xref: /freebsd/sbin/fsck_ffs/suj.c (revision ec965063070e5753c166cf592c9336444b74720a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/disk.h>
34 #include <sys/disklabel.h>
35 #include <sys/mount.h>
36 #include <sys/stat.h>
37 
38 #include <ufs/ufs/extattr.h>
39 #include <ufs/ufs/quota.h>
40 #include <ufs/ufs/ufsmount.h>
41 #include <ufs/ufs/dinode.h>
42 #include <ufs/ufs/dir.h>
43 #include <ufs/ffs/fs.h>
44 
45 #include <assert.h>
46 #include <err.h>
47 #include <setjmp.h>
48 #include <stdarg.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <stdint.h>
52 #include <libufs.h>
53 #include <string.h>
54 #include <strings.h>
55 #include <sysexits.h>
56 #include <time.h>
57 
58 #include "fsck.h"
59 
60 #define	DOTDOT_OFFSET	DIRECTSIZ(1)
61 
62 struct suj_seg {
63 	TAILQ_ENTRY(suj_seg) ss_next;
64 	struct jsegrec	ss_rec;
65 	uint8_t		*ss_blk;
66 };
67 
68 struct suj_rec {
69 	TAILQ_ENTRY(suj_rec) sr_next;
70 	union jrec	*sr_rec;
71 };
72 TAILQ_HEAD(srechd, suj_rec);
73 
74 struct suj_ino {
75 	LIST_ENTRY(suj_ino)	si_next;
76 	struct srechd		si_recs;
77 	struct srechd		si_newrecs;
78 	struct srechd		si_movs;
79 	struct jtrncrec		*si_trunc;
80 	ino_t			si_ino;
81 	char			si_skipparent;
82 	char			si_hasrecs;
83 	char			si_blkadj;
84 	char			si_linkadj;
85 	int			si_mode;
86 	nlink_t			si_nlinkadj;
87 	nlink_t			si_nlink;
88 	nlink_t			si_dotlinks;
89 };
90 LIST_HEAD(inohd, suj_ino);
91 
92 struct suj_blk {
93 	LIST_ENTRY(suj_blk)	sb_next;
94 	struct srechd		sb_recs;
95 	ufs2_daddr_t		sb_blk;
96 };
97 LIST_HEAD(blkhd, suj_blk);
98 
99 struct suj_cg {
100 	LIST_ENTRY(suj_cg)	sc_next;
101 	struct blkhd		sc_blkhash[HASHSIZE];
102 	struct inohd		sc_inohash[HASHSIZE];
103 	struct ino_blk		*sc_lastiblk;
104 	struct suj_ino		*sc_lastino;
105 	struct suj_blk		*sc_lastblk;
106 	struct bufarea		*sc_cgbp;
107 	struct cg		*sc_cgp;
108 	int			sc_cgx;
109 };
110 
111 static LIST_HEAD(cghd, suj_cg) cghash[HASHSIZE];
112 static struct suj_cg *lastcg;
113 
114 static TAILQ_HEAD(seghd, suj_seg) allsegs;
115 static uint64_t oldseq;
116 static struct fs *fs = NULL;
117 static ino_t sujino;
118 
119 /*
120  * Summary statistics.
121  */
122 static uint64_t freefrags;
123 static uint64_t freeblocks;
124 static uint64_t freeinos;
125 static uint64_t freedir;
126 static uint64_t jbytes;
127 static uint64_t jrecs;
128 
129 static jmp_buf	jmpbuf;
130 
131 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
132 static void err_suj(const char *, ...) __dead2;
133 static void ino_trunc(ino_t, off_t);
134 static void ino_decr(ino_t);
135 static void ino_adjust(struct suj_ino *);
136 static void ino_build(struct suj_ino *);
137 static int blk_isfree(ufs2_daddr_t);
138 static void initsuj(void);
139 
140 static void *
141 errmalloc(size_t n)
142 {
143 	void *a;
144 
145 	a = Malloc(n);
146 	if (a == NULL)
147 		err(EX_OSERR, "malloc(%zu)", n);
148 	return (a);
149 }
150 
151 /*
152  * When hit a fatal error in journalling check, print out
153  * the error and then offer to fallback to normal fsck.
154  */
155 static void
156 err_suj(const char * restrict fmt, ...)
157 {
158 	va_list ap;
159 
160 	if (preen)
161 		(void)fprintf(stdout, "%s: ", cdevname);
162 
163 	va_start(ap, fmt);
164 	(void)vfprintf(stdout, fmt, ap);
165 	va_end(ap);
166 
167 	longjmp(jmpbuf, -1);
168 }
169 
170 /*
171  * Lookup a cg by number in the hash so we can keep track of which cgs
172  * need stats rebuilt.
173  */
174 static struct suj_cg *
175 cg_lookup(int cgx)
176 {
177 	struct cghd *hd;
178 	struct suj_cg *sc;
179 	struct bufarea *cgbp;
180 
181 	if (cgx < 0 || cgx >= fs->fs_ncg)
182 		err_suj("Bad cg number %d\n", cgx);
183 	if (lastcg && lastcg->sc_cgx == cgx)
184 		return (lastcg);
185 	cgbp = cglookup(cgx);
186 	if (!check_cgmagic(cgx, cgbp, 0))
187 		err_suj("UNABLE TO REBUILD CYLINDER GROUP %d", cgx);
188 	hd = &cghash[HASH(cgx)];
189 	LIST_FOREACH(sc, hd, sc_next)
190 		if (sc->sc_cgx == cgx) {
191 			sc->sc_cgbp = cgbp;
192 			sc->sc_cgp = sc->sc_cgbp->b_un.b_cg;
193 			lastcg = sc;
194 			return (sc);
195 		}
196 	sc = errmalloc(sizeof(*sc));
197 	bzero(sc, sizeof(*sc));
198 	sc->sc_cgbp = cgbp;
199 	sc->sc_cgp = sc->sc_cgbp->b_un.b_cg;
200 	sc->sc_cgx = cgx;
201 	LIST_INSERT_HEAD(hd, sc, sc_next);
202 	return (sc);
203 }
204 
205 /*
206  * Lookup an inode number in the hash and allocate a suj_ino if it does
207  * not exist.
208  */
209 static struct suj_ino *
210 ino_lookup(ino_t ino, int creat)
211 {
212 	struct suj_ino *sino;
213 	struct inohd *hd;
214 	struct suj_cg *sc;
215 
216 	sc = cg_lookup(ino_to_cg(fs, ino));
217 	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
218 		return (sc->sc_lastino);
219 	hd = &sc->sc_inohash[HASH(ino)];
220 	LIST_FOREACH(sino, hd, si_next)
221 		if (sino->si_ino == ino)
222 			return (sino);
223 	if (creat == 0)
224 		return (NULL);
225 	sino = errmalloc(sizeof(*sino));
226 	bzero(sino, sizeof(*sino));
227 	sino->si_ino = ino;
228 	TAILQ_INIT(&sino->si_recs);
229 	TAILQ_INIT(&sino->si_newrecs);
230 	TAILQ_INIT(&sino->si_movs);
231 	LIST_INSERT_HEAD(hd, sino, si_next);
232 
233 	return (sino);
234 }
235 
236 /*
237  * Lookup a block number in the hash and allocate a suj_blk if it does
238  * not exist.
239  */
240 static struct suj_blk *
241 blk_lookup(ufs2_daddr_t blk, int creat)
242 {
243 	struct suj_blk *sblk;
244 	struct suj_cg *sc;
245 	struct blkhd *hd;
246 
247 	sc = cg_lookup(dtog(fs, blk));
248 	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
249 		return (sc->sc_lastblk);
250 	hd = &sc->sc_blkhash[HASH(fragstoblks(fs, blk))];
251 	LIST_FOREACH(sblk, hd, sb_next)
252 		if (sblk->sb_blk == blk)
253 			return (sblk);
254 	if (creat == 0)
255 		return (NULL);
256 	sblk = errmalloc(sizeof(*sblk));
257 	bzero(sblk, sizeof(*sblk));
258 	sblk->sb_blk = blk;
259 	TAILQ_INIT(&sblk->sb_recs);
260 	LIST_INSERT_HEAD(hd, sblk, sb_next);
261 
262 	return (sblk);
263 }
264 
265 static int
266 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
267 {
268 	ufs2_daddr_t bstart;
269 	ufs2_daddr_t bend;
270 	ufs2_daddr_t end;
271 
272 	end = start + frags;
273 	bstart = brec->jb_blkno + brec->jb_oldfrags;
274 	bend = bstart + brec->jb_frags;
275 	if (start < bend && end > bstart)
276 		return (1);
277 	return (0);
278 }
279 
280 static int
281 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
282     int frags)
283 {
284 
285 	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
286 		return (0);
287 	if (brec->jb_blkno + brec->jb_oldfrags != start)
288 		return (0);
289 	if (brec->jb_frags < frags)
290 		return (0);
291 	return (1);
292 }
293 
294 static void
295 blk_setmask(struct jblkrec *brec, int *mask)
296 {
297 	int i;
298 
299 	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
300 		*mask |= 1 << i;
301 }
302 
303 /*
304  * Determine whether a given block has been reallocated to a new location.
305  * Returns a mask of overlapping bits if any frags have been reused or
306  * zero if the block has not been re-used and the contents can be trusted.
307  *
308  * This is used to ensure that an orphaned pointer due to truncate is safe
309  * to be freed.  The mask value can be used to free partial blocks.
310  */
311 static int
312 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
313 {
314 	struct suj_blk *sblk;
315 	struct suj_rec *srec;
316 	struct jblkrec *brec;
317 	int mask;
318 	int off;
319 
320 	/*
321 	 * To be certain we're not freeing a reallocated block we lookup
322 	 * this block in the blk hash and see if there is an allocation
323 	 * journal record that overlaps with any fragments in the block
324 	 * we're concerned with.  If any fragments have been reallocated
325 	 * the block has already been freed and re-used for another purpose.
326 	 */
327 	mask = 0;
328 	sblk = blk_lookup(blknum(fs, blk), 0);
329 	if (sblk == NULL)
330 		return (0);
331 	off = blk - sblk->sb_blk;
332 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
333 		brec = (struct jblkrec *)srec->sr_rec;
334 		/*
335 		 * If the block overlaps but does not match
336 		 * exactly this record refers to the current
337 		 * location.
338 		 */
339 		if (blk_overlaps(brec, blk, frags) == 0)
340 			continue;
341 		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
342 			mask = 0;
343 		else
344 			blk_setmask(brec, &mask);
345 	}
346 	if (debug)
347 		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
348 		    blk, sblk->sb_blk, off, mask);
349 	return (mask >> off);
350 }
351 
352 /*
353  * Determine whether it is safe to follow an indirect.  It is not safe
354  * if any part of the indirect has been reallocated or the last journal
355  * entry was an allocation.  Just allocated indirects may not have valid
356  * pointers yet and all of their children will have their own records.
