an operation on the free frag map we can easy update the fragment
501  * statistic, which seems to be otherwise a rather complex operation.
502  */
503 static void
504 frag_adjust(ufs2_daddr_t frag, int sign)
505 {
506 	DBG_FUNC("frag_adjust")
507 	int fragsize;
508 	int f;
509 
510 	DBG_ENTER;
511 
512 	fragsize = 0;
513 	/*
514 	 * Here frag only needs to point to any fragment in the block we want
515 	 * to examine.
516 	 */
517 	for (f = rounddown(frag, sblock.fs_frag);
518 	    f < roundup(frag + 1, sblock.fs_frag); f++) {
519 		/*
520 		 * Count contiguous free fragments.
521 		 */
522 		if (isset(cg_blksfree(&acg), f)) {
523 			fragsize++;
524 		} else {
525 			if (fragsize && fragsize < sblock.fs_frag) {
526 				/*
527 				 * We found something in between.
528 				 */
529 				acg.cg_frsum[fragsize] += sign;
530 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
531 				    fragsize, sign);
532 			}
533 			fragsize = 0;
534 		}
535 	}
536 	if (fragsize && fragsize < sblock.fs_frag) {
537 		/*
538 		 * We found something.
539 		 */
540 		acg.cg_frsum[fragsize] += sign;
541 		DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign);
542 	}
543 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign);
544 
545 	DBG_LEAVE;
546 	return;
547 }
548 
549 /*
550  * Here we do all needed work for the former last cylinder group. It has to be
551  * changed in any case, even if the file system ended exactly on the end of
552  * this group, as there is some slightly inconsistent handling of the number
553  * of cylinders in the cylinder group. We start again by reading the cylinder
554  * group from disk. If the last block was not fully available, we first handle
555  * the missing fragments, then we handle all new full blocks in that file
556  * system and finally we handle the new last fragmented block in the file
557  * system.  We again have to handle the fragment statistics rotational layout
558  * tables and cluster summary during all those operations.
559  */
560 static void
561 updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag)
562 {
563 	DBG_FUNC("updjcg")
564 	ufs2_daddr_t cbase, dmax;
565 	struct csum *cs;
566 	int i, k;
567 	int j = 0;
568 
569 	DBG_ENTER;
570 
571 	/*
572 	 * Read the former last (joining) cylinder group from disk, and make
573 	 * a copy.
574 	 */
575 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
576 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
577 	DBG_PRINT0("jcg read\n");
578 	DBG_DUMP_CG(&sblock, "old joining cg", &aocg);
579 
580 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
581 
582 	/*
583 	 * If the cylinder group had already its new final size almost
584 	 * nothing is to be done ... except:
585 	 * For some reason the value of cg_ncyl in the last cylinder group has
586 	 * to be zero instead of fs_cpg. As this is now no longer the last
587 	 * cylinder group we have to change that value now to fs_cpg.
588 	 */
589 
590 	if (cgbase(&osblock, cylno + 1) == osblock.fs_size) {
591 		if (sblock.fs_magic == FS_UFS1_MAGIC)
592 			acg.cg_old_ncyl = sblock.fs_old_cpg;
593 
594 		cgckhash(&acg);
595 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
596 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
597 		DBG_PRINT0("jcg written\n");
598 		DBG_DUMP_CG(&sblock, "new joining cg", &acg);
599 
600 		DBG_LEAVE;
601 		return;
602 	}
603 
604 	/*
605 	 * Set up some variables needed later.
606 	 */
607 	cbase = cgbase(&sblock, cylno);
608 	dmax = cbase + sblock.fs_fpg;
609 	if (dmax > sblock.fs_size)
610 		dmax = sblock.fs_size;
611 
612 	/*
613 	 * Set pointer to the cylinder summary for our cylinder group.
614 	 */
615 	cs = fscs + cylno;
616 
617 	/*
618 	 * Touch the cylinder group, update all fields in the cylinder group as
619 	 * needed, update the free space in the superblock.
620 	 */
621 	acg.cg_time = modtime;
622 	if ((unsigned)cylno == sblock.fs_ncg - 1) {
623 		/*
624 		 * This is still the last cylinder group.
625 		 */
626 		if (sblock.fs_magic == FS_UFS1_MAGIC)
627 			acg.cg_old_ncyl =
628 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
629 	} else {
630 		acg.cg_old_ncyl = sblock.fs_old_cpg;
631 	}
632 	DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg);
633 #ifdef FS_DEBUG
634 	if (sblock.fs_magic == FS_UFS1_MAGIC)
635 		DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg);
636 #endif
637 	DBG_PRINT0("\n");
638 	acg.cg_ndblk = dmax - cbase;
639 	sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk;
640 	sblock.fs_old_dsize = sblock.fs_dsize;
641 	if (sblock.fs_contigsumsize > 0)
642 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
643 
644 	/*
645 	 * Now we have to update the free fragment bitmap for our new free
646 	 * space.  There again we have to handle the fragmentation and also
647 	 * the rotational layout tables and the cluster summary.  This is
648 	 * also done per fragment for the first new block if the old file
649 	 * system end was not on a block boundary, per fragment for the new
650 	 * last block if the new file system end is not on a block boundary,
651 	 * and per block for all space in between.
652 	 *
653 	 * Handle the first new block here if it was partially available
654 	 * before.
