1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/disk.h> 34 #include <sys/disklabel.h> 35 #include <sys/mount.h> 36 #include <sys/stat.h> 37 38 #include <ufs/ufs/extattr.h> 39 #include <ufs/ufs/quota.h> 40 #include <ufs/ufs/ufsmount.h> 41 #include <ufs/ufs/dinode.h> 42 #include <ufs/ufs/dir.h> 43 #include <ufs/ffs/fs.h> 44 45 #include <assert.h> 46 #include <err.h> 47 #include <setjmp.h> 48 #include <stdarg.h> 49 #include <stdio.h> 50 #include <stdlib.h> 51 #include <stdint.h> 52 #include <libufs.h> 53 #include <string.h> 54 #include <strings.h> 55 #include <sysexits.h> 56 #include <time.h> 57 58 #include "fsck.h" 59 60 #define DOTDOT_OFFSET DIRECTSIZ(1) 61 62 struct suj_seg { 63 TAILQ_ENTRY(suj_seg) ss_next; 64 struct jsegrec ss_rec; 65 uint8_t *ss_blk; 66 }; 67 68 struct suj_rec { 69 TAILQ_ENTRY(suj_rec) sr_next; 70 union jrec *sr_rec; 71 }; 72 TAILQ_HEAD(srechd, suj_rec); 73 74 struct suj_ino { 75 LIST_ENTRY(suj_ino) si_next; 76 struct srechd si_recs; 77 struct srechd si_newrecs; 78 struct srechd si_movs; 79 struct jtrncrec *si_trunc; 80 ino_t si_ino; 81 char si_skipparent; 82 char si_hasrecs; 83 char si_blkadj; 84 char si_linkadj; 85 int si_mode; 86 nlink_t si_nlinkadj; 87 nlink_t si_nlink; 88 nlink_t si_dotlinks; 89 }; 90 LIST_HEAD(inohd, suj_ino); 91 92 struct suj_blk { 93 LIST_ENTRY(suj_blk) sb_next; 94 struct srechd sb_recs; 95 ufs2_daddr_t sb_blk; 96 }; 97 LIST_HEAD(blkhd, suj_blk); 98 99 struct suj_cg { 100 LIST_ENTRY(suj_cg) sc_next; 101 struct blkhd sc_blkhash[HASHSIZE]; 102 struct inohd sc_inohash[HASHSIZE]; 103 struct ino_blk *sc_lastiblk; 104 struct suj_ino *sc_lastino; 105 struct suj_blk *sc_lastblk; 106 struct bufarea *sc_cgbp; 107 struct cg *sc_cgp; 108 int sc_cgx; 109 }; 110 111 static LIST_HEAD(cghd, suj_cg) cghash[HASHSIZE]; 112 static struct suj_cg *lastcg; 113 114 static TAILQ_HEAD(seghd, suj_seg) allsegs; 115 static uint64_t oldseq; 116 static struct fs *fs = NULL; 117 static ino_t sujino; 118 static char *joptype[JOP_NUMJOPTYPES] = JOP_NAMES; 119 120 /* 121 * Summary statistics. 122 */ 123 static uint64_t freefrags; 124 static uint64_t freeblocks; 125 static uint64_t freeinos; 126 static uint64_t freedir; 127 static uint64_t jbytes; 128 static uint64_t jrecs; 129 130 static jmp_buf jmpbuf; 131 132 typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int); 133 static void err_suj(const char *, ...) __dead2; 134 static void ino_trunc(ino_t, off_t); 135 static void ino_decr(ino_t); 136 static void ino_adjust(struct suj_ino *); 137 static void ino_build(struct suj_ino *); 138 static int blk_isfree(ufs2_daddr_t); 139 static void initsuj(void); 140 141 static void * 142 errmalloc(size_t n) 143 { 144 void *a; 145 146 a = Malloc(n); 147 if (a == NULL) 148 err(EX_OSERR, "malloc(%zu)", n); 149 return (a); 150 } 151 152 /* 153 * When hit a fatal error in journalling check, print out 154 * the error and then offer to fallback to normal fsck. 155 */ 156 static void 157 err_suj(const char * restrict fmt, ...) 158 { 159 va_list ap; 160 161 if (preen) 162 (void)fprintf(stdout, "%s: ", cdevname); 163 164 va_start(ap, fmt); 165 (void)vfprintf(stdout, fmt, ap); 166 va_end(ap); 167 168 longjmp(jmpbuf, -1); 169 } 170 171 /* 172 * Lookup a cg by number in the hash so we can keep track of which cgs 173 * need stats rebuilt. 174 */ 175 static struct suj_cg * 176 cg_lookup(int cgx) 177 { 178 struct cghd *hd; 179 struct suj_cg *sc; 180 struct bufarea *cgbp; 181 182 if (cgx < 0 || cgx >= fs->fs_ncg) 183 err_suj("Bad cg number %d\n", cgx); 184 if (lastcg && lastcg->sc_cgx == cgx) 185 return (lastcg); 186 cgbp = cglookup(cgx); 187 if (!check_cgmagic(cgx, cgbp)) 188 err_suj("UNABLE TO REBUILD CYLINDER GROUP %d", cgx); 189 hd = &cghash[HASH(cgx)]; 190 LIST_FOREACH(sc, hd, sc_next) 191 if (sc->sc_cgx == cgx) { 192 sc->sc_cgbp = cgbp; 193 sc->sc_cgp = sc->sc_cgbp->b_un.b_cg; 194 lastcg = sc; 195 return (sc); 196 } 197 sc = errmalloc(sizeof(*sc)); 198 bzero(sc, sizeof(*sc)); 199 sc->sc_cgbp = cgbp; 200 sc->sc_cgp = sc->sc_cgbp->b_un.b_cg; 201 sc->sc_cgx = cgx; 202 LIST_INSERT_HEAD(hd, sc, sc_next); 203 return (sc); 204 } 205 206 /* 207 * Lookup an inode number in the hash and allocate a suj_ino if it does 208 * not exist. 209 */ 210 static struct suj_ino * 211 ino_lookup(ino_t ino, int creat) 212 { 213 struct suj_ino *sino; 214 struct inohd *hd; 215 struct suj_cg *sc; 216 217 sc = cg_lookup(ino_to_cg(fs, ino)); 218 if (sc->sc_lastino && sc->sc_lastino->si_ino == ino) 219 return (sc->sc_lastino); 220 hd = &sc->sc_inohash[HASH(ino)]; 221 LIST_FOREACH(sino, hd, si_next) 222 if (sino->si_ino == ino) 223 return (sino); 224 if (creat == 0) 225 return (NULL); 226 sino = errmalloc(sizeof(*sino)); 227 bzero(sino, sizeof(*sino)); 228 sino->si_ino = ino; 229 TAILQ_INIT(&sino->si_recs); 230 TAILQ_INIT(&sino->si_newrecs); 231 TAILQ_INIT(&sino->si_movs); 232 LIST_INSERT_HEAD(hd, sino, si_next); 233 234 return (sino); 235 } 236 237 /* 238 * Lookup a block number in the hash and allocate a suj_blk if it does 239 * not exist. 240 */ 241 static struct suj_blk * 242 blk_lookup(ufs2_daddr_t blk, int creat) 243 { 244 struct suj_blk *sblk; 245 struct suj_cg *sc; 246 struct blkhd *hd; 247 248 sc = cg_lookup(dtog(fs, blk)); 249 if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk) 250 return (sc->sc_lastblk); 251 hd = &sc->sc_blkhash[HASH(fragstoblks(fs, blk))]; 252 LIST_FOREACH(sblk, hd, sb_next) 253 if (sblk->sb_blk == blk) 254 return (sblk); 255 if (creat == 0) 256 return (NULL); 257 sblk = errmalloc(sizeof(*sblk)); 258 bzero(sblk, sizeof(*sblk)); 259 sblk->sb_blk = blk; 260 TAILQ_INIT(&sblk->sb_recs); 261 LIST_INSERT_HEAD(hd, sblk, sb_next); 262 263 return (sblk); 264 } 265 266 static int 267 blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags) 268 { 269 ufs2_daddr_t bstart; 270 ufs2_daddr_t bend; 271 ufs2_daddr_t end; 272 273 end = start + frags; 274 bstart = brec->jb_blkno + brec->jb_oldfrags; 275 bend = bstart + brec->jb_frags; 276 if (start < bend && end > bstart) 277 return (1); 278 return (0); 279 } 280 281 static int 282 blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start, 283 int frags) 284 { 285 286 if (brec->jb_ino != ino || brec->jb_lbn != lbn) 287 return (0); 288 if (brec->jb_blkno + brec->jb_oldfrags != start) 289 return (0); 290 if (brec->jb_frags < frags) 291 return (0); 292 return (1); 293 } 294 295 static void 296 blk_setmask(struct jblkrec *brec, int *mask) 297 { 298 int i; 299 300 for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++) 301 *mask |= 1 << i; 302 } 303 304 /* 305 * Determine whether a given block has been reallocated to a new location. 306 * Returns a mask of overlapping bits if any frags have been reused or 307 * zero if the block has not been re-used and the contents can be trusted. 308 * 309 * This is used to ensure that an orphaned pointer due to truncate is safe 310 * to be freed. The mask value can be used to free partial blocks. 311 */ 312 static int 313 blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags) 314 { 315 struct suj_blk *sblk; 316 struct suj_rec *srec; 317 struct jblkrec *brec; 318 int mask; 319 int off; 320 321 /* 322 * To be certain we're not freeing a reallocated block we lookup 323 * this block in the blk hash and see if there is an allocation 324 * journal record that overlaps with any fragments in the block 325 * we're concerned with. If any fragments have been reallocated 326 * the block has already been freed and re-used for another purpose. 327 */ 328 mask = 0; 329 sblk = blk_lookup(blknum(fs, blk), 0); 330 if (sblk == NULL) 331 return (0); 332 off = blk - sblk->sb_blk; 333 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 334 brec = (struct jblkrec *)srec->sr_rec; 335 /* 336 * If the block overlaps but does not match 337 * exactly this record refers to the current 338 * location. 339 */ 340 if (blk_overlaps(brec, blk, frags) == 0) 341 continue; 342 if (blk_equals(brec, ino, lbn, blk, frags) == 1) 343 mask = 0; 344 else 345 blk_setmask(brec, &mask); 346 } 347 if (debug) 348 printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n", 349 blk, sblk->sb_blk, off, mask); 350 return (mask >> off); 351 } 352 353 /* 354 * Determine whether it is safe to follow an indirect. It is not safe 355 * if any part of the indirect has been reallocated or the last journal 356 * entry was an allocation. Just allocated indirects may not have valid 357 * pointers yet and all of their children will have their own records. 358 * It is also not safe to follow an indirect if the cg bitmap has been 359 * cleared as a new allocation may write to the block prior to the journal 360 * being written. 361 * 362 * Returns 1 if it's safe to follow the indirect and 0 otherwise. 