xref: /freebsd/sbin/growfs/growfs.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41 
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48 
49 #ifndef lint
50 static const char rcsid[] =
51   "$FreeBSD$";
52 #endif /* not lint */
53 
54 /* ********************************************************** INCLUDES ***** */
55 #include <sys/param.h>
56 #include <sys/disklabel.h>
57 #include <sys/ioctl.h>
58 #include <sys/stat.h>
59 
60 #include <stdio.h>
61 #include <paths.h>
62 #include <ctype.h>
63 #include <err.h>
64 #include <fcntl.h>
65 #include <stdlib.h>
66 #include <string.h>
67 #include <unistd.h>
68 #include <ufs/ufs/dinode.h>
69 #include <ufs/ffs/fs.h>
70 
71 #include "debug.h"
72 
73 /* *************************************************** GLOBALS & TYPES ***** */
74 #ifdef FS_DEBUG
75 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
76 #endif /* FS_DEBUG */
77 
78 static union {
79 	struct fs	fs;
80 	char	pad[SBLOCKSIZE];
81 } fsun1, fsun2;
82 #define	sblock	fsun1.fs	/* the new superblock */
83 #define	osblock	fsun2.fs	/* the old superblock */
84 
85 /*
86  * Possible superblock locations ordered from most to least likely.
87  */
88 static int sblock_try[] = SBLOCKSEARCH;
89 static ufs2_daddr_t sblockloc;
90 
91 static union {
92 	struct cg	cg;
93 	char	pad[MAXBSIZE];
94 } cgun1, cgun2;
95 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
96 #define	aocg	cgun2.cg	/* an old cylinder group */
97 
98 static char	ablk[MAXBSIZE];	/* a block */
99 
100 static struct csum	*fscs;	/* cylinder summary */
101 
102 union dinode {
103 	struct ufs1_dinode dp1;
104 	struct ufs2_dinode dp2;
105 };
106 #define	DIP(dp, field) \
107 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
108 	(dp)->dp1.field : (dp)->dp2.field)
109 static ufs2_daddr_t 	inoblk;			/* inode block address */
110 static char		inobuf[MAXBSIZE];	/* inode block */
111 static int		maxino;			/* last valid inode */
112 
113 /*
114  * An  array of elements of type struct gfs_bpp describes all blocks  to
115  * be relocated in order to free the space needed for the cylinder group
116  * summary for all cylinder groups located in the first cylinder group.
117  */
118 struct gfs_bpp {
119 	ufs2_daddr_t	old;		/* old block number */
120 	ufs2_daddr_t	new;		/* new block number */
121 #define GFS_FL_FIRST	1
122 #define GFS_FL_LAST	2
123 	unsigned int	flags;	/* special handling required */
124 	int	found;		/* how many references were updated */
125 };
126 
127 /* ******************************************************** PROTOTYPES ***** */
128 static void	growfs(int, int, unsigned int);
129 static void	rdfs(ufs2_daddr_t, size_t, void *, int);
130 static void	wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
131 static ufs2_daddr_t alloc(void);
132 static int	charsperline(void);
133 static void	usage(void);
134 static int	isblock(struct fs *, unsigned char *, int);
135 static void	clrblock(struct fs *, unsigned char *, int);
136 static void	setblock(struct fs *, unsigned char *, int);
137 static void	initcg(int, time_t, int, unsigned int);
138 static void	updjcg(int, time_t, int, int, unsigned int);
139 static void	updcsloc(time_t, int, int, unsigned int);
140 static struct disklabel	*get_disklabel(int);
141 static void	return_disklabel(int, struct disklabel *, unsigned int);
142 static union dinode *ginode(ino_t, int, int);
143 static void	frag_adjust(ufs2_daddr_t, int);
144 static int	cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
145 		    unsigned int);
146 static void	updclst(int);
147 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
148 static void	indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
149 		    struct gfs_bpp *, int, int, unsigned int);
150 
151 /* ************************************************************ growfs ***** */
152 /*
153  * Here  we actually start growing the filesystem. We basically  read  the
154  * cylinder  summary  from the first cylinder group as we want  to  update
155  * this  on  the fly during our various operations. First  we  handle  the
156  * changes in the former last cylinder group. Afterwards we create all new
157  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
158  * cylinder  summary  which  might result in a  relocation  of  the  whole
159  * structure.  In the end we write back the updated cylinder summary,  the
160  * new superblock, and slightly patched versions of the super block
161  * copies.
162  */
163 static void
164 growfs(int fsi, int fso, unsigned int Nflag)
165 {
166 	DBG_FUNC("growfs")
167 	int	i;
168 	int	cylno, j;
169 	time_t	utime;
170 	int	width;
171 	char	tmpbuf[100];
172 #ifdef FSIRAND
173 	static int	randinit=0;
174 
175 	DBG_ENTER;
176 
177 	if (!randinit) {
178 		randinit = 1;
179 		srandomdev();
180 	}
181 #else /* not FSIRAND */
182 
183 	DBG_ENTER;
184 
185 #endif /* FSIRAND */
186 	time(&utime);
187 
188 	/*
189 	 * Get the cylinder summary into the memory.
190 	 */
191 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
192 	if(fscs == NULL) {
193 		errx(1, "calloc failed");
194 	}
195 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
196 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
197 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
198 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
199 	}
200 
201 #ifdef FS_DEBUG
202 {
203 	struct csum	*dbg_csp;
204 	int	dbg_csc;
205 	char	dbg_line[80];
206 
207 	dbg_csp=fscs;
208 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
209 		snprintf(dbg_line, sizeof(dbg_line),
210 		    "%d. old csum in old location", dbg_csc);
211 		DBG_DUMP_CSUM(&osblock,
212 		    dbg_line,
213 		    dbg_csp++);
214 	}
215 }
216 #endif /* FS_DEBUG */
217 	DBG_PRINT0("fscs read\n");
218 
219 	/*
220 	 * Do all needed changes in the former last cylinder group.
221 	 */
222 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
223 
224 	/*
225 	 * Dump out summary information about filesystem.
226 	 */
227 #	define B2MBFACTOR (1 / (1024.0 * 1024.0))
228 	printf("growfs: %.1fMB (%qd sectors) block size %d, fragment size %d\n",
229 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
230 	    fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize);
231 	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
232 	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
233 	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
234 	if (sblock.fs_flags & FS_DOSOFTDEP)
235 		printf("\twith soft updates\n");
236 #	undef B2MBFACTOR
237 
238 	/*
239 	 * Now build the cylinders group blocks and
240 	 * then print out indices of cylinder groups.
241 	 */
242 	printf("super-block backups (for fsck -b #) at:\n");
243 	i = 0;
244 	width = charsperline();
245 
246 	/*
247 	 * Iterate for only the new cylinder groups.
248 	 */
249 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
250 		initcg(cylno, utime, fso, Nflag);
251 		j = sprintf(tmpbuf, " %d%s",
252 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
253 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
254 		if (i + j >= width) {
255 			printf("\n");
256 			i = 0;
257 		}
258 		i += j;
259 		printf("%s", tmpbuf);
260 		fflush(stdout);
261 	}
262 	printf("\n");
263 
264 	/*
265 	 * Do all needed changes in the first cylinder group.
266 	 * allocate blocks in new location
267 	 */
268 	updcsloc(utime, fsi, fso, Nflag);
269 
270 	/*
271 	 * Now write the cylinder summary back to disk.
272 	 */
273 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
274 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
275 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
276 		    (void *)(((char *)fscs) + i), fso, Nflag);
277 	}
278 	DBG_PRINT0("fscs written\n");
279 
280 #ifdef FS_DEBUG
281 {
282 	struct csum	*dbg_csp;
283 	int	dbg_csc;
284 	char	dbg_line[80];
285 
286 	dbg_csp=fscs;
287 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
288 		snprintf(dbg_line, sizeof(dbg_line),
289 		    "%d. new csum in new location", dbg_csc);
290 		DBG_DUMP_CSUM(&sblock,
291 		    dbg_line,
292 		    dbg_csp++);
293 	}
294 }
295 #endif /* FS_DEBUG */
296 
297 	/*
298 	 * Now write the new superblock back to disk.
299 	 */
300 	sblock.fs_time = utime;
301 	wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
302 	DBG_PRINT0("sblock written\n");
303 	DBG_DUMP_FS(&sblock,
304 	    "new initial sblock");
305 
306 	/*
307 	 * Clean up the dynamic fields in our superblock copies.
308 	 */
309 	sblock.fs_fmod = 0;
310 	sblock.fs_clean = 1;
311 	sblock.fs_ronly = 0;
312 	sblock.fs_cgrotor = 0;
313 	sblock.fs_state = 0;
314 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
315 	sblock.fs_flags &= FS_DOSOFTDEP;
316 
317 	/*
318 	 * XXX
319 	 * The following fields are currently distributed from the  superblock
320 	 * to the copies:
321 	 *     fs_minfree
322 	 *     fs_rotdelay
323 	 *     fs_maxcontig
324 	 *     fs_maxbpg
325 	 *     fs_minfree,
326 	 *     fs_optim
327 	 *     fs_flags regarding SOFTPDATES
328 	 *
329 	 * We probably should rather change the summary for the cylinder group
330 	 * statistics here to the value of what would be in there, if the file
331 	 * system were created initially with the new size. Therefor we  still
332 	 * need to find an easy way of calculating that.
333 	 * Possibly we can try to read the first superblock copy and apply the
334 	 * "diffed" stats between the old and new superblock by still  copying
335 	 * certain parameters onto that.
336 	 */
337 
338 	/*
339 	 * Write out the duplicate super blocks.
340 	 */
341 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
342 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
343 		    (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
344 	}
345 	DBG_PRINT0("sblock copies written\n");
346 	DBG_DUMP_FS(&sblock,
347 	    "new other sblocks");
348 
349 	DBG_LEAVE;
350 	return;
351 }
352 
353 /* ************************************************************ initcg ***** */
354 /*
355  * This creates a new cylinder group structure, for more details please  see
356  * the  source of newfs(8), as this function is taken over almost unchanged.