655 	 */
656 	if (osblock.fs_size % sblock.fs_frag) {
657 		if (roundup(osblock.fs_size, sblock.fs_frag) <=
658 		    sblock.fs_size) {
659 			/*
660 			 * The new space is enough to fill at least this
661 			 * block
662 			 */
663 			j = 0;
664 			for (i = roundup(osblock.fs_size - cbase,
665 			    sblock.fs_frag) - 1; i >= osblock.fs_size - cbase;
666 			    i--) {
667 				setbit(cg_blksfree(&acg), i);
668 				acg.cg_cs.cs_nffree++;
669 				j++;
670 			}
671 
672 			/*
673 			 * Check if the fragment just created could join an
674 			 * already existing fragment at the former end of the
675 			 * file system.
676 			 */
677 			if (isblock(&sblock, cg_blksfree(&acg),
678 			    ((osblock.fs_size - cgbase(&sblock, cylno)) /
679 			     sblock.fs_frag))) {
680 				/*
681 				 * The block is now completely available.
682 				 */
683 				DBG_PRINT0("block was\n");
684 				acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--;
685 				acg.cg_cs.cs_nbfree++;
686 				acg.cg_cs.cs_nffree -= sblock.fs_frag;
687 				k = rounddown(osblock.fs_size - cbase,
688 				    sblock.fs_frag);
689 				updclst((osblock.fs_size - cbase) /
690 				    sblock.fs_frag);
691 			} else {
692 				/*
693 				 * Lets rejoin a possible partially growed
694 				 * fragment.
695 				 */
696 				k = 0;
697 				while (isset(cg_blksfree(&acg), i) &&
698 				    (i >= rounddown(osblock.fs_size - cbase,
699 				    sblock.fs_frag))) {
700 					i--;
701 					k++;
702 				}
703 				if (k)
704 					acg.cg_frsum[k]--;
705 				acg.cg_frsum[k + j]++;
706 			}
707 		} else {
708 			/*
709 			 * We only grow by some fragments within this last
710 			 * block.
711 			 */
712 			for (i = sblock.fs_size - cbase - 1;
713 			    i >= osblock.fs_size - cbase; i--) {
714 				setbit(cg_blksfree(&acg), i);
715 				acg.cg_cs.cs_nffree++;
716 				j++;
717 			}
718 			/*
719 			 * Lets rejoin a possible partially growed fragment.
720 			 */
721 			k = 0;
722 			while (isset(cg_blksfree(&acg), i) &&
723 			    (i >= rounddown(osblock.fs_size - cbase,
724 			    sblock.fs_frag))) {
725 				i--;
726 				k++;
727 			}
728 			if (k)
729 				acg.cg_frsum[k]--;
730 			acg.cg_frsum[k + j]++;
731 		}
732 	}
733 
734 	/*
735 	 * Handle all new complete blocks here.
736 	 */
737 	for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag);
738 	    i + sblock.fs_frag <= dmax - cbase;	/* XXX <= or only < ? */
739 	    i += sblock.fs_frag) {
740 		j = i / sblock.fs_frag;
741 		setblock(&sblock, cg_blksfree(&acg), j);
742 		updclst(j);
743 		acg.cg_cs.cs_nbfree++;
744 	}
745 
746 	/*
747 	 * Handle the last new block if there are stll some new fragments left.
748 	 * Here we don't have to bother about the cluster summary or the even
749 	 * the rotational layout table.
750 	 */
751 	if (i < (dmax - cbase)) {
752 		acg.cg_frsum[dmax - cbase - i]++;
753 		for (; i < dmax - cbase; i++) {
754 			setbit(cg_blksfree(&acg), i);
755 			acg.cg_cs.cs_nffree++;
756 		}
757 	}
758 
759 	sblock.fs_cstotal.cs_nffree +=
760 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
761 	sblock.fs_cstotal.cs_nbfree +=
762 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
763 	/*
764 	 * The following statistics are not changed here:
765 	 *     sblock.fs_cstotal.cs_ndir
766 	 *     sblock.fs_cstotal.cs_nifree
767 	 * As the statistics for this cylinder group are ready, copy it to
768 	 * the summary information array.
769 	 */
770 	*cs = acg.cg_cs;
771 
772 	/*
773 	 * Write the updated "joining" cylinder group back to disk.
774 	 */
775 	cgckhash(&acg);
776 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
777 	    (void *)&acg, fso, Nflag);
778 	DBG_PRINT0("jcg written\n");
779 	DBG_DUMP_CG(&sblock, "new joining cg", &acg);
780 
781 	DBG_LEAVE;
782 	return;
783 }
784 
785 /*
786  * Here we update the location of the cylinder summary. We have two possible
787  * ways of growing the cylinder summary:
788  * (1)	We can try to grow the summary in the current location, and relocate
789  *	possibly used blocks within the current cylinder group.
790  * (2)	Alternatively we can relocate the whole cylinder summary to the first
791  *	new completely empty cylinder group. Once the cylinder summary is no
792  *	longer in the beginning of the first cylinder group you should never
793  *	use a version of fsck which is not aware of the possibility to have
794  *	this structure in a non standard place.
795  * Option (2) is considered to be less intrusive to the structure of the file-
796  * system, so that's the one being used.
797  */
798 static void
799 updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag)
800 {
801 	DBG_FUNC("updcsloc")
802 	struct csum *cs;
803 	int ocscg, ncscg;
804 	ufs2_daddr_t d;
805 	int lcs = 0;
806 	int block;
807 
808 	DBG_ENTER;
809 
810 	if (howmany(sblock.fs_cssize, sblock.fs_fsize) ==
811 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
812 		/*
813 		 * No new fragment needed.
