1 /*- 2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/disk.h> 32 #include <sys/disklabel.h> 33 #include <sys/mount.h> 34 #include <sys/stat.h> 35 36 #include <ufs/ufs/ufsmount.h> 37 #include <ufs/ufs/dinode.h> 38 #include <ufs/ufs/dir.h> 39 #include <ufs/ffs/fs.h> 40 41 #include <assert.h> 42 #include <err.h> 43 #include <setjmp.h> 44 #include <stdarg.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <stdint.h> 48 #include <libufs.h> 49 #include <string.h> 50 #include <strings.h> 51 #include <sysexits.h> 52 #include <time.h> 53 54 #include "fsck.h" 55 56 #define DOTDOT_OFFSET DIRECTSIZ(1) 57 #define SUJ_HASHSIZE 2048 58 #define SUJ_HASHMASK (SUJ_HASHSIZE - 1) 59 #define SUJ_HASH(x) ((x * 2654435761) & SUJ_HASHMASK) 60 61 struct suj_seg { 62 TAILQ_ENTRY(suj_seg) ss_next; 63 struct jsegrec ss_rec; 64 uint8_t *ss_blk; 65 }; 66 67 struct suj_rec { 68 TAILQ_ENTRY(suj_rec) sr_next; 69 union jrec *sr_rec; 70 }; 71 TAILQ_HEAD(srechd, suj_rec); 72 73 struct suj_ino { 74 LIST_ENTRY(suj_ino) si_next; 75 struct srechd si_recs; 76 struct srechd si_newrecs; 77 struct srechd si_movs; 78 struct jtrncrec *si_trunc; 79 ino_t si_ino; 80 char si_skipparent; 81 char si_hasrecs; 82 char si_blkadj; 83 char si_linkadj; 84 int si_mode; 85 nlink_t si_nlinkadj; 86 nlink_t si_nlink; 87 nlink_t si_dotlinks; 88 }; 89 LIST_HEAD(inohd, suj_ino); 90 91 struct suj_blk { 92 LIST_ENTRY(suj_blk) sb_next; 93 struct srechd sb_recs; 94 ufs2_daddr_t sb_blk; 95 }; 96 LIST_HEAD(blkhd, suj_blk); 97 98 struct data_blk { 99 LIST_ENTRY(data_blk) db_next; 100 uint8_t *db_buf; 101 ufs2_daddr_t db_blk; 102 int db_size; 103 int db_dirty; 104 }; 105 106 struct ino_blk { 107 LIST_ENTRY(ino_blk) ib_next; 108 uint8_t *ib_buf; 109 int ib_dirty; 110 ufs2_daddr_t ib_blk; 111 }; 112 LIST_HEAD(iblkhd, ino_blk); 113 114 struct suj_cg { 115 LIST_ENTRY(suj_cg) sc_next; 116 struct blkhd sc_blkhash[SUJ_HASHSIZE]; 117 struct inohd sc_inohash[SUJ_HASHSIZE]; 118 struct iblkhd sc_iblkhash[SUJ_HASHSIZE]; 119 struct ino_blk *sc_lastiblk; 120 struct suj_ino *sc_lastino; 121 struct suj_blk *sc_lastblk; 122 uint8_t *sc_cgbuf; 123 struct cg *sc_cgp; 124 int sc_dirty; 125 int sc_cgx; 126 }; 127 128 static LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE]; 129 static LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE]; 130 static struct suj_cg *lastcg; 131 static struct data_blk *lastblk; 132 133 static TAILQ_HEAD(seghd, suj_seg) allsegs; 134 static uint64_t oldseq; 135 static struct uufsd *disk = NULL; 136 static struct fs *fs = NULL; 137 static ino_t sujino; 138 139 /* 140 * Summary statistics. 141 */ 142 static uint64_t freefrags; 143 static uint64_t freeblocks; 144 static uint64_t freeinos; 145 static uint64_t freedir; 146 static uint64_t jbytes; 147 static uint64_t jrecs; 148 149 static jmp_buf jmpbuf; 150 151 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); 152 static void err_suj(const char *, ...) __dead2; 153 static void ino_trunc(ino_t, off_t); 154 static void ino_decr(ino_t); 155 static void ino_adjust(struct suj_ino *); 156 static void ino_build(struct suj_ino *); 157 static int blk_isfree(ufs2_daddr_t); 158 static void initsuj(void); 159 160 static void * 161 errmalloc(size_t n) 162 { 163 void *a; 164 165 a = Malloc(n); 166 if (a == NULL) 167 err(EX_OSERR, "malloc(%zu)", n); 168 return (a); 169 } 170 171 /* 172 * When hit a fatal error in journalling check, print out 173 * the error and then offer to fallback to normal fsck. 174 */ 175 static void 176 err_suj(const char * restrict fmt, ...) 177 { 178 va_list ap; 179 180 if (preen) 181 (void)fprintf(stdout, "%s: ", cdevname); 182 183 va_start(ap, fmt); 184 (void)vfprintf(stdout, fmt, ap); 185 va_end(ap); 186 187 longjmp(jmpbuf, -1); 188 } 189 190 /* 191 * Open the given provider, load superblock. 192 */ 193 static void 194 opendisk(const char *devnam) 195 { 196 if (disk != NULL) 197 return; 198 disk = Malloc(sizeof(*disk)); 199 if (disk == NULL) 200 err(EX_OSERR, "malloc(%zu)", sizeof(*disk)); 201 if (ufs_disk_fillout(disk, devnam) == -1) { 202 err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam, 203 disk->d_error); 204 } 205 fs = &disk->d_fs; 206 if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE, 207 &real_dev_bsize) == -1) 208 real_dev_bsize = secsize; 209 if (debug) 210 printf("dev_bsize %u\n", real_dev_bsize); 211 } 212 213 /* 214 * Mark file system as clean, write the super-block back, close the disk. 215 */ 216 static void 217 closedisk(const char *devnam) 218 { 219 struct csum *cgsum; 220 uint32_t i; 221 222 /* 223 * Recompute the fs summary info from correct cs summaries. 224 */ 225 bzero(&fs->fs_cstotal, sizeof(struct csum_total)); 226 for (i = 0; i < fs->fs_ncg; i++) { 227 cgsum = &fs->fs_cs(fs, i); 228 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; 229 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; 230 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; 231 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; 232 } 233 fs->fs_pendinginodes = 0; 234 fs->fs_pendingblocks = 0; 235 fs->fs_clean = 1; 236 fs->fs_time = time(NULL); 237 fs->fs_mtime = time(NULL); 238 if (sbwrite(disk, 0) == -1) 239 err(EX_OSERR, "sbwrite(%s)", devnam); 240 if (ufs_disk_close(disk) == -1) 241 err(EX_OSERR, "ufs_disk_close(%s)", devnam); 242 free(disk); 243 disk = NULL; 244 fs = NULL; 245 } 246 247 /* 248 * Lookup a cg by number in the hash so we can keep track of which cgs 249 * need stats rebuilt. 250 */ 251 static struct suj_cg * 252 cg_lookup(int cgx) 253 { 254 struct cghd *hd; 255 struct suj_cg *sc; 256 257 if (cgx < 0 || cgx >= fs->fs_ncg) 258 err_suj("Bad cg number %d\n", cgx); 259 if (lastcg && lastcg->sc_cgx == cgx) 260 return (lastcg); 261 hd = &cghash[SUJ_HASH(cgx)]; 262 LIST_FOREACH(sc, hd, sc_next) 263 if (sc->sc_cgx == cgx) { 264 lastcg = sc; 265 return (sc); 266 } 267 sc = errmalloc(sizeof(*sc)); 268 bzero(sc, sizeof(*sc)); 269 sc->sc_cgbuf = errmalloc(fs->fs_bsize); 270 sc->sc_cgp = (struct cg *)sc->sc_cgbuf; 271 sc->sc_cgx = cgx; 272 LIST_INSERT_HEAD(hd, sc, sc_next); 273 if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 274 fs->fs_bsize) == -1) 275 err_suj("Unable to read cylinder group %d\n", sc->sc_cgx); 276 277 return (sc); 278 } 279 280 /* 281 * Lookup an inode number in the hash and allocate a suj_ino if it does 282 * not exist. 283 */ 284 static struct suj_ino * 285 ino_lookup(ino_t ino, int creat) 286 { 287 struct suj_ino *sino; 288 struct inohd *hd; 289 struct suj_cg *sc; 290 291 sc = cg_lookup(ino_to_cg(fs, ino)); 292 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) 293 return (sc->sc_lastino); 294 hd = &sc->sc_inohash[SUJ_HASH(ino)]; 295 LIST_FOREACH(sino, hd, si_next) 296 if (sino->si_ino == ino) 297 return (sino); 298 if (creat == 0) 299 return (NULL); 300 sino = errmalloc(sizeof(*sino)); 301 bzero(sino, sizeof(*sino)); 302 sino->si_ino = ino; 303 TAILQ_INIT(&sino->si_recs); 304 TAILQ_INIT(&sino->si_newrecs); 305 TAILQ_INIT(&sino->si_movs); 306 LIST_INSERT_HEAD(hd, sino, si_next); 307 308 return (sino); 309 } 310 311 /* 312 * Lookup a block number in the hash and allocate a suj_blk if it does 313 * not exist. 314 */ 315 static struct suj_blk * 316 blk_lookup(ufs2_daddr_t blk, int creat) 317 { 318 struct suj_blk *sblk; 319 struct suj_cg *sc; 320 struct blkhd *hd; 321 322 sc = cg_lookup(dtog(fs, blk)); 323 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) 324 return (sc->sc_lastblk); 325 hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))]; 326 LIST_FOREACH(sblk, hd, sb_next) 327 if (sblk->sb_blk == blk) 328 return (sblk); 329 if (creat == 0) 330 return (NULL); 331 sblk = errmalloc(sizeof(*sblk)); 332 bzero(sblk, sizeof(*sblk)); 333 sblk->sb_blk = blk; 334 TAILQ_INIT(&sblk->sb_recs); 335 LIST_INSERT_HEAD(hd, sblk, sb_next); 336 337 return (sblk); 338 } 339 340 static struct data_blk * 341 dblk_lookup(ufs2_daddr_t blk) 342 { 343 struct data_blk *dblk; 344 struct dblkhd *hd; 345 346 hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))]; 347 if (lastblk && lastblk->db_blk == blk) 348 return (lastblk); 349 LIST_FOREACH(dblk, hd, db_next) 350 if (dblk->db_blk == blk) 351 return (dblk); 352 /* 353 * The inode block wasn't located, allocate a new one. 354 */ 355 dblk = errmalloc(sizeof(*dblk)); 356 bzero(dblk, sizeof(*dblk)); 357 LIST_INSERT_HEAD(hd, dblk, db_next); 358 dblk->db_blk = blk; 359 return (dblk); 360 } 361 362 static uint8_t * 363 dblk_read(ufs2_daddr_t blk, int size) 364 { 365 struct data_blk *dblk; 366 367 dblk = dblk_lookup(blk); 368 /* 369 * I doubt size mismatches can happen in practice but it is trivial 370 * to handle. 