357  * As  this  is  never called for the  first  cylinder  group,  the  special
358  * provisions for that case are removed here.
359  */
360 static void
361 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
362 {
363 	DBG_FUNC("initcg")
364 	static caddr_t iobuf;
365 	long i, j, d, dlower, dupper, blkno, start;
366 	ufs2_daddr_t cbase, dmax;
367 	struct ufs1_dinode *dp1;
368 	struct ufs2_dinode *dp2;
369 	struct csum *cs;
370 
371 	if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
372 		errx(37, "panic: cannot allocate I/O buffer");
373 	}
374 	/*
375 	 * Determine block bounds for cylinder group.
376 	 * Allow space for super block summary information in first
377 	 * cylinder group.
378 	 */
379 	cbase = cgbase(&sblock, cylno);
380 	dmax = cbase + sblock.fs_fpg;
381 	if (dmax > sblock.fs_size)
382 		dmax = sblock.fs_size;
383 	dlower = cgsblock(&sblock, cylno) - cbase;
384 	dupper = cgdmin(&sblock, cylno) - cbase;
385 	if (cylno == 0)	/* XXX fscs may be relocated */
386 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
387 	cs = &fscs[cylno];
388 	memset(&acg, 0, sblock.fs_cgsize);
389 	acg.cg_time = utime;
390 	acg.cg_magic = CG_MAGIC;
391 	acg.cg_cgx = cylno;
392 	acg.cg_niblk = sblock.fs_ipg;
393 	acg.cg_initediblk = sblock.fs_ipg;
394 	acg.cg_ndblk = dmax - cbase;
395 	if (sblock.fs_contigsumsize > 0)
396 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
397 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
398 	if (sblock.fs_magic == FS_UFS2_MAGIC) {
399 		acg.cg_iusedoff = start;
400 	} else {
401 		acg.cg_old_ncyl = sblock.fs_old_cpg;
402 		acg.cg_old_time = acg.cg_time;
403 		acg.cg_time = 0;
404 		acg.cg_old_niblk = acg.cg_niblk;
405 		acg.cg_niblk = 0;
406 		acg.cg_initediblk = 0;
407 		acg.cg_old_btotoff = start;
408 		acg.cg_old_boff = acg.cg_old_btotoff +
409 		    sblock.fs_old_cpg * sizeof(int32_t);
410 		acg.cg_iusedoff = acg.cg_old_boff +
411 		    sblock.fs_old_cpg * sizeof(u_int16_t);
412 	}
413 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
414 	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, NBBY);
415 	if (sblock.fs_contigsumsize > 0) {
416 		acg.cg_clustersumoff =
417 		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
418 		acg.cg_clustersumoff -= sizeof(u_int32_t);
419 		acg.cg_clusteroff = acg.cg_clustersumoff +
420 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
421 		acg.cg_nextfreeoff = acg.cg_clusteroff +
422 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), NBBY);
423 	}
424 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
425 		/*
426 		 * This should never happen as we would have had that panic
427 		 * already on filesystem creation
428 		 */
429 		errx(37, "panic: cylinder group too big");
430 	}
431 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
432 	if (cylno == 0)
433 		for (i = 0; i < ROOTINO; i++) {
434 			setbit(cg_inosused(&acg), i);
435 			acg.cg_cs.cs_nifree--;
436 		}
437 	bzero(iobuf, sblock.fs_bsize);
438 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
439 		dp1 = (struct ufs1_dinode *)iobuf;
440 		dp2 = (struct ufs2_dinode *)iobuf;
441 #ifdef FSIRAND
442 		for (j = 0; j < INOPB(&sblock); j++)
443 			if (sblock.fs_magic == FS_UFS1_MAGIC) {
444 				dp1->di_gen = random();
445 				dp1++;
446 			} else {
447 				dp2->di_gen = random();
448 				dp2++;
449 			}
450 #endif
451 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
452 		    sblock.fs_bsize, iobuf, fso, Nflag);
453 	}
454 	if (cylno > 0) {
455 		/*
456 		 * In cylno 0, beginning space is reserved
457 		 * for boot and super blocks.
458 		 */
459 		for (d = 0; d < dlower; d += sblock.fs_frag) {
460 			blkno = d / sblock.fs_frag;
461 			setblock(&sblock, cg_blksfree(&acg), blkno);
462 			if (sblock.fs_contigsumsize > 0)
463 				setbit(cg_clustersfree(&acg), blkno);
464 			acg.cg_cs.cs_nbfree++;
465 		}
466 		sblock.fs_dsize += dlower;
467 	}
468 	sblock.fs_dsize += acg.cg_ndblk - dupper;
469 	if ((i = dupper % sblock.fs_frag)) {
470 		acg.cg_frsum[sblock.fs_frag - i]++;
471 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
472 			setbit(cg_blksfree(&acg), dupper);
473 			acg.cg_cs.cs_nffree++;
474 		}
475 	}
476 	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
477 	     d += sblock.fs_frag) {
478 		blkno = d / sblock.fs_frag;
479 		setblock(&sblock, cg_blksfree(&acg), blkno);
480 		if (sblock.fs_contigsumsize > 0)
481 			setbit(cg_clustersfree(&acg), blkno);
482 		acg.cg_cs.cs_nbfree++;
483 	}
484 	if (d < acg.cg_ndblk) {
485 		acg.cg_frsum[acg.cg_ndblk - d]++;
486 		for (; d < acg.cg_ndblk; d++) {
487 			setbit(cg_blksfree(&acg), d);
488 			acg.cg_cs.cs_nffree++;
489 		}
490 	}
491 	if (sblock.fs_contigsumsize > 0) {
492 		int32_t *sump = cg_clustersum(&acg);
493 		u_char *mapp = cg_clustersfree(&acg);
494 		int map = *mapp++;
495 		int bit = 1;
496 		int run = 0;
497 
498 		for (i = 0; i < acg.cg_nclusterblks; i++) {
499 			if ((map & bit) != 0)
500 				run++;
501 			else if (run != 0) {
502 				if (run > sblock.fs_contigsumsize)
503 					run = sblock.fs_contigsumsize;
504 				sump[run]++;
505 				run = 0;
506 			}
507 			if ((i & (NBBY - 1)) != NBBY - 1)
508 				bit <<= 1;
509 			else {
510 				map = *mapp++;
511 				bit = 1;
512 			}
513 		}
514 		if (run != 0) {
515 			if (run > sblock.fs_contigsumsize)
516 				run = sblock.fs_contigsumsize;
517 			sump[run]++;
518 		}
519 	}
520 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
521 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
522 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
523 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
524 	*cs = acg.cg_cs;
525 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
526 		sblock.fs_bsize, (char *)&acg, fso, Nflag);
527 	DBG_DUMP_CG(&sblock,
528 	    "new cg",
529 	    &acg);
530 
531 	DBG_LEAVE;
532 	return;
533 }
534 
535 /* ******************************************************* frag_adjust ***** */
536 /*
537  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
538  * block to or from the fragment statistics. By subtracting before and adding
539  * after  an operation on the free frag map we can easy update  the  fragment
540  * statistic, which seems to be otherwise an rather complex operation.
541  */
542 static void
543 frag_adjust(ufs2_daddr_t frag, int sign)
544 {
545 	DBG_FUNC("frag_adjust")
546 	int fragsize;
547 	int f;
548 
549 	DBG_ENTER;
550 
551 	fragsize=0;
552 	/*
553 	 * Here frag only needs to point to any fragment in the block we want
554 	 * to examine.
555 	 */
556 	for(f=rounddown(frag, sblock.fs_frag);
557 	    f<roundup(frag+1, sblock.fs_frag);
558 	    f++) {
559 		/*
560 		 * Count contiguos free fragments.
561 		 */
562 		if(isset(cg_blksfree(&acg), f)) {
563 			fragsize++;
564 		} else {
565 			if(fragsize && fragsize<sblock.fs_frag) {
566 				/*
567 				 * We found something in between.
568 				 */
569 				acg.cg_frsum[fragsize]+=sign;
570 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
571 				    fragsize,
572 				    sign);
573 			}
574 			fragsize=0;
575 		}
576 	}
577 	if(fragsize && fragsize<sblock.fs_frag) {
578 		/*
579 		 * We found something.
580 		 */
581 		acg.cg_frsum[fragsize]+=sign;
582 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
583 		    fragsize,
584 		    sign);
585 	}
586 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
587 	    fragsize,
588 	    sign);
589 
590 	DBG_LEAVE;
591 	return;
592 }
593 
594 /* ******************************************************* cond_bl_upd ***** */
595 /*
596  * Here we conditionally update a pointer to a fragment. We check for all
597  * relocated blocks if any of it's fragments is referenced by the current
598  * field,  and update the pointer to the respective fragment in  our  new
599  * block.  If  we find a reference we write back the  block  immediately,
600  * as there is no easy way for our general block reading engine to figure
601  * out if a write back operation is needed.
602  */
603 static int
604 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
605     unsigned int Nflag)
606 {
607 	DBG_FUNC("cond_bl_upd")
608 	struct gfs_bpp *f;
609 	ufs2_daddr_t src, dst;
610 	int fragnum;
611 	void *ibuf;
612 
613 	DBG_ENTER;
614 
615 	f = field;
616 	for (f = field; f->old != 0; f++) {
617 		src = *block;
618 		if (fragstoblks(&sblock, src) != f->old)
619 			continue;
620 		/*
621 		 * The fragment is part of the block, so update.
622 		 */
623 		dst = blkstofrags(&sblock, f->new);
624 		fragnum = fragnum(&sblock, src);
625 		*block = dst + fragnum;
626 		f->found++;
627 		DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
628 		    f->old,
629 		    f->new,
630 		    fragnum);
631 
632 		/*
633 		 * Copy the block back immediately.