357  * It is also not safe to follow an indirect if the cg bitmap has been
358  * cleared as a new allocation may write to the block prior to the journal
359  * being written.
360  *
361  * Returns 1 if it's safe to follow the indirect and 0 otherwise.
362  */
363 static int
364 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
365 {
366 	struct suj_blk *sblk;
367 	struct jblkrec *brec;
368 
369 	sblk = blk_lookup(blk, 0);
370 	if (sblk == NULL)
371 		return (1);
372 	if (TAILQ_EMPTY(&sblk->sb_recs))
373 		return (1);
374 	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
375 	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
376 		if (brec->jb_op == JOP_FREEBLK)
377 			return (!blk_isfree(blk));
378 	return (0);
379 }
380 
381 /*
382  * Check to see if the requested block is available.
383  * We can just check in the cylinder-group maps as
384  * they will only have usable blocks in them.
385  */
386 ufs2_daddr_t
387 suj_checkblkavail(blkno, frags)
388 	ufs2_daddr_t blkno;
389 	long frags;
390 {
391 	struct bufarea *cgbp;
392 	struct cg *cgp;
393 	ufs2_daddr_t j, k, baseblk;
394 	long cg;
395 
396 	cg = dtog(&sblock, blkno);
397 	cgbp = cglookup(cg);
398 	cgp = cgbp->b_un.b_cg;
399 	if (!check_cgmagic(cg, cgbp, 0))
400 		return (-((cg + 1) * sblock.fs_fpg - sblock.fs_frag));
401 	baseblk = dtogd(&sblock, blkno);
402 	for (j = 0; j <= sblock.fs_frag - frags; j++) {
403 		if (!isset(cg_blksfree(cgp), baseblk + j))
404 			continue;
405 		for (k = 1; k < frags; k++)
406 			if (!isset(cg_blksfree(cgp), baseblk + j + k))
407 				break;
408 		if (k < frags) {
409 			j += k;
410 			continue;
411 		}
412 		for (k = 0; k < frags; k++)
413 			clrbit(cg_blksfree(cgp), baseblk + j + k);
414 		n_blks += frags;
415 		if (frags == sblock.fs_frag)
416 			cgp->cg_cs.cs_nbfree--;
417 		else
418 			cgp->cg_cs.cs_nffree -= frags;
419 		cgdirty(cgbp);
420 		return ((cg * sblock.fs_fpg) + baseblk + j);
421 	}
422 	return (0);
423 }
424 
425 /*
426  * Clear an inode from the cg bitmap.  If the inode was already clear return
427  * 0 so the caller knows it does not have to check the inode contents.
428  */
429 static int
430 ino_free(ino_t ino, int mode)
431 {
432 	struct suj_cg *sc;
433 	uint8_t *inosused;
434 	struct cg *cgp;
435 	int cg;
436 
437 	cg = ino_to_cg(fs, ino);
438 	ino = ino % fs->fs_ipg;
439 	sc = cg_lookup(cg);
440 	cgp = sc->sc_cgp;
441 	inosused = cg_inosused(cgp);
442 	/*
443 	 * The bitmap may never have made it to the disk so we have to
444 	 * conditionally clear.  We can avoid writing the cg in this case.
445 	 */
446 	if (isclr(inosused, ino))
447 		return (0);
448 	freeinos++;
449 	clrbit(inosused, ino);
450 	if (ino < cgp->cg_irotor)
451 		cgp->cg_irotor = ino;
452 	cgp->cg_cs.cs_nifree++;
453 	if ((mode & IFMT) == IFDIR) {
454 		freedir++;
455 		cgp->cg_cs.cs_ndir--;
456 	}
457 	cgdirty(sc->sc_cgbp);
458 
459 	return (1);
460 }
461 
462 /*
463  * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
464  * set in the mask.
465  */
466 static void
467 blk_free(ino_t ino, ufs2_daddr_t bno, int mask, int frags)
468 {
469 	ufs1_daddr_t fragno, cgbno;
470 	struct suj_cg *sc;
471 	struct cg *cgp;
472 	int i, cg;
473 	uint8_t *blksfree;
474 
475 	if (debug)
476 		printf("Freeing %d frags at blk %jd mask 0x%x\n",
477 		    frags, bno, mask);
478 	/*
479 	 * Check to see if the block needs to be claimed by a snapshot.
480 	 * If wanted, the snapshot references it. Otherwise we free it.
481 	 */
482 	if (snapblkfree(fs, bno, lfragtosize(fs, frags), ino,
483 	    suj_checkblkavail))
484 		return;
485 	cg = dtog(fs, bno);
486 	sc = cg_lookup(cg);
487 	cgp = sc->sc_cgp;
488 	cgbno = dtogd(fs, bno);
489 	blksfree = cg_blksfree(cgp);
490 
491 	/*
492 	 * If it's not allocated we only wrote the journal entry
493 	 * and never the bitmaps.  Here we unconditionally clear and
494 	 * resolve the cg summary later.
495 	 */
496 	if (frags == fs->fs_frag && mask == 0) {
497 		fragno = fragstoblks(fs, cgbno);
498 		ffs_setblock(fs, blksfree, fragno);
499 		freeblocks++;
500 	} else {
501 		/*
502 		 * deallocate the fragment
503 		 */
504 		for (i = 0; i < frags; i++)
505 			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
506 				freefrags++;
507 				setbit(blksfree, cgbno + i);
508 			}
509 	}
510 	cgdirty(sc->sc_cgbp);
511 }
512 
513 /*
514  * Returns 1 if the whole block starting at 'bno' is marked free and 0
515  * otherwise.
516  */
517 static int
518 blk_isfree(ufs2_daddr_t bno)
519 {
520 	struct suj_cg *sc;
521 
522 	sc = cg_lookup(dtog(fs, bno));
523 	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
524 }
525 
526 /*
527  * Determine whether a block exists at a particular lbn in an inode.
528  * Returns 1 if found, 0 if not.  lbn may be negative for indirects
529  * or ext blocks.
530  */
531 static int
532 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
533 {
534 	struct inode ip;
535 	union dinode *dp;
536 	ufs2_daddr_t nblk;
537 
538 	ginode(ino, &ip);
539 	dp = ip.i_dp;
540 	if (DIP(dp, di_nlink) == 0 || DIP(dp, di_mode) == 0) {
541 		irelse(&ip);
542 		return (0);
543 	}
544 	nblk = ino_blkatoff(dp, ino, lbn, frags, NULL);
545 	irelse(&ip);
546 	return (nblk == blk);
547 }
548 
549 /*
550  * Clear the directory entry at diroff that should point to child.  Minimal
551  * checking is done and it is assumed that this path was verified with isat.
552  */
553 static void
554 ino_clrat(ino_t parent, off_t diroff, ino_t child)
555 {
556 	union dinode *dip;
557 	struct direct *dp;
558 	struct inode ip;
559 	ufs2_daddr_t blk;
560 	struct bufarea *bp;
561 	ufs_lbn_t lbn;
562 	int blksize;
563 	int frags;
564 	int doff;
565 
566 	if (debug)
567 		printf("Clearing inode %ju from parent %ju at offset %jd\n",
568 		    (uintmax_t)child, (uintmax_t)parent, diroff);
569 
570 	lbn = lblkno(fs, diroff);
571 	doff = blkoff(fs, diroff);
572 	ginode(parent, &ip);
573 	dip = ip.i_dp;
574 	blk = ino_blkatoff(dip, parent, lbn, &frags, NULL);
575 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
576 	irelse(&ip);
577 	bp = getdatablk(blk, blksize, BT_DIRDATA);
578 	if (bp->b_errs != 0)
579 		err_suj("ino_clrat: UNRECOVERABLE I/O ERROR");
580 	dp = (struct direct *)&bp->b_un.b_buf[doff];
581 	if (dp->d_ino != child)
582 		errx(1, "Inode %ju does not exist in %ju at %jd",
583 		    (uintmax_t)child, (uintmax_t)parent, diroff);
584 	dp->d_ino = 0;
585 	dirty(bp);
586 	brelse(bp);
587 	/*
588 	 * The actual .. reference count will already have been removed
589 	 * from the parent by the .. remref record.
590 	 */
591 }
592 
593 /*
594  * Determines whether a pointer to an inode exists within a directory
595  * at a specified offset.  Returns the mode of the found entry.
596  */
597 static int
598 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
599 {
600 	struct inode ip;
601 	union dinode *dip;
602 	struct bufarea *bp;
603 	struct direct *dp;
604 	ufs2_daddr_t blk;
605 	ufs_lbn_t lbn;
606 	int blksize;
607 	int frags;
608 	int dpoff;
609 	int doff;
610 
611 	*isdot = 0;
612 	ginode(parent, &ip);
613 	dip = ip.i_dp;
614 	*mode = DIP(dip, di_mode);
615 	if ((*mode & IFMT) != IFDIR) {
616 		if (debug) {
617 			/*
618 			 * This can happen if the parent inode
619 			 * was reallocated.
620 			 */
621 			if (*mode != 0)
622 				printf("Directory %ju has bad mode %o\n",
623 				    (uintmax_t)parent, *mode);
624 			else
625 				printf("Directory %ju has zero mode\n",
626 				    (uintmax_t)parent);
627 		}
628 		irelse(&ip);
629 		return (0);
630 	}
631 	lbn = lblkno(fs, diroff);
632 	doff = blkoff(fs, diroff);
633 	blksize = sblksize(fs, DIP(dip, di_size), lbn);
634 	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
635 		if (debug)
636 			printf("ino %ju absent from %ju due to offset %jd"
637 			    " exceeding size %jd\n",
638 			    (uintmax_t)child, (uintmax_t)parent, diroff,
639 			    DIP(dip, di_size));
640 		irelse(&ip);
641 		return (0);
642 	}
643 	blk = ino_blkatoff(dip, parent, lbn, &frags, NULL);
644 	irelse(&ip);
645 	if (blk <= 0) {
646 		if (debug)
647 			printf("Sparse directory %ju", (uintmax_t)parent);
648 		return (0);
649 	}
650 	bp = getdatablk(blk, blksize, BT_DIRDATA);
651 	if (bp->b_errs != 0)
652 		err_suj("ino_isat: UNRECOVERABLE I/O ERROR");
653 	/*
654 	 * Walk through the records from the start of the block to be
655 	 * certain we hit a valid record and not some junk in the middle
656 	 * of a file name.  Stop when we reach or pass the expected offset.
657 	 */
658 	dpoff = rounddown(doff, DIRBLKSIZ);
659 	do {
660 		dp = (struct direct *)&bp->b_un.b_buf[dpoff];
661 		if (dpoff == doff)
662 			break;
663 		if (dp->d_reclen == 0)
664 			break;
665 		dpoff += dp->d_reclen;
666 	} while (dpoff <= doff);
667 	if (dpoff > fs->fs_bsize)
668 		err_suj("Corrupt directory block in dir ino %ju\n",
669 		    (uintmax_t)parent);
670 	/* Not found. */
671 	if (dpoff != doff) {
672 		if (debug)
673 			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
674 			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
675 		brelse(bp);
676 		return (0);
677 	}
678 	/*
679 	 * We found the item in question.  Record the mode and whether it's
680 	 * a . or .. link for the caller.