371 */ 372 if (size != dblk->db_size) { 373 if (dblk->db_buf) 374 free(dblk->db_buf); 375 dblk->db_buf = errmalloc(size); 376 dblk->db_size = size; 377 if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1) 378 err_suj("Failed to read data block %jd\n", blk); 379 } 380 return (dblk->db_buf); 381 } 382 383 static void 384 dblk_dirty(ufs2_daddr_t blk) 385 { 386 struct data_blk *dblk; 387 388 dblk = dblk_lookup(blk); 389 dblk->db_dirty = 1; 390 } 391 392 static void 393 dblk_write(void) 394 { 395 struct data_blk *dblk; 396 int i; 397 398 for (i = 0; i < SUJ_HASHSIZE; i++) { 399 LIST_FOREACH(dblk, &dbhash[i], db_next) { 400 if (dblk->db_dirty == 0 || dblk->db_size == 0) 401 continue; 402 if (bwrite(disk, fsbtodb(fs, dblk->db_blk), 403 dblk->db_buf, dblk->db_size) == -1) 404 err_suj("Unable to write block %jd\n", 405 dblk->db_blk); 406 } 407 } 408 } 409 410 static union dinode * 411 ino_read(ino_t ino) 412 { 413 struct ino_blk *iblk; 414 struct iblkhd *hd; 415 struct suj_cg *sc; 416 ufs2_daddr_t blk; 417 int off; 418 419 blk = ino_to_fsba(fs, ino); 420 sc = cg_lookup(ino_to_cg(fs, ino)); 421 iblk = sc->sc_lastiblk; 422 if (iblk && iblk->ib_blk == blk) 423 goto found; 424 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 425 LIST_FOREACH(iblk, hd, ib_next) 426 if (iblk->ib_blk == blk) 427 goto found; 428 /* 429 * The inode block wasn't located, allocate a new one. 430 */ 431 iblk = errmalloc(sizeof(*iblk)); 432 bzero(iblk, sizeof(*iblk)); 433 iblk->ib_buf = errmalloc(fs->fs_bsize); 434 iblk->ib_blk = blk; 435 LIST_INSERT_HEAD(hd, iblk, ib_next); 436 if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1) 437 err_suj("Failed to read inode block %jd\n", blk); 438 found: 439 sc->sc_lastiblk = iblk; 440 off = ino_to_fsbo(fs, ino); 441 if (fs->fs_magic == FS_UFS1_MAGIC) 442 return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off]; 443 else 444 return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off]; 445 } 446 447 static void 448 ino_dirty(ino_t ino) 449 { 450 struct ino_blk *iblk; 451 struct iblkhd *hd; 452 struct suj_cg *sc; 453 ufs2_daddr_t blk; 454 455 blk = ino_to_fsba(fs, ino); 456 sc = cg_lookup(ino_to_cg(fs, ino)); 457 iblk = sc->sc_lastiblk; 458 if (iblk && iblk->ib_blk == blk) { 459 iblk->ib_dirty = 1; 460 return; 461 } 462 hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))]; 463 LIST_FOREACH(iblk, hd, ib_next) { 464 if (iblk->ib_blk == blk) { 465 iblk->ib_dirty = 1; 466 return; 467 } 468 } 469 ino_read(ino); 470 ino_dirty(ino); 471 } 472 473 static void 474 iblk_write(struct ino_blk *iblk) 475 { 476 477 if (iblk->ib_dirty == 0) 478 return; 479 if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf, 480 fs->fs_bsize) == -1) 481 err_suj("Failed to write inode block %jd\n", iblk->ib_blk); 482 } 483 484 static int 485 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) 486 { 487 ufs2_daddr_t bstart; 488 ufs2_daddr_t bend; 489 ufs2_daddr_t end; 490 491 end = start + frags; 492 bstart = brec->jb_blkno + brec->jb_oldfrags; 493 bend = bstart + brec->jb_frags; 494 if (start < bend && end > bstart) 495 return (1); 496 return (0); 497 } 498 499 static int 500 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, 501 int frags) 502 { 503 504 if (brec->jb_ino != ino || brec->jb_lbn != lbn) 505 return (0); 506 if (brec->jb_blkno + brec->jb_oldfrags != start) 507 return (0); 508 if (brec->jb_frags < frags) 509 return (0); 510 return (1); 511 } 512 513 static void 514 blk_setmask(struct jblkrec *brec, int *mask) 515 { 516 int i; 517 518 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) 519 *mask |= 1 << i; 520 } 521 522 /* 523 * Determine whether a given block has been reallocated to a new location. 524 * Returns a mask of overlapping bits if any frags have been reused or 525 * zero if the block has not been re-used and the contents can be trusted. 526 * 527 * This is used to ensure that an orphaned pointer due to truncate is safe 528 * to be freed. The mask value can be used to free partial blocks. 529 */ 530 static int 531 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) 532 { 533 struct suj_blk *sblk; 534 struct suj_rec *srec; 535 struct jblkrec *brec; 536 int mask; 537 int off; 538 539 /* 540 * To be certain we're not freeing a reallocated block we lookup 541 * this block in the blk hash and see if there is an allocation 542 * journal record that overlaps with any fragments in the block 543 * we're concerned with. If any fragments have ben reallocated 544 * the block has already been freed and re-used for another purpose. 545 */ 546 mask = 0; 547 sblk = blk_lookup(blknum(fs, blk), 0); 548 if (sblk == NULL) 549 return (0); 550 off = blk - sblk->sb_blk; 551 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 552 brec = (struct jblkrec *)srec->sr_rec; 553 /* 554 * If the block overlaps but does not match 555 * exactly this record refers to the current 556 * location. 557 */ 558 if (blk_overlaps(brec, blk, frags) == 0) 559 continue; 560 if (blk_equals(brec, ino, lbn, blk, frags) == 1) 561 mask = 0; 562 else 563 blk_setmask(brec, &mask); 564 } 565 if (debug) 566 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", 567 blk, sblk->sb_blk, off, mask); 568 return (mask >> off); 569 } 570 571 /* 572 * Determine whether it is safe to follow an indirect. It is not safe 573 * if any part of the indirect has been reallocated or the last journal 574 * entry was an allocation. Just allocated indirects may not have valid 575 * pointers yet and all of their children will have their own records. 576 * It is also not safe to follow an indirect if the cg bitmap has been 577 * cleared as a new allocation may write to the block prior to the journal 578 * being written. 579 * 580 * Returns 1 if it's safe to follow the indirect and 0 otherwise. 581 */ 582 static int 583 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) 584 { 585 struct suj_blk *sblk; 586 struct jblkrec *brec; 587 588 sblk = blk_lookup(blk, 0); 589 if (sblk == NULL) 590 return (1); 591 if (TAILQ_EMPTY(&sblk->sb_recs)) 592 return (1); 593 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; 594 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) 595 if (brec->jb_op == JOP_FREEBLK) 596 return (!blk_isfree(blk)); 597 return (0); 598 } 599 600 /* 601 * Clear an inode from the cg bitmap. If the inode was already clear return 602 * 0 so the caller knows it does not have to check the inode contents. 603 */ 604 static int 605 ino_free(ino_t ino, int mode) 606 { 607 struct suj_cg *sc; 608 uint8_t *inosused; 609 struct cg *cgp; 610 int cg; 611 612 cg = ino_to_cg(fs, ino); 613 ino = ino % fs->fs_ipg; 614 sc = cg_lookup(cg); 615 cgp = sc->sc_cgp; 616 inosused = cg_inosused(cgp); 617 /* 618 * The bitmap may never have made it to the disk so we have to 619 * conditionally clear. We can avoid writing the cg in this case. 620 */ 621 if (isclr(inosused, ino)) 622 return (0); 623 freeinos++; 624 clrbit(inosused, ino); 625 if (ino < cgp->cg_irotor) 626 cgp->cg_irotor = ino; 627 cgp->cg_cs.cs_nifree++; 628 if ((mode & IFMT) == IFDIR) { 629 freedir++; 630 cgp->cg_cs.cs_ndir--; 631 } 632 sc->sc_dirty = 1; 633 634 return (1); 635 } 636 637 /* 638 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags 639 * set in the mask. 640 */ 641 static void 642 blk_free(ufs2_daddr_t bno, int mask, int frags) 643 { 644 ufs1_daddr_t fragno, cgbno; 645 struct suj_cg *sc; 646 struct cg *cgp; 647 int i, cg; 648 uint8_t *blksfree; 649 650 if (debug) 651 printf("Freeing %d frags at blk %jd mask 0x%x\n", 652 frags, bno, mask); 653 cg = dtog(fs, bno); 654 sc = cg_lookup(cg); 655 cgp = sc->sc_cgp; 656 cgbno = dtogd(fs, bno); 657 blksfree = cg_blksfree(cgp); 658 659 /* 660 * If it's not allocated we only wrote the journal entry 661 * and never the bitmaps. Here we unconditionally clear and 662 * resolve the cg summary later. 663 */ 664 if (frags == fs->fs_frag && mask == 0) { 665 fragno = fragstoblks(fs, cgbno); 666 ffs_setblock(fs, blksfree, fragno); 667 freeblocks++; 668 } else { 669 /* 670 * deallocate the fragment 671 */ 672 for (i = 0; i < frags; i++) 673 if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) { 674 freefrags++; 675 setbit(blksfree, cgbno + i); 676 } 677 } 678 sc->sc_dirty = 1; 679 } 680 681 /* 682 * Returns 1 if the whole block starting at 'bno' is marked free and 0 683 * otherwise. 684 */ 685 static int 686 blk_isfree(ufs2_daddr_t bno) 687 { 688 struct suj_cg *sc; 689 690 sc = cg_lookup(dtog(fs, bno)); 691 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); 692 } 693 694 /* 695 * Fetch an indirect block to find the block at a given lbn. The lbn 696 * may be negative to fetch a specific indirect block pointer or positive 697 * to fetch a specific block. 698 */ 699 static ufs2_daddr_t 700 indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn) 701 { 702 ufs2_daddr_t *bap2; 703 ufs2_daddr_t *bap1; 704 ufs_lbn_t lbnadd; 705 ufs_lbn_t base; 706 int level; 707 int i; 708 709 if (blk == 0) 710 return (0); 711 level = lbn_level(cur); 712 if (level == -1) 713 err_suj("Invalid indir lbn %jd\n", lbn); 714 if (level == 0 && lbn < 0) 715 err_suj("Invalid lbn %jd\n", lbn); 716 bap2 = (void *)dblk_read(blk, fs->fs_bsize); 717 bap1 = (void *)bap2; 718 lbnadd = 1; 719 base = -(cur + level); 720 for (i = level; i > 0; i--) 721 lbnadd *= NINDIR(fs); 722 if (lbn > 0) 723 i = (lbn - base) / lbnadd; 724 else 725 i = (-lbn - base) / lbnadd; 726 if (i < 0 || i >= NINDIR(fs)) 727 err_suj("Invalid indirect index %d produced by lbn %jd\n", 728 i, lbn); 729 if (level == 0) 730 cur = base + (i * lbnadd); 731 else 732 cur = -(base + (i * lbnadd)) - (level - 1); 733 if (fs->fs_magic == FS_UFS1_MAGIC) 734 blk = bap1[i]; 735 else 736 blk = bap2[i]; 737 if (cur == lbn) 738 return (blk); 739 if (level == 0) 740 err_suj("Invalid lbn %jd at level 0\n", lbn); 741 return indir_blkatoff(blk, ino, cur, lbn); 742 } 743 744 /* 745 * Finds the disk block address at the specified lbn within the inode 746 * specified by ip. This follows the whole tree and honors di_size and 747 * di_extsize so it is a true test of reachability. The lbn may be 748 * negative if an extattr or indirect block is requested. 749 */ 750 static ufs2_daddr_t 751 ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags) 752 { 753 ufs_lbn_t tmpval; 754 ufs_lbn_t cur; 755 ufs_lbn_t next; 756 int i; 757 758 /* 759 * Handle extattr blocks first. 760 */ 761 if (lbn < 0 && lbn >= -NXADDR) { 762 lbn = -1 - lbn; 763 if (lbn > lblkno(fs, ip->dp2.di_extsize - 1)) 764 return (0); 765 *frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn)); 766 return (ip->dp2.di_extb[lbn]); 767 } 768 /* 769 * Now direct and indirect. 