634 		 *
635 		 * XXX	If src is is from an indirect block we have
636 		 *	to implement copy on write here in case of
637 		 *	active snapshots.
638 		 */
639 		ibuf = malloc(sblock.fs_bsize);
640 		if (!ibuf)
641 			errx(1, "malloc failed");
642 		src -= fragnum;
643 		rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
644 		wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
645 		free(ibuf);
646 		/*
647 		 * The same block can't be found again in this loop.
648 		 */
649 		return (1);
650 	}
651 
652 	DBG_LEAVE;
653 	return (0);
654 }
655 
656 /* ************************************************************ updjcg ***** */
657 /*
658  * Here we do all needed work for the former last cylinder group. It has to be
659  * changed  in  any case, even if the filesystem ended exactly on the  end  of
660  * this  group, as there is some slightly inconsistent handling of the  number
661  * of cylinders in the cylinder group. We start again by reading the  cylinder
662  * group from disk. If the last block was not fully available, we first handle
663  * the  missing  fragments, then we handle all new full blocks  in  that  file
664  * system  and  finally we handle the new last fragmented block  in  the  file
665  * system.  We again have to handle the fragment statistics rotational  layout
666  * tables and cluster summary during all those operations.
667  */
668 static void
669 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
670 {
671 	DBG_FUNC("updjcg")
672 	ufs2_daddr_t	cbase, dmax, dupper;
673 	struct csum	*cs;
674 	int	i,k;
675 	int	j=0;
676 
677 	DBG_ENTER;
678 
679 	/*
680 	 * Read the former last (joining) cylinder group from disk, and make
681 	 * a copy.
682 	 */
683 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
684 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
685 	DBG_PRINT0("jcg read\n");
686 	DBG_DUMP_CG(&sblock,
687 	    "old joining cg",
688 	    &aocg);
689 
690 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
691 
692 	/*
693 	 * If  the  cylinder  group had already it's  new  final  size  almost
694 	 * nothing is to be done ... except:
695 	 * For some reason the value of cg_ncyl in the last cylinder group has
696 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
697 	 * cylinder group we have to change that value now to fs_cpg.
698 	 */
699 
700 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
701 		if (sblock.fs_magic == FS_UFS1_MAGIC)
702 			acg.cg_old_ncyl=sblock.fs_old_cpg;
703 
704 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
705 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
706 		DBG_PRINT0("jcg written\n");
707 		DBG_DUMP_CG(&sblock,
708 		    "new joining cg",
709 		    &acg);
710 
711 		DBG_LEAVE;
712 		return;
713 	}
714 
715 	/*
716 	 * Set up some variables needed later.
717 	 */
718 	cbase = cgbase(&sblock, cylno);
719 	dmax = cbase + sblock.fs_fpg;
720 	if (dmax > sblock.fs_size)
721 		dmax = sblock.fs_size;
722 	dupper = cgdmin(&sblock, cylno) - cbase;
723 	if (cylno == 0) { /* XXX fscs may be relocated */
724 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
725 	}
726 
727 	/*
728 	 * Set pointer to the cylinder summary for our cylinder group.
729 	 */
730 	cs = fscs + cylno;
731 
732 	/*
733 	 * Touch the cylinder group, update all fields in the cylinder group as
734 	 * needed, update the free space in the superblock.
735 	 */
736 	acg.cg_time = utime;
737 	if (cylno == sblock.fs_ncg - 1) {
738 		/*
739 		 * This is still the last cylinder group.
740 		 */
741 		if (sblock.fs_magic == FS_UFS1_MAGIC)
742 			acg.cg_old_ncyl =
743 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
744 	} else {
745 		acg.cg_old_ncyl = sblock.fs_old_cpg;
746 	}
747 	DBG_PRINT2("jcg dbg: %d %u",
748 	    cylno,
749 	    sblock.fs_ncg);
750 	if (sblock.fs_magic == FS_UFS1_MAGIC)
751 		DBG_PRINT2("%d %u",
752 		    acg.cg_old_ncyl,
753 		    sblock.fs_old_cpg);
754 	DBG_PRINT0("\n");
755 	acg.cg_ndblk = dmax - cbase;
756 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
757 	if (sblock.fs_contigsumsize > 0) {
758 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
759 	}
760 
761 	/*
762 	 * Now  we have to update the free fragment bitmap for our new  free
763 	 * space.  There again we have to handle the fragmentation and  also
764 	 * the  rotational  layout tables and the cluster summary.  This  is
765 	 * also  done per fragment for the first new block if the  old  file
766 	 * system end was not on a block boundary, per fragment for the  new
767 	 * last block if the new filesystem end is not on a block boundary,
768 	 * and per block for all space in between.
769 	 *
770 	 * Handle the first new block here if it was partially available
771 	 * before.
772 	 */
773 	if(osblock.fs_size % sblock.fs_frag) {
774 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
775 			/*
776 			 * The new space is enough to fill at least this
777 			 * block
778 			 */
779 			j=0;
780 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
781 			    i>=osblock.fs_size-cbase;
782 			    i--) {
783 				setbit(cg_blksfree(&acg), i);
784 				acg.cg_cs.cs_nffree++;
785 				j++;
786 			}
787 
788 			/*
789 			 * Check  if the fragment just created could join  an
790 			 * already existing fragment at the former end of the
791 			 * filesystem.
792 			 */
793 			if(isblock(&sblock, cg_blksfree(&acg),
794 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
795 			    sblock.fs_frag))) {
796 				/*
797 				 * The block is now completely available
798 				 */
799 				DBG_PRINT0("block was\n");
800 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
801 				acg.cg_cs.cs_nbfree++;
802 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
803 				k=rounddown(osblock.fs_size-cbase,
804 				    sblock.fs_frag);
805 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
806 			} else {
807 				/*
808 				 * Lets rejoin a possible partially growed
809 				 * fragment.
810 				 */
811 				k=0;
812 				while(isset(cg_blksfree(&acg), i) &&
813 				    (i>=rounddown(osblock.fs_size-cbase,
814 				    sblock.fs_frag))) {
815 					i--;
816 					k++;
817 				}
818 				if(k) {
819 					acg.cg_frsum[k]--;
820 				}
821 				acg.cg_frsum[k+j]++;
822 			}
823 		} else {
824 			/*
825 			 * We only grow by some fragments within this last
826 			 * block.
827 			 */
828 			for(i=sblock.fs_size-cbase-1;
829 				i>=osblock.fs_size-cbase;
830 				i--) {
831 				setbit(cg_blksfree(&acg), i);
832 				acg.cg_cs.cs_nffree++;
833 				j++;
834 			}
835 			/*
836 			 * Lets rejoin a possible partially growed fragment.
837 			 */
838 			k=0;
839 			while(isset(cg_blksfree(&acg), i) &&
840 			    (i>=rounddown(osblock.fs_size-cbase,
841 			    sblock.fs_frag))) {
842 				i--;
843 				k++;
844 			}
845 			if(k) {
846 				acg.cg_frsum[k]--;
847 			}
848 			acg.cg_frsum[k+j]++;
849 		}
850 	}
851 
852 	/*
853 	 * Handle all new complete blocks here.
854 	 */
855 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
856 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
857 	    i+=sblock.fs_frag) {
858 		j = i / sblock.fs_frag;
859 		setblock(&sblock, cg_blksfree(&acg), j);
860 		updclst(j);
861 		acg.cg_cs.cs_nbfree++;
862 	}
863 
864 	/*
865 	 * Handle the last new block if there are stll some new fragments left.
866 	 * Here  we don't have to bother about the cluster summary or the  even
867 	 * the rotational layout table.
868 	 */
869 	if (i < (dmax - cbase)) {
870 		acg.cg_frsum[dmax - cbase - i]++;
871 		for (; i < dmax - cbase; i++) {
872 			setbit(cg_blksfree(&acg), i);
873 			acg.cg_cs.cs_nffree++;
874 		}
875 	}
876 
877 	sblock.fs_cstotal.cs_nffree +=
878 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
879 	sblock.fs_cstotal.cs_nbfree +=
880 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
881 	/*
882 	 * The following statistics are not changed here:
883 	 *     sblock.fs_cstotal.cs_ndir
884 	 *     sblock.fs_cstotal.cs_nifree
885 	 * As the statistics for this cylinder group are ready, copy it to
886 	 * the summary information array.
887 	 */
888 	*cs = acg.cg_cs;
889 
890 	/*
891 	 * Write the updated "joining" cylinder group back to disk.
892 	 */
893 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
894 	    (void *)&acg, fso, Nflag);
895 	DBG_PRINT0("jcg written\n");
896 	DBG_DUMP_CG(&sblock,
897 	    "new joining cg",
898 	    &acg);
899 
900 	DBG_LEAVE;
901 	return;
902 }
903 
904 /* ********************************************************** updcsloc ***** */
905 /*
906  * Here  we update the location of the cylinder summary. We have  two  possible
907  * ways of growing the cylinder summary.
908  * (1)	We can try to grow the summary in the current location, and  relocate
909  *	possibly used blocks within the current cylinder group.
910  * (2)	Alternatively we can relocate the whole cylinder summary to the first
911  *	new completely empty cylinder group. Once the cylinder summary is  no
912  *	longer in the beginning of the first cylinder group you should  never
913  *	use  a version of fsck which is not aware of the possibility to  have
914  *	this structure in a non standard place.
915  * Option (1) is considered to be less intrusive to the structure of the  file-
916  * system. So we try to stick to that whenever possible. If there is not enough
917  * space  in the cylinder group containing the cylinder summary we have to  use
918  * method  (2). In case of active snapshots in the filesystem we  probably  can
919  * completely avoid implementing copy on write if we stick to method (2) only.