363 */ 364 static int 365 blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn) 366 { 367 struct suj_blk *sblk; 368 struct jblkrec *brec; 369 370 sblk = blk_lookup(blk, 0); 371 if (sblk == NULL) 372 return (1); 373 if (TAILQ_EMPTY(&sblk->sb_recs)) 374 return (1); 375 brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec; 376 if (blk_equals(brec, ino, lbn, blk, fs->fs_frag)) 377 if (brec->jb_op == JOP_FREEBLK) 378 return (!blk_isfree(blk)); 379 return (0); 380 } 381 382 /* 383 * Check to see if the requested block is available. 384 * We can just check in the cylinder-group maps as 385 * they will only have usable blocks in them. 386 */ 387 ufs2_daddr_t 388 suj_checkblkavail(ufs2_daddr_t blkno, long frags) 389 { 390 struct bufarea *cgbp; 391 struct cg *cgp; 392 ufs2_daddr_t j, k, baseblk; 393 long cg; 394 395 if ((u_int64_t)blkno > sblock.fs_size) 396 return (0); 397 cg = dtog(&sblock, blkno); 398 cgbp = cglookup(cg); 399 cgp = cgbp->b_un.b_cg; 400 if (!check_cgmagic(cg, cgbp)) 401 return (-((cg + 1) * sblock.fs_fpg - sblock.fs_frag)); 402 baseblk = dtogd(&sblock, blkno); 403 for (j = 0; j <= sblock.fs_frag - frags; j++) { 404 if (!isset(cg_blksfree(cgp), baseblk + j)) 405 continue; 406 for (k = 1; k < frags; k++) 407 if (!isset(cg_blksfree(cgp), baseblk + j + k)) 408 break; 409 if (k < frags) { 410 j += k; 411 continue; 412 } 413 for (k = 0; k < frags; k++) 414 clrbit(cg_blksfree(cgp), baseblk + j + k); 415 n_blks += frags; 416 if (frags == sblock.fs_frag) 417 cgp->cg_cs.cs_nbfree--; 418 else 419 cgp->cg_cs.cs_nffree -= frags; 420 cgdirty(cgbp); 421 return ((cg * sblock.fs_fpg) + baseblk + j); 422 } 423 return (0); 424 } 425 426 /* 427 * Clear an inode from the cg bitmap. If the inode was already clear return 428 * 0 so the caller knows it does not have to check the inode contents. 429 */ 430 static int 431 ino_free(ino_t ino, int mode) 432 { 433 struct suj_cg *sc; 434 uint8_t *inosused; 435 struct cg *cgp; 436 int cg; 437 438 cg = ino_to_cg(fs, ino); 439 ino = ino % fs->fs_ipg; 440 sc = cg_lookup(cg); 441 cgp = sc->sc_cgp; 442 inosused = cg_inosused(cgp); 443 /* 444 * The bitmap may never have made it to the disk so we have to 445 * conditionally clear. We can avoid writing the cg in this case. 446 */ 447 if (isclr(inosused, ino)) 448 return (0); 449 freeinos++; 450 clrbit(inosused, ino); 451 if (ino < cgp->cg_irotor) 452 cgp->cg_irotor = ino; 453 cgp->cg_cs.cs_nifree++; 454 if ((mode & IFMT) == IFDIR) { 455 freedir++; 456 cgp->cg_cs.cs_ndir--; 457 } 458 cgdirty(sc->sc_cgbp); 459 460 return (1); 461 } 462 463 /* 464 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags 465 * set in the mask. 466 */ 467 static void 468 blk_free(ino_t ino, ufs2_daddr_t bno, int mask, int frags) 469 { 470 ufs1_daddr_t fragno, cgbno; 471 struct suj_cg *sc; 472 struct cg *cgp; 473 int i, cg; 474 uint8_t *blksfree; 475 476 if (debug) 477 printf("Freeing %d frags at blk %jd mask 0x%x\n", 478 frags, bno, mask); 479 /* 480 * Check to see if the block needs to be claimed by a snapshot. 481 * If wanted, the snapshot references it. Otherwise we free it. 482 */ 483 if (snapblkfree(fs, bno, lfragtosize(fs, frags), ino, 484 suj_checkblkavail)) 485 return; 486 cg = dtog(fs, bno); 487 sc = cg_lookup(cg); 488 cgp = sc->sc_cgp; 489 cgbno = dtogd(fs, bno); 490 blksfree = cg_blksfree(cgp); 491 492 /* 493 * If it's not allocated we only wrote the journal entry 494 * and never the bitmaps. Here we unconditionally clear and 495 * resolve the cg summary later. 496 */ 497 if (frags == fs->fs_frag && mask == 0) { 498 fragno = fragstoblks(fs, cgbno); 499 ffs_setblock(fs, blksfree, fragno); 500 freeblocks++; 501 } else { 502 /* 503 * deallocate the fragment 504 */ 505 for (i = 0; i < frags; i++) 506 if ((mask & (1 << i)) == 0 && 507 isclr(blksfree, cgbno +i)) { 508 freefrags++; 509 setbit(blksfree, cgbno + i); 510 } 511 } 512 cgdirty(sc->sc_cgbp); 513 } 514 515 /* 516 * Returns 1 if the whole block starting at 'bno' is marked free and 0 517 * otherwise. 518 */ 519 static int 520 blk_isfree(ufs2_daddr_t bno) 521 { 522 struct suj_cg *sc; 523 524 sc = cg_lookup(dtog(fs, bno)); 525 return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno)); 526 } 527 528 /* 529 * Determine whether a block exists at a particular lbn in an inode. 530 * Returns 1 if found, 0 if not. lbn may be negative for indirects 531 * or ext blocks. 532 */ 533 static int 534 blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags) 535 { 536 struct inode ip; 537 union dinode *dp; 538 ufs2_daddr_t nblk; 539 540 ginode(ino, &ip); 541 dp = ip.i_dp; 542 if (DIP(dp, di_nlink) == 0 || DIP(dp, di_mode) == 0) { 543 irelse(&ip); 544 return (0); 545 } 546 nblk = ino_blkatoff(dp, ino, lbn, frags, NULL); 547 irelse(&ip); 548 return (nblk == blk); 549 } 550 551 /* 552 * Clear the directory entry at diroff that should point to child. Minimal 553 * checking is done and it is assumed that this path was verified with isat. 554 */ 555 static void 556 ino_clrat(ino_t parent, off_t diroff, ino_t child) 557 { 558 union dinode *dip; 559 struct direct *dp; 560 struct inode ip; 561 ufs2_daddr_t blk; 562 struct bufarea *bp; 563 ufs_lbn_t lbn; 564 int blksize; 565 int frags; 566 int doff; 567 568 if (debug) 569 printf("Clearing inode %ju from parent %ju at offset %jd\n", 570 (uintmax_t)child, (uintmax_t)parent, diroff); 571 572 lbn = lblkno(fs, diroff); 573 doff = blkoff(fs, diroff); 574 ginode(parent, &ip); 575 dip = ip.i_dp; 576 blk = ino_blkatoff(dip, parent, lbn, &frags, NULL); 577 blksize = sblksize(fs, DIP(dip, di_size), lbn); 578 irelse(&ip); 579 bp = getdatablk(blk, blksize, BT_DIRDATA); 580 if (bp->b_errs != 0) 581 err_suj("ino_clrat: UNRECOVERABLE I/O ERROR"); 582 dp = (struct direct *)&bp->b_un.b_buf[doff]; 583 if (dp->d_ino != child) 584 errx(1, "Inode %ju does not exist in %ju at %jd", 585 (uintmax_t)child, (uintmax_t)parent, diroff); 586 dp->d_ino = 0; 587 dirty(bp); 588 brelse(bp); 589 /* 590 * The actual .. reference count will already have been removed 591 * from the parent by the .. remref record. 592 */ 593 } 594 595 /* 596 * Determines whether a pointer to an inode exists within a directory 597 * at a specified offset. Returns the mode of the found entry. 598 */ 599 static int 600 ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot) 601 { 602 struct inode ip; 603 union dinode *dip; 604 struct bufarea *bp; 605 struct direct *dp; 606 ufs2_daddr_t blk; 607 ufs_lbn_t lbn; 608 int blksize; 609 int frags; 610 int dpoff; 611 int doff; 612 613 *isdot = 0; 614 ginode(parent, &ip); 615 dip = ip.i_dp; 616 *mode = DIP(dip, di_mode); 617 if ((*mode & IFMT) != IFDIR) { 618 if (debug) { 619 /* 620 * This can happen if the parent inode 621 * was reallocated. 622 */ 623 if (*mode != 0) 624 printf("Directory %ju has bad mode %o\n", 625 (uintmax_t)parent, *mode); 626 else 627 printf("Directory %ju has zero mode\n", 628 (uintmax_t)parent); 629 } 630 irelse(&ip); 631 return (0); 632 } 633 lbn = lblkno(fs, diroff); 634 doff = blkoff(fs, diroff); 635 blksize = sblksize(fs, DIP(dip, di_size), lbn); 636 if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) { 637 if (debug) 638 printf("ino %ju absent from %ju due to offset %jd" 639 " exceeding size %jd\n", 640 (uintmax_t)child, (uintmax_t)parent, diroff, 641 DIP(dip, di_size)); 642 irelse(&ip); 643 return (0); 644 } 645 blk = ino_blkatoff(dip, parent, lbn, &frags, NULL); 646 irelse(&ip); 647 if (blk <= 0) { 648 if (debug) 649 printf("Sparse directory %ju", (uintmax_t)parent); 650 return (0); 651 } 652 bp = getdatablk(blk, blksize, BT_DIRDATA); 653 if (bp->b_errs != 0) 654 err_suj("ino_isat: UNRECOVERABLE I/O ERROR"); 655 /* 656 * Walk through the records from the start of the block to be 657 * certain we hit a valid record and not some junk in the middle 658 * of a file name. Stop when we reach or pass the expected offset. 659 */ 660 dpoff = rounddown(doff, DIRBLKSIZ); 661 do { 662 dp = (struct direct *)&bp->b_un.b_buf[dpoff]; 663 if (dpoff == doff) 664 break; 665 if (dp->d_reclen == 0) 666 break; 667 dpoff += dp->d_reclen; 668 } while (dpoff <= doff); 669 if (dpoff > fs->fs_bsize) 670 err_suj("Corrupt directory block in dir ino %ju\n", 671 (uintmax_t)parent); 672 /* Not found. */ 673 if (dpoff != doff) { 674 if (debug) 675 printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n", 676 (uintmax_t)child, (uintmax_t)parent, lbn, dpoff); 677 brelse(bp); 678 return (0); 679 } 680 /* 681 * We found the item in question. Record the mode and whether it's 682 * a . or .. link for the caller. 683 */ 684 if (dp->d_ino == child) { 685 if (child == parent) 686 *isdot = 1; 687 else if (dp->d_namlen == 2 && 688 dp->d_name[0] == '.' && dp->d_name[1] == '.') 689 *isdot = 1; 690 *mode = DTTOIF(dp->d_type); 691 brelse(bp); 692 return (1); 693 } 694 if (debug) 695 printf("ino %ju doesn't match dirent ino %ju in parent %ju\n", 696 (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent); 697 brelse(bp); 698 return (0); 699 } 700 701 #define VISIT_INDIR 0x0001 702 #define VISIT_EXT 0x0002 703 #define VISIT_ROOT 0x0004 /* Operation came via root & valid pointers. */ 704 705 /* 706 * Read an indirect level which may or may not be linked into an inode. 