770 */ 771 if (DIP(ip, di_mode) == IFLNK && 772 DIP(ip, di_size) < fs->fs_maxsymlinklen) 773 return (0); 774 if (lbn >= 0 && lbn < NDADDR) { 775 *frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn)); 776 return (DIP(ip, di_db[lbn])); 777 } 778 *frags = fs->fs_frag; 779 780 for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++, 781 tmpval *= NINDIR(fs), cur = next) { 782 next = cur + tmpval; 783 if (lbn == -cur - i) 784 return (DIP(ip, di_ib[i])); 785 /* 786 * Determine whether the lbn in question is within this tree. 787 */ 788 if (lbn < 0 && -lbn >= next) 789 continue; 790 if (lbn > 0 && lbn >= next) 791 continue; 792 return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn); 793 } 794 err_suj("lbn %jd not in ino\n", lbn); 795 /* NOTREACHED */ 796 } 797 798 /* 799 * Determine whether a block exists at a particular lbn in an inode. 800 * Returns 1 if found, 0 if not. lbn may be negative for indirects 801 * or ext blocks. 802 */ 803 static int 804 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) 805 { 806 union dinode *ip; 807 ufs2_daddr_t nblk; 808 809 ip = ino_read(ino); 810 811 if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0) 812 return (0); 813 nblk = ino_blkatoff(ip, ino, lbn, frags); 814 815 return (nblk == blk); 816 } 817 818 /* 819 * Clear the directory entry at diroff that should point to child. Minimal 820 * checking is done and it is assumed that this path was verified with isat. 821 */ 822 static void 823 ino_clrat(ino_t parent, off_t diroff, ino_t child) 824 { 825 union dinode *dip; 826 struct direct *dp; 827 ufs2_daddr_t blk; 828 uint8_t *block; 829 ufs_lbn_t lbn; 830 int blksize; 831 int frags; 832 int doff; 833 834 if (debug) 835 printf("Clearing inode %ju from parent %ju at offset %jd\n", 836 (uintmax_t)child, (uintmax_t)parent, diroff); 837 838 lbn = lblkno(fs, diroff); 839 doff = blkoff(fs, diroff); 840 dip = ino_read(parent); 841 blk = ino_blkatoff(dip, parent, lbn, &frags); 842 blksize = sblksize(fs, DIP(dip, di_size), lbn); 843 block = dblk_read(blk, blksize); 844 dp = (struct direct *)&block[doff]; 845 if (dp->d_ino != child) 846 errx(1, "Inode %ju does not exist in %ju at %jd", 847 (uintmax_t)child, (uintmax_t)parent, diroff); 848 dp->d_ino = 0; 849 dblk_dirty(blk); 850 /* 851 * The actual .. reference count will already have been removed 852 * from the parent by the .. remref record. 853 */ 854 } 855 856 /* 857 * Determines whether a pointer to an inode exists within a directory 858 * at a specified offset. Returns the mode of the found entry. 859 */ 860 static int 861 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) 862 { 863 union dinode *dip; 864 struct direct *dp; 865 ufs2_daddr_t blk; 866 uint8_t *block; 867 ufs_lbn_t lbn; 868 int blksize; 869 int frags; 870 int dpoff; 871 int doff; 872 873 *isdot = 0; 874 dip = ino_read(parent); 875 *mode = DIP(dip, di_mode); 876 if ((*mode & IFMT) != IFDIR) { 877 if (debug) { 878 /* 879 * This can happen if the parent inode 880 * was reallocated. 881 */ 882 if (*mode != 0) 883 printf("Directory %ju has bad mode %o\n", 884 (uintmax_t)parent, *mode); 885 else 886 printf("Directory %ju has zero mode\n", 887 (uintmax_t)parent); 888 } 889 return (0); 890 } 891 lbn = lblkno(fs, diroff); 892 doff = blkoff(fs, diroff); 893 blksize = sblksize(fs, DIP(dip, di_size), lbn); 894 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { 895 if (debug) 896 printf("ino %ju absent from %ju due to offset %jd" 897 " exceeding size %jd\n", 898 (uintmax_t)child, (uintmax_t)parent, diroff, 899 DIP(dip, di_size)); 900 return (0); 901 } 902 blk = ino_blkatoff(dip, parent, lbn, &frags); 903 if (blk <= 0) { 904 if (debug) 905 printf("Sparse directory %ju", (uintmax_t)parent); 906 return (0); 907 } 908 block = dblk_read(blk, blksize); 909 /* 910 * Walk through the records from the start of the block to be 911 * certain we hit a valid record and not some junk in the middle 912 * of a file name. Stop when we reach or pass the expected offset. 913 */ 914 dpoff = rounddown(doff, DIRBLKSIZ); 915 do { 916 dp = (struct direct *)&block[dpoff]; 917 if (dpoff == doff) 918 break; 919 if (dp->d_reclen == 0) 920 break; 921 dpoff += dp->d_reclen; 922 } while (dpoff <= doff); 923 if (dpoff > fs->fs_bsize) 924 err_suj("Corrupt directory block in dir ino %ju\n", 925 (uintmax_t)parent); 926 /* Not found. */ 927 if (dpoff != doff) { 928 if (debug) 929 printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n", 930 (uintmax_t)child, (uintmax_t)parent, lbn, dpoff); 931 return (0); 932 } 933 /* 934 * We found the item in question. Record the mode and whether it's 935 * a . or .. link for the caller. 936 */ 937 if (dp->d_ino == child) { 938 if (child == parent) 939 *isdot = 1; 940 else if (dp->d_namlen == 2 && 941 dp->d_name[0] == '.' && dp->d_name[1] == '.') 942 *isdot = 1; 943 *mode = DTTOIF(dp->d_type); 944 return (1); 945 } 946 if (debug) 947 printf("ino %ju doesn't match dirent ino %ju in parent %ju\n", 948 (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent); 949 return (0); 950 } 951 952 #define VISIT_INDIR 0x0001 953 #define VISIT_EXT 0x0002 954 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ 955 956 /* 957 * Read an indirect level which may or may not be linked into an inode. 958 */ 959 static void 960 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, 961 ino_visitor visitor, int flags) 962 { 963 ufs2_daddr_t *bap2; 964 ufs1_daddr_t *bap1; 965 ufs_lbn_t lbnadd; 966 ufs2_daddr_t nblk; 967 ufs_lbn_t nlbn; 968 int level; 969 int i; 970 971 /* 972 * Don't visit indirect blocks with contents we can't trust. This 973 * should only happen when indir_visit() is called to complete a 974 * truncate that never finished and not when a pointer is found via 975 * an inode. 976 */ 977 if (blk == 0) 978 return; 979 level = lbn_level(lbn); 980 if (level == -1) 981 err_suj("Invalid level for lbn %jd\n", lbn); 982 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { 983 if (debug) 984 printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n", 985 blk, (uintmax_t)ino, lbn, level); 986 goto out; 987 } 988 lbnadd = 1; 989 for (i = level; i > 0; i--) 990 lbnadd *= NINDIR(fs); 991 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 992 bap2 = (void *)bap1; 993 for (i = 0; i < NINDIR(fs); i++) { 994 if (fs->fs_magic == FS_UFS1_MAGIC) 995 nblk = *bap1++; 996 else 997 nblk = *bap2++; 998 if (nblk == 0) 999 continue; 1000 if (level == 0) { 1001 nlbn = -lbn + i * lbnadd; 1002 (*frags) += fs->fs_frag; 1003 visitor(ino, nlbn, nblk, fs->fs_frag); 1004 } else { 1005 nlbn = (lbn + 1) - (i * lbnadd); 1006 indir_visit(ino, nlbn, nblk, frags, visitor, flags); 1007 } 1008 } 1009 out: 1010 if (flags & VISIT_INDIR) { 1011 (*frags) += fs->fs_frag; 1012 visitor(ino, lbn, blk, fs->fs_frag); 1013 } 1014 } 1015 1016 /* 1017 * Visit each block in an inode as specified by 'flags' and call a 1018 * callback function. The callback may inspect or free blocks. The 1019 * count of frags found according to the size in the file is returned. 1020 * This is not valid for sparse files but may be used to determine 1021 * the correct di_blocks for a file. 1022 */ 1023 static uint64_t 1024 ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags) 1025 { 1026 ufs_lbn_t nextlbn; 1027 ufs_lbn_t tmpval; 1028 ufs_lbn_t lbn; 1029 uint64_t size; 1030 uint64_t fragcnt; 1031 int mode; 1032 int frags; 1033 int i; 1034 1035 size = DIP(ip, di_size); 1036 mode = DIP(ip, di_mode) & IFMT; 1037 fragcnt = 0; 1038 if ((flags & VISIT_EXT) && 1039 fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) { 1040 for (i = 0; i < NXADDR; i++) { 1041 if (ip->dp2.di_extb[i] == 0) 1042 continue; 1043 frags = sblksize(fs, ip->dp2.di_extsize, i); 1044 frags = numfrags(fs, frags); 1045 fragcnt += frags; 1046 visitor(ino, -1 - i, ip->dp2.di_extb[i], frags); 1047 } 1048 } 1049 /* Skip datablocks for short links and devices. */ 1050 if (mode == IFBLK || mode == IFCHR || 1051 (mode == IFLNK && size < fs->fs_maxsymlinklen)) 1052 return (fragcnt); 1053 for (i = 0; i < NDADDR; i++) { 1054 if (DIP(ip, di_db[i]) == 0) 1055 continue; 1056 frags = sblksize(fs, size, i); 1057 frags = numfrags(fs, frags); 1058 fragcnt += frags; 1059 visitor(ino, i, DIP(ip, di_db[i]), frags); 1060 } 1061 /* 1062 * We know the following indirects are real as we're following 1063 * real pointers to them. 1064 */ 1065 flags |= VISIT_ROOT; 1066 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 1067 lbn = nextlbn) { 1068 nextlbn = lbn + tmpval; 1069 tmpval *= NINDIR(fs); 1070 if (DIP(ip, di_ib[i]) == 0) 1071 continue; 1072 indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor, 1073 flags); 1074 } 1075 return (fragcnt); 1076 } 1077 1078 /* 1079 * Null visitor function used when we just want to count blocks and 1080 * record the lbn. 1081 */ 1082 ufs_lbn_t visitlbn; 1083 static void 1084 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1085 { 1086 if (lbn > 0) 1087 visitlbn = lbn; 1088 } 1089 1090 /* 1091 * Recalculate di_blocks when we discover that a block allocation or 1092 * free was not successfully completed. The kernel does not roll this back 1093 * because it would be too expensive to compute which indirects were 1094 * reachable at the time the inode was written. 1095 */ 1096 static void 1097 ino_adjblks(struct suj_ino *sino) 1098 { 1099 union dinode *ip; 1100 uint64_t blocks; 1101 uint64_t frags; 1102 off_t isize; 1103 off_t size; 1104 ino_t ino; 1105 1106 ino = sino->si_ino; 1107 ip = ino_read(ino); 1108 /* No need to adjust zero'd inodes. */ 1109 if (DIP(ip, di_mode) == 0) 1110 return; 1111 /* 1112 * Visit all blocks and count them as well as recording the last 1113 * valid lbn in the file. If the file size doesn't agree with the 1114 * last lbn we need to truncate to fix it. Otherwise just adjust 1115 * the blocks count. 