920  */
921 static void
922 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
923 {
924 	DBG_FUNC("updcsloc")
925 	struct csum	*cs;
926 	int	ocscg, ncscg;
927 	int	blocks;
928 	ufs2_daddr_t	cbase, dupper, odupper, d, f, g;
929 	int	ind;
930 	int	cylno, inc;
931 	struct gfs_bpp	*bp;
932 	int	i, l;
933 	int	lcs=0;
934 	int	block;
935 
936 	DBG_ENTER;
937 
938 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
939 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
940 		/*
941 		 * No new fragment needed.
942 		 */
943 		DBG_LEAVE;
944 		return;
945 	}
946 	ocscg=dtog(&osblock, osblock.fs_csaddr);
947 	cs=fscs+ocscg;
948 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
949 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
950 
951 	/*
952 	 * Read original cylinder group from disk, and make a copy.
953 	 * XXX	If Nflag is set in some very rare cases we now miss
954 	 *	some changes done in updjcg by reading the unmodified
955 	 *	block from disk.
956 	 */
957 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
958 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
959 	DBG_PRINT0("oscg read\n");
960 	DBG_DUMP_CG(&sblock,
961 	    "old summary cg",
962 	    &aocg);
963 
964 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
965 
966 	/*
967 	 * Touch the cylinder group, set up local variables needed later
968 	 * and update the superblock.
969 	 */
970 	acg.cg_time = utime;
971 
972 	/*
973 	 * XXX	In the case of having active snapshots we may need much more
974 	 *	blocks for the copy on write. We need each block twice,  and
975 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
976 	 *	references.
977 	 */
978 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
979 		/*
980 		 * There  is  not enough space in the old cylinder  group  to
981 		 * relocate  all blocks as needed, so we relocate  the  whole
982 		 * cylinder  group summary to a new group. We try to use  the
983 		 * first complete new cylinder group just created. Within the
984 		 * cylinder  group we allign the area immediately  after  the
985 		 * cylinder  group  information location in order  to  be  as
986 		 * close as possible to the original implementation of ffs.
987 		 *
988 		 * First  we have to make sure we'll find enough space in  the
989 		 * new  cylinder  group. If not, then we  currently  give  up.
990 		 * We  start  with freeing everything which was  used  by  the
991 		 * fragments of the old cylinder summary in the current group.
992 		 * Now  we write back the group meta data, read in the  needed
993 		 * meta data from the new cylinder group, and start allocating
994 		 * within  that  group. Here we can assume, the  group  to  be
995 		 * completely empty. Which makes the handling of fragments and
996 		 * clusters a lot easier.
997 		 */
998 		DBG_TRC;
999 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1000 			errx(2, "panic: not enough space");
1001 		}
1002 
1003 		/*
1004 		 * Point "d" to the first fragment not used by the cylinder
1005 		 * summary.
1006 		 */
1007 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1008 
1009 		/*
1010 		 * Set up last cluster size ("lcs") already here. Calculate
1011 		 * the size for the trailing cluster just behind where  "d"
1012 		 * points to.
1013 		 */
1014 		if(sblock.fs_contigsumsize > 0) {
1015 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1016 			    lcs=0; lcs<sblock.fs_contigsumsize;
1017 			    block++, lcs++) {
1018 				if(isclr(cg_clustersfree(&acg), block)){
1019 					break;
1020 				}
1021 			}
1022 		}
1023 
1024 		/*
1025 		 * Point "d" to the last frag used by the cylinder summary.
1026 		 */
1027 		d--;
1028 
1029 		DBG_PRINT1("d=%d\n",
1030 		    d);
1031 		if((d+1)%sblock.fs_frag) {
1032 			/*
1033 			 * The end of the cylinder summary is not a complete
1034 			 * block.
1035 			 */
1036 			DBG_TRC;
1037 			frag_adjust(d%sblock.fs_fpg, -1);
1038 			for(; (d+1)%sblock.fs_frag; d--) {
1039 				DBG_PRINT1("d=%d\n",
1040 				    d);
1041 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1042 				acg.cg_cs.cs_nffree++;
1043 				sblock.fs_cstotal.cs_nffree++;
1044 			}
1045 			/*
1046 			 * Point  "d" to the last fragment of the  last
1047 			 * (incomplete) block of the clinder summary.
1048 			 */
1049 			d++;
1050 			frag_adjust(d%sblock.fs_fpg, 1);
1051 
1052 			if(isblock(&sblock, cg_blksfree(&acg),
1053 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1054 				DBG_PRINT1("d=%d\n",
1055 				    d);
1056 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1057 				acg.cg_cs.cs_nbfree++;
1058 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1059 				sblock.fs_cstotal.cs_nbfree++;
1060 				if(sblock.fs_contigsumsize > 0) {
1061 					setbit(cg_clustersfree(&acg),
1062 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1063 					if(lcs < sblock.fs_contigsumsize) {
1064 						if(lcs) {
1065 							cg_clustersum(&acg)
1066 							    [lcs]--;
1067 						}
1068 						lcs++;
1069 						cg_clustersum(&acg)[lcs]++;
1070 					}
1071 				}
1072 			}
1073 			/*
1074 			 * Point "d" to the first fragment of the block before
1075 			 * the last incomplete block.
1076 			 */
1077 			d--;
1078 		}
1079 
1080 		DBG_PRINT1("d=%d\n",
1081 		    d);
1082 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1083 		    d-=sblock.fs_frag) {
1084 			DBG_TRC;
1085 			DBG_PRINT1("d=%d\n",
1086 			    d);
1087 			setblock(&sblock, cg_blksfree(&acg),
1088 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1089 			acg.cg_cs.cs_nbfree++;
1090 			sblock.fs_cstotal.cs_nbfree++;
1091 			if(sblock.fs_contigsumsize > 0) {
1092 				setbit(cg_clustersfree(&acg),
1093 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1094 				/*
1095 				 * The last cluster size is already set up.
1096 				 */
1097 				if(lcs < sblock.fs_contigsumsize) {
1098 					if(lcs) {
1099 						cg_clustersum(&acg)[lcs]--;
1100 					}
1101 					lcs++;
1102 					cg_clustersum(&acg)[lcs]++;
1103 				}
1104 			}
1105 		}
1106 		*cs = acg.cg_cs;
1107 
1108 		/*
1109 		 * Now write the former cylinder group containing the cylinder
1110 		 * summary back to disk.
1111 		 */
1112 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1113 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1114 		DBG_PRINT0("oscg written\n");
1115 		DBG_DUMP_CG(&sblock,
1116 		    "old summary cg",
1117 		    &acg);
1118 
1119 		/*
1120 		 * Find the beginning of the new cylinder group containing the
1121 		 * cylinder summary.
1122 		 */
1123 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1124 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1125 		cs=fscs+ncscg;
1126 
1127 
1128 		/*
1129 		 * If Nflag is specified, we would now read random data instead
1130 		 * of an empty cg structure from disk. So we can't simulate that
1131 		 * part for now.
1132 		 */
1133 		if(Nflag) {
1134 			DBG_PRINT0("nscg update skipped\n");
1135 			DBG_LEAVE;
1136 			return;
1137 		}
1138 
1139 		/*
1140 		 * Read the future cylinder group containing the cylinder
1141 		 * summary from disk, and make a copy.
1142 		 */
1143 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1144 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1145 		DBG_PRINT0("nscg read\n");
1146 		DBG_DUMP_CG(&sblock,
1147 		    "new summary cg",
1148 		    &aocg);
1149 
1150 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1151 
1152 		/*
1153 		 * Allocate all complete blocks used by the new cylinder
1154 		 * summary.
1155 		 */
1156 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1157 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1158 		    d+=sblock.fs_frag) {
1159 			clrblock(&sblock, cg_blksfree(&acg),
1160 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1161 			acg.cg_cs.cs_nbfree--;
1162 			sblock.fs_cstotal.cs_nbfree--;
1163 			if(sblock.fs_contigsumsize > 0) {
1164 				clrbit(cg_clustersfree(&acg),
1165 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1166 			}
1167 		}
1168 
1169 		/*
1170 		 * Allocate all fragments used by the cylinder summary in the
1171 		 * last block.
1172 		 */
1173 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1174 			for(; d-sblock.fs_csaddr<
1175 			    sblock.fs_cssize/sblock.fs_fsize;
1176 			    d++) {
1177 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1178 				acg.cg_cs.cs_nffree--;
1179 				sblock.fs_cstotal.cs_nffree--;
1180 			}
1181 			acg.cg_cs.cs_nbfree--;
1182 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1183 			sblock.fs_cstotal.cs_nbfree--;
1184 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1185 			if(sblock.fs_contigsumsize > 0) {
1186 				clrbit(cg_clustersfree(&acg),
1187 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1188 			}
1189 
1190 			frag_adjust(d%sblock.fs_fpg, +1);
1191 		}
1192 		/*
1193 		 * XXX	Handle the cluster statistics here in the case  this
1194 		 *	cylinder group is now almost full, and the remaining
1195 		 *	space is less then the maximum cluster size. This is
1196 		 *	probably not needed, as you would hardly find a file
1197 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1198 		 *	space right behind the cylinder group information in
1199 		 *	any new cylinder group.
1200 		 */
1201 
1202 		/*
1203 		 * Update our statistics in the cylinder summary.
1204 		 */
1205 		*cs = acg.cg_cs;
1206 
1207 		/*
1208 		 * Write the new cylinder group containing the cylinder summary
1209 		 * back to disk.
1210 		 */
1211 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1212 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1213 		DBG_PRINT0("nscg written\n");
1214 		DBG_DUMP_CG(&sblock,
1215 		    "new summary cg",
1216 		    &acg);
1217 
1218 		DBG_LEAVE;
1219 		return;
1220 	}
1221 	/*
1222 	 * We have got enough of space in the current cylinder group, so we
1223 	 * can relocate just a few blocks, and let the summary  information
1224 	 * grow in place where it is right now.