707 */ 708 static void 709 indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags, 710 ino_visitor visitor, int flags) 711 { 712 struct bufarea *bp; 713 ufs_lbn_t lbnadd; 714 ufs2_daddr_t nblk; 715 ufs_lbn_t nlbn; 716 int level; 717 int i; 718 719 /* 720 * Don't visit indirect blocks with contents we can't trust. This 721 * should only happen when indir_visit() is called to complete a 722 * truncate that never finished and not when a pointer is found via 723 * an inode. 724 */ 725 if (blk == 0) 726 return; 727 level = lbn_level(lbn); 728 if (level == -1) 729 err_suj("Invalid level for lbn %jd\n", lbn); 730 if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) { 731 if (debug) 732 printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n", 733 blk, (uintmax_t)ino, lbn, level); 734 goto out; 735 } 736 lbnadd = 1; 737 for (i = level; i > 0; i--) 738 lbnadd *= NINDIR(fs); 739 bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level); 740 if (bp->b_errs != 0) 741 err_suj("indir_visit: UNRECOVERABLE I/O ERROR\n"); 742 for (i = 0; i < NINDIR(fs); i++) { 743 if ((nblk = IBLK(bp, i)) == 0) 744 continue; 745 if (level == 0) { 746 nlbn = -lbn + i * lbnadd; 747 (*frags) += fs->fs_frag; 748 visitor(ino, nlbn, nblk, fs->fs_frag); 749 } else { 750 nlbn = (lbn + 1) - (i * lbnadd); 751 indir_visit(ino, nlbn, nblk, frags, visitor, flags); 752 } 753 } 754 brelse(bp); 755 out: 756 if (flags & VISIT_INDIR) { 757 (*frags) += fs->fs_frag; 758 visitor(ino, lbn, blk, fs->fs_frag); 759 } 760 } 761 762 /* 763 * Visit each block in an inode as specified by 'flags' and call a 764 * callback function. The callback may inspect or free blocks. The 765 * count of frags found according to the size in the file is returned. 766 * This is not valid for sparse files but may be used to determine 767 * the correct di_blocks for a file. 768 */ 769 static uint64_t 770 ino_visit(union dinode *dp, ino_t ino, ino_visitor visitor, int flags) 771 { 772 ufs_lbn_t nextlbn; 773 ufs_lbn_t tmpval; 774 ufs_lbn_t lbn; 775 uint64_t size; 776 uint64_t fragcnt; 777 int mode; 778 int frags; 779 int i; 780 781 size = DIP(dp, di_size); 782 mode = DIP(dp, di_mode) & IFMT; 783 fragcnt = 0; 784 if ((flags & VISIT_EXT) && 785 fs->fs_magic == FS_UFS2_MAGIC && dp->dp2.di_extsize) { 786 for (i = 0; i < UFS_NXADDR; i++) { 787 if (dp->dp2.di_extb[i] == 0) 788 continue; 789 frags = sblksize(fs, dp->dp2.di_extsize, i); 790 frags = numfrags(fs, frags); 791 fragcnt += frags; 792 visitor(ino, -1 - i, dp->dp2.di_extb[i], frags); 793 } 794 } 795 /* Skip datablocks for short links and devices. */ 796 if (mode == IFBLK || mode == IFCHR || 797 (mode == IFLNK && size < fs->fs_maxsymlinklen)) 798 return (fragcnt); 799 for (i = 0; i < UFS_NDADDR; i++) { 800 if (DIP(dp, di_db[i]) == 0) 801 continue; 802 frags = sblksize(fs, size, i); 803 frags = numfrags(fs, frags); 804 fragcnt += frags; 805 visitor(ino, i, DIP(dp, di_db[i]), frags); 806 } 807 /* 808 * We know the following indirects are real as we're following 809 * real pointers to them. 810 */ 811 flags |= VISIT_ROOT; 812 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, 813 lbn = nextlbn) { 814 nextlbn = lbn + tmpval; 815 tmpval *= NINDIR(fs); 816 if (DIP(dp, di_ib[i]) == 0) 817 continue; 818 indir_visit(ino, -lbn - i, DIP(dp, di_ib[i]), &fragcnt, visitor, 819 flags); 820 } 821 return (fragcnt); 822 } 823 824 /* 825 * Null visitor function used when we just want to count blocks and 826 * record the lbn. 827 */ 828 ufs_lbn_t visitlbn; 829 static void 830 null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 831 { 832 if (lbn > 0) 833 visitlbn = lbn; 834 } 835 836 /* 837 * Recalculate di_blocks when we discover that a block allocation or 838 * free was not successfully completed. The kernel does not roll this back 839 * because it would be too expensive to compute which indirects were 840 * reachable at the time the inode was written. 841 */ 842 static void 843 ino_adjblks(struct suj_ino *sino) 844 { 845 struct inode ip; 846 union dinode *dp; 847 uint64_t blocks; 848 uint64_t frags; 849 off_t isize; 850 off_t size; 851 ino_t ino; 852 853 ino = sino->si_ino; 854 ginode(ino, &ip); 855 dp = ip.i_dp; 856 /* No need to adjust zero'd inodes. */ 857 if (DIP(dp, di_mode) == 0) { 858 irelse(&ip); 859 return; 860 } 861 /* 862 * Visit all blocks and count them as well as recording the last 863 * valid lbn in the file. If the file size doesn't agree with the 864 * last lbn we need to truncate to fix it. Otherwise just adjust 865 * the blocks count. 866 */ 867 visitlbn = 0; 868 frags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT); 869 blocks = fsbtodb(fs, frags); 870 /* 871 * We assume the size and direct block list is kept coherent by 872 * softdep. For files that have extended into indirects we truncate 873 * to the size in the inode or the maximum size permitted by 874 * populated indirects. 875 */ 876 if (visitlbn >= UFS_NDADDR) { 877 isize = DIP(dp, di_size); 878 size = lblktosize(fs, visitlbn + 1); 879 if (isize > size) 880 isize = size; 881 /* Always truncate to free any unpopulated indirects. */ 882 ino_trunc(ino, isize); 883 irelse(&ip); 884 return; 885 } 886 if (blocks == DIP(dp, di_blocks)) { 887 irelse(&ip); 888 return; 889 } 890 if (debug) 891 printf("ino %ju adjusting block count from %jd to %jd\n", 892 (uintmax_t)ino, DIP(dp, di_blocks), blocks); 893 DIP_SET(dp, di_blocks, blocks); 894 inodirty(&ip); 895 irelse(&ip); 896 } 897 898 static void 899 blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 900 { 901 902 blk_free(ino, blk, blk_freemask(blk, ino, lbn, frags), frags); 903 } 904 905 /* 906 * Free a block or tree of blocks that was previously rooted in ino at 907 * the given lbn. If the lbn is an indirect all children are freed 908 * recursively. 909 */ 910 static void 911 blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow) 912 { 913 uint64_t resid; 914 int mask; 915 916 mask = blk_freemask(blk, ino, lbn, frags); 917 resid = 0; 918 if (lbn <= -UFS_NDADDR && follow && mask == 0) 919 indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR); 920 else 921 blk_free(ino, blk, mask, frags); 922 } 923 924 static void 925 ino_setskip(struct suj_ino *sino, ino_t parent) 926 { 927 int isdot; 928 int mode; 929 930 if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot)) 931 sino->si_skipparent = 1; 932 } 933 934 static void 935 ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot) 936 { 937 struct suj_ino *sino; 938 struct suj_rec *srec; 939 struct jrefrec *rrec; 940 941 /* 942 * Lookup this inode to see if we have a record for it. 943 */ 944 sino = ino_lookup(child, 0); 945 /* 946 * Tell any child directories we've already removed their 947 * parent link cnt. Don't try to adjust our link down again. 948 */ 949 if (sino != NULL && isdotdot == 0) 950 ino_setskip(sino, parent); 951 /* 952 * No valid record for this inode. Just drop the on-disk 953 * link by one. 954 */ 955 if (sino == NULL || sino->si_hasrecs == 0) { 956 ino_decr(child); 957 return; 958 } 959 /* 960 * Use ino_adjust() if ino_check() has already processed this 961 * child. If we lose the last non-dot reference to a 962 * directory it will be discarded. 963 */ 964 if (sino->si_linkadj) { 965 if (sino->si_nlink == 0) 966 err_suj("ino_remref: ino %ld mode 0%o about to go " 967 "negative\n", sino->si_ino, sino->si_mode); 968 sino->si_nlink--; 969 if (isdotdot) 970 sino->si_dotlinks--; 971 ino_adjust(sino); 972 return; 973 } 974 /* 975 * If we haven't yet processed this inode we need to make 976 * sure we will successfully discover the lost path. If not 977 * use nlinkadj to remember. 978 */ 979 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 980 rrec = (struct jrefrec *)srec->sr_rec; 981 if (rrec->jr_parent == parent && 982 rrec->jr_diroff == diroff) 983 return; 984 } 985 sino->si_nlinkadj++; 986 } 987 988 /* 989 * Free the children of a directory when the directory is discarded. 990 */ 991 static void 992 ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 993 { 994 struct suj_ino *sino; 995 struct bufarea *bp; 996 struct direct *dp; 997 off_t diroff; 998 int skipparent; 999 int isdotdot; 1000 int dpoff; 1001 int size; 1002 1003 sino = ino_lookup(ino, 0); 1004 if (sino) 1005 skipparent = sino->si_skipparent; 1006 else 1007 skipparent = 0; 1008 size = lfragtosize(fs, frags); 1009 bp = getdatablk(blk, size, BT_DIRDATA); 1010 if (bp->b_errs != 0) 1011 err_suj("ino_free_children: UNRECOVERABLE I/O ERROR"); 1012 dp = (struct direct *)&bp->b_un.b_buf[0]; 1013 for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) { 1014 dp = (struct direct *)&bp->b_un.b_buf[dpoff]; 1015 if (dp->d_ino == 0 || dp->d_ino == UFS_WINO) 1016 continue; 1017 if (dp->d_namlen == 1 && dp->d_name[0] == '.') 