1116 */ 1117 visitlbn = 0; 1118 frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1119 blocks = fsbtodb(fs, frags); 1120 /* 1121 * We assume the size and direct block list is kept coherent by 1122 * softdep. For files that have extended into indirects we truncate 1123 * to the size in the inode or the maximum size permitted by 1124 * populated indirects. 1125 */ 1126 if (visitlbn >= NDADDR) { 1127 isize = DIP(ip, di_size); 1128 size = lblktosize(fs, visitlbn + 1); 1129 if (isize > size) 1130 isize = size; 1131 /* Always truncate to free any unpopulated indirects. */ 1132 ino_trunc(sino->si_ino, isize); 1133 return; 1134 } 1135 if (blocks == DIP(ip, di_blocks)) 1136 return; 1137 if (debug) 1138 printf("ino %ju adjusting block count from %jd to %jd\n", 1139 (uintmax_t)ino, DIP(ip, di_blocks), blocks); 1140 DIP_SET(ip, di_blocks, blocks); 1141 ino_dirty(ino); 1142 } 1143 1144 static void 1145 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1146 { 1147 1148 blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags); 1149 } 1150 1151 /* 1152 * Free a block or tree of blocks that was previously rooted in ino at 1153 * the given lbn. If the lbn is an indirect all children are freed 1154 * recursively. 1155 */ 1156 static void 1157 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) 1158 { 1159 uint64_t resid; 1160 int mask; 1161 1162 mask = blk_freemask(blk, ino, lbn, frags); 1163 resid = 0; 1164 if (lbn <= -NDADDR && follow && mask == 0) 1165 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); 1166 else 1167 blk_free(blk, mask, frags); 1168 } 1169 1170 static void 1171 ino_setskip(struct suj_ino *sino, ino_t parent) 1172 { 1173 int isdot; 1174 int mode; 1175 1176 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) 1177 sino->si_skipparent = 1; 1178 } 1179 1180 static void 1181 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot) 1182 { 1183 struct suj_ino *sino; 1184 struct suj_rec *srec; 1185 struct jrefrec *rrec; 1186 1187 /* 1188 * Lookup this inode to see if we have a record for it. 1189 */ 1190 sino = ino_lookup(child, 0); 1191 /* 1192 * Tell any child directories we've already removed their 1193 * parent link cnt. Don't try to adjust our link down again. 1194 */ 1195 if (sino != NULL && isdotdot == 0) 1196 ino_setskip(sino, parent); 1197 /* 1198 * No valid record for this inode. Just drop the on-disk 1199 * link by one. 1200 */ 1201 if (sino == NULL || sino->si_hasrecs == 0) { 1202 ino_decr(child); 1203 return; 1204 } 1205 /* 1206 * Use ino_adjust() if ino_check() has already processed this 1207 * child. If we lose the last non-dot reference to a 1208 * directory it will be discarded. 1209 */ 1210 if (sino->si_linkadj) { 1211 sino->si_nlink--; 1212 if (isdotdot) 1213 sino->si_dotlinks--; 1214 ino_adjust(sino); 1215 return; 1216 } 1217 /* 1218 * If we haven't yet processed this inode we need to make 1219 * sure we will successfully discover the lost path. If not 1220 * use nlinkadj to remember. 1221 */ 1222 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1223 rrec = (struct jrefrec *)srec->sr_rec; 1224 if (rrec->jr_parent == parent && 1225 rrec->jr_diroff == diroff) 1226 return; 1227 } 1228 sino->si_nlinkadj++; 1229 } 1230 1231 /* 1232 * Free the children of a directory when the directory is discarded. 1233 */ 1234 static void 1235 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 1236 { 1237 struct suj_ino *sino; 1238 struct direct *dp; 1239 off_t diroff; 1240 uint8_t *block; 1241 int skipparent; 1242 int isdotdot; 1243 int dpoff; 1244 int size; 1245 1246 sino = ino_lookup(ino, 0); 1247 if (sino) 1248 skipparent = sino->si_skipparent; 1249 else 1250 skipparent = 0; 1251 size = lfragtosize(fs, frags); 1252 block = dblk_read(blk, size); 1253 dp = (struct direct *)&block[0]; 1254 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { 1255 dp = (struct direct *)&block[dpoff]; 1256 if (dp->d_ino == 0 || dp->d_ino == WINO) 1257 continue; 1258 if (dp->d_namlen == 1 && dp->d_name[0] == '.') 1259 continue; 1260 isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' && 1261 dp->d_name[1] == '.'; 1262 if (isdotdot && skipparent == 1) 1263 continue; 1264 if (debug) 1265 printf("Directory %ju removing ino %ju name %s\n", 1266 (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name); 1267 diroff = lblktosize(fs, lbn) + dpoff; 1268 ino_remref(ino, dp->d_ino, diroff, isdotdot); 1269 } 1270 } 1271 1272 /* 1273 * Reclaim an inode, freeing all blocks and decrementing all children's 1274 * link counts. Free the inode back to the cg. 1275 */ 1276 static void 1277 ino_reclaim(union dinode *ip, ino_t ino, int mode) 1278 { 1279 uint32_t gen; 1280 1281 if (ino == ROOTINO) 1282 err_suj("Attempting to free ROOTINO\n"); 1283 if (debug) 1284 printf("Truncating and freeing ino %ju, nlink %d, mode %o\n", 1285 (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode)); 1286 1287 /* We are freeing an inode or directory. */ 1288 if ((DIP(ip, di_mode) & IFMT) == IFDIR) 1289 ino_visit(ip, ino, ino_free_children, 0); 1290 DIP_SET(ip, di_nlink, 0); 1291 ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); 1292 /* Here we have to clear the inode and release any blocks it holds. */ 1293 gen = DIP(ip, di_gen); 1294 if (fs->fs_magic == FS_UFS1_MAGIC) 1295 bzero(ip, sizeof(struct ufs1_dinode)); 1296 else 1297 bzero(ip, sizeof(struct ufs2_dinode)); 1298 DIP_SET(ip, di_gen, gen); 1299 ino_dirty(ino); 1300 ino_free(ino, mode); 1301 return; 1302 } 1303 1304 /* 1305 * Adjust an inode's link count down by one when a directory goes away. 1306 */ 1307 static void 1308 ino_decr(ino_t ino) 1309 { 1310 union dinode *ip; 1311 int reqlink; 1312 int nlink; 1313 int mode; 1314 1315 ip = ino_read(ino); 1316 nlink = DIP(ip, di_nlink); 1317 mode = DIP(ip, di_mode); 1318 if (nlink < 1) 1319 err_suj("Inode %d link count %d invalid\n", ino, nlink); 1320 if (mode == 0) 1321 err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink); 1322 nlink--; 1323 if ((mode & IFMT) == IFDIR) 1324 reqlink = 2; 1325 else 1326 reqlink = 1; 1327 if (nlink < reqlink) { 1328 if (debug) 1329 printf("ino %ju not enough links to live %d < %d\n", 1330 (uintmax_t)ino, nlink, reqlink); 1331 ino_reclaim(ip, ino, mode); 1332 return; 1333 } 1334 DIP_SET(ip, di_nlink, nlink); 1335 ino_dirty(ino); 1336 } 1337 1338 /* 1339 * Adjust the inode link count to 'nlink'. If the count reaches zero 1340 * free it. 1341 */ 1342 static void 1343 ino_adjust(struct suj_ino *sino) 1344 { 1345 struct jrefrec *rrec; 1346 struct suj_rec *srec; 1347 struct suj_ino *stmp; 1348 union dinode *ip; 1349 nlink_t nlink; 1350 int recmode; 1351 int reqlink; 1352 int isdot; 1353 int mode; 1354 ino_t ino; 1355 1356 nlink = sino->si_nlink; 1357 ino = sino->si_ino; 1358 mode = sino->si_mode & IFMT; 1359 /* 1360 * If it's a directory with no dot links, it was truncated before 1361 * the name was cleared. We need to clear the dirent that 1362 * points at it. 1363 */ 1364 if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) { 1365 sino->si_nlink = nlink = 0; 1366 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1367 rrec = (struct jrefrec *)srec->sr_rec; 1368 if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino, 1369 &recmode, &isdot) == 0) 1370 continue; 1371 ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino); 1372 break; 1373 } 1374 if (srec == NULL) 1375 errx(1, "Directory %ju name not found", (uintmax_t)ino); 1376 } 1377 /* 1378 * If it's a directory with no real names pointing to it go ahead 1379 * and truncate it. This will free any children. 1380 */ 1381 if (mode == IFDIR && nlink - sino->si_dotlinks == 0) { 1382 sino->si_nlink = nlink = 0; 1383 /* 1384 * Mark any .. links so they know not to free this inode 1385 * when they are removed. 1386 */ 1387 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1388 rrec = (struct jrefrec *)srec->sr_rec; 1389 if (rrec->jr_diroff == DOTDOT_OFFSET) { 1390 stmp = ino_lookup(rrec->jr_parent, 0); 1391 if (stmp) 1392 ino_setskip(stmp, ino); 1393 } 1394 } 1395 } 1396 ip = ino_read(ino); 1397 mode = DIP(ip, di_mode) & IFMT; 1398 if (nlink > LINK_MAX) 1399 err_suj("ino %ju nlink manipulation error, new %d, old %d\n", 1400 (uintmax_t)ino, nlink, DIP(ip, di_nlink)); 1401 if (debug) 1402 printf("Adjusting ino %ju, nlink %d, old link %d lastmode %o\n", 1403 (uintmax_t)ino, nlink, DIP(ip, di_nlink), sino->si_mode); 1404 if (mode == 0) { 1405 if (debug) 1406 printf("ino %ju, zero inode freeing bitmap\n", 1407 (uintmax_t)ino); 1408 ino_free(ino, sino->si_mode); 1409 return; 1410 } 1411 /* XXX Should be an assert? */ 1412 if (mode != sino->si_mode && debug) 1413 printf("ino %ju, mode %o != %o\n", 1414 (uintmax_t)ino, mode, sino->si_mode); 1415 if ((mode & IFMT) == IFDIR) 1416 reqlink = 2; 1417 else 1418 reqlink = 1; 1419 /* If the inode doesn't have enough links to live, free it. */ 1420 if (nlink < reqlink) { 1421 if (debug) 1422 printf("ino %ju not enough links to live %d < %d\n", 1423 (uintmax_t)ino, nlink, reqlink); 1424 ino_reclaim(ip, ino, mode); 1425 return; 1426 } 1427 /* If required write the updated link count. */ 1428 if (DIP(ip, di_nlink) == nlink) { 1429 if (debug) 1430 printf("ino %ju, link matches, skipping.\n", 1431 (uintmax_t)ino); 1432 return; 1433 } 1434 DIP_SET(ip, di_nlink, nlink); 1435 ino_dirty(ino); 1436 } 1437 1438 /* 1439 * Truncate some or all blocks in an indirect, freeing any that are required 1440 * and zeroing the indirect. 