1225 	 */
1226 	DBG_TRC;
1227 
1228 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1229 	dupper = sblock.fs_csaddr - cbase +
1230 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1231 	odupper = osblock.fs_csaddr - cbase +
1232 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1233 
1234 	sblock.fs_dsize -= dupper-odupper;
1235 
1236 	/*
1237 	 * Allocate the space for the array of blocks to be relocated.
1238 	 */
1239  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1240 	    sizeof(struct gfs_bpp));
1241 	if(bp == NULL) {
1242 		errx(1, "malloc failed");
1243 	}
1244 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1245 	    sizeof(struct gfs_bpp));
1246 
1247 	/*
1248 	 * Lock all new frags needed for the cylinder group summary. This  is
1249 	 * done per fragment in the first and last block of the new  required
1250 	 * area, and per block for all other blocks.
1251 	 *
1252 	 * Handle the first new  block here (but only if some fragments where
1253 	 * already used for the cylinder summary).
1254 	 */
1255 	ind=0;
1256 	frag_adjust(odupper, -1);
1257 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1258 		DBG_PRINT1("scg first frag check loop d=%d\n",
1259 		    d);
1260 		if(isclr(cg_blksfree(&acg), d)) {
1261 			if (!ind) {
1262 				bp[ind].old=d/sblock.fs_frag;
1263 				bp[ind].flags|=GFS_FL_FIRST;
1264 				if(roundup(d, sblock.fs_frag) >= dupper) {
1265 					bp[ind].flags|=GFS_FL_LAST;
1266 				}
1267 				ind++;
1268 			}
1269 		} else {
1270 			clrbit(cg_blksfree(&acg), d);
1271 			acg.cg_cs.cs_nffree--;
1272 			sblock.fs_cstotal.cs_nffree--;
1273 		}
1274 		/*
1275 		 * No cluster handling is needed here, as there was at least
1276 		 * one  fragment in use by the cylinder summary in  the  old
1277 		 * filesystem.
1278 		 * No block-free counter handling here as this block was not
1279 		 * a free block.
1280 		 */
1281 	}
1282 	frag_adjust(odupper, 1);
1283 
1284 	/*
1285 	 * Handle all needed complete blocks here.
1286 	 */
1287 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1288 		DBG_PRINT1("scg block check loop d=%d\n",
1289 		    d);
1290 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1291 			for(f=d; f<d+sblock.fs_frag; f++) {
1292 				if(isset(cg_blksfree(&aocg), f)) {
1293 					acg.cg_cs.cs_nffree--;
1294 					sblock.fs_cstotal.cs_nffree--;
1295 				}
1296 			}
1297 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1298 			bp[ind].old=d/sblock.fs_frag;
1299 			ind++;
1300 		} else {
1301 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1302 			acg.cg_cs.cs_nbfree--;
1303 			sblock.fs_cstotal.cs_nbfree--;
1304 			if(sblock.fs_contigsumsize > 0) {
1305 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1306 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1307 				    lcs<sblock.fs_contigsumsize;
1308 				    l++, lcs++ ) {
1309 					if(isclr(cg_clustersfree(&acg),l)){
1310 						break;
1311 					}
1312 				}
1313 				if(lcs < sblock.fs_contigsumsize) {
1314 					cg_clustersum(&acg)[lcs+1]--;
1315 					if(lcs) {
1316 						cg_clustersum(&acg)[lcs]++;
1317 					}
1318 				}
1319 			}
1320 		}
1321 		/*
1322 		 * No fragment counter handling is needed here, as this finally
1323 		 * doesn't change after the relocation.
1324 		 */
1325 	}
1326 
1327 	/*
1328 	 * Handle all fragments needed in the last new affected block.
1329 	 */
1330 	if(d<dupper) {
1331 		frag_adjust(dupper-1, -1);
1332 
1333 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1334 			acg.cg_cs.cs_nbfree--;
1335 			sblock.fs_cstotal.cs_nbfree--;
1336 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1337 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1338 			if(sblock.fs_contigsumsize > 0) {
1339 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1340 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1341 				    lcs<sblock.fs_contigsumsize;
1342 				    l++, lcs++ ) {
1343 					if(isclr(cg_clustersfree(&acg),l)){
1344 						break;
1345 					}
1346 				}
1347 				if(lcs < sblock.fs_contigsumsize) {
1348 					cg_clustersum(&acg)[lcs+1]--;
1349 					if(lcs) {
1350 						cg_clustersum(&acg)[lcs]++;
1351 					}
1352 				}
1353 			}
1354 		}
1355 
1356 		for(; d<dupper; d++) {
1357 			DBG_PRINT1("scg second frag check loop d=%d\n",
1358 			    d);
1359 			if(isclr(cg_blksfree(&acg), d)) {
1360 				bp[ind].old=d/sblock.fs_frag;
1361 				bp[ind].flags|=GFS_FL_LAST;
1362 			} else {
1363 				clrbit(cg_blksfree(&acg), d);
1364 				acg.cg_cs.cs_nffree--;
1365 				sblock.fs_cstotal.cs_nffree--;
1366 			}
1367 		}
1368 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1369 			ind++;
1370 		}
1371 		frag_adjust(dupper-1, 1);
1372 	}
1373 
1374 	/*
1375 	 * If we found a block to relocate just do so.
1376 	 */
1377 	if(ind) {
1378 		for(i=0; i<ind; i++) {
1379 			if(!bp[i].old) { /* no more blocks listed */
1380 				/*
1381 				 * XXX	A relative blocknumber should not be
1382 				 *	zero,   which  is   not   explicitly
1383 				 *	guaranteed by our code.
1384 				 */
1385 				break;
1386 			}
1387 			/*
1388 			 * Allocate a complete block in the same (current)
1389 			 * cylinder group.
1390 			 */
1391 			bp[i].new=alloc()/sblock.fs_frag;
1392 
1393 			/*
1394 			 * There is no frag_adjust() needed for the new block
1395 			 * as it will have no fragments yet :-).
1396 			 */
1397 			for(f=bp[i].old*sblock.fs_frag,
1398 			    g=bp[i].new*sblock.fs_frag;
1399 			    f<(bp[i].old+1)*sblock.fs_frag;
1400 			    f++, g++) {
1401 				if(isset(cg_blksfree(&aocg), f)) {
1402 					setbit(cg_blksfree(&acg), g);
1403 					acg.cg_cs.cs_nffree++;
1404 					sblock.fs_cstotal.cs_nffree++;
1405 				}
1406 			}
1407 
1408 			/*
1409 			 * Special handling is required if this was the  first
1410 			 * block. We have to consider the fragments which were
1411 			 * used by the cylinder summary in the original  block
1412 			 * which  re to be free in the copy of our  block.  We
1413 			 * have  to be careful if this first block happens  to
1414 			 * be also the last block to be relocated.
1415 			 */
1416 			if(bp[i].flags & GFS_FL_FIRST) {
1417 				for(f=bp[i].old*sblock.fs_frag,
1418 				    g=bp[i].new*sblock.fs_frag;
1419 				    f<odupper;
1420 				    f++, g++) {
1421 					setbit(cg_blksfree(&acg), g);
1422 					acg.cg_cs.cs_nffree++;
1423 					sblock.fs_cstotal.cs_nffree++;
1424 				}
1425 				if(!(bp[i].flags & GFS_FL_LAST)) {
1426 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1427 				}
1428 
1429 			}
1430 
1431 			/*
1432 			 * Special handling is required if this is the last
1433 			 * block to be relocated.
1434 			 */
1435 			if(bp[i].flags & GFS_FL_LAST) {
1436 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1437 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1438 				for(f=dupper;
1439 				    f<roundup(dupper, sblock.fs_frag);
1440 				    f++) {
1441 					if(isclr(cg_blksfree(&acg), f)) {
1442 						setbit(cg_blksfree(&acg), f);
1443 						acg.cg_cs.cs_nffree++;
1444 						sblock.fs_cstotal.cs_nffree++;
1445 					}
1446 				}
1447 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1448 			}
1449 
1450 			/*
1451 			 * !!! Attach the cylindergroup offset here.
1452 			 */
1453 			bp[i].old+=cbase/sblock.fs_frag;
1454 			bp[i].new+=cbase/sblock.fs_frag;
1455 
1456 			/*
1457 			 * Copy the content of the block.
1458 			 */
1459 			/*
1460 			 * XXX	Here we will have to implement a copy on write
1461 			 *	in the case we have any active snapshots.
1462 			 */
1463 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1464 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1465 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1466 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1467 			DBG_DUMP_HEX(&sblock,
1468 			    "copied full block",
1469 			    (unsigned char *)&ablk);
1470 
1471 			DBG_PRINT2("scg (%d->%d) block relocated\n",
1472 			    bp[i].old,
1473 			    bp[i].new);
1474 		}
1475 
1476 		/*
1477 		 * Now we have to update all references to any fragment which
1478 		 * belongs  to any block relocated. We iterate now  over  all
1479 		 * cylinder  groups,  within those over all non  zero  length
1480 		 * inodes.
1481 		 */
1482 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1483 			DBG_PRINT1("scg doing cg (%d)\n",
1484 			    cylno);
1485 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1486 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1487 			}
1488 		}
1489 
1490 		/*
1491 		 * All inodes are checked, now make sure the number of
1492 		 * references found make sense.
1493 		 */
1494 		for(i=0; i<ind; i++) {
1495 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1496 				warnx("error: %d refs found for block %d.",
1497 				    bp[i].found, bp[i].old);
1498 			}
1499 
1500 		}
1501 	}
1502 	/*
1503 	 * The following statistics are not changed here:
1504 	 *     sblock.fs_cstotal.cs_ndir
1505 	 *     sblock.fs_cstotal.cs_nifree
1506 	 * The following statistics were already updated on the fly:
1507 	 *     sblock.fs_cstotal.cs_nffree
1508 	 *     sblock.fs_cstotal.cs_nbfree
1509 	 * As the statistics for this cylinder group are ready, copy it to
1510 	 * the summary information array.