681 	 */
682 	if (dp->d_ino == child) {
683 		if (child == parent)
684 			*isdot = 1;
685 		else if (dp->d_namlen == 2 &&
686 		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
687 			*isdot = 1;
688 		*mode = DTTOIF(dp->d_type);
689 		brelse(bp);
690 		return (1);
691 	}
692 	if (debug)
693 		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
694 		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
695 	brelse(bp);
696 	return (0);
697 }
698 
699 #define	VISIT_INDIR	0x0001
700 #define	VISIT_EXT	0x0002
701 #define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
702 
703 /*
704  * Read an indirect level which may or may not be linked into an inode.
705  */
706 static void
707 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
708     ino_visitor visitor, int flags)
709 {
710 	struct bufarea *bp;
711 	ufs_lbn_t lbnadd;
712 	ufs2_daddr_t nblk;
713 	ufs_lbn_t nlbn;
714 	int level;
715 	int i;
716 
717 	/*
718 	 * Don't visit indirect blocks with contents we can't trust.  This
719 	 * should only happen when indir_visit() is called to complete a
720 	 * truncate that never finished and not when a pointer is found via
721 	 * an inode.
722 	 */
723 	if (blk == 0)
724 		return;
725 	level = lbn_level(lbn);
726 	if (level == -1)
727 		err_suj("Invalid level for lbn %jd\n", lbn);
728 	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
729 		if (debug)
730 			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
731 			    blk, (uintmax_t)ino, lbn, level);
732 		goto out;
733 	}
734 	lbnadd = 1;
735 	for (i = level; i > 0; i--)
736 		lbnadd *= NINDIR(fs);
737 	bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level);
738 	if (bp->b_errs != 0)
739 		err_suj("indir_visit: UNRECOVERABLE I/O ERROR");
740 	for (i = 0; i < NINDIR(fs); i++) {
741 		if ((nblk = IBLK(bp, i)) == 0)
742 			continue;
743 		if (level == 0) {
744 			nlbn = -lbn + i * lbnadd;
745 			(*frags) += fs->fs_frag;
746 			visitor(ino, nlbn, nblk, fs->fs_frag);
747 		} else {
748 			nlbn = (lbn + 1) - (i * lbnadd);
749 			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
750 		}
751 	}
752 	brelse(bp);
753 out:
754 	if (flags & VISIT_INDIR) {
755 		(*frags) += fs->fs_frag;
756 		visitor(ino, lbn, blk, fs->fs_frag);
757 	}
758 }
759 
760 /*
761  * Visit each block in an inode as specified by 'flags' and call a
762  * callback function.  The callback may inspect or free blocks.  The
763  * count of frags found according to the size in the file is returned.
764  * This is not valid for sparse files but may be used to determine
765  * the correct di_blocks for a file.
766  */
767 static uint64_t
768 ino_visit(union dinode *dp, ino_t ino, ino_visitor visitor, int flags)
769 {
770 	ufs_lbn_t nextlbn;
771 	ufs_lbn_t tmpval;
772 	ufs_lbn_t lbn;
773 	uint64_t size;
774 	uint64_t fragcnt;
775 	int mode;
776 	int frags;
777 	int i;
778 
779 	size = DIP(dp, di_size);
780 	mode = DIP(dp, di_mode) & IFMT;
781 	fragcnt = 0;
782 	if ((flags & VISIT_EXT) &&
783 	    fs->fs_magic == FS_UFS2_MAGIC && dp->dp2.di_extsize) {
784 		for (i = 0; i < UFS_NXADDR; i++) {
785 			if (dp->dp2.di_extb[i] == 0)
786 				continue;
787 			frags = sblksize(fs, dp->dp2.di_extsize, i);
788 			frags = numfrags(fs, frags);
789 			fragcnt += frags;
790 			visitor(ino, -1 - i, dp->dp2.di_extb[i], frags);
791 		}
792 	}
793 	/* Skip datablocks for short links and devices. */
794 	if (mode == IFBLK || mode == IFCHR ||
795 	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
796 		return (fragcnt);
797 	for (i = 0; i < UFS_NDADDR; i++) {
798 		if (DIP(dp, di_db[i]) == 0)
799 			continue;
800 		frags = sblksize(fs, size, i);
801 		frags = numfrags(fs, frags);
802 		fragcnt += frags;
803 		visitor(ino, i, DIP(dp, di_db[i]), frags);
804 	}
805 	/*
806 	 * We know the following indirects are real as we're following
807 	 * real pointers to them.
808 	 */
809 	flags |= VISIT_ROOT;
810 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
811 	    lbn = nextlbn) {
812 		nextlbn = lbn + tmpval;
813 		tmpval *= NINDIR(fs);
814 		if (DIP(dp, di_ib[i]) == 0)
815 			continue;
816 		indir_visit(ino, -lbn - i, DIP(dp, di_ib[i]), &fragcnt, visitor,
817 		    flags);
818 	}
819 	return (fragcnt);
820 }
821 
822 /*
823  * Null visitor function used when we just want to count blocks and
824  * record the lbn.
825  */
826 ufs_lbn_t visitlbn;
827 static void
828 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
829 {
830 	if (lbn > 0)
831 		visitlbn = lbn;
832 }
833 
834 /*
835  * Recalculate di_blocks when we discover that a block allocation or
836  * free was not successfully completed.  The kernel does not roll this back
837  * because it would be too expensive to compute which indirects were
838  * reachable at the time the inode was written.
839  */
840 static void
841 ino_adjblks(struct suj_ino *sino)
842 {
843 	struct inode ip;
844 	union dinode *dp;
845 	uint64_t blocks;
846 	uint64_t frags;
847 	off_t isize;
848 	off_t size;
849 	ino_t ino;
850 
851 	ino = sino->si_ino;
852 	ginode(ino, &ip);
853 	dp = ip.i_dp;
854 	/* No need to adjust zero'd inodes. */
855 	if (DIP(dp, di_mode) == 0) {
856 		irelse(&ip);
857 		return;
858 	}
859 	/*
860 	 * Visit all blocks and count them as well as recording the last
861 	 * valid lbn in the file.  If the file size doesn't agree with the
862 	 * last lbn we need to truncate to fix it.  Otherwise just adjust
863 	 * the blocks count.
864 	 */
865 	visitlbn = 0;
866 	frags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT);
867 	blocks = fsbtodb(fs, frags);
868 	/*
869 	 * We assume the size and direct block list is kept coherent by
870 	 * softdep.  For files that have extended into indirects we truncate
871 	 * to the size in the inode or the maximum size permitted by
872 	 * populated indirects.
873 	 */
874 	if (visitlbn >= UFS_NDADDR) {
875 		isize = DIP(dp, di_size);
876 		size = lblktosize(fs, visitlbn + 1);
877 		if (isize > size)
878 			isize = size;
879 		/* Always truncate to free any unpopulated indirects. */
880 		ino_trunc(ino, isize);
881 		irelse(&ip);
882 		return;
883 	}
884 	if (blocks == DIP(dp, di_blocks)) {
885 		irelse(&ip);
886 		return;
887 	}
888 	if (debug)
889 		printf("ino %ju adjusting block count from %jd to %jd\n",
890 		    (uintmax_t)ino, DIP(dp, di_blocks), blocks);
891 	DIP_SET(dp, di_blocks, blocks);
892 	inodirty(&ip);
893 	irelse(&ip);
894 }
895 
896 static void
897 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
898 {
899 
900 	blk_free(ino, blk, blk_freemask(blk, ino, lbn, frags), frags);
901 }
902 
903 /*
904  * Free a block or tree of blocks that was previously rooted in ino at
905  * the given lbn.  If the lbn is an indirect all children are freed
906  * recursively.
907  */
908 static void
909 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
910 {
911 	uint64_t resid;
912 	int mask;
913 
914 	mask = blk_freemask(blk, ino, lbn, frags);
915 	resid = 0;
916 	if (lbn <= -UFS_NDADDR && follow && mask == 0)
917 		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
918 	else
919 		blk_free(ino, blk, mask, frags);
920 }
921 
922 static void
923 ino_setskip(struct suj_ino *sino, ino_t parent)
924 {
925 	int isdot;
926 	int mode;
927 
928 	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
929 		sino->si_skipparent = 1;
930 }
931 
932 static void
933 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
934 {
935 	struct suj_ino *sino;
936 	struct suj_rec *srec;
937 	struct jrefrec *rrec;
938 
939 	/*
940 	 * Lookup this inode to see if we have a record for it.
941 	 */
942 	sino = ino_lookup(child, 0);
943 	/*
944 	 * Tell any child directories we've already removed their
945 	 * parent link cnt.  Don't try to adjust our link down again.
946 	 */
947 	if (sino != NULL && isdotdot == 0)
948 		ino_setskip(sino, parent);
949 	/*
950 	 * No valid record for this inode.  Just drop the on-disk
951 	 * link by one.
952 	 */
953 	if (sino == NULL || sino->si_hasrecs == 0) {
954 		ino_decr(child);
955 		return;
956 	}
957 	/*
958 	 * Use ino_adjust() if ino_check() has already processed this
959 	 * child.  If we lose the last non-dot reference to a
960 	 * directory it will be discarded.
961 	 */
962 	if (sino->si_linkadj) {
963 		if (sino->si_nlink == 0)
964 			err_suj("ino_remref: ino %ld mode 0%o about to go "
965 			    "negative\n", sino->si_ino, sino->si_mode);
966 		sino->si_nlink--;
967 		if (isdotdot)
968 			sino->si_dotlinks--;
969 		ino_adjust(sino);
970 		return;
971 	}
972 	/*
973 	 * If we haven't yet processed this inode we need to make
974 	 * sure we will successfully discover the lost path.  If not
975 	 * use nlinkadj to remember.
976 	 */
977 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
978 		rrec = (struct jrefrec *)srec->sr_rec;
979 		if (rrec->jr_parent == parent &&
980 		    rrec->jr_diroff == diroff)
981 			return;
982 	}
983 	sino->si_nlinkadj++;
984 }
985 
986 /*
987  * Free the children of a directory when the directory is discarded.