1441 */ 1442 static void 1443 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn) 1444 { 1445 ufs2_daddr_t *bap2; 1446 ufs1_daddr_t *bap1; 1447 ufs_lbn_t lbnadd; 1448 ufs2_daddr_t nblk; 1449 ufs_lbn_t next; 1450 ufs_lbn_t nlbn; 1451 int dirty; 1452 int level; 1453 int i; 1454 1455 if (blk == 0) 1456 return; 1457 dirty = 0; 1458 level = lbn_level(lbn); 1459 if (level == -1) 1460 err_suj("Invalid level for lbn %jd\n", lbn); 1461 lbnadd = 1; 1462 for (i = level; i > 0; i--) 1463 lbnadd *= NINDIR(fs); 1464 bap1 = (void *)dblk_read(blk, fs->fs_bsize); 1465 bap2 = (void *)bap1; 1466 for (i = 0; i < NINDIR(fs); i++) { 1467 if (fs->fs_magic == FS_UFS1_MAGIC) 1468 nblk = *bap1++; 1469 else 1470 nblk = *bap2++; 1471 if (nblk == 0) 1472 continue; 1473 if (level != 0) { 1474 nlbn = (lbn + 1) - (i * lbnadd); 1475 /* 1476 * Calculate the lbn of the next indirect to 1477 * determine if any of this indirect must be 1478 * reclaimed. 1479 */ 1480 next = -(lbn + level) + ((i+1) * lbnadd); 1481 if (next <= lastlbn) 1482 continue; 1483 indir_trunc(ino, nlbn, nblk, lastlbn); 1484 /* If all of this indirect was reclaimed, free it. */ 1485 nlbn = next - lbnadd; 1486 if (nlbn < lastlbn) 1487 continue; 1488 } else { 1489 nlbn = -lbn + i * lbnadd; 1490 if (nlbn < lastlbn) 1491 continue; 1492 } 1493 dirty = 1; 1494 blk_free(nblk, 0, fs->fs_frag); 1495 if (fs->fs_magic == FS_UFS1_MAGIC) 1496 *(bap1 - 1) = 0; 1497 else 1498 *(bap2 - 1) = 0; 1499 } 1500 if (dirty) 1501 dblk_dirty(blk); 1502 } 1503 1504 /* 1505 * Truncate an inode to the minimum of the given size or the last populated 1506 * block after any over size have been discarded. The kernel would allocate 1507 * the last block in the file but fsck does not and neither do we. This 1508 * code never extends files, only shrinks them. 1509 */ 1510 static void 1511 ino_trunc(ino_t ino, off_t size) 1512 { 1513 union dinode *ip; 1514 ufs2_daddr_t bn; 1515 uint64_t totalfrags; 1516 ufs_lbn_t nextlbn; 1517 ufs_lbn_t lastlbn; 1518 ufs_lbn_t tmpval; 1519 ufs_lbn_t lbn; 1520 ufs_lbn_t i; 1521 int frags; 1522 off_t cursize; 1523 off_t off; 1524 int mode; 1525 1526 ip = ino_read(ino); 1527 mode = DIP(ip, di_mode) & IFMT; 1528 cursize = DIP(ip, di_size); 1529 if (debug) 1530 printf("Truncating ino %ju, mode %o to size %jd from size %jd\n", 1531 (uintmax_t)ino, mode, size, cursize); 1532 1533 /* Skip datablocks for short links and devices. */ 1534 if (mode == 0 || mode == IFBLK || mode == IFCHR || 1535 (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) 1536 return; 1537 /* Don't extend. */ 1538 if (size > cursize) 1539 size = cursize; 1540 lastlbn = lblkno(fs, blkroundup(fs, size)); 1541 for (i = lastlbn; i < NDADDR; i++) { 1542 if (DIP(ip, di_db[i]) == 0) 1543 continue; 1544 frags = sblksize(fs, cursize, i); 1545 frags = numfrags(fs, frags); 1546 blk_free(DIP(ip, di_db[i]), 0, frags); 1547 DIP_SET(ip, di_db[i], 0); 1548 } 1549 /* 1550 * Follow indirect blocks, freeing anything required. 1551 */ 1552 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++, 1553 lbn = nextlbn) { 1554 nextlbn = lbn + tmpval; 1555 tmpval *= NINDIR(fs); 1556 /* If we're not freeing any in this indirect range skip it. */ 1557 if (lastlbn >= nextlbn) 1558 continue; 1559 if (DIP(ip, di_ib[i]) == 0) 1560 continue; 1561 indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn); 1562 /* If we freed everything in this indirect free the indir. */ 1563 if (lastlbn > lbn) 1564 continue; 1565 blk_free(DIP(ip, di_ib[i]), 0, frags); 1566 DIP_SET(ip, di_ib[i], 0); 1567 } 1568 ino_dirty(ino); 1569 /* 1570 * Now that we've freed any whole blocks that exceed the desired 1571 * truncation size, figure out how many blocks remain and what the 1572 * last populated lbn is. We will set the size to this last lbn 1573 * rather than worrying about allocating the final lbn as the kernel 1574 * would've done. This is consistent with normal fsck behavior. 1575 */ 1576 visitlbn = 0; 1577 totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1578 if (size > lblktosize(fs, visitlbn + 1)) 1579 size = lblktosize(fs, visitlbn + 1); 1580 /* 1581 * If we're truncating direct blocks we have to adjust frags 1582 * accordingly. 1583 */ 1584 if (visitlbn < NDADDR && totalfrags) { 1585 long oldspace, newspace; 1586 1587 bn = DIP(ip, di_db[visitlbn]); 1588 if (bn == 0) 1589 err_suj("Bad blk at ino %ju lbn %jd\n", 1590 (uintmax_t)ino, visitlbn); 1591 oldspace = sblksize(fs, cursize, visitlbn); 1592 newspace = sblksize(fs, size, visitlbn); 1593 if (oldspace != newspace) { 1594 bn += numfrags(fs, newspace); 1595 frags = numfrags(fs, oldspace - newspace); 1596 blk_free(bn, 0, frags); 1597 totalfrags -= frags; 1598 } 1599 } 1600 DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags)); 1601 DIP_SET(ip, di_size, size); 1602 /* 1603 * If we've truncated into the middle of a block or frag we have 1604 * to zero it here. Otherwise the file could extend into 1605 * uninitialized space later. 1606 */ 1607 off = blkoff(fs, size); 1608 if (off && DIP(ip, di_mode) != IFDIR) { 1609 uint8_t *buf; 1610 long clrsize; 1611 1612 bn = ino_blkatoff(ip, ino, visitlbn, &frags); 1613 if (bn == 0) 1614 err_suj("Block missing from ino %ju at lbn %jd\n", 1615 (uintmax_t)ino, visitlbn); 1616 clrsize = frags * fs->fs_fsize; 1617 buf = dblk_read(bn, clrsize); 1618 clrsize -= off; 1619 buf += off; 1620 bzero(buf, clrsize); 1621 dblk_dirty(bn); 1622 } 1623 return; 1624 } 1625 1626 /* 1627 * Process records available for one inode and determine whether the 1628 * link count is correct or needs adjusting. 1629 */ 1630 static void 1631 ino_check(struct suj_ino *sino) 1632 { 1633 struct suj_rec *srec; 1634 struct jrefrec *rrec; 1635 nlink_t dotlinks; 1636 int newlinks; 1637 int removes; 1638 int nlink; 1639 ino_t ino; 1640 int isdot; 1641 int isat; 1642 int mode; 1643 1644 if (sino->si_hasrecs == 0) 1645 return; 1646 ino = sino->si_ino; 1647 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; 1648 nlink = rrec->jr_nlink; 1649 newlinks = 0; 1650 dotlinks = 0; 1651 removes = sino->si_nlinkadj; 1652 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1653 rrec = (struct jrefrec *)srec->sr_rec; 1654 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, 1655 rrec->jr_ino, &mode, &isdot); 1656 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) 1657 err_suj("Inode mode/directory type mismatch %o != %o\n", 1658 mode, rrec->jr_mode); 1659 if (debug) 1660 printf("jrefrec: op %d ino %ju, nlink %d, parent %d, " 1661 "diroff %jd, mode %o, isat %d, isdot %d\n", 1662 rrec->jr_op, (uintmax_t)rrec->jr_ino, 1663 rrec->jr_nlink, rrec->jr_parent, rrec->jr_diroff, 1664 rrec->jr_mode, isat, isdot); 1665 mode = rrec->jr_mode & IFMT; 1666 if (rrec->jr_op == JOP_REMREF) 1667 removes++; 1668 newlinks += isat; 1669 if (isdot) 1670 dotlinks += isat; 1671 } 1672 /* 1673 * The number of links that remain are the starting link count 1674 * subtracted by the total number of removes with the total 1675 * links discovered back in. An incomplete remove thus 1676 * makes no change to the link count but an add increases 1677 * by one. 1678 */ 1679 if (debug) 1680 printf("ino %ju nlink %d newlinks %d removes %d dotlinks %d\n", 1681 (uintmax_t)ino, nlink, newlinks, removes, dotlinks); 1682 nlink += newlinks; 1683 nlink -= removes; 1684 sino->si_linkadj = 1; 1685 sino->si_nlink = nlink; 1686 sino->si_dotlinks = dotlinks; 1687 sino->si_mode = mode; 1688 ino_adjust(sino); 1689 } 1690 1691 /* 1692 * Process records available for one block and determine whether it is 1693 * still allocated and whether the owning inode needs to be updated or 1694 * a free completed. 1695 */ 1696 static void 1697 blk_check(struct suj_blk *sblk) 1698 { 1699 struct suj_rec *srec; 1700 struct jblkrec *brec; 1701 struct suj_ino *sino; 1702 ufs2_daddr_t blk; 1703 int mask; 1704 int frags; 1705 int isat; 1706 1707 /* 1708 * Each suj_blk actually contains records for any fragments in that 1709 * block. As a result we must evaluate each record individually. 1710 */ 1711 sino = NULL; 1712 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1713 brec = (struct jblkrec *)srec->sr_rec; 1714 frags = brec->jb_frags; 1715 blk = brec->jb_blkno + brec->jb_oldfrags; 1716 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); 1717 if (sino == NULL || sino->si_ino != brec->jb_ino) { 1718 sino = ino_lookup(brec->jb_ino, 1); 1719 sino->si_blkadj = 1; 1720 } 1721 if (debug) 1722 printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n", 1723 brec->jb_op, blk, (uintmax_t)brec->jb_ino, 1724 brec->jb_lbn, brec->jb_frags, isat, frags); 1725 /* 1726 * If we found the block at this address we still have to 1727 * determine if we need to free the tail end that was 1728 * added by adding contiguous fragments from the same block. 1729 */ 1730 if (isat == 1) { 1731 if (frags == brec->jb_frags) 1732 continue; 1733 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, 1734 brec->jb_frags); 1735 mask >>= frags; 1736 blk += frags; 1737 frags = brec->jb_frags - frags; 1738 blk_free(blk, mask, frags); 1739 continue; 1740 } 1741 /* 1742 * The block wasn't found, attempt to free it. It won't be 1743 * freed if it was actually reallocated. If this was an 1744 * allocation we don't want to follow indirects as they 1745 * may not be written yet. Any children of the indirect will 1746 * have their own records. If it's a free we need to 1747 * recursively free children. 1748 */ 1749 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, 1750 brec->jb_op == JOP_FREEBLK); 1751 } 1752 } 1753 1754 /* 1755 * Walk the list of inode records for this cg and resolve moved and duplicate 1756 * inode references now that we have a complete picture. 1757 */ 1758 static void 1759 cg_build(struct suj_cg *sc) 1760 { 1761 struct suj_ino *sino; 1762 int i; 1763 1764 for (i = 0; i < SUJ_HASHSIZE; i++) 1765 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1766 ino_build(sino); 1767 } 1768 1769 /* 1770 * Handle inodes requiring truncation. This must be done prior to 1771 * looking up any inodes in directories. 