1511 	 */
1512 
1513 	*cs = acg.cg_cs;
1514 
1515 	/*
1516 	 * Write summary cylinder group back to disk.
1517 	 */
1518 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1519 	    (void *)&acg, fso, Nflag);
1520 	DBG_PRINT0("scg written\n");
1521 	DBG_DUMP_CG(&sblock,
1522 	    "new summary cg",
1523 	    &acg);
1524 
1525 	DBG_LEAVE;
1526 	return;
1527 }
1528 
1529 /* ************************************************************** rdfs ***** */
1530 /*
1531  * Here we read some block(s) from disk.
1532  */
1533 static void
1534 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1535 {
1536 	DBG_FUNC("rdfs")
1537 	ssize_t	n;
1538 
1539 	DBG_ENTER;
1540 
1541 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1542 		err(33, "rdfs: seek error: %ld", (long)bno);
1543 	}
1544 	n = read(fsi, bf, size);
1545 	if (n != (ssize_t)size) {
1546 		err(34, "rdfs: read error: %ld", (long)bno);
1547 	}
1548 
1549 	DBG_LEAVE;
1550 	return;
1551 }
1552 
1553 /* ************************************************************** wtfs ***** */
1554 /*
1555  * Here we write some block(s) to disk.
1556  */
1557 static void
1558 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1559 {
1560 	DBG_FUNC("wtfs")
1561 	ssize_t	n;
1562 
1563 	DBG_ENTER;
1564 
1565 	if (Nflag) {
1566 		DBG_LEAVE;
1567 		return;
1568 	}
1569 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1570 		err(35, "wtfs: seek error: %ld", (long)bno);
1571 	}
1572 	n = write(fso, bf, size);
1573 	if (n != (ssize_t)size) {
1574 		err(36, "wtfs: write error: %ld", (long)bno);
1575 	}
1576 
1577 	DBG_LEAVE;
1578 	return;
1579 }
1580 
1581 /* ************************************************************* alloc ***** */
1582 /*
1583  * Here we allocate a free block in the current cylinder group. It is assumed,
1584  * that  acg contains the current cylinder group. As we may take a block  from
1585  * somewhere in the filesystem we have to handle cluster summary here.
1586  */
1587 static ufs2_daddr_t
1588 alloc(void)
1589 {
1590 	DBG_FUNC("alloc")
1591 	ufs2_daddr_t	d, blkno;
1592 	int	lcs1, lcs2;
1593 	int	l;
1594 	int	csmin, csmax;
1595 	int	dlower, dupper, dmax;
1596 
1597 	DBG_ENTER;
1598 
1599 	if (acg.cg_magic != CG_MAGIC) {
1600 		warnx("acg: bad magic number");
1601 		DBG_LEAVE;
1602 		return (0);
1603 	}
1604 	if (acg.cg_cs.cs_nbfree == 0) {
1605 		warnx("error: cylinder group ran out of space");
1606 		DBG_LEAVE;
1607 		return (0);
1608 	}
1609 	/*
1610 	 * We start seeking for free blocks only from the space available after
1611 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1612 	 * block here which we have to relocate a couple of seconds later again
1613 	 * again, and we are not prepared to to this anyway.
1614 	 */
1615 	blkno=-1;
1616 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1617 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1618 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1619 	if (dmax > sblock.fs_size) {
1620 		dmax = sblock.fs_size;
1621 	}
1622 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1623 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1624 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1625 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1626 	    dlower,
1627 	    dupper,
1628 	    dmax);
1629 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1630 	    csmin,
1631 	    csmax);
1632 
1633 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1634 		if(d>=csmin && d<=csmax) {
1635 			continue;
1636 		}
1637 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1638 		    d))) {
1639 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1640 			break;
1641 		}
1642 	}
1643 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1644 		if(d>=csmin && d<=csmax) {
1645 			continue;
1646 		}
1647 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1648 		    d))) {
1649 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1650 			break;
1651 		}
1652 	}
1653 	if(blkno==-1) {
1654 		warnx("internal error: couldn't find promised block in cg");
1655 		DBG_LEAVE;
1656 		return (0);
1657 	}
1658 
1659 	/*
1660 	 * This is needed if the block was found already in the first loop.
1661 	 */
1662 	d=blkstofrags(&sblock, blkno);
1663 
1664 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1665 	if (sblock.fs_contigsumsize > 0) {
1666 		/*
1667 		 * Handle the cluster allocation bitmap.
1668 		 */
1669 		clrbit(cg_clustersfree(&acg), blkno);
1670 		/*
1671 		 * We  possibly have split a cluster here, so we have  to  do
1672 		 * recalculate the sizes of the remaining cluster halves now,
1673 		 * and use them for updating the cluster summary information.
1674 		 *
1675 		 * Lets start with the blocks before our allocated block ...
1676 		 */
1677 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1678 		    l--, lcs1++ ) {
1679 			if(isclr(cg_clustersfree(&acg),l)){
1680 				break;
1681 			}
1682 		}
1683 		/*
1684 		 * ... and continue with the blocks right after our allocated
1685 		 * block.
1686 		 */
1687 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1688 		    l++, lcs2++ ) {
1689 			if(isclr(cg_clustersfree(&acg),l)){
1690 				break;
1691 			}
1692 		}
1693 
1694 		/*
1695 		 * Now update all counters.
1696 		 */
1697 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1698 		if(lcs1) {
1699 			cg_clustersum(&acg)[lcs1]++;
1700 		}
1701 		if(lcs2) {
1702 			cg_clustersum(&acg)[lcs2]++;
1703 		}
1704 	}
1705 	/*
1706 	 * Update all statistics based on blocks.
1707 	 */
1708 	acg.cg_cs.cs_nbfree--;
1709 	sblock.fs_cstotal.cs_nbfree--;
1710 
1711 	DBG_LEAVE;
1712 	return (d);
1713 }
1714 
1715 /* *********************************************************** isblock ***** */
1716 /*
1717  * Here  we check if all frags of a block are free. For more details  again
1718  * please see the source of newfs(8), as this function is taken over almost
1719  * unchanged.
1720  */
1721 static int
1722 isblock(struct fs *fs, unsigned char *cp, int h)
1723 {
1724 	DBG_FUNC("isblock")
1725 	unsigned char	mask;
1726 
1727 	DBG_ENTER;
1728 
1729 	switch (fs->fs_frag) {
1730 	case 8:
1731 		DBG_LEAVE;
1732 		return (cp[h] == 0xff);
1733 	case 4:
1734 		mask = 0x0f << ((h & 0x1) << 2);
1735 		DBG_LEAVE;
1736 		return ((cp[h >> 1] & mask) == mask);
1737 	case 2:
1738 		mask = 0x03 << ((h & 0x3) << 1);
1739 		DBG_LEAVE;
1740 		return ((cp[h >> 2] & mask) == mask);
1741 	case 1:
1742 		mask = 0x01 << (h & 0x7);
1743 		DBG_LEAVE;
1744 		return ((cp[h >> 3] & mask) == mask);
1745 	default:
1746 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1747 		DBG_LEAVE;
1748 		return (0);
1749 	}
1750 }
1751 
1752 /* ********************************************************** clrblock ***** */
1753 /*
1754  * Here we allocate a complete block in the block map. For more details again
1755  * please  see the source of newfs(8), as this function is taken over  almost
1756  * unchanged.
1757  */
1758 static void
1759 clrblock(struct fs *fs, unsigned char *cp, int h)
1760 {
1761 	DBG_FUNC("clrblock")
1762 
1763 	DBG_ENTER;
1764 
1765 	switch ((fs)->fs_frag) {
1766 	case 8:
1767 		cp[h] = 0;
1768 		break;
1769 	case 4:
1770 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1771 		break;
1772 	case 2:
1773 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1774 		break;
1775 	case 1:
1776 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1777 		break;
1778 	default:
1779 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1780 		break;
1781 	}
1782 
1783 	DBG_LEAVE;
1784 	return;
1785 }
1786 
1787 /* ********************************************************** setblock ***** */
1788 /*
1789  * Here we free a complete block in the free block map. For more details again
1790  * please  see the source of newfs(8), as this function is taken  over  almost
1791  * unchanged.
1792  */
1793 static void
1794 setblock(struct fs *fs, unsigned char *cp, int h)
1795 {
1796 	DBG_FUNC("setblock")
1797 
1798 	DBG_ENTER;
1799 
1800 	switch (fs->fs_frag) {
1801 	case 8:
1802 		cp[h] = 0xff;
1803 		break;
1804 	case 4:
1805 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1806 		break;
1807 	case 2:
1808 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1809 		break;
1810 	case 1:
1811 		cp[h >> 3] |= (0x01 << (h & 0x7));
1812 		break;
1813 	default:
1814 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1815 		break;
1816 	}
1817 
1818 	DBG_LEAVE;
1819 	return;
1820 }
1821 
1822 /* ************************************************************ ginode ***** */
1823 /*
1824  * This function provides access to an individual inode. We find out in which
1825  * block  the  requested inode is located, read it from disk if  needed,  and
1826  * return  the pointer into that block. We maintain a cache of one  block  to
1827  * not  read the same block again and again if we iterate linearly  over  all
1828  * inodes.
1829  */
1830 static union dinode *
1831 ginode(ino_t inumber, int fsi, int cg)
1832 {
1833 	DBG_FUNC("ginode")
1834 	static ino_t	startinum = 0;	/* first inode in cached block */
1835 
1836 	DBG_ENTER;
1837 
1838 	inumber += (cg * sblock.fs_ipg);
1839 	if (inumber < ROOTINO || inumber > maxino)
1840 		errx(8, "bad inode number %d to ginode", inumber);
1841 	if (startinum == 0 ||
1842 	    inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1843 		inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1844 		rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1845 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1846 	}
1847 	DBG_LEAVE;
1848 	if (sblock.fs_magic == FS_UFS1_MAGIC)
1849 		return ((union dinode *)
1850 		    &((struct ufs1_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1851 	return ((union dinode *)
1852 	    &((struct ufs2_dinode *)inobuf)[inumber % INOPB(&sblock)]);
1853 }
1854 
1855 /* ****************************************************** charsperline ***** */
1856 /*
1857  * Figure out how many lines our current terminal has. For more details again
1858  * please  see the source of newfs(8), as this function is taken over  almost
1859  * unchanged.