814 		 */
815 		DBG_LEAVE;
816 		return;
817 	}
818 	/* Adjust fs_dsize by added summary blocks */
819 	sblock.fs_dsize -= howmany(sblock.fs_cssize, sblock.fs_fsize) -
820 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
821 	sblock.fs_old_dsize = sblock.fs_dsize;
822 	ocscg = dtog(&osblock, osblock.fs_csaddr);
823 	cs = fscs + ocscg;
824 
825 	/*
826 	 * Read original cylinder group from disk, and make a copy.
827 	 * XXX	If Nflag is set in some very rare cases we now miss
828 	 *	some changes done in updjcg by reading the unmodified
829 	 *	block from disk.
830 	 */
831 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
832 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
833 	DBG_PRINT0("oscg read\n");
834 	DBG_DUMP_CG(&sblock, "old summary cg", &aocg);
835 
836 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
837 
838 	/*
839 	 * Touch the cylinder group, set up local variables needed later
840 	 * and update the superblock.
841 	 */
842 	acg.cg_time = modtime;
843 
844 	/*
845 	 * XXX	In the case of having active snapshots we may need much more
846 	 *	blocks for the copy on write. We need each block twice, and
847 	 *	also up to 8*3 blocks for indirect blocks for all possible
848 	 *	references.
849 	 */
850 	/*
851 	 * There is not enough space in the old cylinder group to
852 	 * relocate all blocks as needed, so we relocate the whole
853 	 * cylinder group summary to a new group. We try to use the
854 	 * first complete new cylinder group just created. Within the
855 	 * cylinder group we align the area immediately after the
856 	 * cylinder group information location in order to be as
857 	 * close as possible to the original implementation of ffs.
858 	 *
859 	 * First we have to make sure we'll find enough space in the
860 	 * new cylinder group. If not, then we currently give up.
861 	 * We start with freeing everything which was used by the
862 	 * fragments of the old cylinder summary in the current group.
863 	 * Now we write back the group meta data, read in the needed
864 	 * meta data from the new cylinder group, and start allocating
865 	 * within that group. Here we can assume, the group to be
866 	 * completely empty. Which makes the handling of fragments and
867 	 * clusters a lot easier.
868 	 */
869 	DBG_TRC;
870 	if (sblock.fs_ncg - osblock.fs_ncg < 2)
871 		errx(2, "panic: not enough space");
872 
873 	/*
874 	 * Point "d" to the first fragment not used by the cylinder
875 	 * summary.
876 	 */
877 	d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize);
878 
879 	/*
880 	 * Set up last cluster size ("lcs") already here. Calculate
881 	 * the size for the trailing cluster just behind where "d"
882 	 * points to.
883 	 */
884 	if (sblock.fs_contigsumsize > 0) {
885 		for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag),
886 		    lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) {
887 			if (isclr(cg_clustersfree(&acg), block))
888 				break;
889 		}
890 	}
891 
892 	/*
893 	 * Point "d" to the last frag used by the cylinder summary.
894 	 */
895 	d--;
896 
897 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
898 	if ((d + 1) % sblock.fs_frag) {
899 		/*
900 		 * The end of the cylinder summary is not a complete
901 		 * block.
902 		 */
903 		DBG_TRC;
904 		frag_adjust(d % sblock.fs_fpg, -1);
905 		for (; (d + 1) % sblock.fs_frag; d--) {
906 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
907 			setbit(cg_blksfree(&acg), d % sblock.fs_fpg);
908 			acg.cg_cs.cs_nffree++;
909 			sblock.fs_cstotal.cs_nffree++;
910 		}
911 		/*
912 		 * Point "d" to the last fragment of the last
913 		 * (incomplete) block of the cylinder summary.
914 		 */
915 		d++;
916 		frag_adjust(d % sblock.fs_fpg, 1);
917 
918 		if (isblock(&sblock, cg_blksfree(&acg),
919 		    (d % sblock.fs_fpg) / sblock.fs_frag)) {
920 			DBG_PRINT1("d=%jd\n", (intmax_t)d);
921 			acg.cg_cs.cs_nffree -= sblock.fs_frag;
922 			acg.cg_cs.cs_nbfree++;
923 			sblock.fs_cstotal.cs_nffree -= sblock.fs_frag;
924 			sblock.fs_cstotal.cs_nbfree++;
925 			if (sblock.fs_contigsumsize > 0) {
926 				setbit(cg_clustersfree(&acg),
927 				    (d % sblock.fs_fpg) / sblock.fs_frag);
928 				if (lcs < sblock.fs_contigsumsize) {
929 					if (lcs)
930 						cg_clustersum(&acg)[lcs]--;
931 					lcs++;
932 					cg_clustersum(&acg)[lcs]++;
933 				}
934 			}
935 		}
936 		/*
937 		 * Point "d" to the first fragment of the block before
938 		 * the last incomplete block.
939 		 */
940 		d--;
941 	}
942 
943 	DBG_PRINT1("d=%jd\n", (intmax_t)d);
944 	for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
945 	    d -= sblock.fs_frag) {
946 		DBG_TRC;
947 		DBG_PRINT1("d=%jd\n", (intmax_t)d);
948 		setblock(&sblock, cg_blksfree(&acg),
949 		    (d % sblock.fs_fpg) / sblock.fs_frag);
950 		acg.cg_cs.cs_nbfree++;
951 		sblock.fs_cstotal.cs_nbfree++;
952 		if (sblock.fs_contigsumsize > 0) {
953 			setbit(cg_clustersfree(&acg),
954 			    (d % sblock.fs_fpg) / sblock.fs_frag);
955 			/*
956 			 * The last cluster size is already set up.