1772 */ 1773 static void 1774 cg_trunc(struct suj_cg *sc) 1775 { 1776 struct suj_ino *sino; 1777 int i; 1778 1779 for (i = 0; i < SUJ_HASHSIZE; i++) { 1780 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1781 if (sino->si_trunc) { 1782 ino_trunc(sino->si_ino, 1783 sino->si_trunc->jt_size); 1784 sino->si_blkadj = 0; 1785 sino->si_trunc = NULL; 1786 } 1787 if (sino->si_blkadj) 1788 ino_adjblks(sino); 1789 } 1790 } 1791 } 1792 1793 static void 1794 cg_adj_blk(struct suj_cg *sc) 1795 { 1796 struct suj_ino *sino; 1797 int i; 1798 1799 for (i = 0; i < SUJ_HASHSIZE; i++) { 1800 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1801 if (sino->si_blkadj) 1802 ino_adjblks(sino); 1803 } 1804 } 1805 } 1806 1807 /* 1808 * Free any partially allocated blocks and then resolve inode block 1809 * counts. 1810 */ 1811 static void 1812 cg_check_blk(struct suj_cg *sc) 1813 { 1814 struct suj_blk *sblk; 1815 int i; 1816 1817 1818 for (i = 0; i < SUJ_HASHSIZE; i++) 1819 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) 1820 blk_check(sblk); 1821 } 1822 1823 /* 1824 * Walk the list of inode records for this cg, recovering any 1825 * changes which were not complete at the time of crash. 1826 */ 1827 static void 1828 cg_check_ino(struct suj_cg *sc) 1829 { 1830 struct suj_ino *sino; 1831 int i; 1832 1833 for (i = 0; i < SUJ_HASHSIZE; i++) 1834 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1835 ino_check(sino); 1836 } 1837 1838 /* 1839 * Write a potentially dirty cg. Recalculate the summary information and 1840 * update the superblock summary. 1841 */ 1842 static void 1843 cg_write(struct suj_cg *sc) 1844 { 1845 ufs1_daddr_t fragno, cgbno, maxbno; 1846 u_int8_t *blksfree; 1847 struct cg *cgp; 1848 int blk; 1849 int i; 1850 1851 if (sc->sc_dirty == 0) 1852 return; 1853 /* 1854 * Fix the frag and cluster summary. 1855 */ 1856 cgp = sc->sc_cgp; 1857 cgp->cg_cs.cs_nbfree = 0; 1858 cgp->cg_cs.cs_nffree = 0; 1859 bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum)); 1860 maxbno = fragstoblks(fs, fs->fs_fpg); 1861 if (fs->fs_contigsumsize > 0) { 1862 for (i = 1; i <= fs->fs_contigsumsize; i++) 1863 cg_clustersum(cgp)[i] = 0; 1864 bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT)); 1865 } 1866 blksfree = cg_blksfree(cgp); 1867 for (cgbno = 0; cgbno < maxbno; cgbno++) { 1868 if (ffs_isfreeblock(fs, blksfree, cgbno)) 1869 continue; 1870 if (ffs_isblock(fs, blksfree, cgbno)) { 1871 ffs_clusteracct(fs, cgp, cgbno, 1); 1872 cgp->cg_cs.cs_nbfree++; 1873 continue; 1874 } 1875 fragno = blkstofrags(fs, cgbno); 1876 blk = blkmap(fs, blksfree, fragno); 1877 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1878 for (i = 0; i < fs->fs_frag; i++) 1879 if (isset(blksfree, fragno + i)) 1880 cgp->cg_cs.cs_nffree++; 1881 } 1882 /* 1883 * Update the superblock cg summary from our now correct values 1884 * before writing the block. 1885 */ 1886 fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs; 1887 if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf, 1888 fs->fs_bsize) == -1) 1889 err_suj("Unable to write cylinder group %d\n", sc->sc_cgx); 1890 } 1891 1892 /* 1893 * Write out any modified inodes. 1894 */ 1895 static void 1896 cg_write_inos(struct suj_cg *sc) 1897 { 1898 struct ino_blk *iblk; 1899 int i; 1900 1901 for (i = 0; i < SUJ_HASHSIZE; i++) 1902 LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next) 1903 if (iblk->ib_dirty) 1904 iblk_write(iblk); 1905 } 1906 1907 static void 1908 cg_apply(void (*apply)(struct suj_cg *)) 1909 { 1910 struct suj_cg *scg; 1911 int i; 1912 1913 for (i = 0; i < SUJ_HASHSIZE; i++) 1914 LIST_FOREACH(scg, &cghash[i], sc_next) 1915 apply(scg); 1916 } 1917 1918 /* 1919 * Process the unlinked but referenced file list. Freeing all inodes. 1920 */ 1921 static void 1922 ino_unlinked(void) 1923 { 1924 union dinode *ip; 1925 uint16_t mode; 1926 ino_t inon; 1927 ino_t ino; 1928 1929 ino = fs->fs_sujfree; 1930 fs->fs_sujfree = 0; 1931 while (ino != 0) { 1932 ip = ino_read(ino); 1933 mode = DIP(ip, di_mode) & IFMT; 1934 inon = DIP(ip, di_freelink); 1935 DIP_SET(ip, di_freelink, 0); 1936 /* 1937 * XXX Should this be an errx? 1938 */ 1939 if (DIP(ip, di_nlink) == 0) { 1940 if (debug) 1941 printf("Freeing unlinked ino %ju mode %o\n", 1942 (uintmax_t)ino, mode); 1943 ino_reclaim(ip, ino, mode); 1944 } else if (debug) 1945 printf("Skipping ino %ju mode %o with link %d\n", 1946 (uintmax_t)ino, mode, DIP(ip, di_nlink)); 1947 ino = inon; 1948 } 1949 } 1950 1951 /* 1952 * Append a new record to the list of records requiring processing. 1953 */ 1954 static void 1955 ino_append(union jrec *rec) 1956 { 1957 struct jrefrec *refrec; 1958 struct jmvrec *mvrec; 1959 struct suj_ino *sino; 1960 struct suj_rec *srec; 1961 1962 mvrec = &rec->rec_jmvrec; 1963 refrec = &rec->rec_jrefrec; 1964 if (debug && mvrec->jm_op == JOP_MVREF) 1965 printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n", 1966 mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff, 1967 mvrec->jm_oldoff); 1968 else if (debug && 1969 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) 1970 printf("ino ref: op %d, ino %d, nlink %d, " 1971 "parent %d, diroff %jd\n", 1972 refrec->jr_op, refrec->jr_ino, refrec->jr_nlink, 1973 refrec->jr_parent, refrec->jr_diroff); 1974 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); 1975 sino->si_hasrecs = 1; 1976 srec = errmalloc(sizeof(*srec)); 1977 srec->sr_rec = rec; 1978 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); 1979 } 1980 1981 /* 1982 * Add a reference adjustment to the sino list and eliminate dups. The 1983 * primary loop in ino_build_ref() checks for dups but new ones may be 1984 * created as a result of offset adjustments. 1985 */ 1986 static void 1987 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) 1988 { 1989 struct jrefrec *refrec; 1990 struct suj_rec *srn; 1991 struct jrefrec *rrn; 1992 1993 refrec = (struct jrefrec *)srec->sr_rec; 1994 /* 1995 * We walk backwards so that the oldest link count is preserved. If 1996 * an add record conflicts with a remove keep the remove. Redundant 1997 * removes are eliminated in ino_build_ref. Otherwise we keep the 1998 * oldest record at a given location. 1999 */ 2000 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; 2001 srn = TAILQ_PREV(srn, srechd, sr_next)) { 2002 rrn = (struct jrefrec *)srn->sr_rec; 2003 if (rrn->jr_parent != refrec->jr_parent || 2004 rrn->jr_diroff != refrec->jr_diroff) 2005 continue; 2006 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { 2007 rrn->jr_mode = refrec->jr_mode; 2008 return; 2009 } 2010 /* 2011 * Adding a remove. 2012 * 2013 * Replace the record in place with the old nlink in case 2014 * we replace the head of the list. Abandon srec as a dup. 2015 */ 2016 refrec->jr_nlink = rrn->jr_nlink; 2017 srn->sr_rec = srec->sr_rec; 2018 return; 2019 } 2020 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); 2021 } 2022 2023 /* 2024 * Create a duplicate of a reference at a previous location. 2025 */ 2026 static void 2027 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) 2028 { 2029 struct jrefrec *rrn; 2030 struct suj_rec *srn; 2031 2032 rrn = errmalloc(sizeof(*refrec)); 2033 *rrn = *refrec; 2034 rrn->jr_op = JOP_ADDREF; 2035 rrn->jr_diroff = diroff; 2036 srn = errmalloc(sizeof(*srn)); 2037 srn->sr_rec = (union jrec *)rrn; 2038 ino_add_ref(sino, srn); 2039 } 2040 2041 /* 2042 * Add a reference to the list at all known locations. We follow the offset 2043 * changes for a single instance and create duplicate add refs at each so 2044 * that we can tolerate any version of the directory block. Eliminate 2045 * removes which collide with adds that are seen in the journal. They should 2046 * not adjust the link count down. 2047 */ 2048 static void 2049 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) 2050 { 2051 struct jrefrec *refrec; 2052 struct jmvrec *mvrec; 2053 struct suj_rec *srp; 2054 struct suj_rec *srn; 2055 struct jrefrec *rrn; 2056 off_t diroff; 2057 2058 refrec = (struct jrefrec *)srec->sr_rec; 2059 /* 2060 * Search for a mvrec that matches this offset. Whether it's an add 2061 * or a remove we can delete the mvref after creating a dup record in 2062 * the old location. 2063 */ 2064 if (!TAILQ_EMPTY(&sino->si_movs)) { 2065 diroff = refrec->jr_diroff; 2066 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { 2067 srp = TAILQ_PREV(srn, srechd, sr_next); 2068 mvrec = (struct jmvrec *)srn->sr_rec; 2069 if (mvrec->jm_parent != refrec->jr_parent || 2070 mvrec->jm_newoff != diroff) 2071 continue; 2072 diroff = mvrec->jm_oldoff; 2073 TAILQ_REMOVE(&sino->si_movs, srn, sr_next); 2074 free(srn); 2075 ino_dup_ref(sino, refrec, diroff); 2076 } 2077 } 2078 /* 2079 * If a remove wasn't eliminated by an earlier add just append it to 2080 * the list. 2081 */ 2082 if (refrec->jr_op == JOP_REMREF) { 2083 ino_add_ref(sino, srec); 2084 return; 2085 } 2086 /* 2087 * Walk the list of records waiting to be added to the list. We 2088 * must check for moves that apply to our current offset and remove 2089 * them from the list. Remove any duplicates to eliminate removes 2090 * with corresponding adds. 2091 */ 2092 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { 2093 switch (srn->sr_rec->rec_jrefrec.jr_op) { 2094 case JOP_ADDREF: 2095 /* 2096 * This should actually be an error we should 2097 * have a remove for every add journaled. 