988  */
989 static void
990 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
991 {
992 	struct suj_ino *sino;
993 	struct bufarea *bp;
994 	struct direct *dp;
995 	off_t diroff;
996 	int skipparent;
997 	int isdotdot;
998 	int dpoff;
999 	int size;
1000 
1001 	sino = ino_lookup(ino, 0);
1002 	if (sino)
1003 		skipparent = sino->si_skipparent;
1004 	else
1005 		skipparent = 0;
1006 	size = lfragtosize(fs, frags);
1007 	bp = getdatablk(blk, size, BT_DIRDATA);
1008 	if (bp->b_errs != 0)
1009 		err_suj("ino_free_children: UNRECOVERABLE I/O ERROR");
1010 	dp = (struct direct *)&bp->b_un.b_buf[0];
1011 	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1012 		dp = (struct direct *)&bp->b_un.b_buf[dpoff];
1013 		if (dp->d_ino == 0 || dp->d_ino == UFS_WINO)
1014 			continue;
1015 		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1016 			continue;
1017 		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1018 		    dp->d_name[1] == '.';
1019 		if (isdotdot && skipparent == 1)
1020 			continue;
1021 		if (debug)
1022 			printf("Directory %ju removing ino %ju name %s\n",
1023 			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1024 		diroff = lblktosize(fs, lbn) + dpoff;
1025 		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1026 	}
1027 	brelse(bp);
1028 }
1029 
1030 /*
1031  * Reclaim an inode, freeing all blocks and decrementing all children's
1032  * link counts.  Free the inode back to the cg.
1033  */
1034 static void
1035 ino_reclaim(struct inode *ip, ino_t ino, int mode)
1036 {
1037 	union dinode *dp;
1038 	uint32_t gen;
1039 
1040 	dp = ip->i_dp;
1041 	if (ino == UFS_ROOTINO)
1042 		err_suj("Attempting to free UFS_ROOTINO\n");
1043 	if (debug)
1044 		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1045 		    (uintmax_t)ino, DIP(dp, di_nlink), DIP(dp, di_mode));
1046 
1047 	/* We are freeing an inode or directory. */
1048 	if ((DIP(dp, di_mode) & IFMT) == IFDIR)
1049 		ino_visit(dp, ino, ino_free_children, 0);
1050 	DIP_SET(dp, di_nlink, 0);
1051 	if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0)
1052 		snapremove(ino);
1053 	ino_visit(dp, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1054 	/* Here we have to clear the inode and release any blocks it holds. */
1055 	gen = DIP(dp, di_gen);
1056 	if (fs->fs_magic == FS_UFS1_MAGIC)
1057 		bzero(dp, sizeof(struct ufs1_dinode));
1058 	else
1059 		bzero(dp, sizeof(struct ufs2_dinode));
1060 	DIP_SET(dp, di_gen, gen);
1061 	inodirty(ip);
1062 	ino_free(ino, mode);
1063 	return;
1064 }
1065 
1066 /*
1067  * Adjust an inode's link count down by one when a directory goes away.
1068  */
1069 static void
1070 ino_decr(ino_t ino)
1071 {
1072 	struct inode ip;
1073 	union dinode *dp;
1074 	int reqlink;
1075 	int nlink;
1076 	int mode;
1077 
1078 	ginode(ino, &ip);
1079 	dp = ip.i_dp;
1080 	nlink = DIP(dp, di_nlink);
1081 	mode = DIP(dp, di_mode);
1082 	if (nlink < 1)
1083 		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1084 	if (mode == 0)
1085 		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1086 	nlink--;
1087 	if ((mode & IFMT) == IFDIR)
1088 		reqlink = 2;
1089 	else
1090 		reqlink = 1;
1091 	if (nlink < reqlink) {
1092 		if (debug)
1093 			printf("ino %ju not enough links to live %d < %d\n",
1094 			    (uintmax_t)ino, nlink, reqlink);
1095 		ino_reclaim(&ip, ino, mode);
1096 		irelse(&ip);
1097 		return;
1098 	}
1099 	DIP_SET(dp, di_nlink, nlink);
1100 	inodirty(&ip);
1101 	irelse(&ip);
1102 }
1103 
1104 /*
1105  * Adjust the inode link count to 'nlink'.  If the count reaches zero
1106  * free it.
1107  */
1108 static void
1109 ino_adjust(struct suj_ino *sino)
1110 {
1111 	struct jrefrec *rrec;
1112 	struct suj_rec *srec;
1113 	struct suj_ino *stmp;
1114 	union dinode *dp;
1115 	struct inode ip;
1116 	nlink_t nlink;
1117 	nlink_t reqlink;
1118 	int recmode;
1119 	int isdot;
1120 	int mode;
1121 	ino_t ino;
1122 
1123 	nlink = sino->si_nlink;
1124 	ino = sino->si_ino;
1125 	mode = sino->si_mode & IFMT;
1126 	/*
1127 	 * If it's a directory with no dot links, it was truncated before
1128 	 * the name was cleared.  We need to clear the dirent that
1129 	 * points at it.
1130 	 */
1131 	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1132 		sino->si_nlink = nlink = 0;
1133 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1134 			rrec = (struct jrefrec *)srec->sr_rec;
1135 			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1136 			    &recmode, &isdot) == 0)
1137 				continue;
1138 			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1139 			break;
1140 		}
1141 		if (srec == NULL)
1142 			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1143 	}
1144 	/*
1145 	 * If it's a directory with no real names pointing to it go ahead
1146 	 * and truncate it.  This will free any children.
1147 	 */
1148 	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1149 		sino->si_nlink = nlink = 0;
1150 		/*
1151 		 * Mark any .. links so they know not to free this inode
1152 		 * when they are removed.
1153 		 */
1154 		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1155 			rrec = (struct jrefrec *)srec->sr_rec;
1156 			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1157 				stmp = ino_lookup(rrec->jr_parent, 0);
1158 				if (stmp)
1159 					ino_setskip(stmp, ino);
1160 			}
1161 		}
1162 	}
1163 	ginode(ino, &ip);
1164 	dp = ip.i_dp;
1165 	mode = DIP(dp, di_mode) & IFMT;
1166 	if (nlink > UFS_LINK_MAX)
1167 		err_suj("ino %ju nlink manipulation error, new %ju, old %d\n",
1168 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink));
1169 	if (debug)
1170 	       printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n",
1171 		    (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink),
1172 		    sino->si_mode);
1173 	if (mode == 0) {
1174 		if (debug)
1175 			printf("ino %ju, zero inode freeing bitmap\n",
1176 			    (uintmax_t)ino);
1177 		ino_free(ino, sino->si_mode);
1178 		irelse(&ip);
1179 		return;
1180 	}
1181 	/* XXX Should be an assert? */
1182 	if (mode != sino->si_mode && debug)
1183 		printf("ino %ju, mode %o != %o\n",
1184 		    (uintmax_t)ino, mode, sino->si_mode);
1185 	if ((mode & IFMT) == IFDIR)
1186 		reqlink = 2;
1187 	else
1188 		reqlink = 1;
1189 	/* If the inode doesn't have enough links to live, free it. */
1190 	if (nlink < reqlink) {
1191 		if (debug)
1192 			printf("ino %ju not enough links to live %ju < %ju\n",
1193 			    (uintmax_t)ino, (uintmax_t)nlink,
1194 			    (uintmax_t)reqlink);
1195 		ino_reclaim(&ip, ino, mode);
1196 		irelse(&ip);
1197 		return;
1198 	}
1199 	/* If required write the updated link count. */
1200 	if (DIP(dp, di_nlink) == nlink) {
1201 		if (debug)
1202 			printf("ino %ju, link matches, skipping.\n",
1203 			    (uintmax_t)ino);
1204 		irelse(&ip);
1205 		return;
1206 	}
1207 	DIP_SET(dp, di_nlink, nlink);
1208 	inodirty(&ip);
1209 	irelse(&ip);
1210 }
1211 
1212 /*
1213  * Truncate some or all blocks in an indirect, freeing any that are required
1214  * and zeroing the indirect.
1215  */
1216 static void
1217 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn,
1218 	union dinode *dp)
1219 {
1220 	struct bufarea *bp;
1221 	ufs_lbn_t lbnadd;
1222 	ufs2_daddr_t nblk;
1223 	ufs_lbn_t next;
1224 	ufs_lbn_t nlbn;
1225 	int isdirty;
1226 	int level;
1227 	int i;
1228 
1229 	if (blk == 0)
1230 		return;
1231 	isdirty = 0;
1232 	level = lbn_level(lbn);
1233 	if (level == -1)
1234 		err_suj("Invalid level for lbn %jd\n", lbn);
1235 	lbnadd = 1;
1236 	for (i = level; i > 0; i--)
1237 		lbnadd *= NINDIR(fs);
1238 	bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level);
1239 	if (bp->b_errs != 0)
1240 		err_suj("indir_trunc: UNRECOVERABLE I/O ERROR");
1241 	for (i = 0; i < NINDIR(fs); i++) {
1242 		if ((nblk = IBLK(bp, i)) == 0)
1243 			continue;
1244 		if (level != 0) {
1245 			nlbn = (lbn + 1) - (i * lbnadd);
1246 			/*
1247 			 * Calculate the lbn of the next indirect to
1248 			 * determine if any of this indirect must be
1249 			 * reclaimed.
1250 			 */
1251 			next = -(lbn + level) + ((i+1) * lbnadd);
1252 			if (next <= lastlbn)
1253 				continue;
1254 			indir_trunc(ino, nlbn, nblk, lastlbn, dp);
1255 			/* If all of this indirect was reclaimed, free it. */
1256 			nlbn = next - lbnadd;
1257 			if (nlbn < lastlbn)
1258 				continue;
1259 		} else {
1260 			nlbn = -lbn + i * lbnadd;
1261 			if (nlbn < lastlbn)
1262 				continue;
1263 		}
1264 		isdirty = 1;
1265 		blk_free(ino, nblk, 0, fs->fs_frag);
1266 		IBLK_SET(bp, i, 0);
1267 	}
1268 	if (isdirty)
1269 		dirty(bp);
1270 	brelse(bp);
1271 }
1272 
1273 /*
1274  * Truncate an inode to the minimum of the given size or the last populated
1275  * block after any over size have been discarded.  The kernel would allocate
1276  * the last block in the file but fsck does not and neither do we.  This
1277  * code never extends files, only shrinks them.
1278  */
1279 static void
1280 ino_trunc(ino_t ino, off_t size)
1281 {
1282 	struct inode ip;
1283 	union dinode *dp;
1284 	struct bufarea *bp;
1285 	ufs2_daddr_t bn;
1286 	uint64_t totalfrags;
1287 	ufs_lbn_t nextlbn;
1288 	ufs_lbn_t lastlbn;
1289 	ufs_lbn_t tmpval;
1290 	ufs_lbn_t lbn;
1291 	ufs_lbn_t i;
1292 	int blksize, frags;
1293 	off_t cursize;
1294 	off_t off;
1295 	int mode;
1296 
1297 	ginode(ino, &ip);
1298 	dp = ip.i_dp;
1299 	mode = DIP(dp, di_mode) & IFMT;
1300 	cursize = DIP(dp, di_size);
1301 	/* If no size change, nothing to do */
1302 	if (size == cursize) {
1303 		irelse(&ip);
1304 		return;
1305 	}
1306 	if (debug)
1307 		printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
1308 		    (uintmax_t)ino, mode, size, cursize);
1309 
1310 	/* Skip datablocks for short links and devices. */
1311 	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1312 	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) {
1313 		irelse(&ip);
1314 		return;
1315 	}
1316 	/* Don't extend. */
1317 	if (size > cursize) {
1318 		irelse(&ip);
1319 		return;
1320 	}
1321 	if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) {
1322 		if (size > 0)
1323 			err_suj("Partial truncation of ino %ju snapshot file\n",
1324 			    (uintmax_t)ino);
1325 		snapremove(ino);
1326 	}
1327 	lastlbn = lblkno(fs, blkroundup(fs, size));
1328 	for (i = lastlbn; i < UFS_NDADDR; i++) {
1329 		if ((bn = DIP(dp, di_db[i])) == 0)
1330 			continue;
1331 		blksize = sblksize(fs, cursize, i);
1332 		blk_free(ino, bn, 0, numfrags(fs, blksize));
1333 		DIP_SET(dp, di_db[i], 0);
1334 	}
1335 	/*
1336 	 * Follow indirect blocks, freeing anything required.