957 			 */
958 			if (lcs < sblock.fs_contigsumsize) {
959 				if (lcs)
960 					cg_clustersum(&acg)[lcs]--;
961 				lcs++;
962 				cg_clustersum(&acg)[lcs]++;
963 			}
964 		}
965 	}
966 	*cs = acg.cg_cs;
967 
968 	/*
969 	 * Now write the former cylinder group containing the cylinder
970 	 * summary back to disk.
971 	 */
972 	cgckhash(&acg);
973 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
974 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
975 	DBG_PRINT0("oscg written\n");
976 	DBG_DUMP_CG(&sblock, "old summary cg", &acg);
977 
978 	/*
979 	 * Find the beginning of the new cylinder group containing the
980 	 * cylinder summary.
981 	 */
982 	sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg);
983 	ncscg = dtog(&sblock, sblock.fs_csaddr);
984 	cs = fscs + ncscg;
985 
986 	/*
987 	 * If Nflag is specified, we would now read random data instead
988 	 * of an empty cg structure from disk. So we can't simulate that
989 	 * part for now.
990 	 */
991 	if (Nflag) {
992 		DBG_PRINT0("nscg update skipped\n");
993 		DBG_LEAVE;
994 		return;
995 	}
996 
997 	/*
998 	 * Read the future cylinder group containing the cylinder
999 	 * summary from disk, and make a copy.
1000 	 */
1001 	rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1002 	    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1003 	DBG_PRINT0("nscg read\n");
1004 	DBG_DUMP_CG(&sblock, "new summary cg", &aocg);
1005 
1006 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1007 
1008 	/*
1009 	 * Allocate all complete blocks used by the new cylinder
1010 	 * summary.
1011 	 */
1012 	for (d = sblock.fs_csaddr; d + sblock.fs_frag <=
1013 	    sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize);
1014 	    d += sblock.fs_frag) {
1015 		clrblock(&sblock, cg_blksfree(&acg),
1016 		    (d % sblock.fs_fpg) / sblock.fs_frag);
1017 		acg.cg_cs.cs_nbfree--;
1018 		sblock.fs_cstotal.cs_nbfree--;
1019 		if (sblock.fs_contigsumsize > 0) {
1020 			clrbit(cg_clustersfree(&acg),
1021 			    (d % sblock.fs_fpg) / sblock.fs_frag);
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Allocate all fragments used by the cylinder summary in the
1027 	 * last block.
1028 	 */
1029 	if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) {
1030 		for (; d - sblock.fs_csaddr <
1031 		    sblock.fs_cssize/sblock.fs_fsize; d++) {
1032 			clrbit(cg_blksfree(&acg), d % sblock.fs_fpg);
1033 			acg.cg_cs.cs_nffree--;
1034 			sblock.fs_cstotal.cs_nffree--;
1035 		}
1036 		acg.cg_cs.cs_nbfree--;
1037 		acg.cg_cs.cs_nffree += sblock.fs_frag;
1038 		sblock.fs_cstotal.cs_nbfree--;
1039 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag;
1040 		if (sblock.fs_contigsumsize > 0)
1041 			clrbit(cg_clustersfree(&acg),
1042 			    (d % sblock.fs_fpg) / sblock.fs_frag);
1043 
1044 		frag_adjust(d % sblock.fs_fpg, 1);
1045 	}
1046 	/*
1047 	 * XXX	Handle the cluster statistics here in the case this
1048 	 *	cylinder group is now almost full, and the remaining
1049 	 *	space is less then the maximum cluster size. This is
1050 	 *	probably not needed, as you would hardly find a file
1051 	 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1052 	 *	space right behind the cylinder group information in
1053 	 *	any new cylinder group.
1054 	 */
1055 
1056 	/*
1057 	 * Update our statistics in the cylinder summary.
1058 	 */
1059 	*cs = acg.cg_cs;
1060 
1061 	/*
1062 	 * Write the new cylinder group containing the cylinder summary
1063 	 * back to disk.
1064 	 */
1065 	cgckhash(&acg);
1066 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1067 	    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1068 	DBG_PRINT0("nscg written\n");
1069 	DBG_DUMP_CG(&sblock, "new summary cg", &acg);
1070 
1071 	DBG_LEAVE;
1072 	return;
1073 }
1074 
1075 /*
1076  * Here we read some block(s) from disk.
1077  */
1078 static void
1079 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1080 {
1081 	DBG_FUNC("rdfs")
1082 	ssize_t	n;
1083 
1084 	DBG_ENTER;
1085 
1086 	if (bno < 0)
1087 		err(32, "rdfs: attempting to read negative block number");
1088 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0)
1089 		err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1090 	n = read(fsi, bf, size);
1091 	if (n != (ssize_t)size)
1092 		err(34, "rdfs: read error: %jd", (intmax_t)bno);
1093 
1094 	DBG_LEAVE;
1095 	return;
1096 }
1097 
1098 /*
1099  * Here we write some block(s) to disk.