1860  */
1861 static int
1862 charsperline(void)
1863 {
1864 	DBG_FUNC("charsperline")
1865 	int	columns;
1866 	char	*cp;
1867 	struct winsize	ws;
1868 
1869 	DBG_ENTER;
1870 
1871 	columns = 0;
1872 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1873 		columns = ws.ws_col;
1874 	}
1875 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1876 		columns = atoi(cp);
1877 	}
1878 	if (columns == 0) {
1879 		columns = 80;	/* last resort */
1880 	}
1881 
1882 	DBG_LEAVE;
1883 	return columns;
1884 }
1885 
1886 /* ************************************************************** main ***** */
1887 /*
1888  * growfs(8)  is a utility which allows to increase the size of  an  existing
1889  * ufs filesystem. Currently this can only be done on unmounted file  system.
1890  * It  recognizes some command line options to specify the new desired  size,
1891  * and  it does some basic checkings. The old filesystem size is  determined
1892  * and  after some more checks like we can really access the new  last  block
1893  * on the disk etc. we calculate the new parameters for the superblock. After
1894  * having  done  this we just call growfs() which will do  the  work.  Before
1895  * we finish the only thing left is to update the disklabel.
1896  * We still have to provide support for snapshots. Therefore we first have to
1897  * understand  what data structures are always replicated in the snapshot  on
1898  * creation,  for all other blocks we touch during our procedure, we have  to
1899  * keep the old blocks unchanged somewhere available for the snapshots. If we
1900  * are lucky, then we only have to handle our blocks to be relocated in  that
1901  * way.
1902  * Also  we  have to consider in what order we actually update  the  critical
1903  * data structures of the filesystem to make sure, that in case of a disaster
1904  * fsck(8) is still able to restore any lost data.
1905  * The  foreseen last step then will be to provide for growing  even  mounted
1906  * file  systems. There we have to extend the mount() system call to  provide
1907  * userland access to the filesystem locking facility.
1908  */
1909 int
1910 main(int argc, char **argv)
1911 {
1912 	DBG_FUNC("main")
1913 	char	*device, *special, *cp;
1914 	char	ch;
1915 	unsigned int	size=0;
1916 	size_t	len;
1917 	unsigned int	Nflag=0;
1918 	int	ExpertFlag=0;
1919 	struct stat	st;
1920 	struct disklabel	*lp;
1921 	struct partition	*pp;
1922 	int	i,fsi,fso;
1923 	char	reply[5];
1924 #ifdef FSMAXSNAP
1925 	int	j;
1926 #endif /* FSMAXSNAP */
1927 
1928 	DBG_ENTER;
1929 
1930 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1931 		switch(ch) {
1932 		case 'N':
1933 			Nflag=1;
1934 			break;
1935 		case 's':
1936 			size=(size_t)atol(optarg);
1937 			if(size<1) {
1938 				usage();
1939 			}
1940 			break;
1941 		case 'v': /* for compatibility to newfs */
1942 			break;
1943 		case 'y':
1944 			ExpertFlag=1;
1945 			break;
1946 		case '?':
1947 			/* FALLTHROUGH */
1948 		default:
1949 			usage();
1950 		}
1951 	}
1952 	argc -= optind;
1953 	argv += optind;
1954 
1955 	if(argc != 1) {
1956 		usage();
1957 	}
1958 	device=*argv;
1959 
1960 	/*
1961 	 * Now try to guess the (raw)device name.
1962 	 */
1963 	if (0 == strrchr(device, '/')) {
1964 		/*
1965 		 * No path prefix was given, so try in that order:
1966 		 *     /dev/r%s
1967 		 *     /dev/%s
1968 		 *     /dev/vinum/r%s
1969 		 *     /dev/vinum/%s.
1970 		 *
1971 		 * FreeBSD now doesn't distinguish between raw and  block
1972 		 * devices any longer, but it should still work this way.
1973 		 */
1974 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1975 		special=(char *)malloc(len);
1976 		if(special == NULL) {
1977 			errx(1, "malloc failed");
1978 		}
1979 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
1980 		if (stat(special, &st) == -1) {
1981 			snprintf(special, len, "%s%s", _PATH_DEV, device);
1982 			if (stat(special, &st) == -1) {
1983 				snprintf(special, len, "%svinum/r%s",
1984 				    _PATH_DEV, device);
1985 				if (stat(special, &st) == -1) {
1986 					/* For now this is the 'last resort' */
1987 					snprintf(special, len, "%svinum/%s",
1988 					    _PATH_DEV, device);
1989 				}
1990 			}
1991 		}
1992 		device = special;
1993 	}
1994 
1995 	/*
1996 	 * Try to access our devices for writing ...
1997 	 */
1998 	if (Nflag) {
1999 		fso = -1;
2000 	} else {
2001 		fso = open(device, O_WRONLY);
2002 		if (fso < 0) {
2003 			err(1, "%s", device);
2004 		}
2005 	}
2006 
2007 	/*
2008 	 * ... and reading.
2009 	 */
2010 	fsi = open(device, O_RDONLY);
2011 	if (fsi < 0) {
2012 		err(1, "%s", device);
2013 	}
2014 
2015 	/*
2016 	 * Try  to read a label and gess the slice if not  specified.  This
2017 	 * code  should guess the right thing and avaid to bother the  user
2018 	 * user with the task of specifying the option -v on vinum volumes.
2019 	 */
2020 	cp=device+strlen(device)-1;
2021 	lp = get_disklabel(fsi);
2022 	if(lp->d_type == DTYPE_VINUM) {
2023 		pp = &lp->d_partitions[0];
2024 	} else if (isdigit(*cp)) {
2025 		pp = &lp->d_partitions[2];
2026 	} else if (*cp>='a' && *cp<='h') {
2027 		pp = &lp->d_partitions[*cp - 'a'];
2028 	} else {
2029 		errx(1, "unknown device");
2030 	}
2031 
2032 	/*
2033 	 * Check if that partition looks suited for growing a filesystem.
2034 	 */
2035 	if (pp->p_size < 1) {
2036 		errx(1, "partition is unavailable");
2037 	}
2038 	if (pp->p_fstype != FS_BSDFFS) {
2039 		errx(1, "partition not 4.2BSD");
2040 	}
2041 
2042 	/*
2043 	 * Read the current superblock, and take a backup.
2044 	 */
2045 	for (i = 0; sblock_try[i] != -1; i++) {
2046 		sblockloc = sblock_try[i] / DEV_BSIZE;
2047 		rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2048 		if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2049 		     (osblock.fs_magic == FS_UFS2_MAGIC &&
2050 		      osblock.fs_sblockloc ==
2051 			  numfrags(&osblock, sblock_try[i]))) &&
2052 		    osblock.fs_bsize <= MAXBSIZE &&
2053 		    osblock.fs_bsize >= sizeof(struct fs))
2054 			break;
2055 	}
2056 	if (sblock_try[i] == -1) {
2057 		errx(1, "superblock not recognized");
2058 	}
2059 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2060 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2061 
2062 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2063 	DBG_DUMP_FS(&sblock,
2064 	    "old sblock");
2065 
2066 	/*
2067 	 * Determine size to grow to. Default to the full size specified in
2068 	 * the disk label.
2069 	 */
2070 	sblock.fs_size = dbtofsb(&osblock, pp->p_size);
2071 	if (size != 0) {
2072 		if (size > pp->p_size){
2073 			errx(1, "There is not enough space (%d < %d)",
2074 			    pp->p_size, size);
2075 		}
2076 		sblock.fs_size = dbtofsb(&osblock, size);
2077 	}
2078 
2079 	/*
2080 	 * Are we really growing ?
2081 	 */
2082 	if(osblock.fs_size >= sblock.fs_size) {
2083 		errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2084 		    sblock.fs_size);
2085 	}
2086 
2087 
2088 #ifdef FSMAXSNAP
2089 	/*
2090 	 * Check if we find an active snapshot.
2091 	 */
2092 	if(ExpertFlag == 0) {
2093 		for(j=0; j<FSMAXSNAP; j++) {
2094 			if(sblock.fs_snapinum[j]) {
2095 				errx(1, "active snapshot found in filesystem\n"
2096 				    "	please remove all snapshots before "
2097 				    "using growfs\n");
2098 			}
2099 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2100 				break;
2101 			}
2102 		}
2103 	}
2104 #endif
2105 
2106 	if (ExpertFlag == 0 && Nflag == 0) {
2107 		printf("We strongly recommend you to make a backup "
2108 		    "before growing the Filesystem\n\n"
2109 		    " Did you backup your data (Yes/No) ? ");
2110 		fgets(reply, (int)sizeof(reply), stdin);
2111 		if (strcmp(reply, "Yes\n")){
2112 			printf("\n Nothing done \n");
2113 			exit (0);
2114 		}
2115 	}
2116 
2117 	printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2118 
2119 	/*
2120 	 * Try to access our new last block in the filesystem. Even if we
2121 	 * later on realize we have to abort our operation, on that block
2122 	 * there should be no data, so we can't destroy something yet.
2123 	 */
2124 	wtfs((ufs2_daddr_t)pp->p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2125 	    fso, Nflag);
2126 
2127 	/*
2128 	 * Now calculate new superblock values and check for reasonable
2129 	 * bound for new filesystem size:
2130 	 *     fs_size:    is derived from label or user input
2131 	 *     fs_dsize:   should get updated in the routines creating or
2132 	 *                 updating the cylinder groups on the fly
2133 	 *     fs_cstotal: should get updated in the routines creating or
2134 	 *                 updating the cylinder groups
2135 	 */
2136 
2137 	/*
2138 	 * Update the number of cylinders and cylinder groups in the filesystem.