1337 	 */
1338 	for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++,
1339 	    lbn = nextlbn) {
1340 		nextlbn = lbn + tmpval;
1341 		tmpval *= NINDIR(fs);
1342 		/* If we're not freeing any in this indirect range skip it. */
1343 		if (lastlbn >= nextlbn)
1344 			continue;
1345 		if ((bn = DIP(dp, di_ib[i])) == 0)
1346   			continue;
1347 		indir_trunc(ino, -lbn - i, bn, lastlbn, dp);
1348   		/* If we freed everything in this indirect free the indir. */
1349   		if (lastlbn > lbn)
1350   			continue;
1351 		blk_free(ino, bn, 0, fs->fs_frag);
1352 		DIP_SET(dp, di_ib[i], 0);
1353 	}
1354 	/*
1355 	 * Now that we've freed any whole blocks that exceed the desired
1356 	 * truncation size, figure out how many blocks remain and what the
1357 	 * last populated lbn is.  We will set the size to this last lbn
1358 	 * rather than worrying about allocating the final lbn as the kernel
1359 	 * would've done.  This is consistent with normal fsck behavior.
1360 	 */
1361 	visitlbn = 0;
1362 	totalfrags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1363 	if (size > lblktosize(fs, visitlbn + 1))
1364 		size = lblktosize(fs, visitlbn + 1);
1365 	/*
1366 	 * If we're truncating direct blocks we have to adjust frags
1367 	 * accordingly.
1368 	 */
1369 	if (visitlbn < UFS_NDADDR && totalfrags) {
1370 		long oldspace, newspace;
1371 
1372 		bn = DIP(dp, di_db[visitlbn]);
1373 		if (bn == 0)
1374 			err_suj("Bad blk at ino %ju lbn %jd\n",
1375 			    (uintmax_t)ino, visitlbn);
1376 		oldspace = sblksize(fs, cursize, visitlbn);
1377 		newspace = sblksize(fs, size, visitlbn);
1378 		if (oldspace != newspace) {
1379 			bn += numfrags(fs, newspace);
1380 			frags = numfrags(fs, oldspace - newspace);
1381 			blk_free(ino, bn, 0, frags);
1382 			totalfrags -= frags;
1383 		}
1384 	}
1385 	DIP_SET(dp, di_blocks, fsbtodb(fs, totalfrags));
1386 	DIP_SET(dp, di_size, size);
1387 	inodirty(&ip);
1388 	/*
1389 	 * If we've truncated into the middle of a block or frag we have
1390 	 * to zero it here.  Otherwise the file could extend into
1391 	 * uninitialized space later.
1392 	 */
1393 	off = blkoff(fs, size);
1394 	if (off && DIP(dp, di_mode) != IFDIR) {
1395 		long clrsize;
1396 
1397 		bn = ino_blkatoff(dp, ino, visitlbn, &frags, NULL);
1398 		if (bn == 0)
1399 			err_suj("Block missing from ino %ju at lbn %jd\n",
1400 			    (uintmax_t)ino, visitlbn);
1401 		clrsize = frags * fs->fs_fsize;
1402 		bp = getdatablk(bn, clrsize, BT_DATA);
1403 		if (bp->b_errs != 0)
1404 			err_suj("ino_trunc: UNRECOVERABLE I/O ERROR");
1405 		clrsize -= off;
1406 		bzero(&bp->b_un.b_buf[off], clrsize);
1407 		dirty(bp);
1408 		brelse(bp);
1409 	}
1410 	irelse(&ip);
1411 	return;
1412 }
1413 
1414 /*
1415  * Process records available for one inode and determine whether the
1416  * link count is correct or needs adjusting.
1417  */
1418 static void
1419 ino_check(struct suj_ino *sino)
1420 {
1421 	struct suj_rec *srec;
1422 	struct jrefrec *rrec;
1423 	nlink_t dotlinks;
1424 	nlink_t newlinks;
1425 	nlink_t removes;
1426 	nlink_t nlink;
1427 	ino_t ino;
1428 	int isdot;
1429 	int isat;
1430 	int mode;
1431 
1432 	if (sino->si_hasrecs == 0)
1433 		return;
1434 	ino = sino->si_ino;
1435 	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1436 	nlink = rrec->jr_nlink;
1437 	newlinks = 0;
1438 	dotlinks = 0;
1439 	removes = sino->si_nlinkadj;
1440 	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1441 		rrec = (struct jrefrec *)srec->sr_rec;
1442 		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1443 		    rrec->jr_ino, &mode, &isdot);
1444 		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1445 			err_suj("Inode mode/directory type mismatch %o != %o\n",
1446 			    mode, rrec->jr_mode);
1447 		if (debug)
1448 			printf("jrefrec: op %d ino %ju, nlink %ju, parent %ju, "
1449 			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1450 			    rrec->jr_op, (uintmax_t)rrec->jr_ino,
1451 			    (uintmax_t)rrec->jr_nlink,
1452 			    (uintmax_t)rrec->jr_parent,
1453 			    (uintmax_t)rrec->jr_diroff,
1454 			    rrec->jr_mode, isat, isdot);
1455 		mode = rrec->jr_mode & IFMT;
1456 		if (rrec->jr_op == JOP_REMREF)
1457 			removes++;
1458 		newlinks += isat;
1459 		if (isdot)
1460 			dotlinks += isat;
1461 	}
1462 	/*
1463 	 * The number of links that remain are the starting link count
1464 	 * subtracted by the total number of removes with the total
1465 	 * links discovered back in.  An incomplete remove thus
1466 	 * makes no change to the link count but an add increases
1467 	 * by one.
1468 	 */
1469 	if (debug)
1470 		printf(
1471 		    "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n",
1472 		    (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks,
1473 		    (uintmax_t)removes, (uintmax_t)dotlinks);
1474 	nlink += newlinks;
1475 	nlink -= removes;
1476 	sino->si_linkadj = 1;
1477 	sino->si_nlink = nlink;
1478 	sino->si_dotlinks = dotlinks;
1479 	sino->si_mode = mode;
1480 	ino_adjust(sino);
1481 }
1482 
1483 /*
1484  * Process records available for one block and determine whether it is
1485  * still allocated and whether the owning inode needs to be updated or
1486  * a free completed.
1487  */
1488 static void
1489 blk_check(struct suj_blk *sblk)
1490 {
1491 	struct suj_rec *srec;
1492 	struct jblkrec *brec;
1493 	struct suj_ino *sino;
1494 	ufs2_daddr_t blk;
1495 	int mask;
1496 	int frags;
1497 	int isat;
1498 
1499 	/*
1500 	 * Each suj_blk actually contains records for any fragments in that
1501 	 * block.  As a result we must evaluate each record individually.
1502 	 */
1503 	sino = NULL;
1504 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1505 		brec = (struct jblkrec *)srec->sr_rec;
1506 		frags = brec->jb_frags;
1507 		blk = brec->jb_blkno + brec->jb_oldfrags;
1508 		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1509 		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1510 			sino = ino_lookup(brec->jb_ino, 1);
1511 			sino->si_blkadj = 1;
1512 		}
1513 		if (debug)
1514 			printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
1515 			    brec->jb_op, blk, (uintmax_t)brec->jb_ino,
1516 			    brec->jb_lbn, brec->jb_frags, isat, frags);
1517 		/*
1518 		 * If we found the block at this address we still have to
1519 		 * determine if we need to free the tail end that was
1520 		 * added by adding contiguous fragments from the same block.
1521 		 */
1522 		if (isat == 1) {
1523 			if (frags == brec->jb_frags)
1524 				continue;
1525 			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1526 			    brec->jb_frags);
1527 			mask >>= frags;
1528 			blk += frags;
1529 			frags = brec->jb_frags - frags;
1530 			blk_free(brec->jb_ino, blk, mask, frags);
1531 			continue;
1532 		}
1533 		/*
1534 	 	 * The block wasn't found, attempt to free it.  It won't be
1535 		 * freed if it was actually reallocated.  If this was an
1536 		 * allocation we don't want to follow indirects as they
1537 		 * may not be written yet.  Any children of the indirect will
1538 		 * have their own records.  If it's a free we need to
1539 		 * recursively free children.
1540 		 */
1541 		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1542 		    brec->jb_op == JOP_FREEBLK);
1543 	}
1544 }
1545 
1546 /*
1547  * Walk the list of inode records for this cg and resolve moved and duplicate
1548  * inode references now that we have a complete picture.
1549  */
1550 static void
1551 cg_build(struct suj_cg *sc)
1552 {
1553 	struct suj_ino *sino;
1554 	int i;
1555 
1556 	for (i = 0; i < HASHSIZE; i++)
1557 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1558 			ino_build(sino);
1559 }
1560 
1561 /*
1562  * Handle inodes requiring truncation.  This must be done prior to
1563  * looking up any inodes in directories.
1564  */
1565 static void
1566 cg_trunc(struct suj_cg *sc)
1567 {
1568 	struct suj_ino *sino;
1569 	int i;
1570 
1571 	for (i = 0; i < HASHSIZE; i++) {
1572 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1573 			if (sino->si_trunc) {
1574 				ino_trunc(sino->si_ino,
1575 				    sino->si_trunc->jt_size);
1576 				sino->si_blkadj = 0;
1577 				sino->si_trunc = NULL;
1578 			}
1579 			if (sino->si_blkadj)
1580 				ino_adjblks(sino);
1581 		}
1582 	}
1583 }
1584 
1585 static void
1586 cg_adj_blk(struct suj_cg *sc)
1587 {
1588 	struct suj_ino *sino;
1589 	int i;
1590 
1591 	for (i = 0; i < HASHSIZE; i++) {
1592 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1593 			if (sino->si_blkadj)
1594 				ino_adjblks(sino);
1595 		}
1596 	}
1597 }
1598 
1599 /*
1600  * Free any partially allocated blocks and then resolve inode block
1601  * counts.