1018 continue; 1019 isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' && 1020 dp->d_name[1] == '.'; 1021 if (isdotdot && skipparent == 1) 1022 continue; 1023 if (debug) 1024 printf("Directory %ju removing ino %ju name %s\n", 1025 (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name); 1026 diroff = lblktosize(fs, lbn) + dpoff; 1027 ino_remref(ino, dp->d_ino, diroff, isdotdot); 1028 } 1029 brelse(bp); 1030 } 1031 1032 /* 1033 * Reclaim an inode, freeing all blocks and decrementing all children's 1034 * link counts. Free the inode back to the cg. 1035 */ 1036 static void 1037 ino_reclaim(struct inode *ip, ino_t ino, int mode) 1038 { 1039 union dinode *dp; 1040 uint32_t gen; 1041 1042 dp = ip->i_dp; 1043 if (ino == UFS_ROOTINO) 1044 err_suj("Attempting to free UFS_ROOTINO\n"); 1045 if (debug) 1046 printf("Truncating and freeing ino %ju, nlink %d, mode %o\n", 1047 (uintmax_t)ino, DIP(dp, di_nlink), DIP(dp, di_mode)); 1048 1049 /* We are freeing an inode or directory. */ 1050 if ((DIP(dp, di_mode) & IFMT) == IFDIR) 1051 ino_visit(dp, ino, ino_free_children, 0); 1052 DIP_SET(dp, di_nlink, 0); 1053 if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) 1054 snapremove(ino); 1055 ino_visit(dp, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR); 1056 /* Here we have to clear the inode and release any blocks it holds. */ 1057 gen = DIP(dp, di_gen); 1058 if (fs->fs_magic == FS_UFS1_MAGIC) 1059 bzero(dp, sizeof(struct ufs1_dinode)); 1060 else 1061 bzero(dp, sizeof(struct ufs2_dinode)); 1062 DIP_SET(dp, di_gen, gen); 1063 inodirty(ip); 1064 ino_free(ino, mode); 1065 return; 1066 } 1067 1068 /* 1069 * Adjust an inode's link count down by one when a directory goes away. 1070 */ 1071 static void 1072 ino_decr(ino_t ino) 1073 { 1074 struct inode ip; 1075 union dinode *dp; 1076 int reqlink; 1077 int nlink; 1078 int mode; 1079 1080 ginode(ino, &ip); 1081 dp = ip.i_dp; 1082 nlink = DIP(dp, di_nlink); 1083 mode = DIP(dp, di_mode); 1084 if (nlink < 1) 1085 err_suj("Inode %d link count %d invalid\n", ino, nlink); 1086 if (mode == 0) 1087 err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink); 1088 nlink--; 1089 if ((mode & IFMT) == IFDIR) 1090 reqlink = 2; 1091 else 1092 reqlink = 1; 1093 if (nlink < reqlink) { 1094 if (debug) 1095 printf("ino %ju not enough links to live %d < %d\n", 1096 (uintmax_t)ino, nlink, reqlink); 1097 ino_reclaim(&ip, ino, mode); 1098 irelse(&ip); 1099 return; 1100 } 1101 DIP_SET(dp, di_nlink, nlink); 1102 inodirty(&ip); 1103 irelse(&ip); 1104 } 1105 1106 /* 1107 * Adjust the inode link count to 'nlink'. If the count reaches zero 1108 * free it. 1109 */ 1110 static void 1111 ino_adjust(struct suj_ino *sino) 1112 { 1113 struct jrefrec *rrec; 1114 struct suj_rec *srec; 1115 struct suj_ino *stmp; 1116 union dinode *dp; 1117 struct inode ip; 1118 nlink_t nlink; 1119 nlink_t reqlink; 1120 int recmode; 1121 int isdot; 1122 int mode; 1123 ino_t ino; 1124 1125 nlink = sino->si_nlink; 1126 ino = sino->si_ino; 1127 mode = sino->si_mode & IFMT; 1128 /* 1129 * If it's a directory with no dot links, it was truncated before 1130 * the name was cleared. We need to clear the dirent that 1131 * points at it. 1132 */ 1133 if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) { 1134 sino->si_nlink = nlink = 0; 1135 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1136 rrec = (struct jrefrec *)srec->sr_rec; 1137 if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino, 1138 &recmode, &isdot) == 0) 1139 continue; 1140 ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino); 1141 break; 1142 } 1143 if (srec == NULL) 1144 errx(1, "Directory %ju name not found", (uintmax_t)ino); 1145 } 1146 /* 1147 * If it's a directory with no real names pointing to it go ahead 1148 * and truncate it. This will free any children. 1149 */ 1150 if (mode == IFDIR && nlink - sino->si_dotlinks == 0) { 1151 sino->si_nlink = nlink = 0; 1152 /* 1153 * Mark any .. links so they know not to free this inode 1154 * when they are removed. 1155 */ 1156 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1157 rrec = (struct jrefrec *)srec->sr_rec; 1158 if (rrec->jr_diroff == DOTDOT_OFFSET) { 1159 stmp = ino_lookup(rrec->jr_parent, 0); 1160 if (stmp) 1161 ino_setskip(stmp, ino); 1162 } 1163 } 1164 } 1165 ginode(ino, &ip); 1166 dp = ip.i_dp; 1167 mode = DIP(dp, di_mode) & IFMT; 1168 if (nlink > UFS_LINK_MAX) 1169 err_suj("ino %ju nlink manipulation error, new %ju, old %d\n", 1170 (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink)); 1171 if (debug) 1172 printf("Adjusting ino %ju, nlink %ju, old link %d lastmode %o\n", 1173 (uintmax_t)ino, (uintmax_t)nlink, DIP(dp, di_nlink), 1174 sino->si_mode); 1175 if (mode == 0) { 1176 if (debug) 1177 printf("ino %ju, zero inode freeing bitmap\n", 1178 (uintmax_t)ino); 1179 ino_free(ino, sino->si_mode); 1180 irelse(&ip); 1181 return; 1182 } 1183 /* XXX Should be an assert? */ 1184 if (mode != sino->si_mode && debug) 1185 printf("ino %ju, mode %o != %o\n", 1186 (uintmax_t)ino, mode, sino->si_mode); 1187 if ((mode & IFMT) == IFDIR) 1188 reqlink = 2; 1189 else 1190 reqlink = 1; 1191 /* If the inode doesn't have enough links to live, free it. */ 1192 if (nlink < reqlink) { 1193 if (debug) 1194 printf("ino %ju not enough links to live %ju < %ju\n", 1195 (uintmax_t)ino, (uintmax_t)nlink, 1196 (uintmax_t)reqlink); 1197 ino_reclaim(&ip, ino, mode); 1198 irelse(&ip); 1199 return; 1200 } 1201 /* If required write the updated link count. */ 1202 if (DIP(dp, di_nlink) == nlink) { 1203 if (debug) 1204 printf("ino %ju, link matches, skipping.\n", 1205 (uintmax_t)ino); 1206 irelse(&ip); 1207 return; 1208 } 1209 DIP_SET(dp, di_nlink, nlink); 1210 inodirty(&ip); 1211 irelse(&ip); 1212 } 1213 1214 /* 1215 * Truncate some or all blocks in an indirect, freeing any that are required 1216 * and zeroing the indirect. 1217 */ 1218 static void 1219 indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn, 1220 union dinode *dp) 1221 { 1222 struct bufarea *bp; 1223 ufs_lbn_t lbnadd; 1224 ufs2_daddr_t nblk; 1225 ufs_lbn_t next; 1226 ufs_lbn_t nlbn; 1227 int isdirty; 1228 int level; 1229 int i; 1230 1231 if (blk == 0) 1232 return; 1233 isdirty = 0; 1234 level = lbn_level(lbn); 1235 if (level == -1) 1236 err_suj("Invalid level for lbn %jd\n", lbn); 1237 lbnadd = 1; 1238 for (i = level; i > 0; i--) 1239 lbnadd *= NINDIR(fs); 1240 bp = getdatablk(blk, fs->fs_bsize, BT_LEVEL1 + level); 1241 if (bp->b_errs != 0) 1242 err_suj("indir_trunc: UNRECOVERABLE I/O ERROR"); 1243 for (i = 0; i < NINDIR(fs); i++) { 1244 if ((nblk = IBLK(bp, i)) == 0) 1245 continue; 1246 if (level != 0) { 1247 nlbn = (lbn + 1) - (i * lbnadd); 1248 /* 1249 * Calculate the lbn of the next indirect to 1250 * determine if any of this indirect must be 1251 * reclaimed. 1252 */ 1253 next = -(lbn + level) + ((i+1) * lbnadd); 1254 if (next <= lastlbn) 1255 continue; 1256 indir_trunc(ino, nlbn, nblk, lastlbn, dp); 1257 /* If all of this indirect was reclaimed, free it. */ 1258 nlbn = next - lbnadd; 1259 if (nlbn < lastlbn) 1260 continue; 1261 } else { 1262 nlbn = -lbn + i * lbnadd; 1263 if (nlbn < lastlbn) 1264 continue; 1265 } 1266 isdirty = 1; 1267 blk_free(ino, nblk, 0, fs->fs_frag); 1268 IBLK_SET(bp, i, 0); 1269 } 1270 if (isdirty) 1271 dirty(bp); 1272 brelse(bp); 1273 } 1274 1275 /* 1276 * Truncate an inode to the minimum of the given size or the last populated 1277 * block after any over size have been discarded. The kernel would allocate 1278 * the last block in the file but fsck does not and neither do we. This 1279 * code never extends files, only shrinks them. 1280 */ 1281 static void 1282 ino_trunc(ino_t ino, off_t size) 1283 { 1284 struct inode ip; 1285 union dinode *dp; 1286 struct bufarea *bp; 1287 ufs2_daddr_t bn; 1288 uint64_t totalfrags; 1289 ufs_lbn_t nextlbn; 1290 ufs_lbn_t lastlbn; 1291 ufs_lbn_t tmpval; 1292 ufs_lbn_t lbn; 1293 ufs_lbn_t i; 1294 int blksize, frags; 1295 off_t cursize; 1296 off_t off; 1297 int mode; 1298 1299 ginode(ino, &ip); 1300 dp = ip.i_dp; 1301 mode = DIP(dp, di_mode) & IFMT; 1302 cursize = DIP(dp, di_size); 1303 /* If no size change, nothing to do */ 1304 if (size == cursize) { 1305 irelse(&ip); 1306 return; 1307 } 1308 if (debug) 1309 printf("Truncating ino %ju, mode %o to size %jd from " 1310 "size %jd\n", (uintmax_t)ino, mode, size, cursize); 1311 1312 /* Skip datablocks for short links and devices. */ 1313 if (mode == 0 || mode == IFBLK || mode == IFCHR || 1314 (mode == IFLNK && cursize < fs->fs_maxsymlinklen)) { 1315 irelse(&ip); 1316 return; 1317 } 1318 /* Don't extend. */ 1319 if (size > cursize) { 1320 irelse(&ip); 1321 return; 1322 } 1323 if ((DIP(dp, di_flags) & SF_SNAPSHOT) != 0) { 1324 if (size > 0) 1325 err_suj("Partial truncation of ino %ju snapshot file\n", 1326 (uintmax_t)ino); 1327 snapremove(ino); 1328 } 1329 lastlbn = lblkno(fs, blkroundup(fs, size)); 1330 for (i = lastlbn; i < UFS_NDADDR; i++) { 1331 if ((bn = DIP(dp, di_db[i])) == 0) 1332 continue; 1333 blksize = sblksize(fs, cursize, i); 1334 blk_free(ino, bn, 0, numfrags(fs, blksize)); 1335 DIP_SET(dp, di_db[i], 0); 1336 } 1337 /* 1338 * Follow indirect blocks, freeing anything required. 