1100  */
1101 static void
1102 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1103 {
1104 	DBG_FUNC("wtfs")
1105 	ssize_t	n;
1106 
1107 	DBG_ENTER;
1108 
1109 	if (Nflag) {
1110 		DBG_LEAVE;
1111 		return;
1112 	}
1113 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0)
1114 		err(35, "wtfs: seek error: %ld", (long)bno);
1115 	n = write(fso, bf, size);
1116 	if (n != (ssize_t)size)
1117 		err(36, "wtfs: write error: %ld", (long)bno);
1118 
1119 	DBG_LEAVE;
1120 	return;
1121 }
1122 
1123 /*
1124  * Here we check if all frags of a block are free. For more details again
1125  * please see the source of newfs(8), as this function is taken over almost
1126  * unchanged.
1127  */
1128 static int
1129 isblock(struct fs *fs, unsigned char *cp, int h)
1130 {
1131 	DBG_FUNC("isblock")
1132 	unsigned char mask;
1133 
1134 	DBG_ENTER;
1135 
1136 	switch (fs->fs_frag) {
1137 	case 8:
1138 		DBG_LEAVE;
1139 		return (cp[h] == 0xff);
1140 	case 4:
1141 		mask = 0x0f << ((h & 0x1) << 2);
1142 		DBG_LEAVE;
1143 		return ((cp[h >> 1] & mask) == mask);
1144 	case 2:
1145 		mask = 0x03 << ((h & 0x3) << 1);
1146 		DBG_LEAVE;
1147 		return ((cp[h >> 2] & mask) == mask);
1148 	case 1:
1149 		mask = 0x01 << (h & 0x7);
1150 		DBG_LEAVE;
1151 		return ((cp[h >> 3] & mask) == mask);
1152 	default:
1153 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1154 		DBG_LEAVE;
1155 		return (0);
1156 	}
1157 }
1158 
1159 /*
1160  * Here we allocate a complete block in the block map. For more details again
1161  * please see the source of newfs(8), as this function is taken over almost
1162  * unchanged.
1163  */
1164 static void
1165 clrblock(struct fs *fs, unsigned char *cp, int h)
1166 {
1167 	DBG_FUNC("clrblock")
1168 
1169 	DBG_ENTER;
1170 
1171 	switch ((fs)->fs_frag) {
1172 	case 8:
1173 		cp[h] = 0;
1174 		break;
1175 	case 4:
1176 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1177 		break;
1178 	case 2:
1179 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1180 		break;
1181 	case 1:
1182 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1183 		break;
1184 	default:
1185 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1186 		break;
1187 	}
1188 
1189 	DBG_LEAVE;
1190 	return;
1191 }
1192 
1193 /*
1194  * Here we free a complete block in the free block map. For more details again
1195  * please see the source of newfs(8), as this function is taken over almost
1196  * unchanged.
1197  */
1198 static void
1199 setblock(struct fs *fs, unsigned char *cp, int h)
1200 {
1201 	DBG_FUNC("setblock")
1202 
1203 	DBG_ENTER;
1204 
1205 	switch (fs->fs_frag) {
1206 	case 8:
1207 		cp[h] = 0xff;
1208 		break;
1209 	case 4:
1210 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1211 		break;
1212 	case 2:
1213 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1214 		break;
1215 	case 1:
1216 		cp[h >> 3] |= (0x01 << (h & 0x7));
1217 		break;
1218 	default:
1219 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1220 		break;
1221 	}
1222 
1223 	DBG_LEAVE;
1224 	return;
1225 }
1226 
1227 /*
1228  * Figure out how many lines our current terminal has. For more details again
1229  * please see the source of newfs(8), as this function is taken over almost
1230  * unchanged.
1231  */
1232 static int
1233 charsperline(void)
1234 {
1235 	DBG_FUNC("charsperline")
1236 	int columns;
1237 	char *cp;
1238 	struct winsize ws;
1239 
1240 	DBG_ENTER;
1241 
1242 	columns = 0;
1243 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1244 		columns = ws.ws_col;
1245 	if (columns == 0 && (cp = getenv("COLUMNS")))
1246 		columns = atoi(cp);
1247 	if (columns == 0)
1248 		columns = 80;	/* last resort */
1249 
1250 	DBG_LEAVE;
1251 	return (columns);
1252 }
1253 
1254 static int
1255 is_dev(const char *name)
1256 {
1257 	struct stat devstat;
1258 
1259 	if (stat(name, &devstat) != 0)
1260 		return (0);
1261 	if (!S_ISCHR(devstat.st_mode))
1262 		return (0);
1263 	return (1);
1264 }
1265 
1266 /*
1267  * Return mountpoint on which the device is currently mounted.
1268  */
1269 static const struct statfs *
1270 dev_to_statfs(const char *dev)
1271 {
1272 	struct stat devstat, mntdevstat;
1273 	struct statfs *mntbuf, *statfsp;
1274 	char device[MAXPATHLEN];
1275 	char *mntdevname;
1276 	int i, mntsize;
1277 
1278 	/*
1279 	 * First check the mounted filesystems.
1280 	 */
1281 	if (stat(dev, &devstat) != 0)
1282 		return (NULL);
1283 	if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode))
1284 		return (NULL);
1285 
1286 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1287 	for (i = 0; i < mntsize; i++) {
1288 		statfsp = &mntbuf[i];
1289 		mntdevname = statfsp->f_mntfromname;
1290 		if (*mntdevname != '/') {
1291 			strcpy(device, _PATH_DEV);
1292 			strcat(device, mntdevname);
1293 			mntdevname = device;
1294 		}
1295 		if (stat(mntdevname, &mntdevstat) == 0 &&
1296 		    mntdevstat.st_rdev == devstat.st_rdev)
1297 			return (statfsp);
1298 	}
1299 
1300 	return (NULL);
1301 }
1302 
1303 static const char *
1304 mountpoint_to_dev(const char *mountpoint)
1305 {
1306 	struct statfs *mntbuf, *statfsp;
1307 	struct fstab *fs;
1308 	int i, mntsize;
1309 
1310 	/*
1311 	 * First check the mounted filesystems.