1602  */
1603 static void
1604 cg_check_blk(struct suj_cg *sc)
1605 {
1606 	struct suj_blk *sblk;
1607 	int i;
1608 
1609 
1610 	for (i = 0; i < HASHSIZE; i++)
1611 		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1612 			blk_check(sblk);
1613 }
1614 
1615 /*
1616  * Walk the list of inode records for this cg, recovering any
1617  * changes which were not complete at the time of crash.
1618  */
1619 static void
1620 cg_check_ino(struct suj_cg *sc)
1621 {
1622 	struct suj_ino *sino;
1623 	int i;
1624 
1625 	for (i = 0; i < HASHSIZE; i++)
1626 		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1627 			ino_check(sino);
1628 }
1629 
1630 static void
1631 cg_apply(void (*apply)(struct suj_cg *))
1632 {
1633 	struct suj_cg *scg;
1634 	int i;
1635 
1636 	for (i = 0; i < HASHSIZE; i++)
1637 		LIST_FOREACH(scg, &cghash[i], sc_next)
1638 			apply(scg);
1639 }
1640 
1641 /*
1642  * Process the unlinked but referenced file list.  Freeing all inodes.
1643  */
1644 static void
1645 ino_unlinked(void)
1646 {
1647 	struct inode ip;
1648 	union dinode *dp;
1649 	uint16_t mode;
1650 	ino_t inon;
1651 	ino_t ino;
1652 
1653 	ino = fs->fs_sujfree;
1654 	fs->fs_sujfree = 0;
1655 	while (ino != 0) {
1656 		ginode(ino, &ip);
1657 		dp = ip.i_dp;
1658 		mode = DIP(dp, di_mode) & IFMT;
1659 		inon = DIP(dp, di_freelink);
1660 		DIP_SET(dp, di_freelink, 0);
1661 		inodirty(&ip);
1662 		/*
1663 		 * XXX Should this be an errx?
1664 		 */
1665 		if (DIP(dp, di_nlink) == 0) {
1666 			if (debug)
1667 				printf("Freeing unlinked ino %ju mode %o\n",
1668 				    (uintmax_t)ino, mode);
1669 			ino_reclaim(&ip, ino, mode);
1670 		} else if (debug)
1671 			printf("Skipping ino %ju mode %o with link %d\n",
1672 			    (uintmax_t)ino, mode, DIP(dp, di_nlink));
1673 		ino = inon;
1674 		irelse(&ip);
1675 	}
1676 }
1677 
1678 /*
1679  * Append a new record to the list of records requiring processing.
1680  */
1681 static void
1682 ino_append(union jrec *rec)
1683 {
1684 	struct jrefrec *refrec;
1685 	struct jmvrec *mvrec;
1686 	struct suj_ino *sino;
1687 	struct suj_rec *srec;
1688 
1689 	mvrec = &rec->rec_jmvrec;
1690 	refrec = &rec->rec_jrefrec;
1691 	if (debug && mvrec->jm_op == JOP_MVREF)
1692 		printf("ino move: ino %ju, parent %ju, "
1693 		    "diroff %jd, oldoff %jd\n",
1694 		    (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent,
1695 		    (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff);
1696 	else if (debug &&
1697 	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1698 		printf("ino ref: op %d, ino %ju, nlink %ju, "
1699 		    "parent %ju, diroff %jd\n",
1700 		    refrec->jr_op, (uintmax_t)refrec->jr_ino,
1701 		    (uintmax_t)refrec->jr_nlink,
1702 		    (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff);
1703 	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1704 	sino->si_hasrecs = 1;
1705 	srec = errmalloc(sizeof(*srec));
1706 	srec->sr_rec = rec;
1707 	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1708 }
1709 
1710 /*
1711  * Add a reference adjustment to the sino list and eliminate dups.  The
1712  * primary loop in ino_build_ref() checks for dups but new ones may be
1713  * created as a result of offset adjustments.
1714  */
1715 static void
1716 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1717 {
1718 	struct jrefrec *refrec;
1719 	struct suj_rec *srn;
1720 	struct jrefrec *rrn;
1721 
1722 	refrec = (struct jrefrec *)srec->sr_rec;
1723 	/*
1724 	 * We walk backwards so that the oldest link count is preserved.  If
1725 	 * an add record conflicts with a remove keep the remove.  Redundant
1726 	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1727 	 * oldest record at a given location.
1728 	 */
1729 	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
1730 	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
1731 		rrn = (struct jrefrec *)srn->sr_rec;
1732 		if (rrn->jr_parent != refrec->jr_parent ||
1733 		    rrn->jr_diroff != refrec->jr_diroff)
1734 			continue;
1735 		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
1736 			rrn->jr_mode = refrec->jr_mode;
1737 			return;
1738 		}
1739 		/*
1740 		 * Adding a remove.
1741 		 *
1742 		 * Replace the record in place with the old nlink in case
1743 		 * we replace the head of the list.  Abandon srec as a dup.
1744 		 */
1745 		refrec->jr_nlink = rrn->jr_nlink;
1746 		srn->sr_rec = srec->sr_rec;
1747 		return;
1748 	}
1749 	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
1750 }
1751 
1752 /*
1753  * Create a duplicate of a reference at a previous location.
1754  */
1755 static void
1756 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
1757 {
1758 	struct jrefrec *rrn;
1759 	struct suj_rec *srn;
1760 
1761 	rrn = errmalloc(sizeof(*refrec));
1762 	*rrn = *refrec;
1763 	rrn->jr_op = JOP_ADDREF;
1764 	rrn->jr_diroff = diroff;
1765 	srn = errmalloc(sizeof(*srn));
1766 	srn->sr_rec = (union jrec *)rrn;
1767 	ino_add_ref(sino, srn);
1768 }
1769 
1770 /*
1771  * Add a reference to the list at all known locations.  We follow the offset
1772  * changes for a single instance and create duplicate add refs at each so
1773  * that we can tolerate any version of the directory block.  Eliminate
1774  * removes which collide with adds that are seen in the journal.  They should
1775  * not adjust the link count down.
1776  */
1777 static void
1778 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
1779 {
1780 	struct jrefrec *refrec;
1781 	struct jmvrec *mvrec;
1782 	struct suj_rec *srp;
1783 	struct suj_rec *srn;
1784 	struct jrefrec *rrn;
1785 	off_t diroff;
1786 
1787 	refrec = (struct jrefrec *)srec->sr_rec;
1788 	/*
1789 	 * Search for a mvrec that matches this offset.  Whether it's an add
1790 	 * or a remove we can delete the mvref after creating a dup record in
1791 	 * the old location.
1792 	 */
1793 	if (!TAILQ_EMPTY(&sino->si_movs)) {
1794 		diroff = refrec->jr_diroff;
1795 		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
1796 			srp = TAILQ_PREV(srn, srechd, sr_next);
1797 			mvrec = (struct jmvrec *)srn->sr_rec;
1798 			if (mvrec->jm_parent != refrec->jr_parent ||
1799 			    mvrec->jm_newoff != diroff)
1800 				continue;
1801 			diroff = mvrec->jm_oldoff;
1802 			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
1803 			free(srn);
1804 			ino_dup_ref(sino, refrec, diroff);
1805 		}
1806 	}
1807 	/*
1808 	 * If a remove wasn't eliminated by an earlier add just append it to
1809 	 * the list.
1810 	 */
1811 	if (refrec->jr_op == JOP_REMREF) {
1812 		ino_add_ref(sino, srec);
1813 		return;
1814 	}
1815 	/*
1816 	 * Walk the list of records waiting to be added to the list.  We
1817 	 * must check for moves that apply to our current offset and remove
1818 	 * them from the list.  Remove any duplicates to eliminate removes
1819 	 * with corresponding adds.
1820 	 */
1821 	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
1822 		switch (srn->sr_rec->rec_jrefrec.jr_op) {
1823 		case JOP_ADDREF:
1824 			/*
1825 			 * This should actually be an error we should
1826 			 * have a remove for every add journaled.
1827 			 */
1828 			rrn = (struct jrefrec *)srn->sr_rec;
1829 			if (rrn->jr_parent != refrec->jr_parent ||
1830 			    rrn->jr_diroff != refrec->jr_diroff)
1831 				break;
1832 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1833 			break;
1834 		case JOP_REMREF:
1835 			/*
1836 			 * Once we remove the current iteration of the
1837 			 * record at this address we're done.
1838 			 */
1839 			rrn = (struct jrefrec *)srn->sr_rec;
1840 			if (rrn->jr_parent != refrec->jr_parent ||
1841 			    rrn->jr_diroff != refrec->jr_diroff)
1842 				break;
1843 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1844 			ino_add_ref(sino, srec);
1845 			return;
1846 		case JOP_MVREF:
1847 			/*
1848 			 * Update our diroff based on any moves that match
1849 			 * and remove the move.
1850 			 */
1851 			mvrec = (struct jmvrec *)srn->sr_rec;
1852 			if (mvrec->jm_parent != refrec->jr_parent ||
1853 			    mvrec->jm_oldoff != refrec->jr_diroff)
1854 				break;
1855 			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
1856 			refrec->jr_diroff = mvrec->jm_newoff;
1857 			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
1858 			break;
1859 		default:
1860 			err_suj("ino_build_ref: Unknown op %d\n",
1861 			    srn->sr_rec->rec_jrefrec.jr_op);
1862 		}
1863 	}
1864 	ino_add_ref(sino, srec);
1865 }
1866 
1867 /*
1868  * Walk the list of new records and add them in-order resolving any
1869  * dups and adjusted offsets.
1870  */
1871 static void
1872 ino_build(struct suj_ino *sino)
1873 {
1874 	struct suj_rec *srec;
1875 
1876 	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
1877 		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
1878 		switch (srec->sr_rec->rec_jrefrec.jr_op) {
1879 		case JOP_ADDREF:
1880 		case JOP_REMREF:
1881 			ino_build_ref(sino, srec);
1882 			break;
1883 		case JOP_MVREF:
1884 			/*
1885 			 * Add this mvrec to the queue of pending mvs.
1886 			 */
1887 			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
1888 			break;
1889 		default:
1890 			err_suj("ino_build: Unknown op %d\n",
1891 			    srec->sr_rec->rec_jrefrec.jr_op);
1892 		}
1893 	}
1894 	if (TAILQ_EMPTY(&sino->si_recs))
1895 		sino->si_hasrecs = 0;
1896 }
1897 
1898 /*
1899  * Modify journal records so they refer to the base block number
1900  * and a start and end frag range.  This is to facilitate the discovery
1901  * of overlapping fragment allocations.