1339 */ 1340 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, 1341 lbn = nextlbn) { 1342 nextlbn = lbn + tmpval; 1343 tmpval *= NINDIR(fs); 1344 /* If we're not freeing any in this indirect range skip it. */ 1345 if (lastlbn >= nextlbn) 1346 continue; 1347 if ((bn = DIP(dp, di_ib[i])) == 0) 1348 continue; 1349 indir_trunc(ino, -lbn - i, bn, lastlbn, dp); 1350 /* If we freed everything in this indirect free the indir. */ 1351 if (lastlbn > lbn) 1352 continue; 1353 blk_free(ino, bn, 0, fs->fs_frag); 1354 DIP_SET(dp, di_ib[i], 0); 1355 } 1356 /* 1357 * Now that we've freed any whole blocks that exceed the desired 1358 * truncation size, figure out how many blocks remain and what the 1359 * last populated lbn is. We will set the size to this last lbn 1360 * rather than worrying about allocating the final lbn as the kernel 1361 * would've done. This is consistent with normal fsck behavior. 1362 */ 1363 visitlbn = 0; 1364 totalfrags = ino_visit(dp, ino, null_visit, VISIT_INDIR | VISIT_EXT); 1365 if (size > lblktosize(fs, visitlbn + 1)) 1366 size = lblktosize(fs, visitlbn + 1); 1367 /* 1368 * If we're truncating direct blocks we have to adjust frags 1369 * accordingly. 1370 */ 1371 if (visitlbn < UFS_NDADDR && totalfrags) { 1372 long oldspace, newspace; 1373 1374 bn = DIP(dp, di_db[visitlbn]); 1375 if (bn == 0) 1376 err_suj("Bad blk at ino %ju lbn %jd\n", 1377 (uintmax_t)ino, visitlbn); 1378 oldspace = sblksize(fs, cursize, visitlbn); 1379 newspace = sblksize(fs, size, visitlbn); 1380 if (oldspace != newspace) { 1381 bn += numfrags(fs, newspace); 1382 frags = numfrags(fs, oldspace - newspace); 1383 blk_free(ino, bn, 0, frags); 1384 totalfrags -= frags; 1385 } 1386 } 1387 DIP_SET(dp, di_blocks, fsbtodb(fs, totalfrags)); 1388 DIP_SET(dp, di_size, size); 1389 inodirty(&ip); 1390 /* 1391 * If we've truncated into the middle of a block or frag we have 1392 * to zero it here. Otherwise the file could extend into 1393 * uninitialized space later. 1394 */ 1395 off = blkoff(fs, size); 1396 if (off && DIP(dp, di_mode) != IFDIR) { 1397 long clrsize; 1398 1399 bn = ino_blkatoff(dp, ino, visitlbn, &frags, NULL); 1400 if (bn == 0) 1401 err_suj("Block missing from ino %ju at lbn %jd\n", 1402 (uintmax_t)ino, visitlbn); 1403 clrsize = frags * fs->fs_fsize; 1404 bp = getdatablk(bn, clrsize, BT_DATA); 1405 if (bp->b_errs != 0) 1406 err_suj("ino_trunc: UNRECOVERABLE I/O ERROR"); 1407 clrsize -= off; 1408 bzero(&bp->b_un.b_buf[off], clrsize); 1409 dirty(bp); 1410 brelse(bp); 1411 } 1412 irelse(&ip); 1413 return; 1414 } 1415 1416 /* 1417 * Process records available for one inode and determine whether the 1418 * link count is correct or needs adjusting. 1419 */ 1420 static void 1421 ino_check(struct suj_ino *sino) 1422 { 1423 struct suj_rec *srec; 1424 struct jrefrec *rrec; 1425 nlink_t dotlinks; 1426 nlink_t newlinks; 1427 nlink_t removes; 1428 nlink_t nlink; 1429 ino_t ino; 1430 int isdot; 1431 int isat; 1432 int mode; 1433 1434 if (sino->si_hasrecs == 0) 1435 return; 1436 ino = sino->si_ino; 1437 rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec; 1438 nlink = rrec->jr_nlink; 1439 newlinks = 0; 1440 dotlinks = 0; 1441 removes = sino->si_nlinkadj; 1442 TAILQ_FOREACH(srec, &sino->si_recs, sr_next) { 1443 rrec = (struct jrefrec *)srec->sr_rec; 1444 isat = ino_isat(rrec->jr_parent, rrec->jr_diroff, 1445 rrec->jr_ino, &mode, &isdot); 1446 if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT)) 1447 err_suj("Inode mode/directory type mismatch %o != %o\n", 1448 mode, rrec->jr_mode); 1449 if (debug) 1450 printf("jrefrec: op %s ino %ju, nlink %ju, parent %ju, " 1451 "diroff %jd, mode %o, isat %d, isdot %d\n", 1452 JOP_OPTYPE(rrec->jr_op), (uintmax_t)rrec->jr_ino, 1453 (uintmax_t)rrec->jr_nlink, 1454 (uintmax_t)rrec->jr_parent, 1455 (uintmax_t)rrec->jr_diroff, 1456 rrec->jr_mode, isat, isdot); 1457 mode = rrec->jr_mode & IFMT; 1458 if (rrec->jr_op == JOP_REMREF) 1459 removes++; 1460 newlinks += isat; 1461 if (isdot) 1462 dotlinks += isat; 1463 } 1464 /* 1465 * The number of links that remain are the starting link count 1466 * subtracted by the total number of removes with the total 1467 * links discovered back in. An incomplete remove thus 1468 * makes no change to the link count but an add increases 1469 * by one. 1470 */ 1471 if (debug) 1472 printf( 1473 "ino %ju nlink %ju newlinks %ju removes %ju dotlinks %ju\n", 1474 (uintmax_t)ino, (uintmax_t)nlink, (uintmax_t)newlinks, 1475 (uintmax_t)removes, (uintmax_t)dotlinks); 1476 nlink += newlinks; 1477 nlink -= removes; 1478 sino->si_linkadj = 1; 1479 sino->si_nlink = nlink; 1480 sino->si_dotlinks = dotlinks; 1481 sino->si_mode = mode; 1482 ino_adjust(sino); 1483 } 1484 1485 /* 1486 * Process records available for one block and determine whether it is 1487 * still allocated and whether the owning inode needs to be updated or 1488 * a free completed. 1489 */ 1490 static void 1491 blk_check(struct suj_blk *sblk) 1492 { 1493 struct suj_rec *srec; 1494 struct jblkrec *brec; 1495 struct suj_ino *sino; 1496 ufs2_daddr_t blk; 1497 int mask; 1498 int frags; 1499 int isat; 1500 1501 /* 1502 * Each suj_blk actually contains records for any fragments in that 1503 * block. As a result we must evaluate each record individually. 1504 */ 1505 sino = NULL; 1506 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1507 brec = (struct jblkrec *)srec->sr_rec; 1508 frags = brec->jb_frags; 1509 blk = brec->jb_blkno + brec->jb_oldfrags; 1510 isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags); 1511 if (sino == NULL || sino->si_ino != brec->jb_ino) { 1512 sino = ino_lookup(brec->jb_ino, 1); 1513 sino->si_blkadj = 1; 1514 } 1515 if (debug) 1516 printf("op %s blk %jd ino %ju lbn %jd frags %d isat %d " 1517 "(%d)\n", JOP_OPTYPE(brec->jb_op), blk, 1518 (uintmax_t)brec->jb_ino, brec->jb_lbn, 1519 brec->jb_frags, isat, frags); 1520 /* 1521 * If we found the block at this address we still have to 1522 * determine if we need to free the tail end that was 1523 * added by adding contiguous fragments from the same block. 1524 */ 1525 if (isat == 1) { 1526 if (frags == brec->jb_frags) 1527 continue; 1528 mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn, 1529 brec->jb_frags); 1530 mask >>= frags; 1531 blk += frags; 1532 frags = brec->jb_frags - frags; 1533 blk_free(brec->jb_ino, blk, mask, frags); 1534 continue; 1535 } 1536 /* 1537 * The block wasn't found, attempt to free it. It won't be 1538 * freed if it was actually reallocated. If this was an 1539 * allocation we don't want to follow indirects as they 1540 * may not be written yet. Any children of the indirect will 1541 * have their own records. If it's a free we need to 1542 * recursively free children. 1543 */ 1544 blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags, 1545 brec->jb_op == JOP_FREEBLK); 1546 } 1547 } 1548 1549 /* 1550 * Walk the list of inode records for this cg and resolve moved and duplicate 1551 * inode references now that we have a complete picture. 1552 */ 1553 static void 1554 cg_build(struct suj_cg *sc) 1555 { 1556 struct suj_ino *sino; 1557 int i; 1558 1559 for (i = 0; i < HASHSIZE; i++) 1560 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1561 ino_build(sino); 1562 } 1563 1564 /* 1565 * Handle inodes requiring truncation. This must be done prior to 1566 * looking up any inodes in directories. 1567 */ 1568 static void 1569 cg_trunc(struct suj_cg *sc) 1570 { 1571 struct suj_ino *sino; 1572 int i; 1573 1574 for (i = 0; i < HASHSIZE; i++) { 1575 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1576 if (sino->si_trunc) { 1577 ino_trunc(sino->si_ino, 1578 sino->si_trunc->jt_size); 1579 sino->si_blkadj = 0; 1580 sino->si_trunc = NULL; 1581 } 1582 if (sino->si_blkadj) 1583 ino_adjblks(sino); 1584 } 1585 } 1586 } 1587 1588 static void 1589 cg_adj_blk(struct suj_cg *sc) 1590 { 1591 struct suj_ino *sino; 1592 int i; 1593 1594 for (i = 0; i < HASHSIZE; i++) { 1595 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) { 1596 if (sino->si_blkadj) 1597 ino_adjblks(sino); 1598 } 1599 } 1600 } 1601 1602 /* 1603 * Free any partially allocated blocks and then resolve inode block 1604 * counts. 1605 */ 1606 static void 1607 cg_check_blk(struct suj_cg *sc) 1608 { 1609 struct suj_blk *sblk; 1610 int i; 1611 1612 1613 for (i = 0; i < HASHSIZE; i++) 1614 LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next) 1615 blk_check(sblk); 1616 } 1617 1618 /* 1619 * Walk the list of inode records for this cg, recovering any 1620 * changes which were not complete at the time of crash. 1621 */ 1622 static void 1623 cg_check_ino(struct suj_cg *sc) 1624 { 1625 struct suj_ino *sino; 1626 int i; 1627 1628 for (i = 0; i < HASHSIZE; i++) 1629 LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) 1630 ino_check(sino); 1631 } 1632 1633 static void 1634 cg_apply(void (*apply)(struct suj_cg *)) 1635 { 1636 struct suj_cg *scg; 1637 int i; 1638 1639 for (i = 0; i < HASHSIZE; i++) 1640 LIST_FOREACH(scg, &cghash[i], sc_next) 1641 apply(scg); 1642 } 1643 1644 /* 1645 * Process the unlinked but referenced file list. Freeing all inodes. 