2139 	 */
2140 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
2141 		sblock.fs_old_ncyl =
2142 		    sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2143 		if (sblock.fs_size * sblock.fs_old_nspf >
2144 		    sblock.fs_old_ncyl * sblock.fs_old_spc)
2145 			sblock.fs_old_ncyl++;
2146 	}
2147 	sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2148 	maxino = sblock.fs_ncg * sblock.fs_ipg;
2149 
2150 	if (sblock.fs_size % sblock.fs_fpg != 0 &&
2151 	    sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2152 		/*
2153 		 * The space in the new last cylinder group is too small,
2154 		 * so revert back.
2155 		 */
2156 		sblock.fs_ncg--;
2157 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2158 			sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2159 		printf("Warning: %d sector(s) cannot be allocated.\n",
2160 		    fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2161 		sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2162 	}
2163 
2164 	/*
2165 	 * Update the space for the cylinder group summary information in the
2166 	 * respective cylinder group data area.
2167 	 */
2168 	sblock.fs_cssize =
2169 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2170 
2171 	if(osblock.fs_size >= sblock.fs_size) {
2172 		errx(1, "not enough new space");
2173 	}
2174 
2175 	DBG_PRINT0("sblock calculated\n");
2176 
2177 	/*
2178 	 * Ok, everything prepared, so now let's do the tricks.
2179 	 */
2180 	growfs(fsi, fso, Nflag);
2181 
2182 	/*
2183 	 * Update the disk label.
2184 	 */
2185 	pp->p_fsize = sblock.fs_fsize;
2186 	pp->p_frag = sblock.fs_frag;
2187 	pp->p_cpg = sblock.fs_fpg;
2188 
2189 	return_disklabel(fso, lp, Nflag);
2190 	DBG_PRINT0("label rewritten\n");
2191 
2192 	close(fsi);
2193 	if(fso>-1) close(fso);
2194 
2195 	DBG_CLOSE;
2196 
2197 	DBG_LEAVE;
2198 	return 0;
2199 }
2200 
2201 /* ************************************************** return_disklabel ***** */
2202 /*
2203  * Write the updated disklabel back to disk.
2204  */
2205 static void
2206 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2207 {
2208 	DBG_FUNC("return_disklabel")
2209 	u_short	sum;
2210 	u_short	*ptr;
2211 
2212 	DBG_ENTER;
2213 
2214 	if(!lp) {
2215 		DBG_LEAVE;
2216 		return;
2217 	}
2218 	if(!Nflag) {
2219 		lp->d_checksum=0;
2220 		sum = 0;
2221 		ptr=(u_short *)lp;
2222 
2223 		/*
2224 		 * recalculate checksum
2225 		 */
2226 		while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2227 			sum ^= *ptr++;
2228 		}
2229 		lp->d_checksum=sum;
2230 
2231 		if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2232 			errx(1, "DIOCWDINFO failed");
2233 		}
2234 	}
2235 	free(lp);
2236 
2237 	DBG_LEAVE;
2238 	return ;
2239 }
2240 
2241 /* ***************************************************** get_disklabel ***** */
2242 /*
2243  * Read the disklabel from disk.
2244  */
2245 static struct disklabel *
2246 get_disklabel(int fd)
2247 {
2248 	DBG_FUNC("get_disklabel")
2249 	static struct	disklabel *lab;
2250 
2251 	DBG_ENTER;
2252 
2253 	lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2254 	if (!lab) {
2255 		errx(1, "malloc failed");
2256 	}
2257 	if (ioctl(fd, DIOCGDINFO, (char *)lab) < 0) {
2258 		errx(1, "DIOCGDINFO failed");
2259 	}
2260 
2261 	DBG_LEAVE;
2262 	return (lab);
2263 }
2264 
2265 
2266 /* ************************************************************* usage ***** */
2267 /*
2268  * Dump a line of usage.
2269  */
2270 static void
2271 usage(void)
2272 {
2273 	DBG_FUNC("usage")
2274 
2275 	DBG_ENTER;
2276 
2277 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2278 
2279 	DBG_LEAVE;
2280 	exit(1);
2281 }
2282 
2283 /* *********************************************************** updclst ***** */
2284 /*
2285  * This updates most paramters and the bitmap related to cluster. We have to
2286  * assume, that sblock, osblock, acg are set up.
2287  */
2288 static void
2289 updclst(int block)
2290 {
2291 	DBG_FUNC("updclst")
2292 	static int	lcs=0;
2293 
2294 	DBG_ENTER;
2295 
2296 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2297 		return;
2298 	}
2299 	/*
2300 	 * update cluster allocation map
2301 	 */
2302 	setbit(cg_clustersfree(&acg), block);
2303 
2304 	/*
2305 	 * update cluster summary table
2306 	 */
2307 	if(!lcs) {
2308 		/*
2309 		 * calculate size for the trailing cluster
2310 		 */
2311 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2312 			if(isclr(cg_clustersfree(&acg), block)){
2313 				break;
2314 			}
2315 		}
2316 	}
2317 	if(lcs < sblock.fs_contigsumsize) {
2318 		if(lcs) {
2319 			cg_clustersum(&acg)[lcs]--;
2320 		}
2321 		lcs++;
2322 		cg_clustersum(&acg)[lcs]++;
2323 	}
2324 
2325 	DBG_LEAVE;
2326 	return;
2327 }
2328 
2329 /* *********************************************************** updrefs ***** */
2330 /*
2331  * This updates all references to relocated blocks for the given inode.  The
2332  * inode is given as number within the cylinder group, and the number of the
2333  * cylinder group.
2334  */
2335 static void
2336 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2337     Nflag)
2338 {
2339 	DBG_FUNC("updrefs")
2340 	ufs_lbn_t	len, lbn, numblks;
2341 	ufs2_daddr_t	iptr, blksperindir;
2342 	union dinode	*ino;
2343 	int		i, mode, remaining_blocks, inodeupdated;
2344 
2345 	DBG_ENTER;
2346 
2347 	/*
2348 	 * XXX We should skip unused inodes even from being read from disk
2349 	 *     here by using the bitmap.
2350 	 */
2351 	ino = ginode(in, fsi, cg);
2352 	mode = DIP(ino, di_mode) & IFMT;
2353 	if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2354 		DBG_LEAVE;
2355 		return; /* only check DIR, FILE, LINK */
2356 	}
2357 	if (mode == IFLNK && DIP(ino, di_size) < sblock.fs_maxsymlinklen) {
2358 		DBG_LEAVE;
2359 		return;	/* skip short symlinks */
2360 	}
2361 	numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2362 	if (numblks == 0) {
2363 		DBG_LEAVE;
2364 		return;	/* skip empty file */
2365 	}
2366 	if (DIP(ino, di_blocks) == 0) {
2367 		DBG_LEAVE;
2368 		return;	/* skip empty swiss cheesy file or old fastlink */
2369 	}
2370 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2371 	    in,
2372 	    cg);
2373 
2374 	/*
2375 	 * Check all the blocks.
2376 	 */
2377 	inodeupdated = 0;
2378 	len = numblks < NDADDR ? numblks : NDADDR;
2379 	for (i = 0; i < len; i++) {
2380 		iptr = DIP(ino, di_db[i]);
2381 		if (iptr == 0)
2382 			continue;
2383 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2384 			DIP(ino, di_db[i]) = iptr;
2385 			inodeupdated++;
2386 		}
2387 	}
2388 	DBG_PRINT0("~~scg direct blocks checked\n");
2389 
2390 	blksperindir = 1;
2391 	len = numblks - NDADDR;
2392 	lbn = NDADDR;
2393 	for (i = 0; len > 0 && i < NIADDR; i++) {
2394 		iptr = DIP(ino, di_ib[i]);
2395 		if (iptr == 0)
2396 			continue;
2397 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2398 			DIP(ino, di_ib[i]) = iptr;
2399 			inodeupdated++;
2400 		}
2401 		indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2402 		blksperindir *= NINDIR(&sblock);
2403 		lbn += blksperindir;
2404 		len -= blksperindir;
2405 		DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2406 	}
2407 	if (inodeupdated)
2408 		wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2409 
2410 	DBG_LEAVE;
2411 	return;
2412 }
2413 
2414 /*
2415  * Recursively check all the indirect blocks.
2416  */
2417 static void
2418 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2419     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2420 {
2421 	DBG_FUNC("indirchk")
2422 	void *ibuf;
2423 	off_t offset;
2424 	int i, last;
2425 	ufs2_daddr_t iptr;
2426 
2427 	DBG_ENTER;
2428 
2429 	/* read in the indirect block. */
2430 	ibuf = malloc(sblock.fs_bsize);
2431 	if (!ibuf)
2432 		errx(1, "malloc failed");
2433 	rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2434 	last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2435 	    howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2436 	for (i = 0; i < last; i++) {
2437 		if (sblock.fs_magic == FS_UFS1_MAGIC)
2438 			iptr = ((ufs1_daddr_t *)ibuf)[i];
2439 		else
2440 			iptr = ((ufs2_daddr_t *)ibuf)[i];
2441 		if (iptr == 0)
2442 			continue;
2443 		if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2444 			if (sblock.fs_magic == FS_UFS1_MAGIC)
2445 				((ufs1_daddr_t *)ibuf)[i] = iptr;
2446 			else
2447 				((ufs2_daddr_t *)ibuf)[i] = iptr;
2448 		}
2449 		if (blksperindir == 1)
2450 			continue;
2451 		indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2452 		    iptr, lastlbn, bp, fsi, fso, Nflag);
2453 	}
2454 	free(ibuf);
2455 
2456 	DBG_LEAVE;
2457 	return;
2458 }
2459