1902  */
1903 static void
1904 blk_build(struct jblkrec *blkrec)
1905 {
1906 	struct suj_rec *srec;
1907 	struct suj_blk *sblk;
1908 	struct jblkrec *blkrn;
1909 	ufs2_daddr_t blk;
1910 	int frag;
1911 
1912 	if (debug)
1913 		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
1914 		    "ino %ju lbn %jd\n",
1915 		    blkrec->jb_op, (uintmax_t)blkrec->jb_blkno,
1916 		    blkrec->jb_frags, blkrec->jb_oldfrags,
1917 		    (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn);
1918 
1919 	blk = blknum(fs, blkrec->jb_blkno);
1920 	frag = fragnum(fs, blkrec->jb_blkno);
1921 	sblk = blk_lookup(blk, 1);
1922 	/*
1923 	 * Rewrite the record using oldfrags to indicate the offset into
1924 	 * the block.  Leave jb_frags as the actual allocated count.
1925 	 */
1926 	blkrec->jb_blkno -= frag;
1927 	blkrec->jb_oldfrags = frag;
1928 	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
1929 		err_suj("Invalid fragment count %d oldfrags %d\n",
1930 		    blkrec->jb_frags, frag);
1931 	/*
1932 	 * Detect dups.  If we detect a dup we always discard the oldest
1933 	 * record as it is superseded by the new record.  This speeds up
1934 	 * later stages but also eliminates free records which are used
1935 	 * to indicate that the contents of indirects can be trusted.
1936 	 */
1937 	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1938 		blkrn = (struct jblkrec *)srec->sr_rec;
1939 		if (blkrn->jb_ino != blkrec->jb_ino ||
1940 		    blkrn->jb_lbn != blkrec->jb_lbn ||
1941 		    blkrn->jb_blkno != blkrec->jb_blkno ||
1942 		    blkrn->jb_frags != blkrec->jb_frags ||
1943 		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
1944 			continue;
1945 		if (debug)
1946 			printf("Removed dup.\n");
1947 		/* Discard the free which is a dup with an alloc. */
1948 		if (blkrec->jb_op == JOP_FREEBLK)
1949 			return;
1950 		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
1951 		free(srec);
1952 		break;
1953 	}
1954 	srec = errmalloc(sizeof(*srec));
1955 	srec->sr_rec = (union jrec *)blkrec;
1956 	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
1957 }
1958 
1959 static void
1960 ino_build_trunc(struct jtrncrec *rec)
1961 {
1962 	struct suj_ino *sino;
1963 
1964 	if (debug)
1965 		printf("ino_build_trunc: op %d ino %ju, size %jd\n",
1966 		    rec->jt_op, (uintmax_t)rec->jt_ino,
1967 		    (uintmax_t)rec->jt_size);
1968 	sino = ino_lookup(rec->jt_ino, 1);
1969 	if (rec->jt_op == JOP_SYNC) {
1970 		sino->si_trunc = NULL;
1971 		return;
1972 	}
1973 	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
1974 		sino->si_trunc = rec;
1975 }
1976 
1977 /*
1978  * Build up tables of the operations we need to recover.
1979  */
1980 static void
1981 suj_build(void)
1982 {
1983 	struct suj_seg *seg;
1984 	union jrec *rec;
1985 	int off;
1986 	int i;
1987 
1988 	TAILQ_FOREACH(seg, &allsegs, ss_next) {
1989 		if (debug)
1990 			printf("seg %jd has %d records, oldseq %jd.\n",
1991 			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
1992 			    seg->ss_rec.jsr_oldest);
1993 		off = 0;
1994 		rec = (union jrec *)seg->ss_blk;
1995 		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
1996 			/* skip the segrec. */
1997 			if ((off % real_dev_bsize) == 0)
1998 				continue;
1999 			switch (rec->rec_jrefrec.jr_op) {
2000 			case JOP_ADDREF:
2001 			case JOP_REMREF:
2002 			case JOP_MVREF:
2003 				ino_append(rec);
2004 				break;
2005 			case JOP_NEWBLK:
2006 			case JOP_FREEBLK:
2007 				blk_build((struct jblkrec *)rec);
2008 				break;
2009 			case JOP_TRUNC:
2010 			case JOP_SYNC:
2011 				ino_build_trunc((struct jtrncrec *)rec);
2012 				break;
2013 			default:
2014 				err_suj("Unknown journal operation %d (%d)\n",
2015 				    rec->rec_jrefrec.jr_op, off);
2016 			}
2017 			i++;
2018 		}
2019 	}
2020 }
2021 
2022 /*
2023  * Prune the journal segments to those we care about based on the
2024  * oldest sequence in the newest segment.  Order the segment list
2025  * based on sequence number.
2026  */
2027 static void
2028 suj_prune(void)
2029 {
2030 	struct suj_seg *seg;
2031 	struct suj_seg *segn;
2032 	uint64_t newseq;
2033 	int discard;
2034 
2035 	if (debug)
2036 		printf("Pruning up to %jd\n", oldseq);
2037 	/* First free the expired segments. */
2038 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2039 		if (seg->ss_rec.jsr_seq >= oldseq)
2040 			continue;
2041 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2042 		free(seg->ss_blk);
2043 		free(seg);
2044 	}
2045 	/* Next ensure that segments are ordered properly. */
2046 	seg = TAILQ_FIRST(&allsegs);
2047 	if (seg == NULL) {
2048 		if (debug)
2049 			printf("Empty journal\n");
2050 		return;
2051 	}
2052 	newseq = seg->ss_rec.jsr_seq;
2053 	for (;;) {
2054 		seg = TAILQ_LAST(&allsegs, seghd);
2055 		if (seg->ss_rec.jsr_seq >= newseq)
2056 			break;
2057 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2058 		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2059 		newseq = seg->ss_rec.jsr_seq;
2060 
2061 	}
2062 	if (newseq != oldseq) {
2063 		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2064 			printf("%jd, ", seg->ss_rec.jsr_seq);
2065 		}
2066 		printf("\n");
2067 		err_suj("Journal file sequence mismatch %jd != %jd\n",
2068 		    newseq, oldseq);
2069 	}
2070 	/*
2071 	 * The kernel may asynchronously write segments which can create
2072 	 * gaps in the sequence space.  Throw away any segments after the
2073 	 * gap as the kernel guarantees only those that are contiguously
2074 	 * reachable are marked as completed.
2075 	 */
2076 	discard = 0;
2077 	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2078 		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2079 			jrecs += seg->ss_rec.jsr_cnt;
2080 			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2081 			continue;
2082 		}
2083 		discard = 1;
2084 		if (debug)
2085 			printf("Journal order mismatch %jd != %jd pruning\n",
2086 			    newseq-1, seg->ss_rec.jsr_seq);
2087 		TAILQ_REMOVE(&allsegs, seg, ss_next);
2088 		free(seg->ss_blk);
2089 		free(seg);
2090 	}
2091 	if (debug)
2092 		printf("Processing journal segments from %jd to %jd\n",
2093 		    oldseq, newseq-1);
2094 }
2095 
2096 /*
2097  * Verify the journal inode before attempting to read records.
2098  */
2099 static int
2100 suj_verifyino(union dinode *dp)
2101 {
2102 
2103 	if (DIP(dp, di_nlink) != 1) {
2104 		printf("Invalid link count %d for journal inode %ju\n",
2105 		    DIP(dp, di_nlink), (uintmax_t)sujino);
2106 		return (-1);
2107 	}
2108 
2109 	if ((DIP(dp, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2110 	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2111 		printf("Invalid flags 0x%X for journal inode %ju\n",
2112 		    DIP(dp, di_flags), (uintmax_t)sujino);
2113 		return (-1);
2114 	}
2115 
2116 	if (DIP(dp, di_mode) != (IFREG | IREAD)) {
2117 		printf("Invalid mode %o for journal inode %ju\n",
2118 		    DIP(dp, di_mode), (uintmax_t)sujino);
2119 		return (-1);
2120 	}
2121 
2122 	if (DIP(dp, di_size) < SUJ_MIN) {
2123 		printf("Invalid size %jd for journal inode %ju\n",
2124 		    DIP(dp, di_size), (uintmax_t)sujino);
2125 		return (-1);
2126 	}
2127 
2128 	if (DIP(dp, di_modrev) != fs->fs_mtime) {
2129 		printf("Journal timestamp does not match fs mount time\n");
2130 		return (-1);
2131 	}
2132 
2133 	return (0);
2134 }
2135 
2136 struct jblocks {
2137 	struct jextent *jb_extent;	/* Extent array. */
2138 	int		jb_avail;	/* Available extents. */
2139 	int		jb_used;	/* Last used extent. */
2140 	int		jb_head;	/* Allocator head. */
2141 	int		jb_off;		/* Allocator extent offset. */
2142 };
2143 struct jextent {
2144 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2145 	int		je_blocks;	/* Disk block count. */
2146 };
2147 
2148 static struct jblocks *suj_jblocks;
2149 
2150 static struct jblocks *
2151 jblocks_create(void)
2152 {
2153 	struct jblocks *jblocks;
2154 	int size;
2155 
2156 	jblocks = errmalloc(sizeof(*jblocks));
2157 	jblocks->jb_avail = 10;
2158 	jblocks->jb_used = 0;
2159 	jblocks->jb_head = 0;
2160 	jblocks->jb_off = 0;
2161 	size = sizeof(struct jextent) * jblocks->jb_avail;
2162 	jblocks->jb_extent = errmalloc(size);
2163 	bzero(jblocks->jb_extent, size);
2164 
2165 	return (jblocks);
2166 }
2167 
2168 /*
2169  * Return the next available disk block and the amount of contiguous
2170  * free space it contains.
2171  */
2172 static ufs2_daddr_t
2173 jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2174 {
2175 	struct jextent *jext;
2176 	ufs2_daddr_t daddr;
2177 	int freecnt;
2178 	int blocks;
2179 
2180 	blocks = btodb(bytes);
2181 	jext = &jblocks->jb_extent[jblocks->jb_head];
2182 	freecnt = jext->je_blocks - jblocks->jb_off;
2183 	if (freecnt == 0) {
2184 		jblocks->jb_off = 0;
2185 		if (++jblocks->jb_head > jblocks->jb_used)
2186 			return (0);
2187 		jext = &jblocks->jb_extent[jblocks->jb_head];
2188 		freecnt = jext->je_blocks;
2189 	}
2190 	if (freecnt > blocks)
2191 		freecnt = blocks;
2192 	*actual = dbtob(freecnt);
2193 	daddr = jext->je_daddr + jblocks->jb_off;
2194 
2195 	return (daddr);
2196 }
2197 
2198 /*
2199  * Advance the allocation head by a specified number of bytes, consuming
2200  * one journal segment.