2098 */ 2099 rrn = (struct jrefrec *)srn->sr_rec; 2100 if (rrn->jr_parent != refrec->jr_parent || 2101 rrn->jr_diroff != refrec->jr_diroff) 2102 break; 2103 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2104 break; 2105 case JOP_REMREF: 2106 /* 2107 * Once we remove the current iteration of the 2108 * record at this address we're done. 2109 */ 2110 rrn = (struct jrefrec *)srn->sr_rec; 2111 if (rrn->jr_parent != refrec->jr_parent || 2112 rrn->jr_diroff != refrec->jr_diroff) 2113 break; 2114 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2115 ino_add_ref(sino, srec); 2116 return; 2117 case JOP_MVREF: 2118 /* 2119 * Update our diroff based on any moves that match 2120 * and remove the move. 2121 */ 2122 mvrec = (struct jmvrec *)srn->sr_rec; 2123 if (mvrec->jm_parent != refrec->jr_parent || 2124 mvrec->jm_oldoff != refrec->jr_diroff) 2125 break; 2126 ino_dup_ref(sino, refrec, mvrec->jm_oldoff); 2127 refrec->jr_diroff = mvrec->jm_newoff; 2128 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 2129 break; 2130 default: 2131 err_suj("ino_build_ref: Unknown op %d\n", 2132 srn->sr_rec->rec_jrefrec.jr_op); 2133 } 2134 } 2135 ino_add_ref(sino, srec); 2136 } 2137 2138 /* 2139 * Walk the list of new records and add them in-order resolving any 2140 * dups and adjusted offsets. 2141 */ 2142 static void 2143 ino_build(struct suj_ino *sino) 2144 { 2145 struct suj_rec *srec; 2146 2147 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { 2148 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); 2149 switch (srec->sr_rec->rec_jrefrec.jr_op) { 2150 case JOP_ADDREF: 2151 case JOP_REMREF: 2152 ino_build_ref(sino, srec); 2153 break; 2154 case JOP_MVREF: 2155 /* 2156 * Add this mvrec to the queue of pending mvs. 2157 */ 2158 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); 2159 break; 2160 default: 2161 err_suj("ino_build: Unknown op %d\n", 2162 srec->sr_rec->rec_jrefrec.jr_op); 2163 } 2164 } 2165 if (TAILQ_EMPTY(&sino->si_recs)) 2166 sino->si_hasrecs = 0; 2167 } 2168 2169 /* 2170 * Modify journal records so they refer to the base block number 2171 * and a start and end frag range. This is to facilitate the discovery 2172 * of overlapping fragment allocations. 2173 */ 2174 static void 2175 blk_build(struct jblkrec *blkrec) 2176 { 2177 struct suj_rec *srec; 2178 struct suj_blk *sblk; 2179 struct jblkrec *blkrn; 2180 ufs2_daddr_t blk; 2181 int frag; 2182 2183 if (debug) 2184 printf("blk_build: op %d blkno %jd frags %d oldfrags %d " 2185 "ino %d lbn %jd\n", 2186 blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags, 2187 blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn); 2188 2189 blk = blknum(fs, blkrec->jb_blkno); 2190 frag = fragnum(fs, blkrec->jb_blkno); 2191 sblk = blk_lookup(blk, 1); 2192 /* 2193 * Rewrite the record using oldfrags to indicate the offset into 2194 * the block. Leave jb_frags as the actual allocated count. 2195 */ 2196 blkrec->jb_blkno -= frag; 2197 blkrec->jb_oldfrags = frag; 2198 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) 2199 err_suj("Invalid fragment count %d oldfrags %d\n", 2200 blkrec->jb_frags, frag); 2201 /* 2202 * Detect dups. If we detect a dup we always discard the oldest 2203 * record as it is superseded by the new record. This speeds up 2204 * later stages but also eliminates free records which are used 2205 * to indicate that the contents of indirects can be trusted. 2206 */ 2207 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 2208 blkrn = (struct jblkrec *)srec->sr_rec; 2209 if (blkrn->jb_ino != blkrec->jb_ino || 2210 blkrn->jb_lbn != blkrec->jb_lbn || 2211 blkrn->jb_blkno != blkrec->jb_blkno || 2212 blkrn->jb_frags != blkrec->jb_frags || 2213 blkrn->jb_oldfrags != blkrec->jb_oldfrags) 2214 continue; 2215 if (debug) 2216 printf("Removed dup.\n"); 2217 /* Discard the free which is a dup with an alloc. */ 2218 if (blkrec->jb_op == JOP_FREEBLK) 2219 return; 2220 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); 2221 free(srec); 2222 break; 2223 } 2224 srec = errmalloc(sizeof(*srec)); 2225 srec->sr_rec = (union jrec *)blkrec; 2226 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); 2227 } 2228 2229 static void 2230 ino_build_trunc(struct jtrncrec *rec) 2231 { 2232 struct suj_ino *sino; 2233 2234 if (debug) 2235 printf("ino_build_trunc: op %d ino %d, size %jd\n", 2236 rec->jt_op, rec->jt_ino, rec->jt_size); 2237 sino = ino_lookup(rec->jt_ino, 1); 2238 if (rec->jt_op == JOP_SYNC) { 2239 sino->si_trunc = NULL; 2240 return; 2241 } 2242 if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size) 2243 sino->si_trunc = rec; 2244 } 2245 2246 /* 2247 * Build up tables of the operations we need to recover. 2248 */ 2249 static void 2250 suj_build(void) 2251 { 2252 struct suj_seg *seg; 2253 union jrec *rec; 2254 int off; 2255 int i; 2256 2257 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2258 if (debug) 2259 printf("seg %jd has %d records, oldseq %jd.\n", 2260 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, 2261 seg->ss_rec.jsr_oldest); 2262 off = 0; 2263 rec = (union jrec *)seg->ss_blk; 2264 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { 2265 /* skip the segrec. */ 2266 if ((off % real_dev_bsize) == 0) 2267 continue; 2268 switch (rec->rec_jrefrec.jr_op) { 2269 case JOP_ADDREF: 2270 case JOP_REMREF: 2271 case JOP_MVREF: 2272 ino_append(rec); 2273 break; 2274 case JOP_NEWBLK: 2275 case JOP_FREEBLK: 2276 blk_build((struct jblkrec *)rec); 2277 break; 2278 case JOP_TRUNC: 2279 case JOP_SYNC: 2280 ino_build_trunc((struct jtrncrec *)rec); 2281 break; 2282 default: 2283 err_suj("Unknown journal operation %d (%d)\n", 2284 rec->rec_jrefrec.jr_op, off); 2285 } 2286 i++; 2287 } 2288 } 2289 } 2290 2291 /* 2292 * Prune the journal segments to those we care about based on the 2293 * oldest sequence in the newest segment. Order the segment list 2294 * based on sequence number. 2295 */ 2296 static void 2297 suj_prune(void) 2298 { 2299 struct suj_seg *seg; 2300 struct suj_seg *segn; 2301 uint64_t newseq; 2302 int discard; 2303 2304 if (debug) 2305 printf("Pruning up to %jd\n", oldseq); 2306 /* First free the expired segments. */ 2307 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2308 if (seg->ss_rec.jsr_seq >= oldseq) 2309 continue; 2310 TAILQ_REMOVE(&allsegs, seg, ss_next); 2311 free(seg->ss_blk); 2312 free(seg); 2313 } 2314 /* Next ensure that segments are ordered properly. */ 2315 seg = TAILQ_FIRST(&allsegs); 2316 if (seg == NULL) { 2317 if (debug) 2318 printf("Empty journal\n"); 2319 return; 2320 } 2321 newseq = seg->ss_rec.jsr_seq; 2322 for (;;) { 2323 seg = TAILQ_LAST(&allsegs, seghd); 2324 if (seg->ss_rec.jsr_seq >= newseq) 2325 break; 2326 TAILQ_REMOVE(&allsegs, seg, ss_next); 2327 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); 2328 newseq = seg->ss_rec.jsr_seq; 2329 2330 } 2331 if (newseq != oldseq) { 2332 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2333 printf("%jd, ", seg->ss_rec.jsr_seq); 2334 } 2335 printf("\n"); 2336 err_suj("Journal file sequence mismatch %jd != %jd\n", 2337 newseq, oldseq); 2338 } 2339 /* 2340 * The kernel may asynchronously write segments which can create 2341 * gaps in the sequence space. Throw away any segments after the 2342 * gap as the kernel guarantees only those that are contiguously 2343 * reachable are marked as completed. 2344 */ 2345 discard = 0; 2346 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2347 if (!discard && newseq++ == seg->ss_rec.jsr_seq) { 2348 jrecs += seg->ss_rec.jsr_cnt; 2349 jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize; 2350 continue; 2351 } 2352 discard = 1; 2353 if (debug) 2354 printf("Journal order mismatch %jd != %jd pruning\n", 2355 newseq-1, seg->ss_rec.jsr_seq); 2356 TAILQ_REMOVE(&allsegs, seg, ss_next); 2357 free(seg->ss_blk); 2358 free(seg); 2359 } 2360 if (debug) 2361 printf("Processing journal segments from %jd to %jd\n", 2362 oldseq, newseq-1); 2363 } 2364 2365 /* 2366 * Verify the journal inode before attempting to read records. 2367 */ 2368 static int 2369 suj_verifyino(union dinode *ip) 2370 { 2371 2372 if (DIP(ip, di_nlink) != 1) { 2373 printf("Invalid link count %d for journal inode %ju\n", 2374 DIP(ip, di_nlink), (uintmax_t)sujino); 2375 return (-1); 2376 } 2377 2378 if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != 2379 (SF_IMMUTABLE | SF_NOUNLINK)) { 2380 printf("Invalid flags 0x%X for journal inode %ju\n", 2381 DIP(ip, di_flags), (uintmax_t)sujino); 2382 return (-1); 2383 } 2384 2385 if (DIP(ip, di_mode) != (IFREG | IREAD)) { 2386 printf("Invalid mode %o for journal inode %ju\n", 2387 DIP(ip, di_mode), (uintmax_t)sujino); 2388 return (-1); 2389 } 2390 2391 if (DIP(ip, di_size) < SUJ_MIN) { 2392 printf("Invalid size %jd for journal inode %ju\n", 2393 DIP(ip, di_size), (uintmax_t)sujino); 2394 return (-1); 2395 } 2396 2397 if (DIP(ip, di_modrev) != fs->fs_mtime) { 2398 printf("Journal timestamp does not match fs mount time\n"); 2399 return (-1); 2400 } 2401 2402 return (0); 2403 } 2404 2405 struct jblocks { 2406 struct jextent *jb_extent; /* Extent array. */ 2407 int jb_avail; /* Available extents. */ 2408 int jb_used; /* Last used extent. */ 2409 int jb_head; /* Allocator head. */ 2410 int jb_off; /* Allocator extent offset. */ 2411 }; 2412 struct jextent { 2413 ufs2_daddr_t je_daddr; /* Disk block address. */ 2414 int je_blocks; /* Disk block count. */ 2415 }; 2416 2417 static struct jblocks *suj_jblocks; 2418 2419 static struct jblocks * 2420 jblocks_create(void) 2421 { 2422 struct jblocks *jblocks; 2423 int size; 2424 2425 jblocks = errmalloc(sizeof(*jblocks)); 2426 jblocks->jb_avail = 10; 2427 jblocks->jb_used = 0; 2428 jblocks->jb_head = 0; 2429 jblocks->jb_off = 0; 2430 size = sizeof(struct jextent) * jblocks->jb_avail; 2431 jblocks->jb_extent = errmalloc(size); 2432 bzero(jblocks->jb_extent, size); 2433 2434 return (jblocks); 2435 } 2436 2437 /* 2438 * Return the next available disk block and the amount of contiguous 2439 * free space it contains. 