1646 */ 1647 static void 1648 ino_unlinked(void) 1649 { 1650 struct inode ip; 1651 union dinode *dp; 1652 uint16_t mode; 1653 ino_t inon; 1654 ino_t ino; 1655 1656 ino = fs->fs_sujfree; 1657 fs->fs_sujfree = 0; 1658 while (ino != 0) { 1659 ginode(ino, &ip); 1660 dp = ip.i_dp; 1661 mode = DIP(dp, di_mode) & IFMT; 1662 inon = DIP(dp, di_freelink); 1663 DIP_SET(dp, di_freelink, 0); 1664 inodirty(&ip); 1665 /* 1666 * XXX Should this be an errx? 1667 */ 1668 if (DIP(dp, di_nlink) == 0) { 1669 if (debug) 1670 printf("Freeing unlinked ino %ju mode %o\n", 1671 (uintmax_t)ino, mode); 1672 ino_reclaim(&ip, ino, mode); 1673 } else if (debug) 1674 printf("Skipping ino %ju mode %o with link %d\n", 1675 (uintmax_t)ino, mode, DIP(dp, di_nlink)); 1676 ino = inon; 1677 irelse(&ip); 1678 } 1679 } 1680 1681 /* 1682 * Append a new record to the list of records requiring processing. 1683 */ 1684 static void 1685 ino_append(union jrec *rec) 1686 { 1687 struct jrefrec *refrec; 1688 struct jmvrec *mvrec; 1689 struct suj_ino *sino; 1690 struct suj_rec *srec; 1691 1692 mvrec = &rec->rec_jmvrec; 1693 refrec = &rec->rec_jrefrec; 1694 if (debug && mvrec->jm_op == JOP_MVREF) 1695 printf("ino move: ino %ju, parent %ju, " 1696 "diroff %jd, oldoff %jd\n", 1697 (uintmax_t)mvrec->jm_ino, (uintmax_t)mvrec->jm_parent, 1698 (uintmax_t)mvrec->jm_newoff, (uintmax_t)mvrec->jm_oldoff); 1699 else if (debug && 1700 (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF)) 1701 printf("ino ref: op %s, ino %ju, nlink %ju, " 1702 "parent %ju, diroff %jd\n", 1703 JOP_OPTYPE(refrec->jr_op), (uintmax_t)refrec->jr_ino, 1704 (uintmax_t)refrec->jr_nlink, 1705 (uintmax_t)refrec->jr_parent, (uintmax_t)refrec->jr_diroff); 1706 sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1); 1707 sino->si_hasrecs = 1; 1708 srec = errmalloc(sizeof(*srec)); 1709 srec->sr_rec = rec; 1710 TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next); 1711 } 1712 1713 /* 1714 * Add a reference adjustment to the sino list and eliminate dups. The 1715 * primary loop in ino_build_ref() checks for dups but new ones may be 1716 * created as a result of offset adjustments. 1717 */ 1718 static void 1719 ino_add_ref(struct suj_ino *sino, struct suj_rec *srec) 1720 { 1721 struct jrefrec *refrec; 1722 struct suj_rec *srn; 1723 struct jrefrec *rrn; 1724 1725 refrec = (struct jrefrec *)srec->sr_rec; 1726 /* 1727 * We walk backwards so that the oldest link count is preserved. If 1728 * an add record conflicts with a remove keep the remove. Redundant 1729 * removes are eliminated in ino_build_ref. Otherwise we keep the 1730 * oldest record at a given location. 1731 */ 1732 for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn; 1733 srn = TAILQ_PREV(srn, srechd, sr_next)) { 1734 rrn = (struct jrefrec *)srn->sr_rec; 1735 if (rrn->jr_parent != refrec->jr_parent || 1736 rrn->jr_diroff != refrec->jr_diroff) 1737 continue; 1738 if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) { 1739 rrn->jr_mode = refrec->jr_mode; 1740 return; 1741 } 1742 /* 1743 * Adding a remove. 1744 * 1745 * Replace the record in place with the old nlink in case 1746 * we replace the head of the list. Abandon srec as a dup. 1747 */ 1748 refrec->jr_nlink = rrn->jr_nlink; 1749 srn->sr_rec = srec->sr_rec; 1750 return; 1751 } 1752 TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next); 1753 } 1754 1755 /* 1756 * Create a duplicate of a reference at a previous location. 1757 */ 1758 static void 1759 ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff) 1760 { 1761 struct jrefrec *rrn; 1762 struct suj_rec *srn; 1763 1764 rrn = errmalloc(sizeof(*refrec)); 1765 *rrn = *refrec; 1766 rrn->jr_op = JOP_ADDREF; 1767 rrn->jr_diroff = diroff; 1768 srn = errmalloc(sizeof(*srn)); 1769 srn->sr_rec = (union jrec *)rrn; 1770 ino_add_ref(sino, srn); 1771 } 1772 1773 /* 1774 * Add a reference to the list at all known locations. We follow the offset 1775 * changes for a single instance and create duplicate add refs at each so 1776 * that we can tolerate any version of the directory block. Eliminate 1777 * removes which collide with adds that are seen in the journal. They should 1778 * not adjust the link count down. 1779 */ 1780 static void 1781 ino_build_ref(struct suj_ino *sino, struct suj_rec *srec) 1782 { 1783 struct jrefrec *refrec; 1784 struct jmvrec *mvrec; 1785 struct suj_rec *srp; 1786 struct suj_rec *srn; 1787 struct jrefrec *rrn; 1788 off_t diroff; 1789 1790 refrec = (struct jrefrec *)srec->sr_rec; 1791 /* 1792 * Search for a mvrec that matches this offset. Whether it's an add 1793 * or a remove we can delete the mvref after creating a dup record in 1794 * the old location. 1795 */ 1796 if (!TAILQ_EMPTY(&sino->si_movs)) { 1797 diroff = refrec->jr_diroff; 1798 for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) { 1799 srp = TAILQ_PREV(srn, srechd, sr_next); 1800 mvrec = (struct jmvrec *)srn->sr_rec; 1801 if (mvrec->jm_parent != refrec->jr_parent || 1802 mvrec->jm_newoff != diroff) 1803 continue; 1804 diroff = mvrec->jm_oldoff; 1805 TAILQ_REMOVE(&sino->si_movs, srn, sr_next); 1806 free(srn); 1807 ino_dup_ref(sino, refrec, diroff); 1808 } 1809 } 1810 /* 1811 * If a remove wasn't eliminated by an earlier add just append it to 1812 * the list. 1813 */ 1814 if (refrec->jr_op == JOP_REMREF) { 1815 ino_add_ref(sino, srec); 1816 return; 1817 } 1818 /* 1819 * Walk the list of records waiting to be added to the list. We 1820 * must check for moves that apply to our current offset and remove 1821 * them from the list. Remove any duplicates to eliminate removes 1822 * with corresponding adds. 1823 */ 1824 TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) { 1825 switch (srn->sr_rec->rec_jrefrec.jr_op) { 1826 case JOP_ADDREF: 1827 /* 1828 * This should actually be an error we should 1829 * have a remove for every add journaled. 1830 */ 1831 rrn = (struct jrefrec *)srn->sr_rec; 1832 if (rrn->jr_parent != refrec->jr_parent || 1833 rrn->jr_diroff != refrec->jr_diroff) 1834 break; 1835 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1836 break; 1837 case JOP_REMREF: 1838 /* 1839 * Once we remove the current iteration of the 1840 * record at this address we're done. 1841 */ 1842 rrn = (struct jrefrec *)srn->sr_rec; 1843 if (rrn->jr_parent != refrec->jr_parent || 1844 rrn->jr_diroff != refrec->jr_diroff) 1845 break; 1846 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1847 ino_add_ref(sino, srec); 1848 return; 1849 case JOP_MVREF: 1850 /* 1851 * Update our diroff based on any moves that match 1852 * and remove the move. 1853 */ 1854 mvrec = (struct jmvrec *)srn->sr_rec; 1855 if (mvrec->jm_parent != refrec->jr_parent || 1856 mvrec->jm_oldoff != refrec->jr_diroff) 1857 break; 1858 ino_dup_ref(sino, refrec, mvrec->jm_oldoff); 1859 refrec->jr_diroff = mvrec->jm_newoff; 1860 TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next); 1861 break; 1862 default: 1863 err_suj("ino_build_ref: Unknown op %s\n", 1864 JOP_OPTYPE(srn->sr_rec->rec_jrefrec.jr_op)); 1865 } 1866 } 1867 ino_add_ref(sino, srec); 1868 } 1869 1870 /* 1871 * Walk the list of new records and add them in-order resolving any 1872 * dups and adjusted offsets. 1873 */ 1874 static void 1875 ino_build(struct suj_ino *sino) 1876 { 1877 struct suj_rec *srec; 1878 1879 while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) { 1880 TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next); 1881 switch (srec->sr_rec->rec_jrefrec.jr_op) { 1882 case JOP_ADDREF: 1883 case JOP_REMREF: 1884 ino_build_ref(sino, srec); 1885 break; 1886 case JOP_MVREF: 1887 /* 1888 * Add this mvrec to the queue of pending mvs. 1889 */ 1890 TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next); 1891 break; 1892 default: 1893 err_suj("ino_build: Unknown op %s\n", 1894 JOP_OPTYPE(srec->sr_rec->rec_jrefrec.jr_op)); 1895 } 1896 } 1897 if (TAILQ_EMPTY(&sino->si_recs)) 1898 sino->si_hasrecs = 0; 1899 } 1900 1901 /* 1902 * Modify journal records so they refer to the base block number 1903 * and a start and end frag range. This is to facilitate the discovery 1904 * of overlapping fragment allocations. 1905 */ 1906 static void 1907 blk_build(struct jblkrec *blkrec) 1908 { 1909 struct suj_rec *srec; 1910 struct suj_blk *sblk; 1911 struct jblkrec *blkrn; 1912 ufs2_daddr_t blk; 1913 int frag; 1914 1915 if (debug) 1916 printf("blk_build: op %s blkno %jd frags %d oldfrags %d " 1917 "ino %ju lbn %jd\n", 1918 JOP_OPTYPE(blkrec->jb_op), (uintmax_t)blkrec->jb_blkno, 1919 blkrec->jb_frags, blkrec->jb_oldfrags, 1920 (uintmax_t)blkrec->jb_ino, (uintmax_t)blkrec->jb_lbn); 1921 1922 blk = blknum(fs, blkrec->jb_blkno); 1923 frag = fragnum(fs, blkrec->jb_blkno); 1924 if (blkrec->jb_blkno < 0 || blk + fs->fs_frag - frag > fs->fs_size) 1925 err_suj("Out-of-bounds journal block number %jd\n", 1926 blkrec->jb_blkno); 1927 sblk = blk_lookup(blk, 1); 1928 /* 1929 * Rewrite the record using oldfrags to indicate the offset into 1930 * the block. Leave jb_frags as the actual allocated count. 