2201  */
2202 static void
2203 jblocks_advance(struct jblocks *jblocks, int bytes)
2204 {
2205 
2206 	jblocks->jb_off += btodb(bytes);
2207 }
2208 
2209 static void
2210 jblocks_destroy(struct jblocks *jblocks)
2211 {
2212 
2213 	free(jblocks->jb_extent);
2214 	free(jblocks);
2215 }
2216 
2217 static void
2218 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2219 {
2220 	struct jextent *jext;
2221 	int size;
2222 
2223 	jext = &jblocks->jb_extent[jblocks->jb_used];
2224 	/* Adding the first block. */
2225 	if (jext->je_daddr == 0) {
2226 		jext->je_daddr = daddr;
2227 		jext->je_blocks = blocks;
2228 		return;
2229 	}
2230 	/* Extending the last extent. */
2231 	if (jext->je_daddr + jext->je_blocks == daddr) {
2232 		jext->je_blocks += blocks;
2233 		return;
2234 	}
2235 	/* Adding a new extent. */
2236 	if (++jblocks->jb_used == jblocks->jb_avail) {
2237 		jblocks->jb_avail *= 2;
2238 		size = sizeof(struct jextent) * jblocks->jb_avail;
2239 		jext = errmalloc(size);
2240 		bzero(jext, size);
2241 		bcopy(jblocks->jb_extent, jext,
2242 		    sizeof(struct jextent) * jblocks->jb_used);
2243 		free(jblocks->jb_extent);
2244 		jblocks->jb_extent = jext;
2245 	}
2246 	jext = &jblocks->jb_extent[jblocks->jb_used];
2247 	jext->je_daddr = daddr;
2248 	jext->je_blocks = blocks;
2249 
2250 	return;
2251 }
2252 
2253 /*
2254  * Add a file block from the journal to the extent map.  We can't read
2255  * each file block individually because the kernel treats it as a circular
2256  * buffer and segments may span mutliple contiguous blocks.
2257  */
2258 static void
2259 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2260 {
2261 
2262 	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2263 }
2264 
2265 static void
2266 suj_read(void)
2267 {
2268 	uint8_t block[1 * 1024 * 1024];
2269 	struct suj_seg *seg;
2270 	struct jsegrec *recn;
2271 	struct jsegrec *rec;
2272 	ufs2_daddr_t blk;
2273 	int readsize;
2274 	int blocks;
2275 	int recsize;
2276 	int size;
2277 	int i;
2278 
2279 	/*
2280 	 * Read records until we exhaust the journal space.  If we find
2281 	 * an invalid record we start searching for a valid segment header
2282 	 * at the next block.  This is because we don't have a head/tail
2283 	 * pointer and must recover the information indirectly.  At the gap
2284 	 * between the head and tail we won't necessarily have a valid
2285 	 * segment.
2286 	 */
2287 restart:
2288 	for (;;) {
2289 		size = sizeof(block);
2290 		blk = jblocks_next(suj_jblocks, size, &readsize);
2291 		if (blk == 0)
2292 			return;
2293 		size = readsize;
2294 		/*
2295 		 * Read 1MB at a time and scan for records within this block.
2296 		 */
2297 		if (pread(fsreadfd, &block, size, dbtob(blk)) != size) {
2298 			err_suj("Error reading journal block %jd\n",
2299 			    (intmax_t)blk);
2300 		}
2301 		for (rec = (void *)block; size; size -= recsize,
2302 		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2303 			recsize = real_dev_bsize;
2304 			if (rec->jsr_time != fs->fs_mtime) {
2305 #ifdef notdef
2306 				if (debug)
2307 					printf("Rec time %jd != fs mtime %jd\n",
2308 					    rec->jsr_time, fs->fs_mtime);
2309 #endif
2310 				jblocks_advance(suj_jblocks, recsize);
2311 				continue;
2312 			}
2313 			if (rec->jsr_cnt == 0) {
2314 				if (debug)
2315 					printf("Found illegal count %d\n",
2316 					    rec->jsr_cnt);
2317 				jblocks_advance(suj_jblocks, recsize);
2318 				continue;
2319 			}
2320 			blocks = rec->jsr_blocks;
2321 			recsize = blocks * real_dev_bsize;
2322 			if (recsize > size) {
2323 				/*
2324 				 * We may just have run out of buffer, restart
2325 				 * the loop to re-read from this spot.
2326 				 */
2327 				if (size < fs->fs_bsize &&
2328 				    size != readsize &&
2329 				    recsize <= fs->fs_bsize)
2330 					goto restart;
2331 				if (debug)
2332 					printf("Found invalid segsize %d > %d\n",
2333 					    recsize, size);
2334 				recsize = real_dev_bsize;
2335 				jblocks_advance(suj_jblocks, recsize);
2336 				continue;
2337 			}
2338 			/*
2339 			 * Verify that all blocks in the segment are present.
2340 			 */
2341 			for (i = 1; i < blocks; i++) {
2342 				recn = (void *)((uintptr_t)rec) + i *
2343 				    real_dev_bsize;
2344 				if (recn->jsr_seq == rec->jsr_seq &&
2345 				    recn->jsr_time == rec->jsr_time)
2346 					continue;
2347 				if (debug)
2348 					printf("Incomplete record %jd (%d)\n",
2349 					    rec->jsr_seq, i);
2350 				recsize = i * real_dev_bsize;
2351 				jblocks_advance(suj_jblocks, recsize);
2352 				goto restart;
2353 			}
2354 			seg = errmalloc(sizeof(*seg));
2355 			seg->ss_blk = errmalloc(recsize);
2356 			seg->ss_rec = *rec;
2357 			bcopy((void *)rec, seg->ss_blk, recsize);
2358 			if (rec->jsr_oldest > oldseq)
2359 				oldseq = rec->jsr_oldest;
2360 			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2361 			jblocks_advance(suj_jblocks, recsize);
2362 		}
2363 	}
2364 }
2365 
2366 /*
2367  * Orchestrate the verification of a filesystem via the softupdates journal.
2368  */
2369 int
2370 suj_check(const char *filesys)
2371 {
2372 	struct inodesc idesc;
2373 	struct csum *cgsum;
2374 	union dinode *jip;
2375 	struct inode ip;
2376 	uint64_t blocks;
2377 	int i, retval;
2378 	struct suj_seg *seg;
2379 	struct suj_seg *segn;
2380 
2381 	initsuj();
2382 	fs = &sblock;
2383 	if (real_dev_bsize == 0 && ioctl(fsreadfd, DIOCGSECTORSIZE,
2384 	    &real_dev_bsize) == -1)
2385 		real_dev_bsize = secsize;
2386 	if (debug)
2387 		printf("dev_bsize %u\n", real_dev_bsize);
2388 
2389 	/*
2390 	 * Set an exit point when SUJ check failed
2391 	 */
2392 	retval = setjmp(jmpbuf);
2393 	if (retval != 0) {
2394 		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2395 		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2396 			TAILQ_REMOVE(&allsegs, seg, ss_next);
2397 				free(seg->ss_blk);
2398 				free(seg);
2399 		}
2400 		if (reply("FALLBACK TO FULL FSCK") == 0) {
2401 			ckfini(0);
2402 			exit(EEXIT);
2403 		} else
2404 			return (-1);
2405 	}
2406 
2407 	/*
2408 	 * Search the root directory for the SUJ_FILE.
2409 	 */
2410 	idesc.id_type = DATA;
2411 	idesc.id_fix = IGNORE;
2412 	idesc.id_number = UFS_ROOTINO;
2413 	idesc.id_func = findino;
2414 	idesc.id_name = SUJ_FILE;
2415 	ginode(UFS_ROOTINO, &ip);
2416 	if ((ckinode(ip.i_dp, &idesc) & FOUND) == FOUND) {
2417 		sujino = idesc.id_parent;
2418 		irelse(&ip);
2419 	} else {
2420 		printf("Journal inode removed.  Use tunefs to re-create.\n");
2421 		sblock.fs_flags &= ~FS_SUJ;
2422 		sblock.fs_sujfree = 0;
2423 		irelse(&ip);
2424 		return (-1);
2425 	}
2426 	/*
2427 	 * Fetch the journal inode and verify it.
2428 	 */
2429 	ginode(sujino, &ip);
2430 	jip = ip.i_dp;
2431 	printf("** SU+J Recovering %s\n", filesys);
2432 	if (suj_verifyino(jip) != 0 || (!preen && !reply("USE JOURNAL"))) {
2433 		irelse(&ip);
2434 		return (-1);
2435 	}
2436 	/*
2437 	 * Build a list of journal blocks in jblocks before parsing the
2438 	 * available journal blocks in with suj_read().
2439 	 */
2440 	printf("** Reading %jd byte journal from inode %ju.\n",
2441 	    DIP(jip, di_size), (uintmax_t)sujino);
2442 	suj_jblocks = jblocks_create();
2443 	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2444 	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2445 		printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
2446 		irelse(&ip);
2447 		return (-1);
2448 	}
2449 	irelse(&ip);
2450 	suj_read();
2451 	jblocks_destroy(suj_jblocks);
2452 	suj_jblocks = NULL;
2453 	if (preen || reply("RECOVER")) {
2454 		printf("** Building recovery table.\n");
2455 		suj_prune();
2456 		suj_build();
2457 		cg_apply(cg_build);
2458 		printf("** Resolving unreferenced inode list.\n");
2459 		ino_unlinked();
2460 		printf("** Processing journal entries.\n");
2461 		cg_apply(cg_trunc);
2462 		cg_apply(cg_check_blk);
2463 		cg_apply(cg_adj_blk);
2464 		cg_apply(cg_check_ino);
2465 	}
2466 	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2467 		return (0);
2468 	/*
2469 	 * Check block counts of snapshot inodes and
2470 	 * make copies of any needed snapshot blocks.
2471 	 */
2472 	for (i = 0; i < snapcnt; i++)
2473 		check_blkcnt(&snaplist[i]);
2474 	snapflush(suj_checkblkavail);
2475 	/*
2476 	 * Recompute the fs summary info from correct cs summaries.
2477 	 */
2478 	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
2479 	for (i = 0; i < fs->fs_ncg; i++) {
2480 		cgsum = &fs->fs_cs(fs, i);
2481 		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
2482 		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
2483 		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
2484 		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
2485 	}
2486 	fs->fs_pendinginodes = 0;
2487 	fs->fs_pendingblocks = 0;
2488 	fs->fs_clean = 1;
2489 	fs->fs_time = time(NULL);
2490 	fs->fs_mtime = time(NULL);
2491 	sbdirty();
2492 	ckfini(1);
2493 	if (jrecs > 0 || jbytes > 0) {
2494 		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2495 		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2496 		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2497 		    freeinos, freedir, freeblocks, freefrags);
2498 	}
2499 
2500 	return (0);
2501 }
2502 
2503 static void
2504 initsuj(void)
2505 {
2506 	int i;
2507 
2508 	for (i = 0; i < HASHSIZE; i++)
2509 		LIST_INIT(&cghash[i]);
2510 	lastcg = NULL;
2511 	TAILQ_INIT(&allsegs);
2512 	oldseq = 0;
2513 	fs = NULL;
2514 	sujino = 0;
2515 	freefrags = 0;
2516 	freeblocks = 0;
2517 	freeinos = 0;
2518 	freedir = 0;
2519 	jbytes = 0;
2520 	jrecs = 0;
2521 	suj_jblocks = NULL;
2522 }
2523