1312 	 */
1313 	mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
1314 	for (i = 0; i < mntsize; i++) {
1315 		statfsp = &mntbuf[i];
1316 
1317 		if (strcmp(statfsp->f_mntonname, mountpoint) == 0)
1318 			return (statfsp->f_mntfromname);
1319 	}
1320 
1321 	/*
1322 	 * Check the fstab.
1323 	 */
1324 	fs = getfsfile(mountpoint);
1325 	if (fs != NULL)
1326 		return (fs->fs_spec);
1327 
1328 	return (NULL);
1329 }
1330 
1331 static const char *
1332 getdev(const char *name)
1333 {
1334 	static char device[MAXPATHLEN];
1335 	const char *cp, *dev;
1336 
1337 	if (is_dev(name))
1338 		return (name);
1339 
1340 	cp = strrchr(name, '/');
1341 	if (cp == NULL) {
1342 		snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name);
1343 		if (is_dev(device))
1344 			return (device);
1345 	}
1346 
1347 	dev = mountpoint_to_dev(name);
1348 	if (dev != NULL && is_dev(dev))
1349 		return (dev);
1350 
1351 	return (NULL);
1352 }
1353 
1354 /*
1355  * growfs(8) is a utility which allows to increase the size of an existing
1356  * ufs file system. Currently this can only be done on unmounted file system.
1357  * It recognizes some command line options to specify the new desired size,
1358  * and it does some basic checkings. The old file system size is determined
1359  * and after some more checks like we can really access the new last block
1360  * on the disk etc. we calculate the new parameters for the superblock. After
1361  * having done this we just call growfs() which will do the work.
1362  * We still have to provide support for snapshots. Therefore we first have to
1363  * understand what data structures are always replicated in the snapshot on
1364  * creation, for all other blocks we touch during our procedure, we have to
1365  * keep the old blocks unchanged somewhere available for the snapshots. If we
1366  * are lucky, then we only have to handle our blocks to be relocated in that
1367  * way.
1368  * Also we have to consider in what order we actually update the critical
1369  * data structures of the file system to make sure, that in case of a disaster
1370  * fsck(8) is still able to restore any lost data.
1371  * The foreseen last step then will be to provide for growing even mounted
1372  * file systems. There we have to extend the mount() system call to provide
1373  * userland access to the file system locking facility.
1374  */
1375 int
1376 main(int argc, char **argv)
1377 {
1378 	DBG_FUNC("main")
1379 	struct fs *fs;
1380 	const char *device;
1381 	const struct statfs *statfsp;
1382 	uint64_t size = 0;
1383 	off_t mediasize;
1384 	int error, j, fsi, fso, ch, ret, Nflag = 0, yflag = 0;
1385 	char *p, reply[5], oldsizebuf[6], newsizebuf[6];
1386 	void *testbuf;
1387 
1388 	DBG_ENTER;
1389 
1390 	while ((ch = getopt(argc, argv, "Ns:vy")) != -1) {
1391 		switch(ch) {
1392 		case 'N':
1393 			Nflag = 1;
1394 			break;
1395 		case 's':
1396 			size = (off_t)strtoumax(optarg, &p, 0);
1397 			if (p == NULL || *p == '\0')
1398 				size *= DEV_BSIZE;
1399 			else if (*p == 'b' || *p == 'B')
1400 				; /* do nothing */
1401 			else if (*p == 'k' || *p == 'K')
1402 				size <<= 10;
1403 			else if (*p == 'm' || *p == 'M')
1404 				size <<= 20;
1405 			else if (*p == 'g' || *p == 'G')
1406 				size <<= 30;
1407 			else if (*p == 't' || *p == 'T') {
1408 				size <<= 30;
1409 				size <<= 10;
1410 			} else
1411 				errx(1, "unknown suffix on -s argument");
1412 			break;
1413 		case 'v': /* for compatibility to newfs */
1414 			break;
1415 		case 'y':
1416 			yflag = 1;
1417 			break;
1418 		case '?':
1419 			/* FALLTHROUGH */
1420 		default:
1421 			usage();
1422 		}
1423 	}
1424 	argc -= optind;
1425 	argv += optind;
1426 
1427 	if (argc != 1)
1428 		usage();
1429 
1430 	/*
1431 	 * Now try to guess the device name.
1432 	 */
1433 	device = getdev(*argv);
1434 	if (device == NULL)
1435 		errx(1, "cannot find special device for %s", *argv);
1436 
1437 	statfsp = dev_to_statfs(device);
1438 
1439 	fsi = open(device, O_RDONLY);
1440 	if (fsi < 0)
1441 		err(1, "%s", device);
1442 
1443 	/*
1444 	 * Try to guess the slice size if not specified.
1445 	 */
1446 	if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1)
1447 		err(1,"DIOCGMEDIASIZE");
1448 
1449 	/*
1450 	 * Check if that partition is suitable for growing a file system.
1451 	 */
1452 	if (mediasize < 1)
1453 		errx(1, "partition is unavailable");
1454 
1455 	/*
1456 	 * Read the current superblock, and take a backup.