1931 */ 1932 blkrec->jb_blkno -= frag; 1933 blkrec->jb_oldfrags = frag; 1934 if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag) 1935 err_suj("Invalid fragment count %d oldfrags %d\n", 1936 blkrec->jb_frags, frag); 1937 /* 1938 * Detect dups. If we detect a dup we always discard the oldest 1939 * record as it is superseded by the new record. This speeds up 1940 * later stages but also eliminates free records which are used 1941 * to indicate that the contents of indirects can be trusted. 1942 */ 1943 TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) { 1944 blkrn = (struct jblkrec *)srec->sr_rec; 1945 if (blkrn->jb_ino != blkrec->jb_ino || 1946 blkrn->jb_lbn != blkrec->jb_lbn || 1947 blkrn->jb_blkno != blkrec->jb_blkno || 1948 blkrn->jb_frags != blkrec->jb_frags || 1949 blkrn->jb_oldfrags != blkrec->jb_oldfrags) 1950 continue; 1951 if (debug) 1952 printf("Removed dup.\n"); 1953 /* Discard the free which is a dup with an alloc. */ 1954 if (blkrec->jb_op == JOP_FREEBLK) 1955 return; 1956 TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next); 1957 free(srec); 1958 break; 1959 } 1960 srec = errmalloc(sizeof(*srec)); 1961 srec->sr_rec = (union jrec *)blkrec; 1962 TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next); 1963 } 1964 1965 static void 1966 ino_build_trunc(struct jtrncrec *rec) 1967 { 1968 struct suj_ino *sino; 1969 1970 if (debug) 1971 printf("ino_build_trunc: op %d ino %ju, size %jd\n", 1972 rec->jt_op, (uintmax_t)rec->jt_ino, 1973 (uintmax_t)rec->jt_size); 1974 if (chkfilesize(IFREG, rec->jt_size) == 0) 1975 err_suj("ino_build: truncation size too large %ju\n", 1976 (intmax_t)rec->jt_size); 1977 sino = ino_lookup(rec->jt_ino, 1); 1978 if (rec->jt_op == JOP_SYNC) { 1979 sino->si_trunc = NULL; 1980 return; 1981 } 1982 if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size) 1983 sino->si_trunc = rec; 1984 } 1985 1986 /* 1987 * Build up tables of the operations we need to recover. 1988 */ 1989 static void 1990 suj_build(void) 1991 { 1992 struct suj_seg *seg; 1993 union jrec *rec; 1994 int off; 1995 int i; 1996 1997 TAILQ_FOREACH(seg, &allsegs, ss_next) { 1998 if (debug) 1999 printf("seg %jd has %d records, oldseq %jd.\n", 2000 seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt, 2001 seg->ss_rec.jsr_oldest); 2002 off = 0; 2003 rec = (union jrec *)seg->ss_blk; 2004 for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) { 2005 /* skip the segrec. */ 2006 if ((off % real_dev_bsize) == 0) 2007 continue; 2008 switch (rec->rec_jrefrec.jr_op) { 2009 case JOP_ADDREF: 2010 case JOP_REMREF: 2011 case JOP_MVREF: 2012 ino_append(rec); 2013 break; 2014 case JOP_NEWBLK: 2015 case JOP_FREEBLK: 2016 blk_build((struct jblkrec *)rec); 2017 break; 2018 case JOP_TRUNC: 2019 case JOP_SYNC: 2020 ino_build_trunc((struct jtrncrec *)rec); 2021 break; 2022 default: 2023 err_suj("Unknown journal operation %s at %d\n", 2024 JOP_OPTYPE(rec->rec_jrefrec.jr_op), off); 2025 } 2026 i++; 2027 } 2028 } 2029 } 2030 2031 /* 2032 * Prune the journal segments to those we care about based on the 2033 * oldest sequence in the newest segment. Order the segment list 2034 * based on sequence number. 2035 */ 2036 static void 2037 suj_prune(void) 2038 { 2039 struct suj_seg *seg; 2040 struct suj_seg *segn; 2041 uint64_t newseq; 2042 int discard; 2043 2044 if (debug) 2045 printf("Pruning up to %jd\n", oldseq); 2046 /* First free the expired segments. */ 2047 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2048 if (seg->ss_rec.jsr_seq >= oldseq) 2049 continue; 2050 TAILQ_REMOVE(&allsegs, seg, ss_next); 2051 free(seg->ss_blk); 2052 free(seg); 2053 } 2054 /* Next ensure that segments are ordered properly. */ 2055 seg = TAILQ_FIRST(&allsegs); 2056 if (seg == NULL) { 2057 if (debug) 2058 printf("Empty journal\n"); 2059 return; 2060 } 2061 newseq = seg->ss_rec.jsr_seq; 2062 for (;;) { 2063 seg = TAILQ_LAST(&allsegs, seghd); 2064 if (seg->ss_rec.jsr_seq >= newseq) 2065 break; 2066 TAILQ_REMOVE(&allsegs, seg, ss_next); 2067 TAILQ_INSERT_HEAD(&allsegs, seg, ss_next); 2068 newseq = seg->ss_rec.jsr_seq; 2069 2070 } 2071 if (newseq != oldseq) { 2072 TAILQ_FOREACH(seg, &allsegs, ss_next) { 2073 printf("%jd, ", seg->ss_rec.jsr_seq); 2074 } 2075 printf("\n"); 2076 err_suj("Journal file sequence mismatch %jd != %jd\n", 2077 newseq, oldseq); 2078 } 2079 /* 2080 * The kernel may asynchronously write segments which can create 2081 * gaps in the sequence space. Throw away any segments after the 2082 * gap as the kernel guarantees only those that are contiguously 2083 * reachable are marked as completed. 2084 */ 2085 discard = 0; 2086 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2087 if (!discard && newseq++ == seg->ss_rec.jsr_seq) { 2088 jrecs += seg->ss_rec.jsr_cnt; 2089 jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize; 2090 continue; 2091 } 2092 discard = 1; 2093 if (debug) 2094 printf("Journal order mismatch %jd != %jd pruning\n", 2095 newseq-1, seg->ss_rec.jsr_seq); 2096 TAILQ_REMOVE(&allsegs, seg, ss_next); 2097 free(seg->ss_blk); 2098 free(seg); 2099 } 2100 if (debug) 2101 printf("Processing journal segments from %jd to %jd\n", 2102 oldseq, newseq-1); 2103 } 2104 2105 /* 2106 * Verify the journal inode before attempting to read records. 2107 */ 2108 static int 2109 suj_verifyino(union dinode *dp) 2110 { 2111 2112 if (DIP(dp, di_nlink) != 1) { 2113 printf("Invalid link count %d for journal inode %ju\n", 2114 DIP(dp, di_nlink), (uintmax_t)sujino); 2115 return (-1); 2116 } 2117 2118 if ((DIP(dp, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) != 2119 (SF_IMMUTABLE | SF_NOUNLINK)) { 2120 printf("Invalid flags 0x%X for journal inode %ju\n", 2121 DIP(dp, di_flags), (uintmax_t)sujino); 2122 return (-1); 2123 } 2124 2125 if (DIP(dp, di_mode) != (IFREG | IREAD)) { 2126 printf("Invalid mode %o for journal inode %ju\n", 2127 DIP(dp, di_mode), (uintmax_t)sujino); 2128 return (-1); 2129 } 2130 2131 if (DIP(dp, di_size) < SUJ_MIN) { 2132 printf("Invalid size %jd for journal inode %ju\n", 2133 DIP(dp, di_size), (uintmax_t)sujino); 2134 return (-1); 2135 } 2136 2137 if (DIP(dp, di_modrev) != fs->fs_mtime) { 2138 if (!bkgrdcheck || debug) 2139 printf("Journal timestamp does not match " 2140 "fs mount time\n"); 2141 return (-1); 2142 } 2143 2144 return (0); 2145 } 2146 2147 struct jblocks { 2148 struct jextent *jb_extent; /* Extent array. */ 2149 int jb_avail; /* Available extents. */ 2150 int jb_used; /* Last used extent. */ 2151 int jb_head; /* Allocator head. */ 2152 int jb_off; /* Allocator extent offset. */ 2153 }; 2154 struct jextent { 2155 ufs2_daddr_t je_daddr; /* Disk block address. */ 2156 int je_blocks; /* Disk block count. */ 2157 }; 2158 2159 static struct jblocks *suj_jblocks; 2160 2161 static struct jblocks * 2162 jblocks_create(void) 2163 { 2164 struct jblocks *jblocks; 2165 int size; 2166 2167 jblocks = errmalloc(sizeof(*jblocks)); 2168 jblocks->jb_avail = 10; 2169 jblocks->jb_used = 0; 2170 jblocks->jb_head = 0; 2171 jblocks->jb_off = 0; 2172 size = sizeof(struct jextent) * jblocks->jb_avail; 2173 jblocks->jb_extent = errmalloc(size); 2174 bzero(jblocks->jb_extent, size); 2175 2176 return (jblocks); 2177 } 2178 2179 /* 2180 * Return the next available disk block and the amount of contiguous 2181 * free space it contains. 2182 */ 2183 static ufs2_daddr_t 2184 jblocks_next(struct jblocks *jblocks, int bytes, int *actual) 2185 { 2186 struct jextent *jext; 2187 ufs2_daddr_t daddr; 2188 int freecnt; 2189 int blocks; 2190 2191 blocks = btodb(bytes); 2192 jext = &jblocks->jb_extent[jblocks->jb_head]; 2193 freecnt = jext->je_blocks - jblocks->jb_off; 2194 if (freecnt == 0) { 2195 jblocks->jb_off = 0; 2196 if (++jblocks->jb_head > jblocks->jb_used) 2197 return (0); 2198 jext = &jblocks->jb_extent[jblocks->jb_head]; 2199 freecnt = jext->je_blocks; 2200 } 2201 if (freecnt > blocks) 2202 freecnt = blocks; 2203 *actual = dbtob(freecnt); 2204 daddr = jext->je_daddr + jblocks->jb_off; 2205 2206 return (daddr); 2207 } 2208 2209 /* 2210 * Advance the allocation head by a specified number of bytes, consuming 2211 * one journal segment. 