2440 */ 2441 static ufs2_daddr_t 2442 jblocks_next(struct jblocks *jblocks, int bytes, int *actual) 2443 { 2444 struct jextent *jext; 2445 ufs2_daddr_t daddr; 2446 int freecnt; 2447 int blocks; 2448 2449 blocks = bytes / disk->d_bsize; 2450 jext = &jblocks->jb_extent[jblocks->jb_head]; 2451 freecnt = jext->je_blocks - jblocks->jb_off; 2452 if (freecnt == 0) { 2453 jblocks->jb_off = 0; 2454 if (++jblocks->jb_head > jblocks->jb_used) 2455 return (0); 2456 jext = &jblocks->jb_extent[jblocks->jb_head]; 2457 freecnt = jext->je_blocks; 2458 } 2459 if (freecnt > blocks) 2460 freecnt = blocks; 2461 *actual = freecnt * disk->d_bsize; 2462 daddr = jext->je_daddr + jblocks->jb_off; 2463 2464 return (daddr); 2465 } 2466 2467 /* 2468 * Advance the allocation head by a specified number of bytes, consuming 2469 * one journal segment. 2470 */ 2471 static void 2472 jblocks_advance(struct jblocks *jblocks, int bytes) 2473 { 2474 2475 jblocks->jb_off += bytes / disk->d_bsize; 2476 } 2477 2478 static void 2479 jblocks_destroy(struct jblocks *jblocks) 2480 { 2481 2482 free(jblocks->jb_extent); 2483 free(jblocks); 2484 } 2485 2486 static void 2487 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) 2488 { 2489 struct jextent *jext; 2490 int size; 2491 2492 jext = &jblocks->jb_extent[jblocks->jb_used]; 2493 /* Adding the first block. */ 2494 if (jext->je_daddr == 0) { 2495 jext->je_daddr = daddr; 2496 jext->je_blocks = blocks; 2497 return; 2498 } 2499 /* Extending the last extent. */ 2500 if (jext->je_daddr + jext->je_blocks == daddr) { 2501 jext->je_blocks += blocks; 2502 return; 2503 } 2504 /* Adding a new extent. */ 2505 if (++jblocks->jb_used == jblocks->jb_avail) { 2506 jblocks->jb_avail *= 2; 2507 size = sizeof(struct jextent) * jblocks->jb_avail; 2508 jext = errmalloc(size); 2509 bzero(jext, size); 2510 bcopy(jblocks->jb_extent, jext, 2511 sizeof(struct jextent) * jblocks->jb_used); 2512 free(jblocks->jb_extent); 2513 jblocks->jb_extent = jext; 2514 } 2515 jext = &jblocks->jb_extent[jblocks->jb_used]; 2516 jext->je_daddr = daddr; 2517 jext->je_blocks = blocks; 2518 2519 return; 2520 } 2521 2522 /* 2523 * Add a file block from the journal to the extent map. We can't read 2524 * each file block individually because the kernel treats it as a circular 2525 * buffer and segments may span mutliple contiguous blocks. 2526 */ 2527 static void 2528 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2529 { 2530 2531 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); 2532 } 2533 2534 static void 2535 suj_read(void) 2536 { 2537 uint8_t block[1 * 1024 * 1024]; 2538 struct suj_seg *seg; 2539 struct jsegrec *recn; 2540 struct jsegrec *rec; 2541 ufs2_daddr_t blk; 2542 int readsize; 2543 int blocks; 2544 int recsize; 2545 int size; 2546 int i; 2547 2548 /* 2549 * Read records until we exhaust the journal space. If we find 2550 * an invalid record we start searching for a valid segment header 2551 * at the next block. This is because we don't have a head/tail 2552 * pointer and must recover the information indirectly. At the gap 2553 * between the head and tail we won't necessarily have a valid 2554 * segment. 2555 */ 2556 restart: 2557 for (;;) { 2558 size = sizeof(block); 2559 blk = jblocks_next(suj_jblocks, size, &readsize); 2560 if (blk == 0) 2561 return; 2562 size = readsize; 2563 /* 2564 * Read 1MB at a time and scan for records within this block. 2565 */ 2566 if (bread(disk, blk, &block, size) == -1) { 2567 err_suj("Error reading journal block %jd\n", 2568 (intmax_t)blk); 2569 } 2570 for (rec = (void *)block; size; size -= recsize, 2571 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { 2572 recsize = real_dev_bsize; 2573 if (rec->jsr_time != fs->fs_mtime) { 2574 if (debug) 2575 printf("Rec time %jd != fs mtime %jd\n", 2576 rec->jsr_time, fs->fs_mtime); 2577 jblocks_advance(suj_jblocks, recsize); 2578 continue; 2579 } 2580 if (rec->jsr_cnt == 0) { 2581 if (debug) 2582 printf("Found illegal count %d\n", 2583 rec->jsr_cnt); 2584 jblocks_advance(suj_jblocks, recsize); 2585 continue; 2586 } 2587 blocks = rec->jsr_blocks; 2588 recsize = blocks * real_dev_bsize; 2589 if (recsize > size) { 2590 /* 2591 * We may just have run out of buffer, restart 2592 * the loop to re-read from this spot. 2593 */ 2594 if (size < fs->fs_bsize && 2595 size != readsize && 2596 recsize <= fs->fs_bsize) 2597 goto restart; 2598 if (debug) 2599 printf("Found invalid segsize %d > %d\n", 2600 recsize, size); 2601 recsize = real_dev_bsize; 2602 jblocks_advance(suj_jblocks, recsize); 2603 continue; 2604 } 2605 /* 2606 * Verify that all blocks in the segment are present. 2607 */ 2608 for (i = 1; i < blocks; i++) { 2609 recn = (void *)((uintptr_t)rec) + i * 2610 real_dev_bsize; 2611 if (recn->jsr_seq == rec->jsr_seq && 2612 recn->jsr_time == rec->jsr_time) 2613 continue; 2614 if (debug) 2615 printf("Incomplete record %jd (%d)\n", 2616 rec->jsr_seq, i); 2617 recsize = i * real_dev_bsize; 2618 jblocks_advance(suj_jblocks, recsize); 2619 goto restart; 2620 } 2621 seg = errmalloc(sizeof(*seg)); 2622 seg->ss_blk = errmalloc(recsize); 2623 seg->ss_rec = *rec; 2624 bcopy((void *)rec, seg->ss_blk, recsize); 2625 if (rec->jsr_oldest > oldseq) 2626 oldseq = rec->jsr_oldest; 2627 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); 2628 jblocks_advance(suj_jblocks, recsize); 2629 } 2630 } 2631 } 2632 2633 /* 2634 * Search a directory block for the SUJ_FILE. 2635 */ 2636 static void 2637 suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2638 { 2639 char block[MAXBSIZE]; 2640 struct direct *dp; 2641 int bytes; 2642 int off; 2643 2644 if (sujino) 2645 return; 2646 bytes = lfragtosize(fs, frags); 2647 if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0) 2648 err_suj("Failed to read ROOTINO directory block %jd\n", blk); 2649 for (off = 0; off < bytes; off += dp->d_reclen) { 2650 dp = (struct direct *)&block[off]; 2651 if (dp->d_reclen == 0) 2652 break; 2653 if (dp->d_ino == 0) 2654 continue; 2655 if (dp->d_namlen != strlen(SUJ_FILE)) 2656 continue; 2657 if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0) 2658 continue; 2659 sujino = dp->d_ino; 2660 return; 2661 } 2662 } 2663 2664 /* 2665 * Orchestrate the verification of a filesystem via the softupdates journal. 2666 */ 2667 int 2668 suj_check(const char *filesys) 2669 { 2670 union dinode *jip; 2671 union dinode *ip; 2672 uint64_t blocks; 2673 int retval; 2674 struct suj_seg *seg; 2675 struct suj_seg *segn; 2676 2677 initsuj(); 2678 opendisk(filesys); 2679 2680 /* 2681 * Set an exit point when SUJ check failed 2682 */ 2683 retval = setjmp(jmpbuf); 2684 if (retval != 0) { 2685 pwarn("UNEXPECTED SU+J INCONSISTENCY\n"); 2686 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2687 TAILQ_REMOVE(&allsegs, seg, ss_next); 2688 free(seg->ss_blk); 2689 free(seg); 2690 } 2691 if (reply("FALLBACK TO FULL FSCK") == 0) { 2692 ckfini(0); 2693 exit(EEXIT); 2694 } else 2695 return (-1); 2696 } 2697 2698 /* 2699 * Find the journal inode. 2700 */ 2701 ip = ino_read(ROOTINO); 2702 sujino = 0; 2703 ino_visit(ip, ROOTINO, suj_find, 0); 2704 if (sujino == 0) { 2705 printf("Journal inode removed. Use tunefs to re-create.\n"); 2706 sblock.fs_flags &= ~FS_SUJ; 2707 sblock.fs_sujfree = 0; 2708 return (-1); 2709 } 2710 /* 2711 * Fetch the journal inode and verify it. 2712 */ 2713 jip = ino_read(sujino); 2714 printf("** SU+J Recovering %s\n", filesys); 2715 if (suj_verifyino(jip) != 0) 2716 return (-1); 2717 /* 2718 * Build a list of journal blocks in jblocks before parsing the 2719 * available journal blocks in with suj_read(). 2720 */ 2721 printf("** Reading %jd byte journal from inode %ju.\n", 2722 DIP(jip, di_size), (uintmax_t)sujino); 2723 suj_jblocks = jblocks_create(); 2724 blocks = ino_visit(jip, sujino, suj_add_block, 0); 2725 if (blocks != numfrags(fs, DIP(jip, di_size))) { 2726 printf("Sparse journal inode %ju.\n", (uintmax_t)sujino); 2727 return (-1); 2728 } 2729 suj_read(); 2730 jblocks_destroy(suj_jblocks); 2731 suj_jblocks = NULL; 2732 if (preen || reply("RECOVER")) { 2733 printf("** Building recovery table.\n"); 2734 suj_prune(); 2735 suj_build(); 2736 cg_apply(cg_build); 2737 printf("** Resolving unreferenced inode list.\n"); 2738 ino_unlinked(); 2739 printf("** Processing journal entries.\n"); 2740 cg_apply(cg_trunc); 2741 cg_apply(cg_check_blk); 2742 cg_apply(cg_adj_blk); 2743 cg_apply(cg_check_ino); 2744 } 2745 if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0) 2746 return (0); 2747 /* 2748 * To remain idempotent with partial truncations the free bitmaps 2749 * must be written followed by indirect blocks and lastly inode 2750 * blocks. This preserves access to the modified pointers until 2751 * they are freed. 2752 */ 2753 cg_apply(cg_write); 2754 dblk_write(); 2755 cg_apply(cg_write_inos); 2756 /* Write back superblock. */ 2757 closedisk(filesys); 2758 if (jrecs > 0 || jbytes > 0) { 2759 printf("** %jd journal records in %jd bytes for %.2f%% utilization\n", 2760 jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); 2761 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n", 2762 freeinos, freedir, freeblocks, freefrags); 2763 } 2764 2765 return (0); 2766 } 2767 2768 static void 2769 initsuj(void) 2770 { 2771 int i; 2772 2773 for (i = 0; i < SUJ_HASHSIZE; i++) { 2774 LIST_INIT(&cghash[i]); 2775 LIST_INIT(&dbhash[i]); 2776 } 2777 lastcg = NULL; 2778 lastblk = NULL; 2779 TAILQ_INIT(&allsegs); 2780 oldseq = 0; 2781 disk = NULL; 2782 fs = NULL; 2783 sujino = 0; 2784 freefrags = 0; 2785 freeblocks = 0; 2786 freeinos = 0; 2787 freedir = 0; 2788 jbytes = 0; 2789 jrecs = 0; 2790 suj_jblocks = NULL; 2791 } 2792