1457 	 */
1458 	if ((ret = sbget(fsi, &fs, UFS_STDSB, 0)) != 0) {
1459 		switch (ret) {
1460 		case ENOENT:
1461 			errx(1, "superblock not recognized");
1462 		default:
1463 			errc(1, ret, "unable to read superblock");
1464 		}
1465 	}
1466 	/*
1467 	 * Check for filesystem that was unclean at mount time.
1468 	 */
1469 	if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) != 0)
1470 		errx(1, "%s is not clean - run fsck.\n", *argv);
1471 	memcpy(&osblock, fs, fs->fs_sbsize);
1472 	free(fs);
1473 	memcpy((void *)&fsun1, (void *)&fsun2, osblock.fs_sbsize);
1474 
1475 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
1476 	DBG_DUMP_FS(&sblock, "old sblock");
1477 
1478 	/*
1479 	 * Determine size to grow to. Default to the device size.
1480 	 */
1481 	if (size == 0)
1482 		size = mediasize;
1483 	else {
1484 		if (size > (uint64_t)mediasize) {
1485 			humanize_number(oldsizebuf, sizeof(oldsizebuf), size,
1486 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1487 			humanize_number(newsizebuf, sizeof(newsizebuf),
1488 			    mediasize,
1489 			    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1490 
1491 			errx(1, "requested size %s is larger "
1492 			    "than the available %s", oldsizebuf, newsizebuf);
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * Make sure the new size is a multiple of fs_fsize; /dev/ufssuspend
1498 	 * only supports fragment-aligned IO requests.
1499 	 */
1500 	size -= size % osblock.fs_fsize;
1501 
1502 	if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) {
1503 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1504 		    osblock.fs_size * osblock.fs_fsize,
1505 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1506 		humanize_number(newsizebuf, sizeof(newsizebuf), size,
1507 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1508 
1509 		if (size == (uint64_t)(osblock.fs_size * osblock.fs_fsize))
1510 			errx(0, "requested size %s is equal to the current "
1511 			    "filesystem size %s", newsizebuf, oldsizebuf);
1512 		errx(1, "requested size %s is smaller than the current "
1513 		   "filesystem size %s", newsizebuf, oldsizebuf);
1514 	}
1515 
1516 	sblock.fs_old_size = sblock.fs_size =
1517 	    dbtofsb(&osblock, size / DEV_BSIZE);
1518 	sblock.fs_providersize = dbtofsb(&osblock, mediasize / DEV_BSIZE);
1519 
1520 	/*
1521 	 * Are we really growing?
1522 	 */
1523 	if (osblock.fs_size >= sblock.fs_size) {
1524 		errx(1, "we are not growing (%jd->%jd)",
1525 		    (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
1526 	}
1527 
1528 	/*
1529 	 * Check if we find an active snapshot.
1530 	 */
1531 	if (yflag == 0) {
1532 		for (j = 0; j < FSMAXSNAP; j++) {
1533 			if (sblock.fs_snapinum[j]) {
1534 				errx(1, "active snapshot found in file system; "
1535 				    "please remove all snapshots before "
1536 				    "using growfs");
1537 			}
1538 			if (!sblock.fs_snapinum[j]) /* list is dense */
1539 				break;
1540 		}
1541 	}
1542 
1543 	if (yflag == 0 && Nflag == 0) {
1544 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0)
1545 			printf("Device is mounted read-write; resizing will "
1546 			    "result in temporary write suspension for %s.\n",
1547 			    statfsp->f_mntonname);
1548 		printf("It's strongly recommended to make a backup "
1549 		    "before growing the file system.\n"
1550 		    "OK to grow filesystem on %s", device);
1551 		if (statfsp != NULL)
1552 			printf(", mounted on %s,", statfsp->f_mntonname);
1553 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1554 		    osblock.fs_size * osblock.fs_fsize,
1555 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1556 		humanize_number(newsizebuf, sizeof(newsizebuf),
1557 		    sblock.fs_size * sblock.fs_fsize,
1558 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1559 		printf(" from %s to %s? [yes/no] ", oldsizebuf, newsizebuf);
1560 		fflush(stdout);
1561 		fgets(reply, (int)sizeof(reply), stdin);
1562 		if (strcasecmp(reply, "yes\n")){
1563 			printf("Response other than \"yes\"; aborting\n");
1564 			exit(0);
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * Try to access our device for writing.  If it's not mounted,
1570 	 * or mounted read-only, simply open it; otherwise, use UFS
1571 	 * suspension mechanism.
1572 	 */
1573 	if (Nflag) {
1574 		fso = -1;
1575 	} else {
1576 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) {
1577 			fso = open(_PATH_UFSSUSPEND, O_RDWR);
1578 			if (fso == -1)
1579 				err(1, "unable to open %s", _PATH_UFSSUSPEND);
1580 			error = ioctl(fso, UFSSUSPEND, &statfsp->f_fsid);
1581 			if (error != 0)
1582 				err(1, "UFSSUSPEND");
1583 		} else {
1584 			fso = open(device, O_WRONLY);
1585 			if (fso < 0)
1586 				err(1, "%s", device);
1587 		}
1588 	}
1589 
1590 	/*
1591 	 * Try to access our new last block in the file system.