2212 */ 2213 static void 2214 jblocks_advance(struct jblocks *jblocks, int bytes) 2215 { 2216 2217 jblocks->jb_off += btodb(bytes); 2218 } 2219 2220 static void 2221 jblocks_destroy(struct jblocks *jblocks) 2222 { 2223 2224 free(jblocks->jb_extent); 2225 free(jblocks); 2226 } 2227 2228 static void 2229 jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks) 2230 { 2231 struct jextent *jext; 2232 int size; 2233 2234 jext = &jblocks->jb_extent[jblocks->jb_used]; 2235 /* Adding the first block. */ 2236 if (jext->je_daddr == 0) { 2237 jext->je_daddr = daddr; 2238 jext->je_blocks = blocks; 2239 return; 2240 } 2241 /* Extending the last extent. */ 2242 if (jext->je_daddr + jext->je_blocks == daddr) { 2243 jext->je_blocks += blocks; 2244 return; 2245 } 2246 /* Adding a new extent. */ 2247 if (++jblocks->jb_used == jblocks->jb_avail) { 2248 jblocks->jb_avail *= 2; 2249 size = sizeof(struct jextent) * jblocks->jb_avail; 2250 jext = errmalloc(size); 2251 bzero(jext, size); 2252 bcopy(jblocks->jb_extent, jext, 2253 sizeof(struct jextent) * jblocks->jb_used); 2254 free(jblocks->jb_extent); 2255 jblocks->jb_extent = jext; 2256 } 2257 jext = &jblocks->jb_extent[jblocks->jb_used]; 2258 jext->je_daddr = daddr; 2259 jext->je_blocks = blocks; 2260 2261 return; 2262 } 2263 2264 /* 2265 * Add a file block from the journal to the extent map. We can't read 2266 * each file block individually because the kernel treats it as a circular 2267 * buffer and segments may span multiple contiguous blocks. 2268 */ 2269 static void 2270 suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags) 2271 { 2272 2273 jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags)); 2274 } 2275 2276 static void 2277 suj_read(void) 2278 { 2279 uint8_t block[1 * 1024 * 1024]; 2280 struct suj_seg *seg; 2281 struct jsegrec *recn; 2282 struct jsegrec *rec; 2283 ufs2_daddr_t blk; 2284 int readsize; 2285 int blocks; 2286 int recsize; 2287 int size; 2288 int i; 2289 2290 /* 2291 * Read records until we exhaust the journal space. If we find 2292 * an invalid record we start searching for a valid segment header 2293 * at the next block. This is because we don't have a head/tail 2294 * pointer and must recover the information indirectly. At the gap 2295 * between the head and tail we won't necessarily have a valid 2296 * segment. 2297 */ 2298 restart: 2299 for (;;) { 2300 size = sizeof(block); 2301 blk = jblocks_next(suj_jblocks, size, &readsize); 2302 if (blk == 0) 2303 return; 2304 size = readsize; 2305 /* 2306 * Read 1MB at a time and scan for records within this block. 2307 */ 2308 if (pread(fsreadfd, &block, size, dbtob(blk)) != size) { 2309 err_suj("Error reading journal block %jd\n", 2310 (intmax_t)blk); 2311 } 2312 for (rec = (void *)block; size; size -= recsize, 2313 rec = (struct jsegrec *)((uintptr_t)rec + recsize)) { 2314 recsize = real_dev_bsize; 2315 if (rec->jsr_time != fs->fs_mtime) { 2316 #ifdef notdef 2317 if (debug) 2318 printf("Rec time %jd != fs mtime %jd\n", 2319 rec->jsr_time, fs->fs_mtime); 2320 #endif 2321 jblocks_advance(suj_jblocks, recsize); 2322 continue; 2323 } 2324 if (rec->jsr_cnt == 0) { 2325 if (debug) 2326 printf("Found illegal count %d\n", 2327 rec->jsr_cnt); 2328 jblocks_advance(suj_jblocks, recsize); 2329 continue; 2330 } 2331 blocks = rec->jsr_blocks; 2332 recsize = blocks * real_dev_bsize; 2333 if (recsize > size) { 2334 /* 2335 * We may just have run out of buffer, restart 2336 * the loop to re-read from this spot. 2337 */ 2338 if (size < fs->fs_bsize && 2339 size != readsize && 2340 recsize <= fs->fs_bsize) 2341 goto restart; 2342 if (debug) 2343 printf("Found invalid segsize " 2344 "%d > %d\n", recsize, size); 2345 recsize = real_dev_bsize; 2346 jblocks_advance(suj_jblocks, recsize); 2347 continue; 2348 } 2349 /* 2350 * Verify that all blocks in the segment are present. 2351 */ 2352 for (i = 1; i < blocks; i++) { 2353 recn = (void *)((uintptr_t)rec) + i * 2354 real_dev_bsize; 2355 if (recn->jsr_seq == rec->jsr_seq && 2356 recn->jsr_time == rec->jsr_time) 2357 continue; 2358 if (debug) 2359 printf("Incomplete record %jd (%d)\n", 2360 rec->jsr_seq, i); 2361 recsize = i * real_dev_bsize; 2362 jblocks_advance(suj_jblocks, recsize); 2363 goto restart; 2364 } 2365 seg = errmalloc(sizeof(*seg)); 2366 seg->ss_blk = errmalloc(recsize); 2367 seg->ss_rec = *rec; 2368 bcopy((void *)rec, seg->ss_blk, recsize); 2369 if (rec->jsr_oldest > oldseq) 2370 oldseq = rec->jsr_oldest; 2371 TAILQ_INSERT_TAIL(&allsegs, seg, ss_next); 2372 jblocks_advance(suj_jblocks, recsize); 2373 } 2374 } 2375 } 2376 2377 /* 2378 * Orchestrate the verification of a filesystem via the softupdates journal. 2379 */ 2380 int 2381 suj_check(const char *filesys) 2382 { 2383 struct inodesc idesc; 2384 struct csum *cgsum; 2385 union dinode *dp, *jip; 2386 struct inode ip; 2387 uint64_t blocks; 2388 int i, retval; 2389 struct suj_seg *seg; 2390 struct suj_seg *segn; 2391 2392 initsuj(); 2393 fs = &sblock; 2394 if (real_dev_bsize == 0 && ioctl(fsreadfd, DIOCGSECTORSIZE, 2395 &real_dev_bsize) == -1) 2396 real_dev_bsize = secsize; 2397 if (debug) 2398 printf("dev_bsize %u\n", real_dev_bsize); 2399 2400 /* 2401 * Set an exit point when SUJ check failed 2402 */ 2403 retval = setjmp(jmpbuf); 2404 if (retval != 0) { 2405 pwarn("UNEXPECTED SU+J INCONSISTENCY\n"); 2406 TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) { 2407 TAILQ_REMOVE(&allsegs, seg, ss_next); 2408 free(seg->ss_blk); 2409 free(seg); 2410 } 2411 if (reply("FALLBACK TO FULL FSCK") == 0) { 2412 ckfini(0); 2413 exit(EEXIT); 2414 } else 2415 return (-1); 2416 } 2417 2418 /* 2419 * Search the root directory for the SUJ_FILE. 2420 */ 2421 idesc.id_type = DATA; 2422 idesc.id_fix = IGNORE; 2423 idesc.id_number = UFS_ROOTINO; 2424 idesc.id_func = findino; 2425 idesc.id_name = SUJ_FILE; 2426 ginode(UFS_ROOTINO, &ip); 2427 dp = ip.i_dp; 2428 if ((DIP(dp, di_mode) & IFMT) != IFDIR) { 2429 irelse(&ip); 2430 err_suj("root inode is not a directory\n"); 2431 } 2432 if (DIP(dp, di_size) < 0 || DIP(dp, di_size) > MAXDIRSIZE) { 2433 irelse(&ip); 2434 err_suj("negative or oversized root directory %jd\n", 2435 (uintmax_t)DIP(dp, di_size)); 2436 } 2437 if ((ckinode(dp, &idesc) & FOUND) == FOUND) { 2438 sujino = idesc.id_parent; 2439 irelse(&ip); 2440 } else { 2441 if (!bkgrdcheck || debug) 2442 printf("Journal inode removed. " 2443 "Use tunefs to re-create.\n"); 2444 sblock.fs_flags &= ~FS_SUJ; 2445 sblock.fs_sujfree = 0; 2446 irelse(&ip); 2447 return (-1); 2448 } 2449 /* 2450 * Fetch the journal inode and verify it. 2451 */ 2452 ginode(sujino, &ip); 2453 jip = ip.i_dp; 2454 if (!bkgrdcheck || debug) 2455 printf("** SU+J Recovering %s\n", filesys); 2456 if (suj_verifyino(jip) != 0 || (!preen && !reply("USE JOURNAL"))) { 2457 irelse(&ip); 2458 return (-1); 2459 } 2460 /* 2461 * Build a list of journal blocks in jblocks before parsing the 2462 * available journal blocks in with suj_read(). 2463 */ 2464 if (!bkgrdcheck || debug) 2465 printf("** Reading %jd byte journal from inode %ju.\n", 2466 DIP(jip, di_size), (uintmax_t)sujino); 2467 suj_jblocks = jblocks_create(); 2468 blocks = ino_visit(jip, sujino, suj_add_block, 0); 2469 if (blocks != numfrags(fs, DIP(jip, di_size))) { 2470 if (!bkgrdcheck || debug) 2471 printf("Sparse journal inode %ju.\n", 2472 (uintmax_t)sujino); 2473 irelse(&ip); 2474 return (-1); 2475 } 2476 /* If journal is valid then do journal check rather than background */ 2477 if (bkgrdcheck) { 2478 irelse(&ip); 2479 return (0); 2480 } 2481 irelse(&ip); 2482 suj_read(); 2483 jblocks_destroy(suj_jblocks); 2484 suj_jblocks = NULL; 2485 if (preen || reply("RECOVER")) { 2486 printf("** Building recovery table.\n"); 2487 suj_prune(); 2488 suj_build(); 2489 cg_apply(cg_build); 2490 printf("** Resolving unreferenced inode list.\n"); 2491 ino_unlinked(); 2492 printf("** Processing journal entries.\n"); 2493 cg_apply(cg_trunc); 2494 cg_apply(cg_check_blk); 2495 cg_apply(cg_adj_blk); 2496 cg_apply(cg_check_ino); 2497 } 2498 if (preen == 0 && (jrecs > 0 || jbytes > 0) && 2499 reply("WRITE CHANGES") == 0) 2500 return (0); 2501 /* 2502 * Check block counts of snapshot inodes and 2503 * make copies of any needed snapshot blocks. 2504 */ 2505 for (i = 0; i < snapcnt; i++) 2506 check_blkcnt(&snaplist[i]); 2507 snapflush(suj_checkblkavail); 2508 /* 2509 * Recompute the fs summary info from correct cs summaries. 2510 */ 2511 bzero(&fs->fs_cstotal, sizeof(struct csum_total)); 2512 for (i = 0; i < fs->fs_ncg; i++) { 2513 cgsum = &fs->fs_cs(fs, i); 2514 fs->fs_cstotal.cs_nffree += cgsum->cs_nffree; 2515 fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree; 2516 fs->fs_cstotal.cs_nifree += cgsum->cs_nifree; 2517 fs->fs_cstotal.cs_ndir += cgsum->cs_ndir; 2518 } 2519 fs->fs_pendinginodes = 0; 2520 fs->fs_pendingblocks = 0; 2521 fs->fs_clean = 1; 2522 fs->fs_time = time(NULL); 2523 fs->fs_mtime = time(NULL); 2524 sbdirty(); 2525 ckfini(1); 2526 if (jrecs > 0 || jbytes > 0) { 2527 printf("** %jd journal records in %jd bytes for %.2f%% " 2528 "utilization\n", jrecs, jbytes, 2529 ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100); 2530 printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd " 2531 "frags.\n", freeinos, freedir, freeblocks, freefrags); 2532 } 2533 2534 return (0); 2535 } 2536 2537 static void 2538 initsuj(void) 2539 { 2540 int i; 2541 2542 for (i = 0; i < HASHSIZE; i++) 2543 LIST_INIT(&cghash[i]); 2544 lastcg = NULL; 2545 TAILQ_INIT(&allsegs); 2546 oldseq = 0; 2547 fs = NULL; 2548 sujino = 0; 2549 freefrags = 0; 2550 freeblocks = 0; 2551 freeinos = 0; 2552 freedir = 0; 2553 jbytes = 0; 2554 jrecs = 0; 2555 suj_jblocks = NULL; 2556 } 2557