1592 	 */
1593 	testbuf = malloc(sblock.fs_fsize);
1594 	if (testbuf == NULL)
1595 		err(1, "malloc");
1596 	rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1597 	    sblock.fs_fsize, testbuf, fsi);
1598 	wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE),
1599 	    sblock.fs_fsize, testbuf, fso, Nflag);
1600 	free(testbuf);
1601 
1602 	/*
1603 	 * Now calculate new superblock values and check for reasonable
1604 	 * bound for new file system size:
1605 	 *     fs_size:    is derived from user input
1606 	 *     fs_dsize:   should get updated in the routines creating or
1607 	 *                 updating the cylinder groups on the fly
1608 	 *     fs_cstotal: should get updated in the routines creating or
1609 	 *                 updating the cylinder groups
1610 	 */
1611 
1612 	/*
1613 	 * Update the number of cylinders and cylinder groups in the file system.
1614 	 */
1615 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
1616 		sblock.fs_old_ncyl =
1617 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
1618 		if (sblock.fs_size * sblock.fs_old_nspf >
1619 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
1620 			sblock.fs_old_ncyl++;
1621 	}
1622 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
1623 
1624 	/*
1625 	 * Allocate last cylinder group only if there is enough room
1626 	 * for at least one data block.
1627 	 */
1628 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
1629 	    sblock.fs_size <= cgdmin(&sblock, sblock.fs_ncg - 1)) {
1630 		humanize_number(oldsizebuf, sizeof(oldsizebuf),
1631 		    (sblock.fs_size % sblock.fs_fpg) * sblock.fs_fsize,
1632 		    "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL);
1633 		warnx("no room to allocate last cylinder group; "
1634 		    "leaving %s unused", oldsizebuf);
1635 		sblock.fs_ncg--;
1636 		if (sblock.fs_magic == FS_UFS1_MAGIC)
1637 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
1638 		sblock.fs_old_size = sblock.fs_size =
1639 		    sblock.fs_ncg * sblock.fs_fpg;
1640 	}
1641 
1642 	/*
1643 	 * Update the space for the cylinder group summary information in the
1644 	 * respective cylinder group data area.
1645 	 */
1646 	sblock.fs_cssize =
1647 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
1648 
1649 	if (osblock.fs_size >= sblock.fs_size)
1650 		errx(1, "not enough new space");
1651 
1652 	DBG_PRINT0("sblock calculated\n");
1653 
1654 	/*
1655 	 * Ok, everything prepared, so now let's do the tricks.
1656 	 */
1657 	growfs(fsi, fso, Nflag);
1658 
1659 	close(fsi);
1660 	if (fso > -1) {
1661 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) {
1662 			error = ioctl(fso, UFSRESUME);
1663 			if (error != 0)
1664 				err(1, "UFSRESUME");
1665 		}
1666 		error = close(fso);
1667 		if (error != 0)
1668 			err(1, "close");
1669 		if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) != 0)
1670 			mount_reload(statfsp);
1671 	}
1672 
1673 	DBG_CLOSE;
1674 
1675 	DBG_LEAVE;
1676 	return (0);
1677 }
1678 
1679 /*
1680  * Dump a line of usage.
1681  */
1682 static void
1683 usage(void)
1684 {
1685 	DBG_FUNC("usage")
1686 
1687 	DBG_ENTER;
1688 
1689 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n");
1690 
1691 	DBG_LEAVE;
1692 	exit(1);
1693 }
1694 
1695 /*
1696  * This updates most parameters and the bitmap related to cluster. We have to
1697  * assume that sblock, osblock, acg are set up.
1698  */
1699 static void
1700 updclst(int block)
1701 {
1702 	DBG_FUNC("updclst")
1703 	static int lcs = 0;
1704 
1705 	DBG_ENTER;
1706 
1707 	if (sblock.fs_contigsumsize < 1) /* no clustering */
1708 		return;
1709 	/*
1710 	 * update cluster allocation map
1711 	 */
1712 	setbit(cg_clustersfree(&acg), block);
1713 
1714 	/*
1715 	 * update cluster summary table
1716 	 */
1717 	if (!lcs) {
1718 		/*
1719 		 * calculate size for the trailing cluster
1720 		 */
1721 		for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) {
1722 			if (isclr(cg_clustersfree(&acg), block))
1723 				break;
1724 		}
1725 	}
1726 	if (lcs < sblock.fs_contigsumsize) {
1727 		if (lcs)
1728 			cg_clustersum(&acg)[lcs]--;
1729 		lcs++;
1730 		cg_clustersum(&acg)[lcs]++;
1731 	}
1732 
1733 	DBG_LEAVE;
1734 	return;
1735 }
1736 
1737 static void
1738 mount_reload(const struct statfs *stfs)
1739 {
1740 	char errmsg[255];
1741 	struct iovec *iov;
1742 	int iovlen;
1743 
1744 	iov = NULL;
1745 	iovlen = 0;
1746 	*errmsg = '\0';
1747 	build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4);
1748 	build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1);
1749 	build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg));
1750 	build_iovec(&iov, &iovlen, "update", NULL, 0);
1751 	build_iovec(&iov, &iovlen, "reload", NULL, 0);
1752 
1753 	if (nmount(iov, iovlen, stfs->f_flags) < 0) {
1754 		errmsg[sizeof(errmsg) - 1] = '\0';
1755 		err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname,
1756 		    *errmsg != '\0' ? ": " : "", errmsg);
1757 	}
1758 }
1759 
1760 /*
1761  * Calculate the check-hash of the cylinder group.
1762  */
1763 static void
1764 cgckhash(struct cg *cgp)
1765 {
1766 
1767 	if ((sblock.fs_metackhash & CK_CYLGRP) == 0)
1768 		return;
1769 	cgp->cg_ckhash = 0;
1770 	cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize);
1771 }
1772